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Abstract: BRAIN-TRAINS is a project supported by the Belgian Federal Government that 

deals with the possible development of rail freight intermodality in Belgium, analysing the 

current situation of the intermodal freight transport from an interdisciplinary perspective. 

Life Cycle Assessment (LCA) methodology has been chosen to analyse the environmental 

impact of freight transport in Belgium. In a first stage we have carried out the LCA of rail 

freight transport, inland waterways transport and road freight transport independently. The 

purpose of this paper is to discuss the first results obtained from the study of the 

environmental impacts of inland freight transport using the LCA methodology. 
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1. Introduction 

 

Transport plays a fundamental role in the economy and in society, but it also may have an 

adverse impact on the climate, the natural environment and the human health.  

In Belgium, the transport sector was the main source of greenhouse gas (GHG) emissions in 

2012, representing 35% of the total emissions. Half of the GHG transport emissions were 

caused by road transport (European Commission, 2014). Furthermore, transport represents an 

important source of air pollution. In Belgium, road transport was responsible for 49% of the 

total emissions of nitrogen oxides (NOX) in 2012, accounting for 6% the other modes of 

transport. Moreover, transport was a major source of Non-Methane Volatile Organic 

Compounds (NMVOCs) with 9% of the total emissions from road transport and 1% from 

other modes of transport, sulphur dioxide (SO2) with 2% of the total emissions, primary 

particulate matter of a diameter of 2.5 µm or less (PM2.5) with 13% of the total emissions 

from road transport and 2% from other modes of transport and carbon monoxide (CO) with 

17% of the total emissions from road transport and 1% from other modes of transport (EEA, 

2014). The mentioned pollutants are produced during fuel combustion, but other non-exhaust 

emissions of particulate matter, including PM10 (particles with a diameter of 10 µm or less) 

and PM2.5, are emitted from the wear of brakes, tyres and road surface in road transport and 

the abrasion of brakes, wheels and rails in rail transport.  

Additionally, transport consumes a large amount of energy (in Belgium, the transport sector 

accounted for the 27% of the final energy consumption in 2012) (European Commission, 

2014) and this, together with the use of other resources such as land and raw materials, could 

lead to problems of resource scarcity.  

Therefore, the search for more environmentally and health friendly, energy-efficient and 

competitive transport systems becomes necessary. In this framework, intermodal freight 

transport represents an opportunity to achieve all this goals through the shifting of road freight 

transport in long distances to others modes of transport with improved environmental 

performance such as rail freight transport and inland waterways transport. 

Environmental impact studies on freight transport show that rail freight transport is the land 

transport option that has the highest environmental performance compared to intermodal 

road-rail and all-road transport (Fries and Hellweg, 2014; Facanha and Horvath, 2006), 
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especially when electrified railway is used (Spielmann and Scholz, 2005). Although inland 

waterways transport is the inland freight transport with highest energy-efficiency, it is 

strongly limited by geographical conditions. Nevertheless, road transport is more flexible with 

a more extended network and direct links, causing the dominant use of all-road or road-rail 

intermodal transport (Demir et al., 2015). 

The glossary for transport statistics defines the intermodal freight transport as the transport of 

goods by at least two different modes of transport, in one and the same Intermodal Transport 

Unit (ITU) without handling the goods themselves when changing modes (ITF, Eurostat, 

UNECE, 2009). As shown in Figure 1, the major part of the journey is done by rail, inland 

waterway or sea (main haulage) while road transport is used for the shortest possible initial 

and final parts of the transport chain (pre- and post-haulage) (Tawfik and Limbourg, 2015). 

At the intermodal terminal, the ITUs (container, swap body or road vehicle) are transferred 

between modes of transport. 

 

 

Figure 1 : Example of intermodal freight transport 

 

Intermodal rail freight transport presents several strengths that can lead it to grow such as the 

reduced cost that can be obtained due to the high payload capacity of trains and the reduced 

externalities compared to road transport due to decrease of emissions and improvement of 

road safety (Crozet et al., 2014). The liberalization of the Belgian rail freight market started in 

2005 could lead to an increase in the competitiveness of the railway sector, involving a modal 

shift from road transport to rail freight intermodality and enhancing the economy due to the 

relationship between transport and the GDP (improving transport activities causes GDP 

increases). Nevertheless, intermodal rail freight transport presents some weaknesses due to its 

dependence on rail infrastructure, resulting in missing direct rail links, weak access to the rail 

network or a lack of flexibility. Furthermore, rail equipment causes high operating costs or the 

need for high investments, leading to complex pricing strategies (Vanelslander et al., 2015). 

The creation of a single European transport area promoted by the European Commission’s 

White Paper on transport (2011) through the Trans-European Transport Network (TEN-T) is 

presented as an opportunity to increase the rail freight transport in Belgium, because it entails 

the standardization and interoperability of the intermodal rail freight transport on the 

European continent. The promotion of intermodal transport to consolidate freight flows and 

an increase in future road taxes could lead to consolidate the intermodal rail freight transport 

at European level. However, some threats impacting negatively on the intermodal rail freight 

transport have to be considered, such as the impossibility of consolidating freight leading to 

the increase of prices because the high fixed cost of rail freight transport, the cancellation of 

investments and subsides by European countries, the increase of passenger traffic receiving 

priority over freight transport and the possibility of a monopoly or duopoly by well-

established companies (Vanelslander et al., 2015). 
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In order to increase the rail share in the modal split of freight transport in Belgium, the 

Belgian Federal Government has initiated the BRAIN-TRAINS project, which approaches the 

possible development of rail freight intermodality in Belgium from an interdisciplinary 

perspective, focusing on five main subjects: optimal corridors and hub development, macro-

economic impact of intermodality, effective market regulation, governance and organization 

for a well-functioning intermodality, and environmental sustainability of intermodal rail 

freight transport. The objective of increasing the rail freight transport is linked to the 

European Commission’s White Paper on transport (2011), which aims to shift the 30% of 

road freight over 300 km to other modes of transport more energy-efficient such as rail or 

waterborne transport by 2030. This shift of road freight transport may represent a challenging 

target to the rail freight sector due to the high amount of goods that this implies. 

