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Abstract

In this thesis we demonstrate that direct measurement and comparison across sub-
jects of the surface area of the cerebral cortex at a fine scale is possible using mass
conservative interpolation methods. We present a framework for analyses of the
cortical surface area, as well as for any other measurement distributed across the
cortex that is areal by nature, including cortical gray matter volume. The method
consists of the construction of a mesh representation of the cortex, registration
to a common coordinate system and, crucially, interpolation using a pycnophy-
lactic method. Statistical analysis of surface area is done with power-transformed
data to address lognormality, and inference is done with permutation methods,
which can provide exact control of false positives, making only weak assumptions
about the data. We further report on results on approximate permutation meth-
ods that are more flexible with respect to the experimental design and nuisance
variables, conducting detailed simulations to identify the best method for settings
that are typical for imaging scenarios. We present a generic framework for per-
mutation inference for complex general linear models (GLMs) when the errors are
exchangeable and/or have a symmetric distribution, and show that, even in the
presence of nuisance effects, these permutation inferences are powerful. We also
demonstrate how the inference on GLM parameters, originally intended for inde-
pendent data, can be used in certain special but useful cases in which independence
is violated. Finally, we show how permutation methods can be applied to com-
bination analyses such as those that include multiple imaging modalities, multiple
data acquisitions of the same modality, or simply multiple hypotheses on the same
data. For this, we use synchronised permutations, allowing flexibility to integrate
imaging data with different spatial resolutions, surface and/or volume-based rep-
resentations of the brain, including non-imaging data. For the problem of joint
inference, we propose a modification of the Non-Parametric Combination (NPC)
methodology, such that instead of a two-phase algorithm and large data storage
requirements, the inference can be performed in a single phase, with more reas-
onable computational demands. We also evaluate various combining methods and
identify those that provide the best control over error rate and power across. We
show that one of these, the method of Tippett, provides a link between correction
for the multiplicity of tests and their combination.
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Propositions
In complement of the dissertation:

Statistical analysis of areal quantities in the brain through permutation tests
by Anderson M. Winkler

Propositions 1–4 are related to the subject matter of the dissertation; Propositions 3–7 are related
to the subject field of the doctoral candidate; Proposition 8 is not related to either.

1. Analysis of brain cortical surface area has received insufficient attention com-
pared to thickness and volume, even though it provides a different kind of in-
formation about the cortex, particularly when compared to thickness.

2. Pycnophylactic interpolation is the most appropriate method to resample areal
quantities to allow comparisons between individuals.

3. The G-statistic provides a simple generalisation over various well known stat-
istics. Written in matrix form, it can be computed quickly for imaging data,
and assessed through permutations, sign flippings, or permutations with sign
flippings, either freely or with restrictions imposed by exchangeability blocks,
depending on knowledge or assumptions about the data and residuals.

4. Non-parametric combination can be modified so as to run in a single phase,
rendering its use feasible for imaging data, and offering in general higher power
compared to classical multivariate tests.

5. Voxel-based morphometry (vbm) had its time, but should no longer be used for
serious research of cortical anatomy, particularly given that other methods are
readily available.

6. Cortical surface area at finer resolution can provide adequate traits that are
closer to gene action and may be more successful for the identification of genes
that influence brain structure and function.

7. Cortical surface area is heritable and has potential to be an endophenotype for
psychiatric disorders.

8. Knowledge of genetic influences on brain structure and function should be used
to fight disease and improve quality of life. Its influences on policy making,
however, must be seen with caution, and receive due, wide consideration.
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Chapter 1

Introduction

It has been suggested that the processes that drive horizontal (tangential) and
vertical (radial) development of the cerebral cortex are separate from each other
(Rakic, 1988). Variations on these would result, respectively, in variations on the
extent of cortical surface area and on the thickness of the cortical mantle. Through
the use of genetically informative samples, it has been demonstrated these two
processes are indeed uncorrelated genetically (Panizzon et al., 2009; Winkler et al.,
2010) and are each influenced by regionally distinct genetic factors (Schmitt et al.,
2008; Rimol et al., 2010b). Moreover, it is variation on surface area that explains
most of the variation observed in the amount of gray matter assessed with meth-
ods that only measure volume, such as voxel-based morphometry (Winkler et al.,
2010; Rimol et al., 2012).

These findings give prominence to the use of surface area alongside cortical
thickness in studies of brain morphology and, and its interaction with brain func-
tion. However, cortical surface area been measured only over gross regions or
approached indirectly via comparisons with a standard brain. Of studies using the
latter, few that have used area measurements on every point of the cortex (vertex-
wise) and have offered detailed insight on the exact procedures used for this assess-
ment. Some studies described their methods in terms of “expansion/contraction”,
often using different definitions of what expansion or contraction would be. By
2011, various impromptu approaches had been considered, for example:

– Lyttelton et al. (2009): The authors describe that the asymmetry measure-
ment is the logarithm of the ratio of the area per vertex of left and right

17



18 Chapter 1. Introduction

hemispheres. Expansion or contraction are in relation to the contralateral
hemisphere.

