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Introduction

Over the last decades, umbilical cord blood (UCB) 
expanded as an alternative graft source for allogeneic 
stem cell transplantation (alloHSCT) in patients who 
lack a suitable HLA-matched related or unrelated donor 
(1,2). UCB transplantation (UCBT) offers some practical 
advantages including easy collection, prompt availability and 
reduced stringency of HLA-matching requirements with 
the potential of increasing the applicability of alloHSCT to 
ethnic minorities. However, one of the major concerns after 
UCBT was the high rate of infection-related morbidity and 
mortality, particularly in adult UCB recipients (3-5). 

Reconstitution of a functional adaptive immune system 
is an important challenge after alloHSCT. Studies reported 
that delayed T- and B-cell recovery associated with 
increased risks of post-transplant opportunistic infections 
and transplant-related mortality (6-11). Reconstitution 
of adaptive immunity after alloHSCT is a complex and 
slow process that can be influenced by several factors, 
such as recipient age, type of donor (related/unrelated, 
HLA-matched/HLA-mismatched), type of conditioning 
(myeloablative/reduced intensity; including or not radiation 
therapy), ex vivo or in vivo T-cell depletion of the graft, type 
of graft-versus-host disease (GVHD) prophylaxis, as well 
as occurrence and treatments of GVHD (12). Some impact 
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of the stem cell source was also reported. For example, 
differences in the kinetics of T- and B-cell recovery were 
observed after alloHSCT with mobilized peripheral blood 
stem cells (PBSC), as compared with bone marrow (BM) 
(13-15). Since opportunistic infections appeared to be 
frequent after UCBT, growing interest developed over the 
last decade about the pattern of immune recovery using this 
specific graft source.

Several tools have been developed for monitoring the 
recovery of the adaptive immune system after alloHSCT. 
Some of them are currently used routinely in clinical 
laboratories, including measurements of absolute counts 
and frequencies of main lymphocyte subsets (CD3+CD4+ 
and CD3+CD8+ T cells, CD20+ or CD19+ B cells) as well 
as quantification of serum immunoglobulin (Ig) levels. In 
addition, more complex assays are also available in research 
laboratories, such as multi-color flow cytometry, functional 
assays, studies of T- and B-cell repertoire diversity through 
TCR beta and IgH complementarity determining region 
3 (CDR3) size analyses, and detection of T-cell receptor 
excision circles (TRECs) and kappa-deleting recombination 
excision circles (KREKs). TRECs and KRECS can be 
used as markers of thymopoiesis and B-lymphopoiesis, 
respectively (16,17). These assays have helped us refining 
our knowledge on recovery of adaptive immunity after 
alloHSCT, and specifically after UCBT. 

In this review, we summarize the current understanding 
of T- and B-cell reconstitution following UCBT and 
why this differs from alloHSCT using other stem cell 
source. We further discussed the links between immune 
reconstitution and infections after UCBT.

T-cell reconstitution after UCBT

General overview of T-cell reconstitution after alloHSCT

T-cell recovery after alloHSCT proceeds along two 
different pathways that act in parallel but follow distinct 
kinetics: (I) homeostatic peripheral expansion of mature 
T cells (termed the “thymic-independent pathway”); and (II) 
naive T-cell neo-production from donor hematopoietic 
progenitor cells through the thymus (termed the “thymic-
dependent pathway”) (Figure 1) (12,19).

