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Abstract

Most coal seams hold important quantities of methane which is recognized as a valuable energy resource. Coal reservoir is
considered not conventional because methane is held adsorbed on the coal surface. Coal is naturally fractured, it is a dual-porosity
system made of matrix blocks and cleats (i.e fractures). In general, cleats are initially water saturated with the hydrostatic pressure
maintaining the gas adsorbed in the coal matrix. Production of coalbed methane (CBM) first requires the mobilization of water in
the cleats to reduce the reservoir pressure. Changes of coal properties during methane production are a critical issue in coalbed
methane recovery. Indeed, any change of the cleat network will likely translate into modifications of the reservoir permeability.

This work consists in the formulation of a consistent hydro-mechanical model for the CBM production modeling. Due to the
particular structure of coal, the model is based on a dual-continuum approach to enrich the macroscale with microscale consider-
ations. Shape factors are employed to take into account the geometry of the matrix blocks in the mass exchange between matrix
and fractures. The hydro-mechanical model is fully coupled. For example, it captures the sorption-induced volumetric strain or
the dependence of permeability on fracture aperture, which evolves with the stress state. The model is implemented in the finite
element code Lagamine and is used for the modeling of one production well. A synthetic reservoir and then a real production case
are considered. To date, attention has focused on a series of parametric analyses that can highlight the influence of the production
scenario or key parameters related to the reservoir.
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1. Introduction

Coal seams typically contain large amounts of methane
which can be recovered in the form of natural gas, the so-called
coalbed methane (CBM) [1]. This methane is mainly located
in Russia, Canada, China, Australia, and the USA. The first
recorded well was drilled in 1931 in the USA in West Virginia
but the commercial exploitation really began in the 1980s. The
three major basins are the Black Warrior Basin (Alabama), the
San Juan Basin (New Mexico, Utah, Colorado) and the Pow-
der River basin (Wyoming and Montana) [2]. Thanks to these
basins, the USA is currently the largest CBM producer in the
world. About 90,000 CBM wells have been drilled in the USA,
producing annually between 1 and 2 trillion cubic feet in the
recent years (Figure 1). It represents almost 10% of the Amer-
ican natural gas production [3]. CBM production decreased in
the past years but it is likely correlated to the oil price because
American basins are expected to produce significant amounts
of methane for at least one or two decades [4].

In order to determine the best production scenario, numerical
models are interesting tools for oil and gas companies. How-
ever, models developed for conventional reservoirs are not suit-
able for the modeling of the CBM production. In conventional
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Figure 1: CBM estimated production in the USA compared with oil price. Data
from the U.S. Energy Information Administration.

models, hydrocarbons are stored in porous and permeable host
rocks with free gas compressed into the pore space (Figure 2a).
In this case, gas flow rate is almost at the highest level from
the beginning and it gradually declines accompanied by the in-
crease of the water production (Figure 3a). In coal reservoirs,
there are actually two key parts constituting the porosity system,
fractures and much smaller pores in the matrix [4]. Methane is
mainly stored by adsorption in the coal matrix while fractures,
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termed cleats [5], contain minor amounts of free gas (Figure
2b). Thanks to sorption, coal can contain per unit volume six
to seven times more gas than sandstone from a conventional
reservoir [6]. The maximum amount of sorbed gas non lin-
early increases with the reservoir pressure (Figure 4). It is the
hydrostatic pressure that generally maintains the gas adsorbed
in the coal matrix. Cleats are water saturated and production
of CBM first requires the mobilization of water to reduce the
reservoir pressure. This reduction of pressure in the coal seam
is followed by desorption of methane from the matrix. Gas
molecules then diffuse through the matrix, migrate through the
cleat system, and finally reach the wellbore or the mine shaft
(Figure 5) [7]. The typical gas and water production profiles
are therefore not surprisingly distinct from a conventional reser-
voir. In the case of coal reservoir, gas rate peaks after water and
the rising production can last from a few months up to years.
As a result, the peak gas rate can be observed up to few years
after the start of the production [8].

(a) (b)

Figure 2: Comparison of gas storage in conventional reservoirs (a) and coalbed
(b). Gas in orange, water in blue and solid grains in black. Modified from [2].
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Figure 3: Comparison of gas and water production profiles from conventional
reservoirs (a) and coalbed (b). Modified from [2].

Due to the coal structure, transport mechanisms through
coalbed are dual: flows are diffusive in the coal matrix and
advective in the cleats [9, 10]. Cleats aperture is therefore an
important characteristic of the reservoir. Any change of the
cleat network modifies the reservoir permeability. In particu-
lar, two distinct phenomena are known to result from reservoir

Maximal gas content (Langmuir ’s isotherm)

Path followed during the production

Figure 4: Relation between the gas content and the reservoir pressure. Modified
from [2].

pressure depletion, which have opposite effects on coal perme-
ability [11]:

• The first phenomenon is the reservoir compaction due to
the increase in the effective stress after the reservoir de-
pletion. It tends to decrease the permeability.

• The second is the matrix shrinkage following the gas des-
orption from the coal. It increases the cleat permeability.

Figure 5: Gas migration in coal seams, [7].

The recovery of coalbed methane can be enhanced by a stim-
ulation treatment as hydraulic fracturing or CO2 injection. The
hydraulic fracturing enhances the natural fractures network to
increase the permeability while the CO2 injection accelerates
the kinetics of the methane desorption. Indeed, carbon dioxide
has a higher affinity for coal and thus displaces methane locked
within the coal matrix [12]. However, a CO2 molecule placed
between the polymer chains of coal partly disrupts the original
structure of coal which swells [13]. Therefore, the resorption
of CO2 could have a detrimental impact on the permeability of
the reservoir [14].

CBM production involves multi-physical aspects and it is a
highly coupled problem. Moreover, coal presents a two-scale
porosity system, what makes simple macroscale models partic-
ularly inappropriate to obtain the production profiles observed
in Figure 3b. In many existing CBM models encountered in
the literature, sorption- and stress-induced coal permeability
alteration is a remarkable aspect which is improperly simpli-
fied [15]. The objective of this paper is to formulate a hydro-
mechanical model able to reproduce the production curves from
Figure 3b and catching the hydro-mechanical couplings influ-
encing the permeability. In this purpose, the model is based on
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a dual-continuum approach to enrich the macroscale with mi-
croscale considerations. The novelty consists in combining the
use of shape factors with a permeability model directly linked
to fracture aperture. On the first hand, the shape factor accounts
for the diffusive processes taking part in the matrix and the gas
exchange between the matrix and the cleats. On the other hand,
the permeability model is used for advective multiphase flows
in the fractures. It is not usual in the literature to link the per-
meability evolution with the fracture aperture evolution, it is
generally linked to the porosity evolution. In this paper, the
cleat aperture evolves with the desorption rate and the stress
state, what requires the employment of a dual-continuum ap-
proach for both the mechanical and the hydraulic parts of the
model. The model is developed for a single gas species, en-
hanced coalbed methane modeling is therefore out of the scope
of this paper.

In the following, the general framework for the modeling
of geomaterials is first introduced. Then, the mechanical and
hydraulic laws are presented before considering the hydro-
mechanical couplings taken into account to constitute the final
hydro-mechanical model implemented in a finite element code
(Lagamine [16, 17]). This model is finally used for the model-
ing of a CBM reservoir at the scale of one production well. The
influences of the production scenario and the hydro-mechanical
couplings on the production profiles and the permeability evo-
lution are highlighted. A history matching exercise is also per-
formed with data obtained from a well drilled in the Horseshoe
Canyon coals (Canada).

2. General framework for geomaterials

2.1. Porous medium
The structure of geomaterials is complex, it is an assembly

of solid grains forming a solid skeleton and fluids can fill the
porous space between these grains (Figure 6). The full descrip-
tion of this system is almost impossible. For this reason, relying
on a mixture theory, the real discontinuous porous medium may
be modelled by superimposed continua [18].

Solid Water

Gas

Gas

Water

Solid

Figure 6: Porous medium and superimposed continua.

The concept of volume fractions is used to create some ho-
mogenized continua of reduced densities, allowing the applica-
tion of continuum mechanics. Indeed, every point of the ideal-
ized system consists of a mixture of phases because all phases
are assumed to occupy the same region of space simultaneously.
The volume fraction ηπ of the phase π is defined as

ηπ =
Ωπ

Ω
(1)

where Ωπ is the volume of the phase π and Ω is the total
volume of the control space. The sum of the different volume
fractions of all phases is 1. The following volume fractions are
defined

ηs = 1−φ (2)

ηl = Sr φ (3)

ηg = (1−Sr) φ (4)

where s, l and g denote the solid, the liquid and the gas phases
respectively, φ is the total porosity defined as the ratio between
the total void volume Ωv and the total volume Ω

φ =
Ωv

Ω
=

Ωl +Ωg

Ωs +Ωl +Ωg
∈ [0,1] (5)

and Sr is the saturation degree of the liquid phase, defined as
the ratio between the volume of the liquid phase Ωl and the
porous volume Ωv

Sr =
Ωl

Ωv
(6)

2.2. Balance equations
The balance equations of the hydro-mechanical problem con-

sist of the balance of momentum of the mixture and the mass
balance equations of the solid and the fluids.