 

2. Methodology 

 

The environmental impact of freight transport is determined using the Life Cycle Assessment 

(LCA) methodology. LCA is a structured, comprehensive and internationally standardised 

method by ISO Standards 14040 and 14044 (International Standardization Organization, 

2006), and using the ILCD Handbook (European Commission, 2010) as a reference to 

perform an LCA. 

The LCA methodology allows studying complex systems like intermodal transport, providing 

a system perspective analysis that allows assessing environmental impacts through all the 

stages of the intermodal freight transport system (transport operation, vehicle and 

infrastructure), from raw material extraction, through materials use, and finally disposal. 

Furthermore, LCA methodology allows quantifying all relevant emissions and consumptions, 

as well as the related environmental and health impacts and resource depletion issues that are 

associated with freight transport. Thus, through the application of the LCA methodology, the 

contribution of the pollutants emitted by freight transport can be analysed using midpoint 

environmental impact categories, such as climate change, resource depletion, acidification, 

human toxicity or ecotoxicity for example. Then, as can be seen in Figure 2, the influence of 

these midpoint categories to endpoint categories such as damage to human health, damage to 

ecosystem diversity and resource scarcity can be evaluated. These endpoint categories are 

related to the areas of protection of human health, natural environment and natural resources, 

respectively (European Commission, 2010). 

 

 

Figure 2 : Diagram of the Life cycle Impact assessment methodology applied on inland freight 

transport. Source: European Commission, 2010 
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Figure 3 presents the stages considered in our study for the rail freight transport, inland 

waterways transport and road freight transport. In Belgium, road transport was responsible for 

58.3% of the total inland freight expressed in tonne-kilometres in 2012, representing the 

dominant mode of the three major inland transport modes. Inland waterways accounts for 

24.3% and rail transport for 17.5% (Eurostat, 2015). 

A detailed study of the rail freight transport has been conducted, collecting data directly from 

Infrabel (the Belgian railway infrastructure manager) and B-Logistics, which is the main rail 

freight operator in Belgium with a market share of 86.62% of tkm in 2012 (Van de Voorde 

and Vanelslander, 2014). The rail freight system is divided in three sub-systems: rail transport 

operation, rail infrastructure and rail equipment (locomotives and wagons). The specific 

energy consumption of electric and diesel trains has been determined separately. Upstream 

emissions related to the production and distribution of the energy to the traction unit and the 

direct emissions during the rail transport activity (exhaust emissions to air related to the diesel 

combustion in locomotives, emissions to soil from abrasion of brake linings, wheels, rails and 

overhead contact lines and the sulphur hexafluoride (SF6) emitted during conversion at 

traction substations related to electricity consumption) have been determined. In order to 

adjust as closely as possible the environmental impact related to the yearly electricity 

consumption, and since the electricity supply mix varies widely over the years, our LCA 

study uses the electricity supply mix in Belgium corresponding to the appropriate year. The 

life cycle phases of construction, maintenance and disposal of rail infrastructure and 

manufacturing, maintenance and disposal of rail equipment are analysed. 

 

 

Figure 3: Inland freight transport system boundaries. Source: Own elaboration based on 

Spielmann et al., 2007 

In the case of both inland waterways transport and road transport in Belgium, the Ecoinvent 

v3 database has been used as a model (Weidema et al., 2013). Information relative to the total 

annual freight moved by inland waterways transport in Belgium by barge type, fuel 
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consumption in the vessel transport operation and waterways infrastructure characteristics for 

several years have been collected. Similarly, information relative to the total annual freight 

moved by road transport in Belgium by weight classification and heavy duty vehicle 

technology type, fuel consumption in the road transport operation and road infrastructure 

characteristics for several years have been collected. 

A division of the processes related to the energy consumption in transport can be made. On 

the one hand, Well-To-Tank (WTT) processes such as primary energy consumption and 

indirect emissions are produced at the upstream energy processes, which start with the raw 

materials extraction, continue with the diesel refining or electricity production and end with 

the energy distribution to the traction unit (locomotive, barge or lorry in our study). On the 

other hand, the Tank-to-Wheel (TTW) processes such as the final energy consumption and the 

exhaust emissions are produced during the transport activity. Finally, the Well-To-Wheel 

(WTW) processes are the sum of the WTT processes and the TTW processes.  

In our study, the LCA approach have been used, taking into consideration the overall life 

cycle of the energy carrier. LCA methodology can provide complete information of the 

environmental impacts related to a process, and not only providing information on energy 

consumption and emissions produced but also on raw materials consumption. Furthermore, 

the application of LCA methodology on transport allows analysing not only the transport 

emissions related to the energy consumption during the transport operation, but also the 

emissions related to the construction of rail infrastructure, inland waterways infrastructure and 

road infrastructure and the manufacturing of vehicles, such as locomotives, wagons, barges or 

lorries for example. Moreover, the maintenance and disposal of both infrastructure and 

vehicles is also considered (Spielmann et al., 2007). 