Most circulating T cells during the first months after 
transplantation arise through the thymic-independent 
pathway and are the progeny of T cells infused with the 
graft or of host T cells that survived the pre-transplant 
conditioning therapy. Peripheral expansion of mature 

T cells occurs in the peculiar context of lymphopenia 
and is the consequence of homeostatic mechanisms that 
control the size of the T-cell pool (20). Briefly, in normal 
individuals, the mature T-cell pool is highly regulated 
through T-cell competition for homeostatic cytokines that 
support their maturation, proliferation and survival [mainly 
interleukin (IL)-7 and IL-15]. Early after alloHSCT, IL-7 
and IL-15 are produced but little consumed because of the 
lymphopenic state induced by the conditioning regimen. 
This results in high serum levels of these cytokines (21). 
Therefore, in such a cytokine climate, the little number 
of T cells present after transplantation undergo intense 
expansion, until they reach a number that is in the range 
of the mature pool in normal subjects. This pathway 
of immune reconstitution explains several observations 
such as the high percentage of cells in cycle and the rapid 
shortening of telomeres in T cells during the first months 
after alloHSCT (22). Cytokine signals alone are sufficient 
to induce homeostatic expansion of memory T cells, 
but naive T cells additionally require TCR engagement 
with self-HLA for survival and expansion (23). Hence, 
the magnitude of peripheral expansion is variable among 
T-cell subsets and is higher for memory than for naive 
T-cell populations. It also occurs more strongly for CD8+ 
than for CD4+ T cells. This leads to an inverted CD4/
CD8 ratio and to a predominance of memory CD8+ T 
cells circulating in the peripheral blood during the first 
months after alloHSCT. Although the peripheral expansion 
is a polyclonal proliferation, it is not completely antigen-
independent since cells that recognize cognate antigens 
may acquire a proliferative advantage over other T-cell 
clones. For example, CD8+ T cells recognizing periodically 
reactivated herpes viruses [i.e., cytomegalovirus (CMV) or 
Epstein Barr virus (EBV)] may expand rapidly. Therefore, 
as compared to that of the donor, the T-cell repertoire 
may narrow after alloHSCT and may be directed toward 
these viruses, specifically with grafts from adult donors that 
contain viral antigen-experienced memory T cells and in 
seropositive recipients (24-26).

Reconstitution of a more diversified T-cell repertoire 
occurs secondarily, with de novo production of naive T 
cells through the thymic-dependent pathway (19). It is a 
long-lasting process that critically depends on lymphoid 
progenitors arising from donor-derived stem cells, 
proliferating and seeding the thymus, as well as on optimal 
thymic microenvironment for T-cell maturation and 
selection. In the thymus, developing T cells (thymocytes) 
that bind with appropriate affinity to self (host)-HLA 



Stem Cell Investigation, 2017

© Stem Cell Investigation. All rights reserved. Stem Cell Investig 2017;4:40sci.amegroups.com

Page 3 of 13

molecules are positively selected (positive selection) and 
those that recognize self (host)-antigens presented in 
association with HLA molecules with high affinity are 
deleted (negative selection) or are deviated into regulatory 
T cell (Treg) lineage (affinity model of thymocyte selection) 
(27,28). An essential component of the negative selection 
process is the display of self-antigens by medullary thymic 
epithelial cells (mTECs) to developing T cells. This is 
coordinated by the Autoimmune Regulator (AIRE) gene 
that initiates the expression of a wide array of tissue-
specific self-antigens, creating an “immunological self-
shadow” in the thymus (29). Recently, it was suggested that 
AIREexpressing mTECs could also promote the thymic 
development of some clones of self-tolerant Treg (29). In 
young patients, naive T-cell export from the thymus can be 
observed from day 100 after alloHSCT, but restoration of a 
diversified naive T-cell pool may require 1 to 2 years.

Several factors can adversely affect the thymic-
independent and/or thymic-dependent pathway of T-cell 
recovery after alloHSCT. The use of ex vivo T-cell depleted 
graft (30) or in vivo T-cell depleting approaches (i.e., with 
alemtuzumab, an anti-CD52 monoclonal antibody; or with 
anti-T cell globulin, ATG) was reported to compromise 
peripheral T-cell expansion (31-36). Impaired thymopoiesis 
after ATG-conditioned alloHSCT was also described in 
some (37) but not all (35) studies, although this may vary 
depending on the brand of ATG. Acute GVHD was shown 
to alter metabolism of lymphoid progenitors as well as their 
homing properties (mobilization from the bone marrow and 
migration to the thymus) (38,39). Thymopoiesis by itself 
may be compromised in patients whose thymus is involuted 
(older patients) or damaged (i.e., because of GVHD) (40). 
It was also suggested that the degree of HLA mismatch 
between the donor and the recipient can impact both 