2.2.1. Momentum balance equation
For quasi-static loading and neglecting gravity, the balance

of momentum of the mixture reads:

∂σi j

∂x j
= 0 (7)

This equation introduces the total stress tensor σi j which is
related to the strains through the mechanical constitutive model
(section 3). Gravity is neglected because the thickness of the
coal seam is negligible compared to the depth of the seam.

2.2.2. Mass balance equations
From Reynolds transport theorem, the general mass balance

equation in differential form writes:

∂Υ

∂t
+
∂ϕi

∂xi
−Q = 0 (8)

where Υ is a storage term, Q is the source term and the di-
vergence of the fluxes ϕi expresses the difference between the
input and the output fluxes of the given volume.

Mass balance equations are established following a composi-
tional approach [19, 20, 21] which consists of balancing species
rather than phases. By this way, exchange terms between the
phases are cancelled out. The model is developed for a single
gas species which refers therefore to methane in the case of coal
seam gas recovery.

Thanks to a Lagrangian description [22], the referential fol-
lows the solid skeleton which is deforming. Inside this solid
framework, the description of the fluid is Eulerian.
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Solid mass balance equation.

As the reference system follows the solid phase, there is nec-
essarily conservation of the solid mass, it writes:

∂

∂t
(ρs(1−φ f )Ω) = 0 (9)

with ρs the solid density and φ f the porosity from the fractures.

Water mass balance equation.

As water is assumed only present in the fracture system, the
following single water mass balance equation is written:

∂

∂t
(ρwSrφ f )+

∂

∂xi
(ρw ql i)︸                               ︷︷                               ︸

Liquid water

+
∂

∂t
(ρv(1−Sr)φ f )+

∂

∂xi

(
ρv qgi +(1−Sr) Jw

g i

)
︸                                                            ︷︷                                                            ︸

Water in gas phase

= 0
(10)

where ρw and ρv are the water and water vapour densities,
ql i and qgi are the liquid and gas advective flows, and Jw

g i is
the diffusive flow of water vapour. Terms relative to vapour are
presented for the sake of generalization but it is not of major
interest in the context of coalbed methane production.

Gas mass balance equation.

For gas, present in cleats and matrix, a dual-porosity ap-
proach is adopted [23]. This concept, introduced by Barenblatt,
requires to define a pressure for both fractures and matrix. The
difference in pressure between the cleats and the matrix is re-
sponsible for a mass exchange E between the two systems, it is
a source for one and a sink for the other. This exchange is deter-
mined using shape factors (section 4.3). The gas mass balance
equations, the first equation being relative to the cleats and the
second one to the matrix, are:

∂

∂t
(ρg, f (1−Sr)φ f )+

∂

∂xi

(
ρg, f qgi +(1−Sr) Jg

g i

)
︸                                                                 ︷︷                                                                 ︸

Gas phase

+
∂

∂t

(
ρ

d
g, f Srφ f

)
+

∂

∂xi

(
ρ

d
g, f ql i +Sr Jg

l i

)
︸                                                   ︷︷                                                   ︸

Dissolved gas in water phase

= E
(11)

and
∂

∂t

(
ρg,Ad

)
=−E (12)

where ρg, f , ρd
g, f and ρg,Ad are respectively the densities of

the gas in the cleats, the dissolved gas in the water and the gas
adsorbed on the matrix. Jg

g i and Jg
l i represent the diffusive flows

of the gas in the gas phase and the dissolved gas in the liquid
phase. Equation 11 is relative to the cleats, the first brace refers
to the dry gas phase while the second one refers to the dissolved
gas in water. Indeed, as gas may be dissolved in water, it is
transported with the water flow and may also diffuse in water.
Finally, Equation 12, relative to the matrix, indicates that rate
of gas storage equals the mass transfer E with the cleats. This
rate is the variation of the amount of gas adsorbed within the
matrix. It will be evaluated in section 4.3.

3. Mechanical model

Coal is an elasto-brittle geomaterial and its behaviour is es-
sentially linear-elastic prior to yielding/failure. Coals of all
ages and ranks are fragile rocks, with little mechanical strength
compared to conventional reservoir rocks [6]. Coal may de-
form plastically [24], or perhaps viscoelastically [25], but the
non-elastic behaviour of coal is not well documented and most
mechanical tests, especially under low strain conditions, have
registered elastic behaviour [26]. An elastic constitutive law is
therefore assumed effective for describing the stress-strain re-
lationship of coal before failure. The elastic constitutive model
relates stress and strain increments through the elastic stiffness
tensor Ci jkl or inversely with the elastic compliance Di jkl :

σ̃i j =Ci jkl ε̇kl ⇔ ε̇i j = Di jkl σ̃kl (13)

where ε̇i j is the Cauchy strain rate and σ̃i j is the Jaumann stress
rate. As will be seen in section 5.1.1, it is actually an effective
stress rate.

For modeling purpose, the complex structure of coal is re-
duced to a collection of matrix blocks of simple geometries (e.g.
slides, matches, parallelepiped, cubes or spheres) separated by
fracture voids. The size and shape of the blocks depend on the
fracture density and the number of fractures sets [27, 28]. Fig-
ure 7 represents the geometry model with three sets of cleats.
Each set of fracture is defined by an aperture hi and a spacing
wi.

h

h

h

3

1

2

w

w

w
2

1

3

Figure 7: Geometry model with three sets of cleats. After [27].

The fractured rock is therefore a dual system. The mechan-
ical behaviour of the fractured rock is analogous to a series
of two springs (Figure 8). The spring standing for the frac-
tures is non-linear and initially the softest. When the system is
compressed, the soft spring will undergo the first deformations.
Then, once fractures are nearly closed, the stiffness tends to the
one of the matrix.

σσ

Hard Spring Soft Spring

Figure 8: Analogy with two springs in series. After [29].
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3.1. Matrix

The coal matrix is considered isotropic. Therefore, only two
elastic parameters are required to define the elastic constitutive
tensor. The Young’s modulus of the matrix is denoted by Em
and the Poisson’s ratio by νm. Some authors [30] mentioned
orthotropy after mechanical tests on small coal cubes. This may
be caused by the presence of fractures at a lower scale. Indeed,
it is assumed that coal orthrotropy is induced by the presence of
different sets of fractures and the matrix is therefore considered
isotropic.

3.2. Fractures

A fracture is a discontinuity described by a shear and a nor-
mal stiffness, respectively Ks and Kn [31, 32]. These properties
depend on the geometry of the asperities of contact between the
two rough walls. Due to the rearrangement of these asperities,
the normal stiffness increases with the decrease of the normal
fracture aperture. The change of normal stiffness for a given
mated fracture is evaluated using the empirical model proposed
by Bandis [33]:

Kn =
K0

n

(1− un
umax

n
)2 (14)

where un = h0− h is the normal displacement with h0 and h
respectively the initial and the current fracture apertures. K0

n is
the normal stiffness corresponding to a zero displacement. The
maximal displacement umax

n is a given ratio of the initial aper-
ture. From Equation 14, the stiffness is increasing rapidly when
the normal displacement tends to the maximal displacement al-
lowed.

3.3. Equivalent continuum
Globally, combining some isotropic matrix blocks with three

orthogonal sets of fractures, the material behaviour is or-
thotropic. In this case, there are 9 independent elastic parame-
ters: E1, E2, E3, ν12, ν13, ν23, G12, G13 and G23 [34, 35]. The
compliance tensor is then given in the axes of orthotropy by:

Di jkl =



1
E1

−ν21

E2
−ν31

E3
0 0 0

−ν12

E1

1
E2

−ν32

E3
0 0 0

−ν13

E1
−ν23

E2

1
E3

0 0 0

0 0 0
1

2G12
0 0

0 0 0 0
1

2G13
0

0 0 0 0 0
1

2G23



(15)

Due to the symmetry of the tensor, the following equality must
be satisfied:

νi j

Ei
=

ν ji

E j
(16)

Orthotropic coordinate axes may not correspond to the global
coordinate axes. In this case, because the constitutive law is

formulated in the orthotropic axes, a change of coordinate ref-
erence system has to be computed using a rotation matrix Ri j
which depends on three angles (e.g. Euler’s angles) correspond-
ing to rotations relative to the three global axes. To obtain the
elastic strain tensor rate in the orthotropic axes (�) from the one
expressed in the global axes, the change of reference system is
then defined as

ε̇
�

i j = RikR jl ε̇kl (17)

Once the stress state is calculated in the orthotropic axes, it
is reformulated in the global axes by reversing the rotation:

σ̃kl = RkiRl j σ̃
�

i j (18)

Elastic parameters mentioned in Equation 15 are determined
based on the concept of equivalent continuum medium [36]. By
analogy with two springs in series, the Young’s modulus of the
fractured rock in the direction i is calculated as follows1 [37]:

1
Ei

=
1

Em
+

1
(Kn)i ·wi

(19)

where i may be any of the three directions of the fractures sets.
The equivalent Poisson’s ratios are obtained by:

νi j =
Ei

Em
·νm (20)

Finally, the equivalent shear modulus in the plane defined by
the directions i and j is estimated by1:

1
Gi j

=
1

Gm
+

1
(Ks)i ·wi

+
1

(Ks) j ·w j
(21)

In fact, as these elastic parameters depend on the non-
constant normal stiffness of the fractures and/or the widths of
the matrix blocks, the elastic law is non-linear. Figure 9 com-
pares the numerical results of a triaxial test performed on homo-
geneous and fractured rocks. The homogeneous rock is mod-
elled with constant elastic moduli corresponding to the matrix
blocks of the fractured rock. The deviatoric stress evolution
with the strain is obviously linear. For the fractured rock, mod-
elled by the equivalent continuum, the initial stiffness is initially
lower because of the fractures. Then, while the fractures are
closing, the stiffness of the rock tends to the one of the intact
rock. The deviatoric stress evolutions are then parallel.