Table 1 compares direct and indirect energy consumptions between the different modes of 

inland freight transport extracted from Messagie et al. (2004). For rail transport, the TTW 

stage is only responsible for 19% of the total energy consumption while WTT stage accounts 

for 50%. These proportions represent a European average with a mixed use of mainly 

electricity and the remaining part of diesel. The manufacture, maintenance and disposal of the 

rail equipment accounts for 12% and the construction, maintenance and disposal of the rail 

infrastructure accounts for 19% of the total energy consumption. Concerning inland 

waterways transport, in the case of a M4 barge on CEMT VI waterway in Belgium, barge 

operation is responsible for 67%, WTT stage for 20%, manufacture, maintenance and disposal 

of the M4 barge for 2% and construction, maintenance and disposal of the CEMT VI 

waterway for 11% of the total energy consumption. For road transport, the TTW stage 

accounts, on average, for 75% of the total energy consumption, 11% for fuel production, 6% 

for manufacture, maintenance and disposal of the lorry and 8% for the construction, 

maintenance and disposal of the road infrastructure (Messagie et al., 2014). While the shares 

of energy consumption showed in table 1 are only indicative and dependent on specific 

assumptions, they highlight the importance of all the stages of transport in the total energy 

consumption of freight transport. 

 

Table 1 : Direct and indirect energy consumptions in different modes of transport. 1Spielmann 

and Scholz, 2005; 2van Lier and Macharis, 2014. Source: Messagie et al., 2014 

Average energy consumption WTT TTW Vehicle Infrastructure 

Rail transport1 50% 19% 12% 19% 

Inland waterways transport2 20% 67% 2% 11% 

Road transport1 11% 75% 6% 8% 
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3. Results 

 

3.1. Rail freight transport in Belgium 

 

The specific energy consumption during the rail transport activity of electric and diesel trains 

has been determined separately on the basis of the total annual energy consumption of 

electricity and diesel and the total annual rail freight moved by each energy traction from the 

period 2006 to 2012, using the data in table 2. The data from SNCB include the energy 

consumed by trains, such as the empty returns, shunting activity, maintenance of trains, as 

well as electrical losses in catenary (SNCB, 2009; SNCB, 2013 and SNCB, 2015). The 

Belgian high voltage network has distribution losses of 5% and the railway network has 

transmission losses of 7% (Infrabel, 2014). 

 

Table 2 : Rail freight transport performance and energy consumption in Belgium. Sources: 

SNCB, 2009; SNCB, 2013 and SNCB, 2015 

Year 2006 2007 2008 2009 2010 2011 2012 

Rail freight (millions tkm) 8442 8148 7882 5439 5729 5913 5220 

Electric traction consumption (TJ) 3489 3261 3382 2472 2092 2248 1922 

Diesel traction consumption (TJ) 1449 1339 1282 739 721 582 465 

Total consumption (TJ) 4939 4600 4664 3211 2813 2830 2387 

Energy consumption (kJ/tkm) 585 565 592 590 491 479 457 

 

The energy consumption for the Belgian rail freight transport has been calculated as 457 

kJ/tkm in 2012. However, no differentiation can be made between electric and diesel traction. 

The rail freight traction share in table 3 has been used to calculate the rail freight moved by 

electric and diesel traction, enabling to determine the specific energy consumption of electric 

and diesel trains separately. The data are obtained from the Flemish Environment Agency 

(VMM) and they are calculated only for the Flemish region, but this value can be considered 

as representative for Belgium in general. The rail freight traction share of years 2006 and 

2010 have been calculated using linear interpolation. It should be noted that the use of diesel 

traction is decreasing in Belgium, which means that only a small part of the rail freight 

produces exhaust emissions. 

 

Table 3 : Electric and diesel rail freight traction share in Flanders (Belgium). Sources: Flemish 

Environment Agency (VMM, 2008, 2009, 2010, 2012, 2013) 

Year 2006 2007 2008 2009 2010 2011 2012 

Electric traction 76.33% 76% 78.2% 83.1% 83.45% 83.8% 86.3% 

Diesel traction 23.67% 24% 21.8% 16.9% 16.55% 16.2% 13.7% 

 

Table 4 shows the values of energy consumption of electric and diesel trains calculated in our 

study from the period 2006 to 2012. If we take year 2012 as an example, 86.3% of the 5220 

million tkm of rail freight in Belgium were moved with electric traction, resulting in 4505 

million tkm. The total electricity consumed in 2012 was 1922 TJ, therefore the specific 

energy consumption of electric trains was 427 kJ/tkm. Similarly, 13.7% of the 5,220 million 

tkm of rail freight in Belgium were moved with diesel traction, resulting in 715 million tkm. 

The total diesel consumed in 2012 was 465 TJ, including the diesel consumption of the 

shunting activity, therefore the specific energy consumption of diesel trains was 650 kJ/tkm. 
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Table 4 : Energy consumption of rail freight transport in Belgium 

Year 2006 2007 2008 2009 2010 2011 2012 

Energy consumption of electric trains (kJ/tkm) 541 527 549 547 438 454 427 

Energy consumption of diesel trains (kJ/tkm) 725 685 746 804 760 608 650 

 

EcoTransIT (2008) uses as energy consumptions for the year 2005 the values of 456 kJ/tkm 

for electric traction and 530 kJ/tkm for diesel traction, representing the European average 

energy consumptions for cargo transport within Europe. Moreover, these values comprise 

both the final energy consumption during transport operation and the energy consumption of 

the generation of diesel and electricity (EcoTransIT, 2008). By comparing the values used in 

EcoTransIT (2008) with the energy consumptions obtained in our study for the year 2006, our 

results for Belgium show higher energy consumptions with 541 kJ/tkm and 725 kJ/tkm of 

electricity and diesel consumed (including shunting activity), respectively. 