Figure 1 Recovery of the T-cell pool in peripheral blood after (UCB-) transplantation. Peculiarities in the setting of UCBT are highlighted 
in red. In comparison with PBSC and BM grafts, UCB units are characterized by some quantitative and qualitative differences in their 
composition. They contain (I) lower total cell dose of hematopoietic stem cells and lymphoid progenitors, (II) lower dose of T cells, (III) 
almost exclusively naive T cells, (IV) no anti-pathogen specific memory T cells, and (V) a highly diversified TCR repertoire. HLA disparities 
between the graft and the recipient are also more common in the setting of UCBT. Eventually, UCB-derived HSC, LP and T cells have also 
specific intrinsic properties [reviewed in (18)], likely due to ontological reasons (fetal origin). All of these factors may participate in delayed 
T-cell recovery through the thymic-independent and/or -dependent pathway(s) after UCBT. Moreover, some peculiarities have also been 
described regarding the thymic-independent T-cell recovery after UCBT, such as faster skewing towards memory-like phenotype and a 
CD4-bias pattern. Ag, antigen; HSCs, hematopoietic stem cells; LPs, lymphoid progenitors; TREC, T-cell receptor excision circle.
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thymic-independent and -dependent pathways, in part due 
to higher risk of GVHD but also because of disturbances in 
the physiologic mechanisms of naive T-cell maintenance in 
the periphery and of T-cell selection during thymopoiesis, 
in the setting of HLA-mismatched transplantation (41). 

Current knowledge about T-cell reconstitution after UCBT

Several studies compared T-cell recovery after UCBT 
versus BM or PBSC alloHSCT (Table 1) (42-50). Although 
highly variable in the population they investigated 
(pediatric versus adult patients, transplantation with either 
single or double UCB units, HLA-matched or mismatched 
PBSC- or BM-recipients as control groups, myeloablative 
or reduced intensity conditioning regimens, and variable 
GVHD prophylaxes, specifically with the use or not 
of ATG), the majority of them reported delayed T-cell 
recovery in UCBT patients (42-45,48-50). Depending 
on the study, lower counts of circulating T cells in the 
peripheral blood were observed up to 3–12 months after 
UCBT, as compared with alloHSCT with PBSC or BM. 
Delayed CD8+ T-cell recovery was almost consistently 
described, whilst delayed CD4+ T-cell recovery was 
reported by some groups (43-45,48,50) but not all (42,49). 
In a number of these studies, pre-transplant ATG was 
administered more frequently in UCB-recipients than 
in patients receiving other graft source (42-44,49,50). In 
addition, conditioning regimen and GVHD prophylaxis 
often differed between patients transplanted with UCB 
and PBSC or BM. These variables have to be taken into 
consideration when interpreting the results of these 
studies, as they can be important confounding factors. 
As an example, prompter CD4+ T-cell reconstitution was 
indeed observed after UCBT with the omission of ATG 
(51,52). However, recent studies having monitored immune 
recovery after “ATG-free” myeloablative double UCBT 
versus PBSC-alloHSCT in adult patients still reported a 
transient 3-month delay in T-cell reconstitution in UCB 
recipients (45,48).

Whether delayed T-cell recovery after UCBT is related 
to graft-intrinsic or extrinsic factors (such as specific 
conditioning and prophylaxis regimens) are not formally 
known. However, in comparison with PBSC and BM 
harvests, UCB grafts are characterized by quantitative and 
qualitative differences in their composition that may predict 
potential impact on both thymic-independent and thymic-
dependent T-cell recovery (Figure 1). This will be discussed 
in the following paragraphs.