The change of cleat aperture h in the direction i due to the
change of normal stress in this direction (σ̃ii) is the normal dis-
placement estimated with1

ḣi =
σ̃ii

(Kn)i
(22)

where stresses are positive in traction. Without considering the
possibility of dilatance, the shear displacement does not modify

1 Einstein summation notation is not used in this equation, i.e repeated in-
dices do not have to be summed.
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Figure 9: Comparison between homogeneous and equivalent continua.

the cleat aperture. The total change of cleat aperture is then
simply given by Equation 22. The total change of the width of
one unit including one matrix block and one cleat is the sum of
the cleat aperture and the block width changes1:

ẇi + ḣi = (wi +hi) · ε̇ii (23)

Therefore, the change of the matrix width appearing in Equa-
tions 19 and 21 is given by1:

ẇi = (wi +hi) · ε̇ii− ḣi (24)

4. Hydraulic model

Usually, coal deposits are aquifers and the methane is main-
tained adsorbed within the coal matrix by the hydrostatic pres-
sure. The CBM production consists therefore to generate a
pressure drop by dewatering the cleats network [38]. Then, gas
molecules diffuse in the matrix to reach the cleats which are
preferential pathways [39].

Gas desorption

Matrix

Cleat

Gas diffusion

Gas flow

E

Water flow

Figure 10: Conceptual hydraulic model.

This section presents a hydraulic model for the modeling of
CBM production. The mass balance equations written above
involve different variables which are linked to the main vari-
ables of the problem through some constitutive and equilibrium
equations. Similarly to the mechanical problem, the macro-
scopic hydraulic model is enriched from the microscale. In this
purpose, a dual-porosity approach is adopted, requiring a mass
transfer between the matrix and the cleats as presented in the
gas mass balance Equations 11 and 12.

4.1. Constitutive equations
Different variables such as densities, degrees of saturation or

fluid flows appear in the balance equations presented above. All
these variables depend on the main variables of the problem, the
water pressure and the gas pressure.

4.1.1. Liquid density variation
If the compressibility of the liquid phase is not neglected,

its density ρw varies with pressure pw. The liquid water bulk
density evolves according to:

ρw = ρw0

(
1+

pw− pw0

χw

)
(25)

where ρw0 is the liquid density at the pressure pw0 and 1/χw is
the liquid compressibility. At 20◦C, 1/χw = 5 ·10−10Pa−1.

4.1.2. Gas density variation
The classical ideal gas equation of state is used to write the

gas densities as

ρg =
Mg

RT
pg (26)

where R is the universal gas constant (8.3143 J/mol ·K), T is
the absolute temperature, Mg is the molecular mass of the gas
(0.016 kg/mol for methane) and pg is the gas pressure either in
the fractures (pg, f ) or in the matrix (pg,m)

4.1.3. Multiphase flow model
In porous media, flow occurs in the pore spaces between the

solid skeleton. However, the pore-scale representation is not
suitable to simulate flow over large domains. Modeling the hy-
draulic behaviour of coal, it is assumed advective flows take
place inside a representative regular macroporosity, the frac-
tures network. Darcy’s equation is therefore employed using a
permeabilty coefficient which is function of the apertures of the
fractures and the widths of the blocks. Inside the microporosity
of the matrix blocks, diffusive flows are computed with a Fick’s
law using a diffusive coefficient.

Advective flows in the cleats.

From the experiments performed by Darcy on a column of
sand [40], it follows that the flow q[m/s] through a porous
medium is proportional to the total pressure drop. This law
is valid only for a slow and viscous flow, i.e. at small Reynolds
numbers (Stokes’ flow). In one dimension (s is the distance in
the one-dimension system), it writes:

q =− k
µ

dp
ds

(27)

where the linear coefficient k[m2] is called the intrinsic or ab-
solute permeability of the porous medium. The complex ge-
ometry of the porous medium can be therefore replaced by a
permeability parameter, what makes Darcy’s law very suitable
for a continuum macroscopic modeling. In the case of frac-
tured rocks, the permeability may be determined theoretically
as a function of the fracture aperture. The permeability through
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a set of parallel fractures of equal aperture, oriented parallel to
flow direction, is given by [28, 41]:

k =
h3

b
12w

(28)

where hb is the hydraulic aperture and w is the fracture spac-
ing (Figure 11). In fact, this results can be obtained from the
Navier-Stokes Equations [42]. Indeed, the flow through a sin-
gle fracture represented by two plates is:

q f =−
h2

b
12
· 1

µ
dp
ds

(29)

Thus, the total flow Q[m3/s] between the two plates is:

Q = q f ·hb ·w =−h3
bw
12

1
µ

dp
ds

(30)

Considering a section A with n fractures, the permeability
through the section is:

k =
n
A
· h

3
bw
12

(31)

where A= n ·(w+hb)
2' nw2 as w� hb. Substituting this value

in Equation 31, the permeability through the fractured medium
is, as announced, given by Equation 28.

h

w

w

b

Figure 11: Fluid flow through a cleat. Modified from [27].

Superposing three orthogonal sets of cleats, the anisotropic
permeability tensor in the axes of these three sets is:

ki j =



1
12

(
h3

b2

w2
+

h3
b3

w3

)
0 0

0
1

12

(
h3

b1

w1
+

h3
b3

w3

)
0

0 0
1
12

(
h3

b1

w1
+

h3
b2

w2

)


(32)

Barton presented an empirical relationship between hy-
draulic apertures hb and mechanical apertures h [43]:

hbi =


h2

i
JRC2.5 , if hi > hbi and JRC > 0.

hi, otherwise.
(33)

where the unit of apertures is micron and JRC is the Joint
Roughness Coefficient [44]. A zero JRC represents smooth

plane surfaces, in this case the hydraulic aperture is the me-
chanical one.

Furthermore, the porosity from fractures can be written as
[45]:

φ f =
h1

w1
+

h2

w2
+

h3

w3
(34)

Under isotropic conditions, the porosity is therefore φ f =
3h
w

.
Assuming smooth fractures, this porosity is substituted in Equa-
tion 28 to give:

k =
1

96
w2

φ
3
f (35)

Thence, the permeability change with respect to a reference
state (subscript 0) writes:(

k
k0

)
=

(
w
w0

)2(
φ f

φ f0

)3

(36)

Considering the matrix size change as negligible compared to
porosity change (w ≈ w0), then Equation 36 can be simplified
as: (

k
k0

)
=

(
φ f

φ f0

)3

(37)

This relationship is commonly used and widely accepted
in petroleum industry to describe the permeability change
with respect to porosity variation [46, 47]. It is supported by
experimental results on fractured rocks [48]. However, since
the porosity is a scalar variable, the anisotropy vanishes in the
absolute permeability evolution. Moreover, some experimental
results have shown Equation 37 may not be applicable for most
coalbeds [49]. For this reason, it is preferable to keep a direct
relation between the permeability and the cleats apertures.
Therefore, contrary to many permeability models described in
the literature, Equation 37 is not used in this paper to model
coalbed methane flows.

Generally, gas and water flows are simultaneously encoun-
tered in the cleats and it is therefore necessary to extend the
model to unsaturated conditions. To this purpose, the widely-
used concept of relative permeability kr is introduced to account
for the reduction in permeability between partially and fully sat-
urated conditions. Then, advective flows of the liquid and gas
phases are respectively:

qli =−
krw · ki j

µ
∂pw

∂x j
(38)

and

qgi =−
krg · ki j

µ
∂pg

∂x j
(39)

The relative permeability curves krw and krg in porous media
are often expressed with Corey functions [50]. It was demon-
strated the same mathematical expressions are suitable for gas
and water flowing in the cleat system [51]. These expressions
are:

krw = (S∗r )
η+1+ 2

λ (40)
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krg = (1−S∗r )
η ·
[
1− (S∗r )

1+ 2
λ

]
(41)

where S∗r is the normalized wetting phase saturation defined
below, λ is a cleat size distribution index controlling the differ-
ence in the cleat size and η is a parameter taking into account
the effect of the tortuosity on the flow path (Figure 12).

Figure 12: Effect of the tortuosity on the flow path. Modified from [51].