– Joyner et al. (2009): After a brief description of the method of measurement,
the authors state that “(…) this provides point-by-point estimates of the re-
lative areal expansion or compression of each location in atlas space.” Ex-
pansion/contraction are relative to the chosen template.

– Sun et al. (2009a): The authors state that “The distance between a center po-
sition of the brain (…) and each brain surface point was calculated (…). The
difference of the above radial distances between the follow-up and baseline
brain surfaces (…) was defined as brain surface contraction”. Under this
definition, not only contraction refers to an initial point in time, but it also
refers not to a bidimensional feature, and instead to a linear distance between
each point in the surface and a given central point in the brain.

– Sun et al. (2009b): The authors state that “The distance between two brain
surfaces [i.e. inner skull and pial] was then measured at subvoxel resolution
(…), the value in millimeters was assigned to the voxel as the intensity value
and an image of the brain surface contraction was obtained”. Under this
definition, for a longitudinal study, the contraction is the difference between
initial and final distances between inner skull and pial surfaces, assigned to
a volumetric (voxel-based) space.

– Hill et al. (2010): The article discusses growth of the cortex from birth to
adulthood and compares it with the cortex of the monkey. Here expansion
can be interpreted as in relation to an initial, developmental and/or evolu-
tionary stage, not to a given template or to the other hemisphere.

– Rimol et al. (2010a): Expansion and contraction are measured in relation to
a template, as in Joyner et al. (2009).

– Palaniyappan et al. (2011): The authors state that “In line with Joyner et al.
(2009), we use the term contraction to suggest group differences in the sur-
face area in patients compared to controls, rather than a reduction from pre-
viously larger area.” This in fact seems a new interpretation over the method
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used by Joyner et al. (2009), as the authors here would then be using expan-
sion/contraction to compare to the control group. Yet, reading through the
article, it appears clear that expansion/contraction still refers to the chosen
template.

– Chen et al. (2011, 2012): The authors use a method similar to Joyner et al.
(2009) and Rimol et al. (2010a), and so, expansion/contraction refer to the
template.

All these different operating definitions of what expansion/contraction would
be create already difficulties in the interpretation of their meaning. However, even
if only one of these existed, it would still be difficult to interpret, due to the depend-
ence of all these methods on a reference brain or on the contra-lateral hemisphere,
from which expansion or contraction is tentatively assessed.

In the present work, we propose a method that uses absolute quantities, as op-
posed to being relative to a reference brain. While initially addressing these con-
cerns, we found yet others that required further investigation. The first is that we
found that surface area is lognormally distributed, such that direct use of statistical
methods based on the assumption of normality are likely to yield incorrect results.
The second concerns use of data assigned to each face of a mesh representation of
the brain, as opposed to eachvertex, which cannot be analysed in software designed
to handle vertexwise data, nor stored in vertexwise file formats, thus demanding
the development of new tools for analysis and a file format. The third is that in
neuroimaging thousands of tests are performed in an image representation of the
brain. None of the parametric methods can be considered for control of the fami-
lywise error rate, given the lognormality and the spatial dependencies among the
data assigned to each face of the mesh representation without appealing to many
unrealistic assumptions, thus demanding the use of more flexible approaches.

Treating these problems eventually that led into a complete framework for
the measurement and statistical analysis of areal quantities. It uses permutation
tests in the general linear model, and yet allowing area and thickness to be studied
jointly without appealing to cortical volume. Nonetheless, the method can also
be used to study volume, either using the current approach of multiplying cortical
area by cortical thickness, or else, using an improved method that we propose, in
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Univariate analysis

(via permutations)

Univariate analysis

(via permutations)

Cortical
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Figure 1.1: Some possible analyses of cortical morphometric measurements using per-
mutation tests. Inter-subject comparisons of cortical area and other areal quantities,
such as volume, that depends on both area and thickness, use the methods proposed in
Chapter 2. Univariate statistical analysis of each of these separately use the strategy dis-
cussed in Chapter 3. Joint (combined) analysis of area and thickness, that bypass volumes
altogether, would use the methods proposed in Chapter 4, in particular the non-parametric
combination (npc), but also classical multivariate tests.

which no pieces of the cortex are left over- or under-represented.

Although this work can be organised into three core topics that are relatively
independent from each other, and that have each been published as separate pa-
pers (Winkler et al., 2012, 2014, 2016), the flow of information in a complete study
of cortical morphology visits all three, as shown in Figure 1.1. The next sections
outline these three main chapters. Each chapter offers a detailed introduction de-
scribing the problem that each aim to solve, along with review of the relevant
literature, evaluation and implementation, including algorithms as needed, and a
detailed discussion.

1.1 Methods for areal quantities

The general strategy for analyses of cortical measurements consists of the gener-
ation of a surface-representation of the brain and its subsequent transformation
into a sphere. Vertices of this sphere are then shifted along its surface to allow
alignment that matches some feature of interest, such as sulcal depth, myelin con-



1.2. Methods for permutation inference 21

tent, or functional markers. As the alignment is performed, quantities assigned
to vertices or faces, such as thickness or area, are carried along these vertices and
faces. Once registration is done, these quantities are interpolated to a common
grid (mesh), where comparisons between subjects can be performed.