Current knowledge about the thymic-independent 
pathway of T-cell reconstitution after UCBT
Considering T-cell reconstitution through the thymic-
independent pathway, an important limiting factor can 
be the relatively low dose of T cells contained in one 
UCB unit (about 1–2 log fewer than BM and PBSC 
grafts, respectively). This results in lower amount of T 
cells transferred with the graft that can further undergo 
peripheral expansion. Moreover, the vast majority of UCB-
derived T cells are antigen-inexperienced naive T cells, 
which are less prone to undergo massive homeostatic 
proliferation, specifically in an HLA-mismatched transplant 
setting (that is common in UCBT) (see above). Taken 
together, these data suggest lower potential for T-cell 
recovery through the thymic-independent pathway 
after UCBT. Additionally, since UCB does not contain 
anti-pathogen experienced memory T cells, there is no 
possibility for direct transfer of protective T-cell memory 
immunity from the donor to the host after UCBT.

Faster increase in T cell numbers was observed 
after double UCBT, in comparison with single UCBT. 
Although this might simply be related to the higher dose 
of transferred T cells, frequent HLA mismatches between 
UCB units in double UCBT might also trigger the 
expansion of T cells through graft-versus-graft interactions. 
Hence, it was reported that T cells originating from the 
predominant UCB unit and recognizing mismatched HLA-
alleles expressed by the non-engrafting UCB unit rapidly 
expanded after double UCBT (53).

Although UCB grafts contain high proportions of naive 
T cells, low count and low frequency of phenotypically 
naive (CD45RA+CCR7+) T lymphocytes were reported 
to circulate in the recipient’s peripheral blood after 
UCBT, even early after transplantation (44,48,49,54,55). 
Several authors showed that fetal T cells convert more 
rapidly than adult T cells into memory-like T cells once 
proliferating (56), and that the peripheral expansion of 
naive UCB T cells after alloHSCT associate with a gradual 
skewing towards memory-like phenotypes (mainly effector 
memory [CD45RA−CCR7−] and late effector memory 
[CD45RA+CCR7−] phenotypes) (49,54,55).

Contrar i ly  to  the memory CD8+ T-cel l  b iased 
homeostatic peripheral expansion that occurs after PBSC- 
and BM-alloHSCT, some authors recently reported a 
unique CD4+-biased pattern of thymic-dependent T-cell 
reconstitution after UCBT with the omission of ATG (52). 
One hypothesis is that fetal naive CD4+ T cells may display 
higher proliferative response compared to adult T cells, 
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likely due to ontological properties (originating from fetal 
stem cells rather than adult stem cells) (18,57).

Although rapidly acquiring a memory-like phenotype in 
the recipient, transferred UCB T cells maintain high TCR 
diversity after transplantation (58). Fetal peripheral blood 
is characterized by a complete TCR repertoire at birth (59) 
and, in comparison with PBSC or BM harvests from adult 
donors, UCB grafts display larger T-cell polyclonality that 
reflects the lack of prior antigen stimulation. Using next-
generation sequencing assays, van Heijst et al. reported 
that UCBT (double units, without ATG) was associated 
with a more diversified TCR repertoire at 6 and 12 months 
after transplantation, in comparison with conventional and 
T-cell depleted PBSC-alloHSCT (58). The difference was 
more pronounced for the CD4+ than for the CD8+ T-cell 
compartment, in accordance with data having shown that 
there is a substantially greater TCR diversity in CD4+ 
compared to CD8+ T cells (40,58,60) and that lymphocyte 
recovery is CD4+-biased after UCBT (52). To the contrary, 
the group of Kanda et al. described similar TCR repertoire 
entropy at 12 months after UCBT and T-cell repleted 
PBSC-alloHSCT (45). However, the late time-point they 
analysed might have explained their observation. In fact, in 
the study of van Heijst et al., TCR diversity in non-UCB 
recipients improved by 12 months (likely due to appearance 
of naive T cells coming from de novo thymopoiesis) and 
approached that of UCB patients at that time point (58).