Relative permeabilities are represented in Figure 13 for dif-
ferent values of η and λ. For instance, coal cleats become more
tortuous with the increase of η and the relative permeabilities
for both water and gas phases decrease.

g

w

Figure 13: Effect of tortuosity and cleat size distribution index on relative per-
meability curves.

These relative permeability Equations 40 and 41 require to
define a retention curve to link the degree of saturation and the
capillary pressure pc. In 1964, the Brooks and Corey empiri-
cally proposed a capillary pressure model [52] which has now
a solid theoretical base [53] since the development of the frac-
tal geometry [54]. Brooks and Corey proposed the following
function:

pc(Sr) = pe · (S∗r )
−1
λ (42)

where pe is the entry capillary pressure and S∗r is the normal-
ized wetting phase saturation defined by:

S∗r =
Sr−Sr,res

1−Sr,res−Srg,res
(43)

with Sr,res and Srg,res the residual water and gas saturations.
If the residual water and gas contents are considered constant
while the porosity evolves, the mass conservation of these resid-

ual fluids implies

S∗r =
Sr−Sr,res0

(
φ

φ0

)−1(
ρw
ρw0

)−1

1−Sr,res0

(
φ

φ0

)−1(
ρw
ρw0

)−1
−Srg,res0

(
φ

φ0

)−1(
ρg
ρg0

)−1

(44)
In fact, the total amount of residual contents may change with
the porosity as a result of pore size variation. To represent
experimental data, the residual saturations expressions are im-
proved by introducing some exponents nrw and nrg [51]:

Sr,res = Sr,res0

(
φ

φ0

)−nwr (
ρw

ρw0

)−1

(45)

Srg,res = Srg,res0

(
φ

φ0

)−ngr ( ρg

ρg0

)−1

(46)

Diffusive flows.

Fick’s law [55] is the most popular approach to evaluate dif-
fusive flow. It states the flow is directly proportional to the con-
centration gradient. The flow in the direction i for the species α

is given by:

Jαi =−Dα

∂Cα

∂xi
(47)

Equation 47 is known as the Fick’s first law. In this equa-
tion, the determination of the phenomenological coefficient
Dα [m2/s] is naturally the most critical part of the equation.
Fick’s second law can be derived from Fick’s first law and mass
conservation, this law is written as follows:

∂Cα

∂t
= Dα

∂2Cα

∂x2
i

(48)

In porous media, as real pores are generally of various diam-
eters and twisted, the path for diffusion of the molecules within
the pores is tortuous. A reasonable approximation for the effec-
tive diffusion coefficient of the species α through β, is given by
[56]:

Dα

β

A = φ Λ Dα

β
(49)

in which Λ is the tortuosity defined as the square of the ratio
between the straight line distance and the effective length
covered by the molecule. It is therefore an obstruction factor
lower or equal to one which attempts to account for the longer
distance traversed in the pores.

Fick’s law will be used in the dual-porosity approach (section
4.3) to account in the gas transfer between matrix and cleats
that desorption is not instantaneous. Fick’s law is also used to
express the diffusive flow of dissolved gas in water in the cleats:

Jg
l i =−Dg

l
A ∂

∂xi

(
ρd

g

ρw

)
(50)

For methane dissolved in water, the diffusion coefficient is
1.84E-9 m2/s. By not considering water vapour, all flows ap-
pearing in the mass balance Equations 10 to 11 are therefore
defined.

8



4.2. Equilibrium equations
For closure of the mass balance equations, some restrictions

are also required to link the different phases of each species
(Figure 14).

Liquid phase

Liquid water

Gas phase

Water vapour

Solid phase

Mineral

Dissolved gas Dry gas Adsorbed gas

Kelvin ’s law

Henry ’s law
Langmuir ’s

isotherm

Figure 14: Phases, species and equilibrium restrictions.

4.2.1. Henry’s law
Assuming a thermodynamic equilibrium between the dis-

solved gas and the dry gas, the density of the dissolved gas may
be obtained with the Henry’s law [57]:

ρ
d
g, f = Hgρg, f (51)

Hence, Henry’s coefficient Hg allows determining the dis-
solved gas volume in the water. Its value depends on gas type
and temperature. For methane dissolved in water at standard
conditions, Hg = 0.0347 [58].

4.2.2. Langmuir’s isotherm
Adsorption isotherm is the most widely used technique to de-

scribe gas adsorption, it is a relation giving the maximal quan-
tity of adsorbed gas as a function of gas pressure at a given
temperature. The Langmuir model [59] is extensively used for
describing methane adsorption/desorption on coal because of
its ability to close fit experimental data. The Langmuir model
is a special form of the multilayer Brunnauer-Emmet-Teller
(BET) model for which each adsorbate molecule in the first
layer serves as an adsorption site for an adsorbate molecule into
the second layer, the second layer for the third layer, and so on
(Figure 15) [60].

Solid

Fluid

Adsorption sites

(a) Langmuir

Solid

Fluid

Adsorption sites

(b) BET

Figure 15: Sketches of the Langmuir and BET models.

The Langmuir’s isotherm may be derived considering the fol-
lowing equilibrium equation:

Mg +O− 
 O−Mg (52)

where Mg represents the gas phase molecules, O− the vacant
surface sites and O−Mg the species adsorbed on the surface.
At equilibrium, the rate of forward reaction is equal to rate of
backward reaction and the corresponding equilibrium constant
K is given by:

K =
[O−Mg]

[Mg] · [O−]
(53)

[O−Mg] and [O−] are respectively proportional to the sur-
face coverage of adsorbed molecules θ and the vacant surface
1− θ. As [Mg] is proportional to the pressure of gas p, then a
new equilibrium constant writes

K′ =
θ

(1−θ) · p (54)

Hence, the surface coverage is:

θ =
K′ · p

1+K′ · p (55)

in which K′ depends on temperature and enthalpy change for
the process. The total adsorbed volume Vg,Ad equals θ ·VL,
where VL is the monolayer adsorption capacity, it represents the
volume adsorbed for an infinite pressure. The total adsorbed
volume is finally written as follows:

Vg,Ad =
VL · p
PL + p

(56)

where PL is the Langmuir pressure corresponding to 1
2VL.

These two parameters, PL and VL, are used to control the shape
of the curve to best fit some experimental data. Figure 16
shows how well the Langmuir’s model can fit some experimen-
tal results obtained for different coal basins from Belgium [61].
Langmuir’s parameters of these curves are given below.

Basin VL [m3/t] PL [MPa]

Campine 22.75 0.95

Borinage 26 1.2

Borinage bis 28 0.8

Liège 32 0.9

Table 1: Langmuir’s parameters fitting adsorption data published by [61].

Vg,Ad and VL are not strictly volumes but volumes of stored
gas at standard conditions per unit of mass of coal. The density
of the gas adsorbed on the coal matrix is therefore evaluated as

ρg,Ad = ρg,std ·ρc ·Vg,Ad (57)

where ρg,std is the gas density at standard conditions and ρc is
the coal density. To write the gas density in the matrix, Equation
56 is introduced in Equation 57 and rearranged with the gas
equation of state (Equation 26). Given a reservoir pressure pres,
the gas density in the matrix must tend to:

plim
g,m =

RT
Mg
·ρg,std ·ρc

VL · pres

PL + pres
(58)
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Figure 16: Langmuir’s isotherm fitting with data published by [61].

where the reservoir pressure is evaluated with the following
equivalent pressure:

pres = Sr pw +(1−Sr)pg, f (59)

In fact, if the maximal amount of gas is not stored at the
beginning of the production, i.e. the initial gas content is un-
der the isotherm (Figure 4), then the first drop of the reservoir
pressure does not lead to desorption and the gas pressure in the
matrix remains constant. Desorption starts once the Langmuir’s
isotherm is reached, i.e. at the critical reservoir pressure pcrit

res :

pcrit
res =

p0
g,m ·PL(

RT
Mg
·ρg,std ·ρc ·VL− p0

g,m

) (60)

From this pressure, it is the role of the shape factor presented
in the following section to evaluate the transfer from the matrix
to the fractures.

4.3. Dual-porosity approach
Naturally-fractured reservoirs may be treated as dual-

porosity media. The drainage rate per unit bulk volume from
matrix to fractures was idealized by Barenblatt and later by
Warren and Root as [23, 62]:

E = Ψ
ρk
µ
(pm− p f ) (61)

where the parameter Ψ is a shape factor with the dimension of
reciprocal area, µ is the dynamic viscosity and pm and p f are
respectively the matrix and fracture pressures. In the case of
coal, adsorption isotherm has to be considered in the equation.
Indeed, the motor of the transfer is the difference between the
matrix pressure and the limit matrix pressure (Figure 17). This
limit matrix pressure is the pressure towards which the pressure
tends given the pressure in the fractures, it is determined via
Equation 58.

As the drainage rate results from a diffusion process, a Fick-
ian form is employed to give

E = Ψ Dg
m Mg (Cg,m−Clim

g,m) (62)

= Ψ Dg
m

Mg

RT
(pg,m− plim

g,m) (63)

Reservoir pressure

Matrix pressure

pg,m
lim

pg,m
0

pres
0pres

t

E

Figure 17: Mass exchange process between cleats and matrix.

