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Introduction

Field Site

Modeling lithology

1. Resistivity-lithology transform

2. Simulating lithology

Workflow

Aquifer recharge and recovery (ARR) is the critical zone process of

enhancing natural groundwater resources and recovering water for later use

by constructing engineered conveyances—in our case by recharge ponds.

Subsurface lithological heterogeneity can impair attempts at estimating

where and how quickly water flows through the critical zone.

Here, we employ two separate methods for transforming geophysical data

not collocated with borehole information into lithological data at an ARR site.

We then use geostatistical simulations to build an ensemble of lithology

models, and run numerical flow simulations to compare with field

observations.

Discussion

References

• Near Aurora, CO

• Geomorphological setting: unconsolidated fluvial sediments, with many thin

clay fingers.

• 26 recovery wells (blue) around the perimeter, 75-170m apart.

• 25 electrical resistivity tomography (ERT) profiles were collected in and

near the central and southwestern recharge basins.

• ERT measurements are not collocated with the wells in the area

A large amount of uncertainty exists when assigning values to subsurface

flow properties. We quantify this uncertainty in a Bayesian framework:

Because we are interested in preferential flow paths in the

fluvial depositional setting, we use a binary hydro-facies

categorization of high and low hydraulic conductivity

(referred to simply as sand and clay).

Two separate methods were used to define a probabilistic

transfer function, mapping resistivity to hydro-facies at the

site:

1. Fitting a bimodal lognormal distribution to the inverted

ERT data itself, using a maximum likelihood estimator.

2. Using a spatial bootstrap to simulate facies in the

region, and then sampling the simulated facies at

locations coinciding with ERT data.

Two ensembles of lithology grids were simulated using the

multiple point statistical algorithm SNESIM.

One ensemble was simulated for each of the resistivity-

lithology transforms described above, using a fluvial

training image.

• Hydraulic parameters assigned to sand and clay

• Boundary values set to approximate tracer test at

the Aurora ARR site

• Tracer infiltrated through recharge basins for one

day, then only water

• 14 wells extracting water to maintain volume

• Concentrations recorded at monitoring wells

• Flow modeled with FloPy-–a Python package for

MODFLOW

Tracer breakthrough times at 5 monitoring

wells were used to evaluate the accuracy

of the simulated flow field.

We compare the breakthrough results

obtained using the proposed methods to

generate models with breakthrough

results obtained using alternate, more

standard methods to generate models:

1) assuming the subsurface is composed

of a homogeneous sand, and

2) using SNESIM without incorporating

additional information from ERT.

Figure 4: Resistivity-lithology transfer function defined by:

a) fitting ERT data (method 1). Dashed lines indicate the

resistivity-lithology transform in the unsaturated zone; and

b) using a spatial bootstrap (method 2).

Figure 6: Cutaway of the soft data probability

cube, which integrates the information from wells

and ERT to assign a probability of sand 𝑃(𝑧 𝒖 )
at each voxel

Figure 8: Tracer concentration contour map of a

simulated flow grid, at a) 1.4 days after

beginning tracer recharge, b) 5.6 days c) 20.4

days d) 38.8 days.

Figure 9: Multidimensional scaling plot showing difference

in simulated breakthrough times, as compared to the field

site observed values (OBS) and a homogenous sand

model (HOM).

Figure 5: Cutaway of an example training

image used in lithology simulations. The

channels of various dimensions run

generally N-S

• Incorporating geophysical information into flow models refines the precision and accuracy of flow models at the ARR site.

• Choice of the rock-physics transform has an effect on the on the variance of simulated breakthroughs.

• Simulated tracer breakthroughs never perfectly overlap the field observed values.

• This is likely because flow parameters (e.g. hydraulic conductivity, porosity) were fixed values for each facies.

• By using a probability perturbation method, a more plausible set of hydraulic parameter could be found.

• The transformation methods described here can be applied to many different geophysical methods.
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Figure 3: Field measurements of resistivity from the

ARR site (after Parsekian et al., 2014)
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Figure 7: Site map of an example simulated

flow grid. White background represents the

sand facies, while light grey represents the

clay facies
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