Current knowledge about the thymic-dependent 
pathway of T-cell reconstitution after UCBT
Highly variable but generally slow thymic recovery 
was reported after UCBT, specifically in adult patients 
(45,46,49,54,55). Thymopoiesis may be affected by 
several factors after UCBT [nicely reviewed in (41)]. First, 
although fetal peripheral blood is characterized by higher 
concentration of hematopoietic stem and progenitor cells 
than adult peripheral blood (61), each UCB unit contains 
about a 10–100-fold lower total cell dose compared to BM 
and PBSC harvests. This can result in a delay in the re-
initiation of thymopoiesis. This is specifically true for adult 
patients transplanted with single UCB unit. By studying 
immune recovery in a cohort of 32 adult patients treated 
with single unit UCBT, Komanduri et al. observed a paucity 
of circulating naive T cells and the near complete absence of 
TRECs during the first year posttransplant (55). However, 
in this study, UCB recipients were heavily pre-treated 
and had impaired thymopoiesis at baseline. In contrast 
with these results, other groups reported prompt (from  

3–6 months after transplantation) detection of TRECs in 
the peripheral blood of adult recipients of double UCB 
(7,45). In a study of adult patients undergoing myeloablative 
transplantation, Kanda et al. described comparable TREC 
levels among double UCB- and PBSC-recipients by  
6 months after transplantation (45). Hence, the use of 
double UCB can be important for thymic recovery in the 
adult setting. Although this might simply be related to a 
cell dose effect, alternative (as yet unidentified) explanations 
might also be involved since the majority of recipients of 
double UCB units display single unit chimerism by 3-month 
post-transplantation. 

Independently of the stem cell dose, high level of donor/
recipient HLA discordances (that usually characterise 
UCBT) likely affect intrathymic T-cell selection and 
adversely impact thymopoiesis. This is supported by the 
study of Clave et al. who reported comparable low thymic 
function at 3 months after UCBT and HLA-haploidentical 
donor alloHSCT in a cohort of pediatric patients, even 
although HLA-haploidentical recipients had received mega-
dose of CD34+-selected stem cells (47).

Clinical factors influencing T-cell recovery after UCBT
Several clinical factors have been described to positively 
impact T-cell recovery in the specific setting of UCBT. 
These factors include the use of high dose of total 
nucleated cells, use of double UCB units, use of UCB 
from related donor and of HLA well-matched UCB 
unit, and a positive recipient CMV serology before 
transplantation (62). Conversely, similarly to what is 
reported after transplantation with conventional graft 
source, T-cell depleting approaches (such as with ATG or 
with alemtuzumab) and occurrence of GVHD significantly 
hamper T-cell recovery after UCBT (31,62-65). Concerning 
the impact of ATG, it was recently demonstrated in a 
large cohort of pediatric patients, that even very minimal 
exposure to ATG in the setting of UCBT has a significant 
detrimental effect on early CD4+ T-cell recovery (63).

B-cell reconstitution after UCBT

General overview of B-cell reconstitution after alloHSCT

Immune reconstitution of B cells after alloHSCT is 
markedly different from that of T cells (12,66). After 
alloHSCT with PBSC or BM, absolute numbers of 
circulating B cells classically normalize by 6–12 months 
(67,68). However, recovery of functional B-cell immunity 
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(i.e. in terms of adequate Ig production) takes several years 
more, following a pattern that resembles a recapitulation 
of ontogeny. Specifically, during the 1–2 first months after 
alloHSCT, the number of circulating B cells remains very 
low and most of them are transitional B cells (69). These 
are early marrow emigrant immature B cells that show only 
partial response to antigen-BCR stimulation. Over the next 
3–6 months, total B cell counts gradually rise as well as the 
proportion of mature naive (CD19+CD27−IgMlowIgDhigh) 
B cells, the later representing 90% of the circulating B 
lymphocytes by 9 months. Reconstitution of the memory 
B-cell (CD19+CD27+) pool may take several (up to 5) years 
(11,67). It occurs upon antigen exposure but also requires 
CD40 signals as well as cytokine stimulation from CD4+ 
T cells (follicular B helper T cells). Hence, delayed T-cell 
recovery and the reversed CD4/CD8 ratio likely contribute 
to reduce the numbers of circulating memory B cells after 
alloHSCT (27). 