The shape factor Ψ aims to take into account the geometry of
the matrix block in the release of gas (Figure 18).

N = 1 N = 2 N = 3

Gas flow Gas flow

Gas flow

Gas flow

Gas flow

Gas flow

Figure 18: Influence of the geometry on the release process.

Warren and Root obtained the following expression of the
shape factor:

Ψ=
4N(N +2)

w2 (64)

where N is the number of sets of fractures (1, 2 or 3) and w
is the fracture spacing. According to Kazemi, the shape factor
should be evaluated as [63]:

Ψ= 4
(

1
w2

1
+

1
w2

2
+

1
w2

3

)
(65)

Kazemi’s formula is perhaps the most used in commercial
reservoir simulators such as Eclipse [64]. However, this shape
factor probably does not represent the most realistic pressure
distribution in the matrix. Observations were made in the lit-
erature on the need to multiply the Kazemi’s shape factor by a
factor 2 or 3 to correspond to experimental results [65]. Ac-
tually, Warren and Root’s model and Kazemi’s one are two
extreme bounds, others authors derived intermediate rates of
change flow [66, 67, 68, 69, 70]. For example, based on a
Fourier finite sine transform and integration, Coats derived a
shape factor doubled compared to Kazemi [66]. Based on the
same method, Lim and Aziz developed a shape factor formula
assuming the flow obeys Darcy’s law in the matrix with con-
stant fracture pressure [70].

In order to understand the assumptions under the use of a
shape factor, the procedure is shortly developed assuming the
flow obeys Fick’s first law (Equation 47) in the matrix. From
Fick’s second law (Equation 48), the concentration distribution
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satisfies in one dimension:

∂C
∂t

= Dg
m
∂2C
∂x2 (66)

The following boundary conditions (N = 1) are considered:

• At t = 0, we have C =C0 for −w
2
6 x6

w
2

• For t > 0, we have C =Clim for x =−w
2

and x =
w
2

If the matrix is initially at a uniform concentration C0 and the
concentration at the boundary is maintained constant at Clim,
solution of Equation 66 is expressed by the Crank analytical
solution [71]:

C̄m−C0

Clim−C0 = 1−
∞

∑
n=0

8
(2n+1)2π2 exp

(−(2n+1)2π2Dg
m t

w2

)
(67)

where C̄m is the average concentration in the matrix at time t.
Taking the first term in the infinite summation series, Equation
67 is approximated by:

C̄m−C0

Clim−C0 = 1−0.81exp
(−π2Dg

m t
w2

)
(68)

Differentiating this equation with respect to time yields to

1
Clim−C0

∂C̄m

∂t
=

π2Dg
m

w2 0.81exp
(−π2Dg

m t
w2

)
(69)

=
π2Dg

m

w2

[
1− C̄m−C0

Clim−C0

]
(70)

where Equation 70 is not time-dependent. The time dependence
is eliminated using only the first term of the series. Figure 19
shows the approximate solution is in good agreement with the
analytical solution except in the first dimensionless times.

0 0.2 0.4 0.6 0.8 1
0
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D · t/w2

C̄
m
−
C

0

C
li
m
−
C

0

 

 

 Analytical solution with 100 terms
 First term only

Figure 19: Crank solution for diffusion (D coefficient) in a plane (width w) and
its approximation.

Thence, we can write:

∂C̄m

∂t
=

π2Dg
m

w2 (Clim−C̄m) (71)

The rate of the matrix-fracture transfer can be related to the
rate of mass accumulation in the matrix as follows:

E =−Mg
∂C̄m

∂t
(72)

Substituting Equation 71 in Equation 72 and comparing with

Equation 62, we finally find a shape factor of
π2

w2 for N = 1. For
the 3D case, similar developments yields to [70]:

Ψ= π
2
(

1
w2

1
+

1
w2

2
+

1
w2

3

)
(73)

N = 1 N = 2 N = 3

Warren and Root 12 32 60

Kazemi 4 8 12

Coats 8 16 24

Lim and Aziz π2 2π2 3π2

Table 2: Dimensionless shape factor values (Ψ w2) from different authors.

Table 2 compares different shape factors from different au-
thors. Values of the shape factors depend on the block geom-
etry which is assumed. A regular microscale configuration has
to be considered when evaluating macroscopically the trans-
fer between the two porosity systems. Moreover, Equation 67
suggests differentiation with respect to time will not eliminate
the dependence from time in the actual shape factor, as ap-
proximated by all the authors referred in Table 2 considering
a pseudo-steady state2. As a result, the mass transfer between
cleat and matrix is approximated for the transient period before
the establishment of the pseudo-steady state, as illustrated by
the Figure 19.

Time

pg,m
0

pg,m
lim

pg,m

Figure 20: Comparison of the matrix gas pressure evolutions for different τ.

Finally, the differential equation governing the matrix gas
pressure evolution is

ṗg,m(t) =−ΨDm
g ·
(

pg,m(t)− plim
g,m(t)

)
(74)

2Change in the rate of pressure with time is constant at every point.
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Given an initial gas matrix pressure p0
g,m and assuming a con-

stant fracture pressure, the mathematical solution of this equa-
tion is a decreasing exponential function in the form:

pg,m(t) =
(

p0
g,m− plim

g,m

)
· exp

(−t
τ

)
+ plim

g,m (75)

where τ =
1

ΨDm
g

is the sorption time. It allows to account for

the combined impacts of cleat spacing and gas diffusion in coal
matrix on gas flow. This sorption time corresponds to the time
required to desorb 63.2% of the gas which can be produced
following a given pressure drop in the fractures. Indeed, the
part of the gas already released at any time t is given by:

1− exp
(−t

τ

)
(76)

Thence, replacing t with τ leads to 1− exp(−1) = 63.2%.
Figure 20 compares the evolutions of the matrix pressure for

different values of the sorption time. The lower is the sorption
time and the faster the gas is desorbed.

5. Hydro-mechanical model

The mechanical and the hydraulic laws presented above
should not be treated separately because of couplings, this is
especially true for coalbed methane production. Indeed, the
reservoir depletion compacts the rock and decreases the perme-
ability. However, matrix shrinkage following the gas desorption
from the coal matrix may increase the cleat aperture and thus
the permeability [11].

5.1. Hydraulic - mechanical coupling

The influence of the hydraulic problem on the mechanical
one is of two kinds. First, the mechanical behaviour of porous
media is not entirely controlled by the total stress, it is also
influenced by the presence of fluids in the pores. In this pur-
pose, the concept of effective stress [72] is introduced. Sec-
ondly, sorption or desorption induces a swelling or a shrinkage
of the matrix.

5.1.1. Effective stress approach
Terzaghi was the first to notice the role of the pore fluid pres-

sure in rock and soil deformation [73]. After experiments with
sand, clay and concrete, he concluded the change in bulk vol-
ume was only influenced by the difference between the confin-
ing pressure and the pore water pressure, i.e. effective stress. It
is the stress acting effectively between the solid grains. In order
to introduce the material compressibility in the effective stress
definition, Biot proposed to scale down the effect of the water
pressure with the so-called Biot’s coefficient [74]. For partially
saturated conditions, Bishop extended Terzaghi’s definition of
the effective stress by combining both liquid and gas pressures
[75]. The principle of effective stress has also been investigated
for fractured media [76].

It is presumed that partial saturation and compressibility ef-
fects can be considered together. Moreover, an average fluid
pressure composed of the pressure of each fluid weighted by
their degree of saturation is used in the same way the reservoir
pressure is defined in Equation 59 [77]. Thence, the effective
stress σ′i j is formulated as follows3:

σ
′
i j = σi j−bi j [Sr pw +(1−Sr) pg] δi j (77)

where δi j is the Kronecker symbol4 and bi j is the Biot’s coeffi-
cients tensor. Equation 77 is used as the effective stress defini-
tion for the double porosity model with the water and gas pres-
sures in the fractures. Biot’s coefficients depend on the elastic
moduli of the fractured medium and the non-fractured blocks,
their expressions are:

bi j = δi j−
Ci jkk

3Km
(78)

where Km is the bulk modulus of the matrix blocks.

5.1.2. Swelling/shrinkage
Sorption or desorption induces structural rearrangements

within the structure of the coal matrix [78]. As a consequence,
a volumetric strain is induced. Figure 21 presents data from dif-
ferent CO2 injection experiments. It appears these data could be
modelled fairly accurately using the same mathematical form
as the Langmuir’s Equation [25]. Moreover, the volumetric
sorption-induced strain εvs is approximately proportional to the
volume of adsorbed gas [47]5:

εvs = βε ·Vg,Ad (79)

where βε is the volumetric strain coefficient. Assuming an
isotropic swelling/shrinkage of the matrix, the linear strain in
the direction i due to gas adsorption/desorption can be esti-
mated from1:

εiis = αε ·Vg,Ad �
1
3

βε ·Vg,Ad =
1
3
· εvs (80)

where αε is the linear strain coefficient. Indeed1, εv = (1+
εii)

3−1 � 3εii for small strains. Actually, the linear strain coef-
ficient could be different in every direction. A larger expansion
may occur in the direction perpendicular to the bedding plane
[79]. However, isotropic conditions have to be assumed in the
absence of more information.