While methods to study thickness across subjects are available (Fischl and Dale,
2000), and use interpolation to a common reference grid using methods such as
nearest neighbour or barycentric, such interpolation strategies cannot be used for
either cortical area itself, nor to other areal quantities, such as cortical volume,
as these are not mass-conservative (pycnophylactic). Chapter 2 clarifies the dis-
tinction between the nature of these measurements, and proposes the use of areal
interpolation. This strategy permits quantities to be studied in absolute terms, as
opposed to relative to some reference brain. Thechapter proposes that areal quant-
ities are analysed directly in the faces of the mesh fromwhich theywere computed,
instead of resampled to vertices, which halves the resolution.

We demonstrate that areal data do not follow a normal distribution, being bet-
ter characterised by a mixture of normal and lognormal distributions, in propor-
tions that vary across the brain and possibly according to the scale ofmeasurement.
A power transformation can be considered to address lognormality, although a
better alternative is to use permutation methods, that not only do not rely on dis-
tributional assumptions, but also allow correction for multiple testing and the use
of non-standard statistics.

1.2 Methods for permutation inference

Permutation methods can provide exact control of false positives, making only
weak assumptions about the data, and have been available in brain imaging for
many particular cases (Holmes et al., 1996; Nichols and Holmes, 2002), although
no implementation for surface-based methods, even less so for facewise data as
we have developed, existed in the literature until this work. With the recent avail-
ability of fast and inexpensive computing, the main limitation of permutation tests
would be a certain lack of flexibility with respect to arbitrary experimental designs,
in particular with respect to nuisance variables in the model, as well as repeated
measurements.
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In Chapter 3 we report on results on approximate permutation strategies that
are more flexible with respect to experimental designs that include such nuisances.
We review the literature and conduct detailed simulations to identify the best
method for settings that are typical for imaging research. A generic framework
for permutation inference for complex general linear models (glms) when the er-
rors are exchangeable and/or have a symmetric distribution, is presented. Even in
the presence of nuisance effects, these permutation inferences are powerful and
provide control of false positives in a wide range of common and relevant imaging
research scenarios.

We also demonstrate how the inference on glm parameters, originally inten-
ded for independent data, can be used in certain special but useful cases in which
independence is violated, by means of using exchangeability blocks, that is, sets of
observations with shared non-independence, and that can sometimes be treated
as a single unit for permutation, i.e., shuffled as a whole, or sometimes serve as
delimiters such that permutations happen only within block. The definition of ex-
changeability blocks allow for groups of observations with same variances, either
known or assumed, thus requiring a statistic that preserves certain desirable prop-
erties for control of multiple testing even under such scenarios. We provide such
a statistic, dubbed G-statistic, which is a generalisation of the F -statistic, as well
as others.

1.3 Methods for joint permutation inference

While gray matter volume can be studied directly using the methods discussed in
Chapter 2, it may be the case that true effects affecting thickness and area in oppos-
ite directions may cancel each other. Yet, analysing them separately using univari-
ate methods as in Chapter 3 may not aggregate power from having effects acting
simultaneously on both. Likewise, participants of an imaging study are often sub-
jected to the acquisition of more than one imaging modality. These modalities are
often analysed separately. However, a joint analysis has potential to answer more
complex questions and to increment power. Moreover, even a single modality can
sometimes be partitioned into subcomponents that disentangle different aspects of
brain structure or function. Examples include independent component analysis, as
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well as scalar measurements from diffusion-tensor imaging.
In Chapter 4 we show how permutation methods can be applied to combin-

ation analyses such as those that include multiple imaging modalities, multiple
data acquisitions of the same modality, or simply multiple hypotheses on the same
data. Using the well-known definition of union-intersection tests and closed test-
ing procedures, we use synchronised permutations to correct for such multipli-
city of tests, allowing flexibility to integrate imaging data with different spatial
resolutions, surface and/or volume-based representations of the brain, including
non-imaging data.

In particular for the problem of joint inference, we propose and evaluate a
modification of the recently introduced Non-Parametric Combination (npc) meth-
odology (Pesarin and Salmaso, 2010a), such that instead of a two-phase algorithm
and large data storage requirements, the inference can be performed in a single
phase, with reasonable computational demands. We also evaluate, in the context
of permutation tests, various combining methods that have been proposed in the
past decades, and identify those that provide the best control over error rate and
power across a range of situations. We show that one of these, the method of
Tippett (1931), provides a link between correction for the multiplicity of tests and
their combination.