The final electricity and diesel consumed for goods transport in table 5 is calculated using the 

energy consumption of electric and diesel trains (see table 4) and the electric and diesel 

traction share (see table 3). The results of our study show that, in 2012, 368 kJ of electricity 

and 89 kJ of diesel (including shunting activity) were needed to move 1 tkm in Belgium. 

According to Ecoinvent v3 data in 2014, a consumption of 260 kJ of electricity and 157 kJ of 

diesel were required to move 1 tkm of rail freight in Belgium. As in our study, the values of 

energy consumption extracted from the Ecoinvent v3 database represent the final energy 

consumption during transport operation. The results of final electricity consumption from our 

study are always higher than the value used by Ecoinvent v3. However, since the year 2009, 

the final diesel consumption from our study shows values lower than the value from 

Ecoinvent v3. The discrepancies between the values of our study and those of Ecoinvent v3 

should be highlighted, since they point out a need for updating the Ecoinvent v3 database. 

 

Table 5 : Final electricity and diesel consumption of rail freight transport in Belgium 

Year 2006 2007 2008 2009 2010 2011 2012 

Final electricity consumption (kJ/tkm) 413 400 429 454 365 380 368 

Final diesel consumption (kJ/tkm) 172 164 163 136 126 98 89 

 

The emission factors of Spielmann et al. (2007) have been used to calculate direct emissions. 

The diesel consumption has been used to obtain the exhaust emissions of diesel trains. The 

SF6 emissions to air produced during conversion of electricity at traction substations have 

been calculated using the electricity consumption. To determine particle emissions, it is 

necessary to add the particles produced by the abrasion to those produced by the combustion 

of diesel.  

The emissions of SO2 are dependent on the sulphur concentration in the diesel. B-Logistics 

uses conventional road-transport diesel, which is regulated by Directive 2003/17/EC, 

establishing a low sulphur content with a maximum limit of 10 ppm sulphur by mass from 

2009. However, diesel in Belgium has an average sulphur content of 8 ppm since 2008. The 

sulphur content in diesel in Belgium was 24 ppm and 9 ppm for the years 2006 and 2007, 

respectively (Twisse and Scott, 2012). 

 

3.2. Inland waterways transport in Belgium 

 

The average energy consumption during the inland waterways transport activity by barge has 

been determined using the class specific fuel consumption of barges in Wallonia (Service 

Public de Wallonie, 2014). It has been aggregated using the total carrying capacity of each 

vessel class by year from the period 2006 to 2012 (see table 6) as allocation factor. 
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Table 6 : Tonnage (t/year) of dry bulk barges in Belgium by vessel class. Sources: ITB, 2012 

Vessel class 2006 2007 2008 2009 2010 2011 2012 

< 250 t 2 448 3 947 4 176 3 323 2 871 3 446 3 595 

251 t – 450 t 115 068 103 812 96 513 91 662 87 596 78 726 72 071 

451 t – 650 t 85 909 80 693 72 066 72 836 68 222 63 551 63 193 

651 t – 850 t 77 600 71 358 64 625 61 135 58 988 54 852 50 646 

851 t – 1000 t 72 450 65 900 65 486 58 151 55 850 48 416 41 895 

1001 t – 1500 t 320 440 325 035 317 936 296 911 280 938 268 805 263 778 

1501 t- 2000 t 132 898 138 658 131 161 129 578 134 418 118 650 110 414 

2001 t – 2500 t 160 131 144527 141 009 138 400 136 363 128 367 137 369 

2501 t – 3000 t 278 908 260 489 224 229 227 298 229 233 228 739 222 872 

> 3000 t 265 451 321 592 393 622 445 115 498 284 510 206 511 032 

TOTAL 1 511 303 1 516 011 1 510 823 1 524 409 1 552 763 1 503 758 1 476 865 

 

Table 7 shows the methodology used to calculate the average fuel consumption of inland 

waterways transport by weighted arithmetic mean each year taking as an example the year 

2012. The average fuel consumption of 2012 for dry bulk cargo was 6.73 g/tkm. 

 

Table 7 : Average fuel consumption of dry bulk barges in Belgium in 2012. Sources: 1ITB, 2012 

and 2Service Public de Wallonie, 2014 

Vessel class Tonnage (t)1 Share 
Class specific fuel consumption 

in canals (g/tkm)² 

Contribution to average 

fuel consumption (g/tkm) 

< 250 t 3 595 0.24% 10.248 0.02 

251 t – 450 t 72 071 5% 10.248 0.50 

451 t – 650 t 63 193 4% 9.492 0.41 

651 t – 850 t 50 646 3% 8.736 0.30 

851 t – 1000 t 41 895 3% 8.736 0.25 

1001 t – 1500 t 263 778 18% 8.064 1.44 

1501 t- 2000 t 110 414 7% 7.392 0.55 

2001 t – 2500 t 137 369 9% 7.392 0.69 

2501t – 3000 t 222 872 15% 7.392 1.12 

> 3000 t 511 032 35% 4.200 1.45 

TOTAL 1 476 865 100% - 6.73 

 

Table 8 shows the average fuel consumption of inland waterways transport calculated from 

the period 2006 to 2012. The values used in EcoTransIT (2008) for the year 2005 are 438 

kJ/tkm and 727 kJ/tkm for inland waterways transport downstream and upstream, 

respectively. These values include both the final energy consumption during transport 

operation and the energy consumption of the generation of fuel (EcoTransIT, 2008). 