5.2. Mechanical - hydraulic coupling
The constitutive mechanical model relates effective stress

and strain according to

σ̃
′
i j =Ci jkl ε̇kl ⇔ ε̇i j = Di jkl σ̃

′
kl (81)

3Definition with soil mechanics convention in which compressive stress is
positive.

4δi j = 0 if i , j and δi j = 1 if i = j.
5In the following, material mechanical convention with positive tensile

stress and strain is adopted to be in accordance with the convention of the finite
element code.
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Figure 21: Swelling process during CO2 injection in different coals. Experi-
mental data from [25], [80], [81] and [82].

where σ̃′i j is the Jaumann objective effective stress rate and ε̇i j
takes into account sorption-induced strain analogously to ther-
mal expansion of rocks [46]. In practice, based on the principle
of superposition, the total linear strain is due to the changes in
effective stress and adsorbed gas swelling. In the axes of or-
thotropy, it writes:

ε̇i jtot = ε̇i j + ε̇i jsδi j (82)

Thence, the strain rate used in Equation 81 must be

ε̇i j = ε̇i jtot − ε̇i jsδi j (83)

Thereby, if the displacement imposed by the boundary condi-
tions is null, the swelling strain is totally converted into internal
stresses, which are partly traduced in fracture aperture change
according to the following equation written for the direction i1:

ḣi =
σ̃′ii

(Kn)i
(84)

As permeability evolves with the cleat aperture (Equation
32), the influence of the mechanical aspects on the hydraulic
problem is a critical issue. A review of the analytical models
used in the literature for the coal permeability evolution with
the stress state may be found in [45], where around twenty oth-
ers models are presented. In fact, many of them are based on
the relationship between permeability and porosity presented
above (Equation 37). Reservations were expressed when link-
ing the evolution of the permeability tensor to a scalar variable.
In our model, by introducing Equation 84 in Equation 32, it is
not the case.

6. Finite element formulation

The hydro-mechanical model presented is formulated as a se-
ries of balance equations which are local equilibria expressed in
a differential form. In addition to the balance equations, initial
and boundary conditions are necessary to obtain a well-posed
problem. To address problems over large domains with a fi-
nite element analysis, balance equations must be written in a

weak form. Then, the numerical formulation requires to con-
vert continuous time and space into finite time steps and finite
elements. Finally, the system of linear equations is solved to
give the global solution of the problem. Since the method is
extensively developed in many books (see for instance [83]), it
is not completely detailed here.

6.1. Initial and boundary conditions
While the balance equations represent the equilibrium of the

material elementary volume Ω, the boundary conditions are the
equilibrium at the external surface of the domain Γ. Initial con-
ditions are also necessary for model closure, it describes the en-
tire fields of displacements, water pressures and gas pressures
to start from. The external traction force per unit area acting on
a part of the external surface reads

t i = σi j ·n j (85)

where ni is the unit vector normal to the boundary. Similarly,
the conditions for prescribed water and gas fluxes are

qw + fwi ·ni = 0, and qg + fgi ·ni = 0 (86)

where qw and qg are the input water and gas masses (positive
for inflow) and fwi and fgi are internal total fluxes of water and
gas species in both liquid and gas phases:

fwi = ρw qli (87)

fgi = ρg, f qgi +ρ
d
g, f qli +Sr Jg

li
(88)

with the flows qli , qgi and Jg
li

defined by Equations 38, 39 and
50.

6.2. Weak form of the balance equations
A weak form of the local momentum balance Equation 7 can

be obtained considering an admissible virtual velocity field δvi,
i.e. which respects the solid continuity and the boundary con-
ditions. The principle of virtual power implies that, for any ad-
missible virtual velocity, the solid is in equilibrium if internal
virtual power ẆI is equal to external one ẆE :∫

Ω
σi j εi j[δvi] dΩ︸                   ︷︷                   ︸

δẆI

=
∫
Ω

ρgi δvi dΩ+
∫
Γ

t i δvi dΓ︸                                  ︷︷                                  ︸
δẆE

(89)

and because it holds for any δvi, the momentum balance Equa-
tion 7 and the boundary condition 85, are deduced inside the
domain Ω and for any point on the boundary Γ.

In the same way, the fluids mass balance equations may be
written in a weak form considering some kinematically admis-
sible virtual fluid pressure fields. With δpw the virtual water
pressure field, the water mass balance equation reads∫
Ω

[
Ṁwδpw− fwi

∂

∂xi
(δpw)

]
dΩ︸                                        ︷︷                                        ︸

δẆI

=
∫
Ω

Qwδpw dΩ−
∫
Γ

qw δpw dΓ︸                                      ︷︷                                      ︸
δẆE

(90)
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where Qw is the water source term and Mw is the total mass of
water:

Mw = ρw Sr φ f (91)

Similarly with δpg the virtual gas pressure field, the gas mass
balance equation is∫
Ω

[
Ṁgδpg− fgi

∂

∂xi
(δpg)

]
dΩ︸                                       ︷︷                                       ︸

δẆI

=
∫
Ω

Qgδpg dΩ−
∫
Γ

qg δpg dΓ︸                                    ︷︷                                    ︸
δẆE

(92)
where Qg is the gas source term and Mg is the total mass of gas:

Mg = ρg, f (1−Sr) φ f +ρ
d
g, f Sr φ f +ρg,Ad (93)

6.3. Discretization
6.3.1. Time

All the balance equations should be verified at any time t.
However, the continuous time has to be descritized into finite
time steps ∆t in order to solve numerically the boundary value
problem for any time t. Time derivatives are defined using a
fully implicit difference scheme.

6.3.2. Space
The continuum medium is also discretized by finite elements.

A coupled finite element is used to model solid bodies [21]. It
is an isoparametric element with eight nodes and four integra-
tion points. Primary unknowns are the nodal coordinates, each
node has 5 degrees of freedom: the two spatial coordinates, the
water and fracture gas pressures, and temperature6. Note the
adsorbed gas pressure is not considered as a nodal variable but
as a state variable, it is computed from the fracture pressures.
Coordinates and displacements are interpolated over the parent
element using shape functions.

6.4. Global solution and coupling strategy
Equilibrium is reached when energetically equivalent inter-

nal nodal forces are equal to external ones. However, due to the
evolution of the loading, it is likely these nodal forces are not
balanced at the beginning of any time step. Therefore, gener-
alised degrees of freedom must be corrected to verify the equi-
librium. To this purpose, the system of non-linear equations 89
to 92 is transformed into an auxiliary linear problem and solved
numerically with a Newton-Raphson scheme. A stiffness ma-
trix is determined at each iteration of the numerical procedure,
components of this matrix are computed as the variation of the
equivalent nodal forces due to a variation of the generalised co-
ordinates. The off-diagonal terms contain the multi-physical
coupling terms, a monolithic (fully coupled) procedure is then
adopted. The influence of sorption on the mechanical strain is
considered separately, the sorption-induced strain is computed
at the beginning of each iteration from the adsorbed gas pres-
sure (which is not a primary unknown but derived from the frac-
ture pressures) and is subtracted from the total strain (Equation
83) to employ the constitutive mechanical law.

6Actually, this work is restricted to isothermal conditions. The interested
reader may found in [21] the energy balance equation required to solve non-
isothermal problems.

7. Reservoir modeling

First, in order to illustrate the applicability of the model, a
production scenario is tested on a hypothetical cylindrical CBM
reservoir. This synthetic simulation allows us to choose a sim-
ple history of the well pressure drop in order to highlight the
physical phenomena. The reference case is presented and then
a parametric and couplings analysis is performed to highlight
the influence of the hydro-mechanical couplings and some key
parameters on the production profiles. Finally, the model is ap-
plied to represent production data obtained from a real produc-
tion well.

7.1. Synthetic reference case

The reservoir is horizontal with initial homogeneous prop-
erties. The radius of the reservoir is 400m while the uniform
thickness of the coal seam is 5m. The reservoir is modelled
in 2D axisymmetric conditions with 3000 (10x300) coupled fi-
nite elements. Both water and gas pressures are initially set to
2MPa in the fracture system, the reservoir is water saturated.
In the matrix system, the gas pressure is set on the Langmuir’s
isotherm. Isothermal conditions are considered. Concerning
the boundary conditions, all boundaries are impermeable to gas
except at the well where the pressure Pwell is decreased from 2
to 0.5MPa in 10 days. The differences between this pressure
and the proximate water and gas pressures in the reservoir are
responsible for water and gas production rates.