Finally, we discuss how the correction can solve certain problems of multiple
comparisons in common designs, and how the combination is distinguished from
conjunctions, even though both can be assessed using permutation tests. We also
provide a common algorithm that accommodates combination and correction.
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Chapter 2

Areal quantities in the cortex

2.1 Introduction

The surface area of the cerebral cortex greatly differs across species, whereas the
cortical thickness has remained relatively constant during evolution (Mountcastle,
1998; Fish et al., 2008). At a microanatomic scale, regional morphology is closely
related to functional specialization (Roland and Zilles, 1998; Zilles and Amunts,
2010), contrasting with the columnar organization of the cortex, in which cells
from different layers respond to the same stimulus (Jones, 2000; Buxhoeveden and
Casanova, 2002). In addition, Rakic (1988) proposed an ontogenetic model that ex-
plains the processes that lead to cortical arealization and differentiation of cortical
layers according to related, yet independent mechanisms. Supporting evidence for
this model has been found in studies with both rodent and primates, including hu-
mans (Chenn and Walsh, 2002; Rakic et al., 2009), as well as in pathological states
(Rimol et al., 2010a; Bilgüvar et al., 2010).

At least some of the variability of the distinct genetic and developmental pro-
cesses that seem to determine regional cortical area and thickness can be captured
using polygon mesh (surface-based) representations of the cortex derived from T1-
weighted magnetic resonance imaging (mri) (Panizzon et al., 2009; Winkler et al.,
2010; Sanabria-Diaz et al., 2010). In contrast, volumetric (voxel-based) representa-
tions, also derived from mri, were shown to be unable to readily disentangle these
processes (Winkler et al., 2010). Figure 2.1 shows schematically the difference
between these two representations.

25
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Figure 2.1: Geometrical relationship between cortical thickness, surface area and grey
matter volume. In the surface-based representation, the grey matter volume is a quad-
ratic function of distances in the surfaces and a linear function of the thickness. In the
volume-based representation, only the volumes can be measured directly and require par-
tial volume-effects to be considered (Winkler et al., 2010).

Mesh representations of the brain allow measurements of the cortical thick-
ness at every point in the cortex, as well as estimation of the average thickness
for pre-specified regions. However, to date, analyses of cortical surface area have
been generally limited to two types of studies: (1) vertexwise comparisons with a
standard brain, using some kind of expansion or contraction measurement, either
of the surface itself (Joyner et al., 2009; Lyttelton et al., 2009; Hill et al., 2010; Rimol
et al., 2010a; Palaniyappan et al., 2011), of linear distances between points in the
brain (Sun et al., 2009a,b), or of geometric distortion (Wisco et al., 2007), or (2) ana-
lyses of the area of regions of interest (roi) defined from postulated hypotheses or
frommacroscopicmorphological landmarks (Dickerson et al., 2009; Nopoulos et al.,
2010; Kähler et al., 2011; Durazzo et al., 2011; Schwarzkopf et al., 2011; Eyler et al.,
2011; Chen et al., 2011, 2012). Analyses of expansion, however, do not deal with
area directly, depending instead on non-linear functions associated with the warp
to match the standard brain, such as the Jacobian of the transformation. Moreover,
by not quantifying the amount of area, these analyses are only interpretable with
respect to the brain used for the comparisons. Roi-based analyses, on the other
hand, entail the assumption that each region is homogeneous with regard to the
feature under study, and havemaximum sensitivity only when the effect of interest
is present throughout the roi.
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These difficulties can be obviated by analysing eachpoint on the cortical surface
of the mesh representation, a method already well established for cortical thick-
ness (Fischl and Dale, 2000). Pointwise measurements, such as thickness, are gener-
ally taken at and assigned to each vertex of the mesh representation of the cortex.
This kind of measurement can be transferred to a common grid and subjected to
statistical analysis. Standard interpolation techniques, such as nearest neighbor,
barycentric (Yiu, 2000), spline-based (De Boor, 1962) or distance-weighted (Shep-
ard, 1968) can be used for this purpose. The resampled data can be further spatially
smoothed to alleviate residual interpolation errors. However, this approach is not
suitable for areal measurements, since area is not inherently a point feature. To
illustrate this aspect, an example is given in Figure 2.2. Methods that can be used
for interpolation of point features do not necessarily compensate for inclusion or
removal of datapoints,¹ unduly increasing or reducing the global or regional sum
of the quantities under study, precluding them for use with measurements that are,
by nature, areal. The main contribution of this chapter is to address the technical
difficulties in analysing the local brain surface area, as well as any other cortical

quantity that is areal by nature. We propose a framework to analyse areal quant-
ities and argue that a mass preserving interpolation method is a necessary step.
We also study different processing strategies and characterize the distribution of
facewise cortical surface area.

2.2 Method

An overview of the method is presented in Figure 2.3. Comparisons of cortical
area between subjects require a surface model for the cortex to be constructed.
A number of approaches are available (Mangin et al., 1995; Dale et al., 1999; van
Essen et al., 2001; Kim et al., 2005) and, in principle, any could be used. Here we
adopt the method of Dale et al. (1999) and Fischl et al. (1999a), as implemented
in the FreeSurfer software package (fs).² In this method, the T1-weighted images

¹ A notable exception is the natural neighbor method (Sibson, 1981). However, the original method
needs modification for use with areal analyses.