In the case of Ecoinvent v3 database, the energy consumption for inland waterways transport 

for the year 2014 is 402 kJ/tkm. This value represents the final energy consumption during 

transport operation. By comparing the values obtained in our study with the values from 

EcoTransIT (2008) and Ecoinvent v3 database, our results show lower energy consumptions. 

It should be noted that the reference values represent European averages, whereas our results 

represent a Belgian average. 
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Table 8 : Average fuel consumption of inland waterways transport of dry bulk in Belgium. 
1Considering that diesel net calories are 42.8 MJ/kg 

Year 2006 2007 2008 2009 2010 2011 2012 

Average fuel consumption (g/tkm) 7.45 7.30 7.11 6.97 6.85 6.77 6.73 

Average energy consumption (kJ/tkm)1 319 312 304 299 293 290 288 

 

The exhaust emissions produced during the TTW stage of inland waterways transport have 

been calculated using the emission factors of Spielmann et al. (2007) and the calculated fuel 

consumption. As mentioned above, the emissions of SO2 are dependent on the sulphur content 

in diesel. The gas-oil used in barges has been regulated by several European Directives, such 

as the Directive 93/12/EC, establishing a sulphur content of gas-oil used in inland waterways 

transport of 2000 ppm from 1994; Directive 1999/32/EC establishing a sulphur content of 

gas-oil of 1000 ppm from 2008; and Directive 2009/30/EC establishing a sulphur content of 

gas-oil of 10 ppm from 2011. 

 

3.3. Road freight transport in Belgium 

 

The average fuel consumption during the road freight transport activity has been determined 

using the average diesel consumption in Belgium from the TRACCS database (Papadimitriou 

et al., 2013) showed in table 9 and the actual payload of each lorry class calculated from the 

period 2005 to 2010 (see table 10). The data from the TRACCS project have been converted 

from g/km to g/tkm dividing by the actual payload of each lorry gross vehicle weight (GVW) 

class. It should be noted that in the same year, on the one hand, the fuel consumption in g/km 

increases with the size of the lorry (from 109 g/km to 254 g/km in 2005), but on the other 

hand, the fuel consumption in g/tkm decreases with the size of the lorry (from 231 g/tkm to 43 

g/tkm in 2005). This is due to increased payload (see table 10) with the GVW category. 

Furthermore, in the same GVW category, the fuel consumption (in g/tkm) increases over the 

years as a result of a decrease in the load factor (from 23.3% in 2005 to 17.4% in 2010), 

which entails a decrease in the actual payload. 

 

Table 9 : Fuel consumption of road transport in Belgium. Source: 1Papadimitriou et al., 2013 

Heavy Duty 

Lorry 

Fuel Consumption1 (g/km) Fuel Consumption (g/tkm) 

2005 2006 2007 2008 2009 2010 2005 2006 2007 2008 2009 2010 

Rigid <7.5 t 109 109 109 109 109 109 231 241 252 288 293 312 

Rigid 7.5 - 12 t 146 146 145 146 146 146 124 129 135 155 157 167 

Rigid 12 - 14 t 153 154 154 154 154 154 94 98 102 117 118 126 

Rigid 14 - 20 t 179 179 178 178 178 178 79 82 86 98 99 106 

Rigid 20 - 26 t 215 214 213 213 213 213 67 70 73 83 84 89 

Rigid 26 - 28 t 226 226 226 225 225 225 59 62 65 73 74 79 

Rigid 28 - 32 t 260 260 260 260 260 260 61 63 66 75 77 81 

Rigid >32 t 255 254 253 253 253 253 55 58 60 69 69 74 

Art. 14 - 20 t 172 171 170 170 170 170 58 60 63 72 73 77 

Art. 20 - 28 t 215 213 212 212 212 212 54 56 58 66 67 72 

Art. 28 - 34 t 225 223 222 222 222 222 45 46 48 55 56 59 

Art. 34 - 40 t 254 253 252 252 252 251 43 45 47 53 54 57 

 

Table 10 presents the methodology used to calculate the actual payload of each lorry GVW 

class using the maximum payload and the load factor for each year.  
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Table 10 : Actual payload calculated after maximum payload and load factor. Source: 
1Papadimitriou et al., 2013 

Heavy Duty 

Lorry 

Maximum Payload 

(t/vehicle) 1 

Load Factor (%) 1 Actual Payload (t/vehicle) 

2005 2006 2007 2008 2009 2010 2005 2006 2007 2008 2009 2010 

Rigid <7.5 t 2 

23.3% 22.4% 21.4% 18.7% 18.5% 17.4% 

0.47 0.45 0.43 0.38 0.37 0.35 

Rigid 7.5 - 12 t 5 1.17 1.12 1.07 0.94 0.93 0.87 

Rigid 12 - 14 t 7 1.64 1.57 1.50 1.32 1.30 1.22 

Rigid 14 - 20 t 9.7 2.26 2.17 2.07 1.82 1.79 1.68 

Rigid 20 - 26 t 13.7 3.20 3.07 2.93 2.57 2.53 2.38 

Rigid 26 - 28 t 16.4 3.82 3.67 3.50 3.07 3.03 2.84 

Rigid 28 - 32 t 18.4 4.29 4.11 3.93 3.44 3.40 3.19 

Rigid >32 t 19.7 4.60 4.41 4.21 3.69 3.64 3.42 

Art. 14 - 20 t 12.6 2.95 2.83 2.70 2.37 2.34 2.19 

Art. 20 - 28 t 17.1 3.99 3.82 3.65 3.20 3.16 2.96 

Art. 28 - 34 t 21.5 5.02 4.82 4.60 4.03 3.98 3.74 

Art. 34 - 40 t 25.3 5.91 5.67 5.41 4.75 4.68 4.40 

 