Pw

Pg

Pwell

q
w

q
g

The mass production rates are computed at the boundary as
follows [84]:

qwwell = T ·ρw ·
krw

µw
(pw−Pwell)

qgwell = T ·ρg ·
krg

µg
(pg, f −Pwell)+Hg ·ρg

fw

ρw

where T [m3] is a transmissibility factor taking into account the
characteristics of the well: the borehole radius and the skin fac-
tor. Note the dissolved gas is taken into account thanks to the
Henry coefficient Hg. The outer boundary is not assumed to-
tally impermeable to water, the income water flow is computed
according to

qwob = κ · (pw0 − pw) (94)

where κ[m2.s/(kg.Pa)] is a penalty coefficient. The value of
this coefficient is chosen in order to ensure the water flow at the
well is never null, to be closer to real conditions.

Concerning mechanical boundary conditions, lateral dis-
placements on the lateral boundaries are null, vertical displace-
ment on the lower boundary is null and there is an overburden
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pressure of 5MPa at the top of the coal seam. All others param-
eters used for the simulation are listed in Table 3. The shape
factor is evaluated according to Lim and Aziz’s formula (Equa-
tion 73). Based on the cleat aperture and the matrix width,
the porosity due to fractures is calculated with Equation 34,
φ f = 0.3%. Then, the initial permeability is calculated with
Equation 32, k = 6.667E-14 m2. Note the permeability is ini-
tially isotropic but evolves anisotropically. The Young’s mod-
ulus and the Poisson’s ratio of the equivalent continuum are,
from equations 19 and 20, E = 1.429GPa and ν = 0.086. Fi-
nally, the initial Biot’s coefficient is equal to 0.86, it is initially
isotropic since the stiffness and the aperture of the fractures are
equal in the three directions. Then, following Equation 78, it
evolves anisotropically.

Parameters Values

Seam thickness (m) 5
Reservoir radius (m) 400
Temperature (K) 303
Overburden pressure (Pa) 5E6
Well transmissibility T (m3) 1E-12
Penalty coefficient κ (m2.s/(kg.Pa)) 1.5E-19
Coal density ρc (kg/m3) 1500
Matrix Young’s modulus Em (Pa) 5E9
Matrix Poisson’s ratio νm 0.3
Matrix width w (m) 0.02
Cleat aperture h (m) 2E-5
Cleat normal stiffness Kn (Pa/m) 100E9
Cleat shear stiffness Ks (Pa/m) 25E9
Maximum cleat closure ratio 0.5
Joint Roughness coefficient JRC 0
Sorption time τ (days) 3
Langmuir volume VL (m3/kg) 0.02
Langmuir pressure PL (Pa) 1.5E6
Matrix shrinkage coefficient βε (kg/m3) 0.4
Entry capillary pressure pe (Pa) 10000
Cleat size distribution index λ 0.25
Tortuosity coefficient η 1
Initial residual water saturation Sr,res0 0.1
Residual water saturation exponent, nwr 0.5
Residual gas saturation 0.0

Table 3: Reservoir and well parameters used in the reference case.
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Figure 22: Reference case: water and gas production profiles.

The water and gas production profiles are plotted for 30 years
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Figure 23: Reference case: gas production profile after peak in a semi-log plot.

from the start of the production in Figure 22. The peak of water
production occurs soon after the beginning of the production.
The water production is close to zero from the 10th year but
it is never null since the outer boundary is not assumed totally
impermeable to water (Equation 94). For gas, relative perme-
abilities play an important role. While the production of water
decreases, the gas production increases. Of course, as the gas
tank is a closed volume, it can not indefinitely increases. A
peak in the gas production is experienced after the 6th year, at
this time, the gas rate is about 3850 standard m3/day. Then,
after the peak is observed, the gas production exponentially de-
clines. In Figure 23, it results in a straight line on a semi-log
plot of gas rate versus time [8].
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Figure 24: Reference case: cumulative gas.

After 30 years, the cumulative quantity of gas produced is
more than 20 millions cubic meters (Figure 24). Knowing the
volume of the reservoir and the Langmuir’s parameters, the to-
tal amount of gas adsorbed at 2MPa is 43 millions of cubic
meters. As the minimal borehole pressure is 0.5MPa, it means
19 millions of cubic meters cannot be produced. Thence, 24
millions of cubic meters could be released.

7.2. Parametric and couplings analysis

The proposed model considers both the evolutions of perme-
ability and porosity during the production. The permeability
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and porosity evolutions result from a competition between the
increase of effective stress due to the reservoir depletion and the
desorption strain following the gas production. Figure 25 com-
pares gas production profiles from the synthetic reference sim-
ulation with cases where the couplings are limited. One sim-
ulation is performed with a constant aperture of the fractures,
i.e. constant permeability and porosity, a second one where
only the permeability is constant and a third one where only
the porosity is constant. Figures 26 and 27 show respectively
the corresponding evolutions of the porosity and the permeabil-
ity in the direction perpendicular to the well, plotted at 50cm
from the well and mid-thickness of the seam. Figure 25 shows
permeability and porosity evolutions impact the kinetics of the
production. It appears the production peak occurs earlier and
higher for cases where the permeability is kept constant. In-
deed, when the permeability evolution is allowed, Figure 27
shows the permeability first decreases due to the reservoir de-
pletion and many years are required to recover the initial per-
meability due to desorption. In fact, the decrease of the perme-
ability following the increase of effective stress occurs directly
after the pressure drop while the increase of the permeability
due to the matrix shrinkage is not immediate. The peak is also
slightly higher when the porosity is not constant. Figure 28
shows the water pressure is decreased faster when the porosity
increases, more space being available for the fluids. On the first
hand, gas permeability is increased faster thanks to the faster
decrease of the water saturation. On the other hand, gas des-
orption increases with the decrease of the water pressure. These
phenomena are responsible for an increase in gas production.
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Figure 25: Gas production curves.

Figure 29 shows the radial permeability right next to the well
for different sorption time factors. The longer is the sorption
time factor, the later the inversion of permeability curve. How-
ever, at the time scale of the life of the well, the desorption time
has a minor impact on the gas production profile which is con-
trolled by Darcy flow when this characteristic time is about few
days [6].

The desorption strain coefficient is a very significant pa-
rameter. Obviously, if the desorption strain is neglected (β =
0 kg/m3), the permeability never increases after the decrease
due to the depletion. The peak production is therefore lower.
Figures 30 and 31 present also an intermediate case.
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Figure 26: Porosity evolution at 50cm from the well.
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Figure 27: Radial permeability evolution at 50cm from the well.

The depletion rate influences also the permeability evolution.
Indeed, the pressure drop set in 10 days does not let enough
time for desorption strain to counterbalance immediately the
increase of effective stress. This time, the pressure well is de-
creased from 2 to 0.5MPa in 5 years. In this case, the dotted
permeability evolution in Figure 32 has a less lower minima
than the reference case. The gas production peak is delayed but
it is slightly higher (Figure 33). It appears also when the pres-
sure drop at the well is less abrupt there is not a brief decrease
in the gas production right after the pressure is maintained con-
stant.

Previously, the gas content in the matrix was assumed equal
to the maximum capacity, i.e. on the Langmuir’s isotherm. For
the pressure of the reservoir equal to 2MPa, the maximum ad-
sorbed gas pressure is

pmax
g,m =

RT
Mg
·ρg,std ·ρc ·

VL · pres

PL + pres
= 1.897 MPa (95)

The fact that the adsorbed gas pressure is on the isotherm
means the desorption mechanism is activated right after the de-
crease of the reservoir pressure. Now, let assume only 90% of
the maximal capacity is adsorbed in the matrix. Then, the des-
orption starts from a critical pressure equal to

pcrit
res =

0.9 · pmax
g,m ·PL(

RT
Mg
·ρg,std ·ρc ·VL−0.9 · pmax

g,m

) = 1.588 MPa (96)

Thence, any gas is desorbed until the pressure of 1.588 MPa
is reached in the reservoir. The production peaks therefore later.
It is also lower since there is less gas in the reservoir. In fact,
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Figure 28: Water pressure evolution at 50cm from the well.
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Figure 29: Radial permeability right next to the well.

it is better to drop the pressure from 2MPa to 1.588MPa as
soon as possible. Indeed, whatever the depletion rate chosen,
no favourable permeability change can occur during this pe-
riod. The last production scenario considers a pressure drop
from 2MPa to 1.588MPa in 10 days and then the pressure is
decreased to reach 0.5MPa after 5 years. This production sce-
nario does not lower the minimal radial permeability and the
production peak is earlier.

7.3. Horseshoe Canyon case
In this section, pressure and gas rate data presented by

Gerami et al. [85] for a well drilled in the Horseshoe Canyon
coals from the Western Canadian Sedimentary Basin are used
for a history matching exercise in order to test the permeabil-
ity model. As this well does not produce water, this exercise is
simplified since relative permeabilities do not play a role in the
production behaviour. Reservoir properties provided by Gerami
et al. are listed in Table 4. As part of their analysis, they also
estimated a total initial gas-in-place of 6.36 millions of stan-
dard cubic meters. Other parameters, such as matrix shrinkage
coefficient, were not reported.