² Available at http://surfer.nmr.mgh.harvard.edu.

http://surfer.nmr.mgh.harvard.edu
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In a hypothetical, near future scenario, global 

warming has melted the polar icecaps and 

profoundly modified landscapes. A group of 

botanists and geologists decide to study a newly 

formed forest in Antarctica. Some of the variables 

to be collected include the number of trees of a 

certain slow growing species, and the depth of the 

soil until a specific rocky formation is found. They 

prepare a trip to the field for data collection.

Figure 2.2: An example demonstrating differences in the nature of measurements. In this
analogy, the depth of the soil is similar to brain cortical thickness, whereas the number of
trees is similar to areal quantities distributed across the cortex. These areal quantities can
be the surface area itself (in this case, the area of the terrain), but can also be any other
measurement that is areal by nature (such as the number of trees).
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are initially corrected for magnetic field inhomogeneities and skull-stripped (Sé-
gonne et al., 2004). The voxels belonging to the white matter (wm) are identified
based on their locations, on their intensities, and on the intensities of the neigh-
boring voxels. A mass of connected wm voxels is produced for each hemisphere,
using a six-neighbors connectivity scheme, and amesh of triangular faces is tightly
built around this mass, using two triangles per exposed voxel face. The mesh is
smoothed taking into account the local intensity in the original images (Dale and
Sereno, 1993), at a subvoxel resolution. Topological defects are corrected (Fischl
et al., 2001; Ségonne et al., 2007) ensuring that the surface has the same topological
properties of a sphere. A second iteration of smoothing is applied, resulting in a
realistic representation of the interface between gray and white matter (the white
surface). The external cortical surface (the pial surface), which corresponds to the
pia mater, is produced by nudging outwards the white surface towards a point
where the tissue contrast is maximal, maintaining constraints on its smoothness
and on the possibility of self-intersection (Fischl and Dale, 2000). Thewhite surface
is inflated in an area-preserving transformation and subsequently homeomorph-
ically transformed to a sphere (Fischl et al., 1999b). After the spherical transform-
ation, there is a one-to-one mapping between faces and vertices of the surfaces in
the native geometry (white and pial) and the sphere. These surfaces are comprised
exclusively of triangular faces.

2.2.1 Area per face and other areal quantities

The surface area for analysis is computed at the interface between gray and white
matter, i.e. at thewhite surface. Another possiblechoice is to use themiddle surface,
i.e. a surface that runs at the mid-distance between white and pial. Although this
surface is not guaranteed to match any specific cortical layer, it does not over or
under-represent gyri or sulci (van Essen, 2005), whichmight be an useful property.
Thewhite surface, on the other hand, matches directly a morphological feature and
also tends to be less sensitive to cortical thinning or thickening than the middle or
pial surfaces. Whenever methods to produce surfaces that represent biologically
meaningful cortical layers are available, these should be preferred.

In contrast to conventional approaches in which the area of all faces that meet
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Figure 2.3: Diagram of the steps to analyse the cortical surface area. For clarity, the colors
represent the convexity of the surface, as measured in the native geometry.
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at a given vertex is summed and divided by three, producing a measure of the
area per vertex, for facewise analysis it is the area per face that is measured and
analysed. Since for each subject, each face in the native geometry has its corres-
ponding face on the sphere, the value that represents area per face, as measured
from the native geometry, can be mapped directly to the sphere, despite any areal
distortion introduced by the spherical transformation.

Furthermore, since there is a direct mapping that is independent of the ac-
tual area in the native geometry, any other quantity that is biologically areal can

also be mapped to the spherical surface. Perhaps the most prominent example is
cortical volume (Section 2.2.3), although other cases of such quantities, that may
potentially be better characterized as areal processes, are the extent of the neural
activation as observed with functional mri, the amount of amyloid deposited in
Alzheimer’s disease (Klunk et al., 2004; Clark et al., 2011), or simply the the number
of cells counted from optic microscopy images reconstructed to a tri-dimensional
space (Schormann and Zilles, 1998). Since areal interpolation (described below)
conserves locally, regionally and globally the quantities under study, it allows ac-
curate comparisons and analyses across subjects for measurements that are areal
by nature, or that require mass conservation on the surface of the mesh represent-
ation.

2.2.2 Computation of surface area

The facewise areas in the mesh representation of the brain can be computed trivi-
ally: for a triangular face ABC with vertices a = [xA yA zA]

′, b = [xB yB zB]
′,

and c = [xC yC zC ]
′, the area is |u×v|/2, where u = a−c, v = b−c,× represents

the cross product, and | • | represents the vector norm.

2.2.3 Volume as an areal quantity

Gray matter volume can be assessed using the partial volume effects of the gray
matter in a per-voxel fashion using volume-based representations of the brain,
such as in voxel-based morphometry (vbm Ashburner and Friston, 2000), or as the
amount of tissue present between the gray and white surfaces in surface-based
representations. Using the surface-based representation, software such as Free-
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Surfer up to version 5.3.0 compute the volume by first calculating the area at each
vertex as 1/3 of the sum of the areas of all faces of the white surface that have that
vertex in common, then multiplying that by the thickness at that vertex. Volume
is also an areal quantity, that requires mass-conservative interpolation methods.