The production of class-switched antibodies in serum 
mimics the recovery of class-switched memory B cells. 
Normal levels of serum IgM are usually measurable from 
3–6 months, followed by normalization of serum IgG1/
IgG3 and then IgG2/IgG4 between 1–2 years after 
alloHSCT (66). The last Ig to recover is IgA, which may be 
undetectable up to 5 years. Because of the radioresistance 
and the prolonged longevity of plasma cells, antibodies of 
recipient origin may however be detected during several 
months or years after alloHSCT. 

Among main factors impacting B-cell recovery, both 
acute and chronic GVHD were associated with delayed 
quantitative and qualitative B cell reconstitution (11,68). 
Because they contain antibodies directed against multiple 
pan-lymphocyte antigens, ATG preparations were thought 
to exert immunomodulatory effects on B cells (70). However, 
although some groups observed impaired quantitative B-cell 
recovery after alloHSCT with ATG (71), others reported 
higher numbers of circulating B cells in ATG-conditioned 
patients (35,36). Few studies have assessed the effects of 
alemtuzumab exposure on circulating B-cell counts after 
alloHSCT and reported no significant impact (31-33).

Current knowledge about B-cell reconstitution after UCBT

Longitudinal studies of immune reconstitution after 
UCBT showed that absolute numbers of circulating B 
cells often surpass the B-cell counts observed in PBSC- 
or BM-recipients during the first 6–12 months period 
after transplantation (Table 1) (43-45,48). B-cell numbers 

generally reach normal levels with a median time of  
6 months after UCBT (42-45,48,49). By using KREC 
assays, Nakatani et al. also recently confirmed enhanced 
B-cell lymphopoiesis after UCBT compared with PBSC- or 
BM-alloHSCT (17). Reasons for such faster normalization 
of total B-cell counts may be multiple. First, this may 
be related to ontological reasons, with UCB-B cells 
originating from fetal stem cells rather than adult stem cells 
(both of which are present in UCB). It can also occur as a 
“compensatory phenomenon” in response to concomitant 
profound T-lymphopenia. Indeed, studies in HIV-infected 
subjects as well as in patients with idiopathic CD4+ T 
deficiency demonstrated B-cell expansion in the context 
of T-cell paucity (72,73). Eventually, higher level of B-cell 
Activating Factor (BAFF), a member of the tumor necrosis 
factor family that promotes B cell survival, was also reported 
in UCB recipients in comparison with PBSC recipients (44).

Although numbers of circulating B cells rapidly 
normalize after UCBT, recovery of full B-cell immunity 
takes significantly longer. Indeed, during the first year 
after UCBT, most of circulating B cells are of naive 
phenotype (46,49). Nevertheless, several groups suggested 
faster recovery of memory B-cell functions after UCBT 
as compared with other stem cell sources. By monitoring 
Ig levels after transplantation, Jacobson et al. observed a 
quicker recovery of IgG levels after double UCBT than 
after PBSC transplantation. In their study, IgG levels 
began to recover between 5 and 6 months after UCBT and 
reached normal levels by 12 months, whereas they remained 
below the normal values throughout the first year after 
PBSC transplantation (44). Another group reported faster 
discontinuation of Ig replacement therapy in children with 
immunodeficiency syndromes transplanted with UCB as 
compared with haploidentical donor (74).