In order to do an average energy consumption for every year, the tonne-kilometers moved by 

each lorry GVW category have been used to calculate a weighted arithmetic mean. Table 11 

shows the methodology used to calculate the average fuel consumption of road freight 

transport each year taking as an example the year 2010. The average fuel consumption of 

2010 for road freight transport in Belgium was 66.47 g/tkm. 

 

Table 11 : Average fuel consumption of road freight transport in Belgium in 2010 

Heavy Duty 

Lorry 

Freight transport performance 

(million tkm) 

Share of 

tkm 

Contribution to average 

fuel consumption (g/tkm) 

2005 2006 2007 2008 2009 2010 2010 2010 

Rigid <7.5 t 259 240 224 240 229 212 0.65% 2.01 

Rigid 7.5 - 12 t 774 736 702 654 639 599 1.83% 3.05 

Rigid 12 - 14 t 142 125 110 97 87 77 0.23% 0.30 

Rigid 14 - 20 t 1435 1347 1268 1172 1129 1048 3.20% 3.38 

Rigid 20 - 26 t 1963 1888 1820 1727 1716 1628 4.97% 4.44 

Rigid 26 - 28 t 15 47 75 9 7 8 0.03% 0.02 

Rigid 28 - 32 t 460 458 456 423 434 421 1.28% 1.05 

Rigid >32 t 4796 4484 4204 4256 4042 3762 11.48% 8.49 

Art. 14 - 20 t 128 111 96 97 90 82 0.25% 0.19 

Art. 20 - 28 t 98 83 69 76 68 61 0.19% 0.13 

Art. 28 - 34 t 117 98 81 92 82 148 0.45% 0.27 

Art. 34 - 40 t 30511 29042 27769 28056 26455 24737 75.45% 43.13 

TOTAL 40700 38660 36873 36898 34979 32784 100% 66.47 

 

Table 12 shows the average fuel consumption of road freight transport calculated from the 

period 2005 to 2010 in Belgium. It should be noted that the lorry GVW category “articulated 

34-40 t” represents approximately 75% of the road freight transport performance every year in 

Belgium. Therefore, this lorry GVW category have been used to compare the different inland 

freight transport modes because it is representative. 
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Table 12 : Average fuel consumption of road freight transport of dry bulk in Belgium. 
1Considering that diesel net calories are 42.8 MJ/kg 

 2005 2006 2007 2008 2009 2010 

Average fuel consumption (g/tkm) 50.05 52.00 54.27 61.54 62.50 66.47 

Average energy consumption (kJ/tkm)1 2142 2225 2323 2634 2675 2845 

Road transport Art. 34 - 40 t (kJ/tkm) 1837 1910 1996 2273 2301 2447 

 

The value used in EcoTransIT (2008) for an articulated lorry of 34–40 t for the year 2005 is 

1082 kJ/tkm. This value includes both the final energy consumption during transport 

operation and the energy consumption of the generation of diesel (EcoTransIT, 2008). In the 

case of Ecoinvent v3 database, the energy consumption for a lorry of >32 t for the year 2014 

is 739 kJ/tkm. This value represents the final energy consumption during transport operation. 

It should be noted that the reference values represent European averages, whereas our results 

represent a Belgian average. By comparing the values obtained in our study with the values 

from EcoTransIT (2008) and Ecoinvent v3 database, our results show higher energy 

consumptions due to the lowest load factor considered in our study. 

The exhaust emissions produced during the TTW stage of road freight transport have been 

determined using the calculated diesel consumption and the emissions factors from two 

sources. For fuel dependent emissions such as CO2 and heavy metals, the emission factors of 

Spielmann et al. (2007) have been used. For other pollutant emissions dependent on the 

engine emission technology have been used the tier 2 emission factors from EMEP/EEA air 

pollutant emission inventory guidebook 2013 (Ntziachristos et al., 2014). 

The road transport emissions dependent on the engine are delimited by the “Euro” emission 

standards, which are regulated by several European policies, such as the Directive 

91/542/EEC (Euro I and Euro II), the Directive 1999/96/EC (Euro III, Euro IV and Euro V) 

and the EC Regulation 595/2009 (Euro VI). The emission engine technologies presents in our 

study are the following: Conventional, Euro I, Euro II, Euro III, Euro IV and Euro V. The 

emission engine technology Euro IV appears in the year 2006 in the Belgian heavy duty 

vehicle market, and the Euro V in the year 2009. The emission engine technology Euro VI 

appears in the year 2014, thus it is not included in our study. 

 

3.4. Intermodal terminals in Belgium 
 

Intermodal terminals are essential in freight transport, working as a point of collection, 

sorting, transhipment and distribution of goods (ITF, Eurostat, UNECE, 2009). In order to 

transfer the merchandise between modes of transport, cargo handling equipment such as 

gantry cranes or reach stackers are used in intermodal terminals. Messagie et al. (2014) 

estimate an energy consumption in the transhipment processes of 16560 kJ per TEU, 1440 

kJ/t for bulk transport and 4680 kJ/t for other goods. 