2.2.4 Registration

Registration to a common coordinate system is necessary to allow comparisons
across subjects (Drury et al., 1996). The registration is performed by shifting vertex
positions along the surface of the sphere until there is a good alignment between
subject and template (target) spheres with respect to certain specific features, usu-
ally, but not necessarily, the cortical folding patterns. As the vertices move, the
areal quantities assigned to the corresponding faces are also moved along the sur-
face. The target for registration should be the less biased as possible in relation to
the population under study (Thompson and Toga, 2002).

A registrationmethod that produces a smooth, i.e. spatially differentiable, warp
function enables the smooth transfer of areal quantities. A possible way to ac-
complish this is by using registration methods that are diffeomorphic. A diffeo-
morphism is an invertible transformation that has the elegant property that it and
its inverse are both continuously differentiable (Christensen et al., 1996; Miller
et al., 1997), minimising the risk of vagaries that would be introduced by the non-
differentiability of the warp function.

Diffeomorphic methods are available for spherical meshes (Glaunès et al., 2004;
Yeo et al., 2010a; Robinson et al., 2014), and here we adopt the Spherical Demons
(sd) algorithm³ (Yeo et al., 2010a). Sd extends theDiffeomorphic Demons algorithm
(Vercauteren et al., 2009) to spherical surfaces. The Diffeomorphic Demons al-
gorithm is a diffeomorphic variant of the efficient, non-parametric Demons regis-
tration algorithm (Thirion, 1998). Sd exploits spherical vector spline interpolation
theory and efficiently approximates the regularization of the Demons objective
function via spherical iterative smooting.

Methods that are not diffeomorphic by construction (Fischl et al., 1999b; Auzias

³ Available at http://sites.google.com/site/yeoyeo02/software/sphericaldemonsrelease.
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et al., 2013), but in practice produce invertible and smooth warps could, in prin-
ciple, be used for registration for areal analyses. In the Evaluation section we
study the performance of different registration strategies as well as the impact of
the choice of the template.

2.2.5 Areal interpolation

After the registration, the correspondence between each face on the registered
sphere and each face from the native geometry is maintained, and the surface area
or other areal quantity under study can be transferred to a common grid, where
statistical comparisons between subjects can be performed. The common grid is a
mesh which vertices lie on the surface of a sphere. A geodesic sphere, which can be
constructed by iterative subdivision of the faces of a regular icosahedron, hasmany
advantages for this purpose, namely, ease of computation, edges of roughly similar
sizes and, if the resolution is fine enough, edge lengths that are much smaller than
the diameter of the sphere (see Section 2.2.7 for details). These two spheres, i.e.
the registered, irregular spherical mesh (source), and the common grid (target),
typically have different resolutions. The interpolation method must, nevertheless,
conserve the areal quantities, globally, regionally and locally. In other words, the
method has to be pycnophylactic⁴ (Tobler, 1979). This is accomplished by assigning,
to each face in the target sphere, the areal quantity of all overlapping faces from
the source sphere, weighted by the fraction of overlap between them (Figure 2.4).

More specifically, let QS
i represent the areal quantity on the i-th face of the

registered, source sphere S, i = 1, 2, . . . , I . This areal quantity can be directly
mapped back to the native geometry, and can be the area per face as measured
in the native geometry, or any other quantity of interest that is areal by nature.
Let the actual area of the same face on the source sphere be indicated by AS

i . The
quantities QS

i have to be transfered to a target sphere T , the common grid, which
face areas are given by AT

j for the j-th face, j = 1, 2, . . . , J , J ̸= I . Each target
face j overlaps with K faces of the source sphere, being these overlapping faces

⁴ From Greek pyknos = mass, density, and phylaxis = guard, protect, preserve, meaning that the
method has to be mass conservative.
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Overlap
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Figure 2.4: (a) Areal interpolation between a source and a target face uses the overlapping
area as a weighting factor. (b) For a given target face, each overlapping source face contrib-
utes an amount of areal quantity. This amount is determined by the proportion between
each overlapping area (represented in different colors) and the area of the respective source
face. (c) The interpolation is performed at multiple faces of the target surface, so that the
amount of areal quantity assigned to a given source face is conservatively redistributed
across one or more target faces.

indicated by indices k = 1, 2, . . . , K , and the area of each overlap indicated byAO
k .

The interpolated areal quantity to be assigned to the j-th target face is then given
by:

QT
j =

K∑
k=1

AO
k

AS
k

QS
k (2.1)

Similar interpolation schemes have been devised to solve problems in geo-
graphic information systems (gis) (Markoff and Shapiro, 1973; Goodchild and Lam,
1980; Flowerdew et al., 1991; Gregory et al., 2010). Surface models of the brain im-
pose at least one additionalchallenge, whichwe address in the implementation (see
Section 2.2.6). Differently than in other fields, where interpolation is performed
over geographic territories that are small compared to Earth and, therefore, can be
projected to a plane with acceptable areal distortion, here we have to interpolate
across the whole sphere. Although other conservative interpolation methods exist
for this purpose (Jones, 1999; Lauritzen and Nair, 2008; Ullrich et al., 2009), these
methods either use regular latitude-longitude grids, cubed-spheres, or require a
special treatment of points located above a certain latitude threshold to avoid sin-
gularities at the poles. These disadvantages may render these methods suboptimal
for direct use in brain imaging.
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2.2.6 Implementation