Reconstitution of T- and B-cell immunity after 
UCBT and clinical implication regarding risk of 
infections 

Infection prevalence and immune response against (viral) 
pathogens after UCBT

Transplantation with UCB was reported to be associated 
with a significant risk of infections, specifically during the 
first 3 months after transplantation (3-5,48,49,51,75-84).  
Opportunistic infections also account for a major 
contributing factor of early transplant-related mortality 
after UCBT. A large retrospective study from the CIBMTR 
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registry revealed a significantly higher incidence of  
100-day infection-related mortality (IRM) after UCBT 
(45%) than after BMT (21–24%) (P=.01) (3). Similarly, 
a rate of 30–45% of 3-month IRM after UCBT was also 
reported by other groups (4,5).

Delayed neutrophil engraftment is likely one of the 
major causes of increased infection risk during the early 
period after UCBT. This was well demonstrated in a recent 
study showing that transplantation of ex vivo expanded 
umbilical cord blood stem cells decreased early infections 
and hospitalization (85).

Additionally, beyond the pre-engraftment period, 
UCBT also appears to be associated with increased risk 
of infections. Whatever is the graft source, the early post-
engraftment period (from engraftment until around day 100)  
is characterized by high prevalence of viral infections, 
especially due to reactivations of latent viruses. Lack of 
transfer of memory T cells from donor to recipient as 
well as lower T-cell counts during the first months after 
UCBT (see above) may render UCB-recipients more 
susceptible to viral complications. By performing T-cell 
functional assays, some groups confirmed impaired T-cell 
activity against several viruses (including CMV, EBV, BK 
JC, influenza and respiratory syncytial viruses) in patients 
transplanted with UCB (55,75). Accordingly, elevated 
frequencies of infections related to herpes viruses (such 
as CMV, EBV, varicella zoster and human herpes virus 6)  
were described (77-82). Focusing on CMV infections, 
several studies reported the need for increased number of 
repeated courses of pre-emptive antiviral therapy to control 
CMV viremia (83) as well as high rate of CMV diseases 
in seropositive recipients transplanted with UCB (82-84). 
Some authors suggested that CMV-specific CD8+ T cells 
could not reliably be detected in UCB recipients until  
100 days after transplantation (when thymopoiesis recovers) 
(55,86). On the contrary, by using more sensitive assays, 
a recent study showed that a diverse polyclonal CMV-
specific T-cell response was detectable as early as day 42 
after double UCBT but was unable to expand sufficiently 
in vivo to efficiently control viral reactivations, likely 
due to concomitant CD4+ T-cell deficiency and/or to 
immunosuppressive therapy (87).

Whether or not UCBT also predisposes patients 
to higher risk of infections in the later post-transplant  
(>100 days) period is less defined. In the CIBMTR registry 
analysis of UCB- and BM-recipients, similar rates of 
infections were observed beyond day 100 in both groups (3).  
Other studies reported concordant observations (4,49). 

By analysing adult patients transplanted with double UCB 
without ATG, Sauter et al. recently showed that serious 
infections were indeed uncommon after day 120 after 
UCBT, with 75% of patients free of serious infections after 
this time (51). This may correlate with progressive recovery 
of T cells. 

Does monitoring circulating T and B cells predict 
infections after UCBT?

Some studies suggested that monitoring T- and/or B-cell 
recovery in the peripheral blood might help predicting risks 
of infections after UCBT. In a large cohort of pediatric 
patients transplanted with UCB, Admiraal et al. recently 
reported that posttransplant CD4+ T-cell recovery was a 
strong predictor of survival (63). In this study, successful 
early CD4+ T-cell recovery (defined as >50 cells/μL within 
100 days after UCBT) significantly increased the chance of 
overall survival (HR, 0.51; 95% CI, 0.28–0.95; P= 0.035) 
and lowered the chance of non-relapse mortality (NRM; 
HR, 0.36; 95% CI, 0.15–0.83; P=0.0017). In patients not 
reaching CD4+ T-cell recovery, infectious disease was the 
most common cause of NRM. Similarly, in a longitudinal 
study of immune reconstitution after HLA-mismatched 
donor alloHSCT (including UCBT and adult patients), we 
observed that levels of circulating CD4+ T cells at 3 months 
and during the 3–12 months period after transplantation 
inversely associated with the risk of late infections (49). 
Studies in non-UCB recipients also identified total CD4+ 
T-cell, naive CD4+ T-cell and TREC levels as major 
determinants of outcome after alloHSCT, with high values 
predicting lower incidences of opportunistic infections and 
mortality (6-10).