Focusing on rail freight transport, the shunting activity plays a key role in intermodal 

transport. It includes the processes of parking and selecting wagons to assemble new trains, 

being performed in a marshalling yard, which can be part of an intermodal terminal. In 

Belgium, shunting activity is particularly significant because Belgium is mainly an exporter 

and importer of goods rather than a transit country. Moreover, since the shunting activity in 

Belgium is performed by diesel locomotives, it might result in a high negative impact. 

Therefore, a thorough analysis is presented hereunder. 

B-Logistics uses 110 locomotives of the class HLD 77 with an energy consumption of 25 

L/hour of diesel for shunting activity. Considering that the shunting service of every 

locomotive last 8 hour/day and it is performed every day of the year, it results in 8030000 

litres of diesel per year. The density of diesel is 0.84 kg/L and the diesel net calories are 42.8 
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MJ/kg (Frischknecht et al., 2007), resulting in a diesel consumption of the shunting activity of 

288.69 TJ per year.  

As showed in table 13, a diesel consumption for shunting activity from 49.74 kJ/tkm to 55.31 

kJ/tkm is obtained from the year 2006 to 2012, respectively. In table 13, we have made two 

assumptions: we consider an energy consumption for shunting activity of 288.69 TJ for the 

year 2012 (last year with available rail freight transport performance), and we assume that the 

shunting activity increases at a rate of 75% of the increase in rail freight transport 

performance. The last assumption is justified by the fact that the increase in freight transport 

is realized with more direct train connections than shunting activity, resulting in improved 

efficiency and therefore lower need for shunting activity (Vanherle et al., 2007). 

Spielmann et al. (2007) estimate a diesel consumption of the shunting activity of 29.104 

kJ/tkm, which is always lower than our estimations. Moreover, the energy consumption for 

shunting activity represents from 8.50% to 12.09% of the total energy consumption from the 

year 2006 to 2012, respectively. Vanherle et al. (2007) estimate that an 8.8% of the total 

energy consumed in rail freight transport is destined to shunting activity, which is 

approximate to our estimations from 2006 to 2009. While the results of energy consumption 

of the shunting activity showed in table 13 are only indicative, they bring out the importance 

of the shunting activity in the total energy consumption of rail freight transport. 

 

Table 13 : Energy consumption of the shunting activity 

Year 2006 2007 2008 2009 2010 2011 2012 

Rail freight (millions tkm) 8442 8148 7882 5439 5729 5913 5220 

Total energy consumption (TJ) 4939 4600 4664 3211 2813 2830 2387 

Shunting activity (TJ) 419.89 408.83 398.74 298.26 310.03 317.44 288.69 

Shunting activity (kJ/tkm) 49.74 50.18 50.59 54.84 54.12 53.69 55.31 

Share of shunting activity in 

total energy consumption  
8.50% 8.89% 8.55% 9.29% 11.02% 11.22% 12.09% 

 

An improvement in the environmental impact of both cargo handling equipment and 

locomotives used in shunting activity in the intermodal terminals can be reached. For 

example, through the use of cleaner energy sources such as electricity or biodiesel and the 

control of direct emissions using cleaner engine technologies such as filters and catalysts. 

Furthermore, a greater energy efficiency could be achieved by optimizing the management 

systems in the intermodal terminals, which would allow lower waiting times for transport 

vehicles such as barges or lorries and more efficient in the transhipment processes using cargo 

handling equipment for example. 

A strategic target to improve the rail market share in Belgium are ports. For example, in the 

port of Antwerp road transport was the main mode of transport for containers in 2015 with a 

58% of the share, a 35% of container were transported by barge and a 7% by train (Antwerp 

Port Authority, 2016). It should be noted that inland waterways transport has been clearly 

chosen over rail. However, a shift from road to rail transport could be encouraged with the 

implementation of measures to promote the rail freight transport. Furthermore, a greater 

integration of the different transport modes, especially road-rail intermodal transport, would 

lead to an increase of the rail market share. The strong presence and competiveness of the 

inland waterways transport in Belgium makes it an alternative to road and rail freight 

transport. 
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3.5. Life Cycle Assessment of inland freight transport modes in Belgium 

 

A LCA study comprises four stages. First, the goal and scope definition, which in this 

deliverable is to compare the environmental impacts of the different inland freight transport 

modes in Belgium (see figure 3). The functional unit chosen is “one tonne-kilometre of 

freight transported”. The second stage of a LCA is the inventory analysis, collecting data 

directly from Infrabel and B-Logistics in the case of rail freight transport and complementing 

the information using the Ecoinvent V3.1 database. The model used in Ecoinvent V3.1 has 

been adapted to the Belgian situation in the case of both inland waterways transport and road 

transport (using the calculated transport parameters of tonne-kilometres, load factor, payload, 

number of vehicles, and characteristics of infrastructures for example). The information 

collected from Infrabel and B-Logistics has not been fully modelled, therefore the results 

on LCA presented in this paper are subject to a degree of uncertainty. Therefore, a more 

detailed study of impact assessment will be carry out in the future. The third stage is the 

impact assessment. All calculations were made with the SimaPro 8.0.5 software using the Life 

Cycle Impact Assessment (LCIA) method “ILCD 2011 Midpoint+” (version V1.06 / EU27 

2010), which is the method recommended by the European Commission (European 

Commission, 2010). “ILCD 2011 Midpoint+” is a midpoint method including 16 

environmental impact indicators. The fourth stage is the assessment of the results obtained in 

the previous stage. 