The areal interpolation for spheres is implemented in two parts. In the first, we
compute inside of which source faces the target vertices are located, creating a
lookup table to be used in the second part. This is the point-in-polygon prob-
lem found in vector graphics applications (Vince, 2005). Here we calculate the
area of each source face, AS

i , and the subsequent steps proceed iteratively for each
face in the source. The barycentric coordinates of each candidate vertex in rela-
tion to the current face i is computed; if their sum equals to unity, the point is
labelled as inside. However, to test if all vertices are inside every face would need-
lessly waste computational time. Moreover, since all points are on the surface of
a sphere, the vertices in the target are never expected to be coplanar to the source
triangular faces, so the test would always fail. The first problem is treated by test-
ing only the vertices located within a bounding box defined, still in the 3d space,
from the source face extreme coordinates. The second could naïvely be treated by
converting the 3d Cartesian coordinates to 2d spherical coordinates, which allow
a fast flattening of the sphere to the popular plate carrée cylindrical projection.
However, latitude is ill-defined at the poles in cylindrical projections. Moreover,
cylindrical projections introduce a specific type of deformation that is undesired
here: straight lines on the surface (geodesic lines) are distorted. The solution we
adopt is to rotate the Cartesian coordinate system so that the barycenter of the
current source face lies at the point [r 0 0]′, where r is the radius of the source
and target spheres. The barycenter is used for ease of calculation and for being al-
ways inside the triangle. After rotation, the current face and the nearby candidate
target vertices are projected to a plane using the azimuthal gnomonic projection
(Snyder, 1987), centered at the barycenter of the face. The point-in-polygon test
can then be applied successfully. The key advantage of the gnomonic projection
is that all geodesics project as straight lines, rather than loxodromic or other com-
plex paths as with other projections, which would cause many target vertices to
be incorrectly labelled. This projection can be obtained trivially after the rotation
of the 3d Cartesian coordinate system as ϕ = y/x and θ = z/x, where [x y z]′

are the 3d coordinates of the point being projected. A potential disadvantage of
the gnomonic projection is the remarkable areal distortion for regions distant from
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the center of the projection. Since in typical neuroimaging applications the source
and target spheres are composed of a tessellation of approximately 3× 106 faces,
AS

i ≪ 4πr2, and the distortion becomes negligible.

In the second part, the areal interpolation is performed, with the overlapping
areas being calculated and used to weigh the areal quantity under study. The iden-
tification of intersections between two sets of polygons is also a well studied prob-
lem in vector graphics (Guibas and Seidel, 1987; Chazelle et al., 1994), which solu-
tion depends on optimally finding crossings betweenmultiple line segments (Bent-
ley and Ottmann, 1979; Chazelle and Edelsbrunner, 1992; Balaban, 1995). Most of
the efficient available algorithms assume that the polygons are all coplanar; those
that work in the surface of a sphere use coordinates expressed in latitude and lon-
gitude and require special treatment of the polar regions. The solution we adopt
obviates these problems by first computing the area of each target face, AT

j ; the
subsequent steps are performed iteratively for each face in the target sphere, using
the azimuthal gnomonic projection, similarly as in the first part, but now centered
at the barycenter of the current target face at every iteration. The areal quantities
assigned to the faces in the target sphere are initialized as zero before the loop
begins. If all three vertices of the current target face j lie inside the same source
face k, as known from the lookup table produced in the first part, then to the cur-
rent face the areal quantity given by QT

j = QS
kA

T
j /A

S
k is assigned. Otherwise, the

source faces that surround the target are examined to find overlaps. This is done
by considering the edges of the current target face as vectors organised in counter-
clockwise orientation, and testing if the vertices of the candidate faces lie on the
left, right or if they coincide with the edge. If all the three vertices of any candid-
ate face are on the right of any edge, there is no overlap and the candidate face is
removed from further consideration. If all the three vertices are on the left of all
three edges, then the candidate source face is entirely inside the target, which has
then its areal quantity incremented as QT

j ← QT
j + QS

k . The remaining faces are
those that contain some vertices on the left and some on the right of the edges of
the current, target face. The intersections between these source and target edges
are computed and false intersections between edge extensions are ignored. A list
containing the vertices for each candidate source face that are inside the target face
(known for being on the left of the three target edges), the target vertices that are
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inside each of the source faces (known from the lookup table) and the coordinates
of the intersections between face edges, is used to compute the convex hull, using
the Quickhull algorithm (Barber et al., 1996). The convex hull delimits the over-
lapping region between the current target face j and the candidate source face k,
which area, AO

k , is used to increment the areal quantity assigned to the target face
as QT

j ← QT
j +QS

kA
O
k /A

S
k .

The algorithm runs in O(n) for n faces, as opposed to O(n2) that would be
obtained by naïve search. Nevertheless, the current implementation, that runs in
Octave (Eaton et al., 2015) or matlab (The MathWorks Inc., 2015), a dynamically
typed, interpreted language, requires about 24 hours to run in a computer with
2.66 GHz Intel Xeon processors.