B-cell recovery was also reported to predict risk of 
infections after alloHSCT (11,17). In the specific setting 
of UCBT, Nakatani et al. observed that earlier recovery of 
KRECs correlated with fewer infectious episodes (17).

Conclusions and perspectives

Knowledge about T- and B-cell recovery after UCBT 
steadily increased over the last decade. Overall, current data 
suggest fast B-lymphopoiesis but delayed (CD8+) T-cell 
reconstitution in UCB recipients. Depending on the study, 
lower counts of circulating T cells in the peripheral blood 
were observed up to 3–12 months after UCBT, as compared 
with PBSCT or BMT. It remains to be determined whether 
this is due to graft-intrinsic properties or to extrinsic factors 
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such as specific conditioning and GVHD prophylaxis 
regimens, or high HLA mismatching between the graft 
and the recipient. This delayed T-cell recovery likely 
contributes to the high prevalence of early opportunistic 
infections observed after UCBT. 

Use of double UCB units and the omission or dose 
reduction of ATG have been shown to improve early 
immune reconstitution after UCBT, and to reduce the 
incidence of infections. New strategies for enhancing 
immune (especially T-cell) recovery after UCBT are 
currently the matter of intense research. Individualizing 
ATG exposure could appear as a good one. Dosing would 
be based on patient characteristics (including absolute 
lymphocyte count), with the aim of reaching optimal 
exposure before and after UCBT that would allow optimal 
immune recovery while protecting against GVHD and graft 
failure. This approach is currently being investigated in a 
prospective clinical trial (Dutch trial register NTR4960). 
Therapeutic drug monitoring (ATG pharmacokinetics 
measuring) would be an additional tool to target optimal 
ATG exposure more precisely. However, this would require 
an operational validated ATG measuring assay. Several 
other approaches have been assessed to improve both 
thymo-dependent and thymo-independent pathways of 
T-cell reconstitution after UCBT. These include, ex vivo 
expansion of hematopoietic stem cells [reviewed in (88,89)], 
modulation of thymic niche accessibility by lymphoid 
progenitors (90), enhancement of thymic function (i.e., 
through stimulation of the GH pathway or through sex 
steroid blockade) and treatments with recombinant IL-7 
and IL-15 [reviewed in (89,91)]. Posttransplant adoptive 
transfer of donor-derived T-cell progenitors or virus-
specific mature T cells was also used to boost immunity 
against infections. Nevertheless, these strategies proved 
much more difficult for UCBT, due to limited cell numbers, 
the fact that the majority of UCB T cells are antigen-
naive and the non-availability of post-transplant donor 
lymphocyte infusions. Recently, some groups demonstrated 
that virus-specific T cells could be produced and expanded 
ex vivo from UCB (92,93) and infusion of such T cells is 
currently evaluated in ongoing phase I/II clinical studies 
(www.clinicaltrials.gov#NCT01923766). Although very 
promising these approaches remains limited by the technical 
difficulties of the procedure since it necessitates the priming 
and extensive expansion of naive T cells instead of direct 
expansion of pre-existing virus-specific memory T cells. A 
more rapid method would consist of the adoptive transfer of 
virus-specific T-cells isolated from healthy third party adult 

donors. This approach has proven effective as treatment 
of life-threatening infection after UCBT and is also under 
investigation as a pre-emptive therapy (94,95).
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