Figure 4 compares the results on LCIA of different modes of rail freight transport in Belgium 

(year 2012) and the reference values from Ecoinvent v3 (year 2014). Since each 

environmental impact indicator is expressed in different units, and to facilitate the 

interpretation of the LCIA results, all the scores of an indicator have been divided by the 

highest score of the indicator, which represents the maximum impact of the indicator. 

Therefore, the lowest value represents de mode of transport with less impact and the highest 

value represents the maximum impact. 

 

 

Figure 4 : LCIA of rail freight transport in Belgium in 2012 
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Diesel trains (including shunting activity) present the maximum impact in 11 indicators. It 

should be noted the high difference in comparison with the other rail freight transport modes 

due to the exhaust emissions produced in the diesel locomotives in the following indicators: 

photochemical ozone formation, acidification and terrestrial and marine eutrophication.  

For the indicator climate change, diesel trains present the maximum impact due to the exhaust 

emissions during the transport activity. Even if the electric traction emits SF6 during 

electricity conversion at traction substations, the main greenhouse gas emissions are produced 

in the electricity generation, especially in the natural gas power plants.  

Electric trains present the maximum impact in the indicators related with the radiation due to 

the use of a 42% of nuclear power in the electricity production in Belgium in 2012 (Eurostat, 

2015). The indicator “Human toxicity, cancer effects” shows similar values in the three rail 

freight transport modes studied due to the similar steel demand in the railway construction. 

The negative score in the indicator water resource depletion indicates that water has been 

emitted or returned to the environment, becoming a positive impact. The emission of water to 

the environment is produced in the electricity generation at the natural gas power plant. 

However, this results should be interpreted with caution due to the uncertainty of the 

methodology. 

Figure 5 shows a comparison of the results on LCIA of different modes of inland freight 

transport in Belgium (year 2010) and the reference values from Ecoinvent v3 (year 2014).  

 

 

Figure 5 : LCIA of inland freight transport in Belgium in 2010 

 

Road transport presents the maximum impact in all the indicators except the indicator 

ionizing radiation. The electric trains present the maximum impact in this indicator due to the 

use of nuclear power in the electricity generation in Belgium.  

The exhaust emissions calculated during the road transport activity have caused the high 

difference in comparison with the other transport modes in the following indicators: climate 
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change, photochemical ozone formation, acidification and terrestrial and marine 

eutrophication. Road transport presents an elevated fuel consumption and this, together the 

low load factor, has caused the high exhaust emissions of road freight transport. 

For the indicator particulate matter, the direct emissions in the road transport activity of tire 

wear, break wear and road wear have a strong influence in the result of the indicator. 

Focusing on the inland waterways transport, it presents a high impact in the indicators human 

toxicity, cancer effects and freshwater eutrophication. This is the result of the infrastructure 

demand of canals and port facilities. 

 

4. Conclusion 

 

The aim of the BRAIN-TRAINS project is to analyse the current situation of intermodal 

transport in Belgium to allow policymakers to take decisions for the development of 

intermodal transport. Some relevant factors that might influence the possible development of 

rail transport are the improvement of both rail infrastructure and interoperability between rail 

networks of different countries acting on the infrastructure, signalling, traffic management 

and rolling stock that lead to higher speed of rail freight transport. Alternatively, policy 

measures that promote a modal shift from road transport to rail transport such as subsidies for 

rail transport, road pricing or environmental zoning could be applied. Particularly, all this 

measures could allow a development of rail freight transport in long distances (Den Boer et 

al., 2011). 

The energy efficiency in the railway sector, and therefore its competiveness, will improve in 

the future. Some points to improve the efficiency of the rail freight transport will be the 

weight reduction through new materials of locomotives and wagons. This would allow the 

saving of the energy consumed during transport activity, but also energy consumed in the 

manufacture and disposal of rail vehicles. Moreover, the development of new engines for 

locomotives more energy-efficient and with more restrictive emissions standards, the energy 

recovery systems from braking, the energy-efficient driving through the control of speed and 

improved aerodynamics in rolling stock, will lead to a reduction in the energy consumption. 

The use of cleaner energy such as electricity from renewable sources or replacing diesel by 

other sources of cleaner energy as biodiesel, will lead to the reduction of environmental 

impacts. It should be noted that the use of biodiesel produces advantages in terms of CO2 

emissions, but analysing the life cycle of the biodiesel the pollution could be transferred from 

air when combustion to soil and water during crop production. Therefore, the environmental 

advantages of the use of biodiesel depend on the specific type and source of the biodiesel. 

Inland waterways transport is the most energy-efficient mode of inland freight transport. It 

represents the least energy consuming mode of transport in our study, but also in both the 

EcoTransIT (2008) and Ecoinvent databases. Within rail freight transport, electric traction has 

the lowest energy consumption, while diesel traction has the highest. The Belgian traction 

mix, which includes a combination of electric and diesel traction, achieves an intermediate 

consumption, but closer at the energy consumption of the electric traction due to its highest 

share of the Belgian traction mix. As mentioned above, the values of energy consumption in 

road transport of our study are much higher than the reference values, because the load factors 

considered in our study are lower. In order to improve the results of our study, we will 

proceed to collect data from road freight operators involved in intermodal transport and use 

sensitivity analysis. Moreover, the methodology will be improved in the future with the 

inclusion in the model of information relative to the Belgian railway infrastructure and the rail 

equipment used in Belgium. 
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