Given the Langmuir’s parameters and the reservoir pressure,
the maximal amount of adsorbed gas is 2.14E-03 m3/kg (Equa-
tion 56). Assuming 90% of this maximum capacity is actually
stored, there are 2.83 of standard cubic meters of gas per cu-
bic meter of coal. Therefore, the volume of 6.36 millions of
standard cubic meters of gas is stored in a reservoir volume
of 2.25 millions of cubic meters. Given the thickness of the
seam, the radius of the cylindrical reservoir is 282m. From the
porosity of 0.5%, many combinations of the fracture aperture
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Figure 30: Influence of the desorption strain on the radial permeability at 50cm
from the well.
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Figure 31: Influence of the desorption strain on the gas production curve.

Parameters Values

Initial reservoir pressure (Pa) 1.416E6
Temperature (K) 289
Coal density (kg/m3) 1468
Seam thickness (m) 8.99
Porosity φ f 0.005
Langmuir volume VL (m3/kg) 0.0092
Langmuir pressure PL (Pa) 4.652E6

Table 4: Reservoir parameters for Horseshoe Canyon coals [85].

and the block width may be considered (Equation 34), giving
different values of the permeability. It takes part in the calibra-
tion process. Reservoir parameters used to calibrate the model
are listed in Table 5. The block matrix width and the fracture
aperture used in the calibration to meet a porosity of 0.5% are
respectively 8mm and 0.01333mm, it corresponds to a perme-
ability k = 4.935E-14 m2.

Figure 34 presents and compares data from Gerami et al. [85]
with results of the simulation performed with parameters pro-
vided in Tables 4 and 5. The pressure at the well is given as
input to the model and the production rate is observed as the an-
swer of the model to this loading. Parameters obtained in Table
5 by reverse analysis are one set of parameters which relatively
accurately represent the production data. Of course, the solu-
tion is non-unique and it can not be asserted the taken values are
physically accurate. More experimental data and information
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Figure 32: Influence of the depletion rate and gas content on the radial perme-
ability at 50cm from the well.
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Figure 33: Influence of the depletion rate and gas content on the gas production
profile.

Parameters Values

Reservoir radius (m) 282
Overburden pressure (Pa) 5E6
Matrix Young’s modulus Em (Pa) 5E9
Matrix Poisson’s ratio νm 0.3
Matrix width w (m) 0.008
Cleat aperture h (m) 1.333E-5
Cleat normal stiffness Kn (Pa/m) 100E9
Cleat shear stiffness Ks (Pa/m) 2.5E9
Maximum cleat closure ratio 0.5
Sorption time τ (days) 100
Matrix shrinkage coefficient βε (kg/m3) 0.5

Table 5: Reservoir parameters used to calibrate the model for the Horseshoe
Canyon case.

would be required to ensure this. However, it proves the model
is able to represent production data from a real case. Compared
to the model presented by Gerami et al. [85], gas desorption is
not considered instantaneous since the kinetics of diffusion is
taken into account thanks to the shape factor. Moreover, com-
paction is not neglected, the hydro-mechanical couplings are
considered to account for the permeability evolution.

An interesting output occurs at around 170 days, whereas the
well pressure increases, the gas production decreases and later,
when the well pressure rapidly decreases, the gas rate increases.
Indeed, the model answers to a variation of the well pressure
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Figure 34: Production history matching. Horseshoe Canyon data from [85].

with an opposite variation in the production. It could not be
shown with the synthetic reference case since a simpler loading
was carried out.

8. Conclusion

This paper presented a hydro-mechanical model for the mod-
eling of coalbed methane production. The main objective of
this paper was to formulate a consistent model taking into ac-
count the permeability evolution resulting from the reservoir
pressure depletion. Indeed, coalbed methane production is a
highly coupled problem. It requires to enrich the macroscale
with microscale aspects. A novelty is to consider simultane-
ously a dual-continuum approach for both mechanical and hy-
draulic behaviours in order to, contrary to many models in the
literature, directly link the permeability evolution to the fracture
aperture instead of the porosity evolution. A remarkable feature
of the model is that it does not consider desorption strain is nec-
essarily fully converted into a fracture opening. Moreover, the
model was developed for multiphase flows in the fractures. Be-
side advective flows in the cleats, the model considers, thanks
to shape factors, the influence of the kinetics of diffusion on
the mass transfer between the matrix and the fractures. The
Langmuir’s isotherm is used to evaluate the gas pressure in the
matrix. However, it is not usual to also use this isotherm in
the mass transfer equation. This hydro-mechanical model was
implemented numerically with a finite element method in the
Lagamine code. Finally, it was applied to the modeling of the
CBM production at the scale of one well. Simulations on a
hypothetical reservoir showed it is interesting to not drop the
pressure at the well too fast in order to reduce the closure of
the fracture due to the increase of effective stress. However,
in the case the reservoir does not store the maximal adsorbed
gas capacity, it is advisable to apply a first pressure drop un-
til the desorption mechanism is activated. This pressure can
be estimated if the adsorbed gas content and the Langmuir’s
parameters of the coal reservoir are known. The model was
also applied to a real production well in the Horseshoe Canyon
coals. This dry reservoir presents a different production profile
from a water saturated reservoir. However, it allows to simplify
the history matching production data exercise since the relative

18



permeability parameters do not have to be calibrated. This ex-
ercise showed the model is also suitable for the modeling of this
particular kind of coal reservoir.

Nomenclature

Acronyms

CBM Coalbed methane

JRC Joint roughness coefficient

Greek Symbols

1/χw Water compressibility [M−1LT 2]

αε Sorption-induced linear strain
coefficient

[−]

βε Volumetric sorption-induced
strain coefficient

[ML−3]

δi j Kronecker symbol [−]

η Tortuosity parameter [−]

ηπ Volume fraction of the phase π [−]

Γ External surface of the domain [ML−1T−2]

Λ Tortuosity [−]

λ Cleat size distribution index [−]

µ Dynamic viscosity [ML−1T−1]

νm Poisson’s ratio of the matrix [−]

νi j Poisson’s ratios of the equivalent
medium

[−]

Ω Control volume [L3]

Ωπ Volume of the phase π in the
control volume

[L3]

φ Porosity [−]

φ f Porosity from fractures [−]

Ψ Shape factor [L−2]

ρc Coal density [ML−3]

ρs Solid density [ML−3]

ρv Water vapour density [ML−3]

ρw Water density [ML−3]

ρg,Ad Density of the gas adsorbed on
the matrix

[ML−3]

ρg, f Gas density in the cleats [ML−3]

ρd
g, f Density of the dissolved gas in

water
[ML−3]

ρg,std Gas density at standard condi-
tions

[ML−3]

σi j Stress tensor [ML−1T−2]

Υ Storage term [ML−3]

εi j Strain tensor [−]

ϕ Flux [ML−2T−1]

Gi j Shear moduli of the equivalent
medium

[ML−1T−2]

Hg Henry’s coefficient [−]

εvs Volumetric sorption-induced
strain

[−]

εiis Sorption-induced linear strain in
the direction i

[−]

Roman Symbols

t i External traction force [ML−1T−2]

bi j Biot’s coefficient tensor [−]

C Concentration [NL−3]

Ci jkl Stiffness tensor [ML−1T−2]

Dα

β
Diffusion coefficient of the
species α through β

[L2T−1]

Di jkl Compliance tensor [M−1LT 2]

E Mass exchange between matrix
blocks and fractures

[MT−1]

Ei Young’s moduli of the equivalent
medium

[ML−1T−2]

Em Young’s modulus of the matrix [ML−1T−2]

fgi Internal total flux of gas [ML−2T−1]

fwi Internal total flux of water [ML−2T−1]

h Fracture aperture [L]

hb Hydraulic fracture aperture [L]

Km Bulk modulus of the matrix
blocks

[ML−1T−2]

Kn Normal stiffness of the fracture [ML−2T−2]

ki j Permeability tensor [L2]

krg Gas relative permeability [−]

krw Water relative permeability [−]

Mg Gas molecular mass [MN−1]

N Number of sets of fractures [−]
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ni Unit vector normal to the bound-
ary

[−]

pc Capillary pressure [ML−1T−2]

pe Entry capillary pressure [ML−1T−2]

PL Langmuir pressure [ML−1T−2]

pw Water pressure [ML−1T−2]

pg, f Gas pressure in the fractures [ML−1T−2]

pg,m Gas pressure in the matrix [ML−1T−2]

pres Reservoir pressure [ML−1T−2]

Q Source term [ML−3T−1]

R Universal gas constant [ML2N−1θ−1T−2]

Ri j Rotation matrix [−]

Sr Saturation degree [−]

S∗r Normalized saturation [−]

Sr,res Residual saturation [−]

T Temperature [θ]

t Time [T ]

un Normal displacement [L]

VL Langmuir volume [L3M−1]

Vg,Ad Adsorbed volume per unit of
mass

[L3M−1]

w Matrix width [L]

x Spatial coordinates [L]

Jg
g i Diffusive flow of the gas in the

gas phase
[LT−1]

Jw
g i Diffusive flow of water vapour [LT−1]

Jg
l i Diffusive flow of the dissolved

gas in the liquid phase
[LT−1]

qgi Gas advective flow [LT−1]

ql i Liquid advective flow [LT−1]

qg Input gas flux [ML−2T−1]

qw Input water flux [ML−2T−1]
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