2.2.7 Geodesic spheres and areal inequalities

The only required feature for the common grid used for the areal interpolation is
that all its vertices must lie on the surface of a sphere. The algorithm we present
in Section 2.2.6 requires further that all faces of the sphere are triangular and that
all edges of all faces are much smaller than the radius, so that areal distortion is
minimised when projecting to a plane.

A common grid that meet these demands is a sufficiently fine geodesic sphere.
There are different ways to construct such a sphere (Kenner, 1976). One method
is to subdivide each face of a regular polyhedron with triangular faces, such as the
icosahedron, into four new triangles. The new vertices are projected to the surface
of the (virtual) circumscribed sphere along its radius and the process is repeated
recursively a number of times (Lauchner et al., 1969). For the n-th iteration, the
number of faces is given by F = 4nF0, the number of vertices by V = 4n(V0−2)+
2, and the number of edges byE = 4nE0, whereF0, V0 andE0 are, respectively, the
number of faces, vertices and edges of the polyhedron with triangular faces used
for the initial subdivision. For the icosahedron, F0 = 20, V0 = 12 and E0 = 30

(Figure 2.5a). For the analyses in this manuscript, we used n = 7, producing
geodesic spheres with 327680 faces and 163842 vertices.

These faces, however, do not have identical edge lengths and areas (Kenner,
1976), even though the initial icosahedron was perfectly regular. This is import-
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Figure 2.5: (a) The common grid can be a geodesic sphere produced from recursive subdi-
vision of a regular icosahedron. At each iteration, the number of faces is quadruplied. (b)
After the first iteration, however, the faces no longer have regular sizes, with the largest
face being approximately 1.3 times larger than the smallest as n increases.

ant for areal interpolation, as larger faces on the target grid do overlap with more
faces from the source surfaces, absorbing larger amounts of areal quantities, pos-
sibly causing confusion if one attempts to color-encode the interpolated image
according to the actual areal quantities, in which case, geometric patterns such as
in Figure 2.5bwill become evident. Moreover, smoothing can cause quantities that
are arbitrarily large or small due to face sizes to be blurred into the neighbors. Both
potential problems can be addressed by multiplying the areal quantity at each face
j, after interpolation, by a constant given by 4πr2/(AT

j F ), whereAT
j is the area of

the same face of the geodesic sphere, F is the number of faces, and r is the radius
of the sphere.

2.2.8 Smoothing

Smoothing can be applied to alleviate residual discontinuities in the interpolated
data due to unfavorable geometric configurations between faces of source and tar-
get spheres. For the purpose of smoothing, facewise data can be represented either
by their barycenters, or converted to vertexwise (see Section 2.2.11 for a discussion
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on how to convert), and should take into account differences on face sizes, as lar-
ger faces will tend to absorb more areal quantities (see Section 2.2.7). Smoothing
can be applied using the moving weights method (Lombardi, 2002), defined as

Q̃T
n =

∑
j Q

T
j G(g(xn, xj))∑

j G(g(xn, xj))
(2.2)

where Q̃T
n is the smoothed areal quantity at the n-th face, QT

j is the areal quantity
assigned to each of the J faces of the same surface before smoothing, g(xn, xj) is
the scalar-valued distance along the surface between the barycenter xn of the cur-
rent face and the barycenter xj of another face, and G(g) is the Gaussian kernel.⁵

2.2.9 Conversion from facewise to vertexwise

Whenever it is necessary to perform analyses that include measurements taken at
each vertex (such as some areal quantity versus cortical thickness) or when only
software that can display vertexwise data is available (Section 2.2.11, it may be ne-
cessary to convert the areal quantities from facewise to vertexwise. The conversion
can be done by redistributing the quantities at each face to their three constitu-
ent vertices. The areal values assigned to the faces that meet at a given vertex are
summed, and divided by three, and reassigned to this vertex. Importantly, this pro-
cedure has to be done after the areal interpolation, since interpolation methods for
vertexwise data are not appropriate for areal quantities, and before the statistical
analysis, since the average of the results of the statistics of a test is not necessar-
ily the same as the statistic for the average of the original data. It should also be
observed that conversion from facewise to vertexwise data implies a loss of res-
olution to approximately half of the original and, therefore, should be performed
only if resolution is not a concern and there is no other way to analyse, visualize,
or present facewise data or results. The conversion does not change the underlying
distribution, provided that the resolution of the initial mesh is sufficiently fine.

⁵ As with other neuroimaging applications, smoothing after registration implies that the effective
filter width is not spatially constant in native space, neither is the same across subjects. Smooth-
ing on the sphere also contributes to different filter widths across space due to the deformation
during spherical transformation.
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2.2.10 Statistical analysis

After resampling to a common grid, the facewise data is ready for statistical ana-
lysis. The most straightforward method is to use the general linear model (glm).
The glm is based on a number of assumptions, including that the observed values
have a linear, additive structure, that the residuals of the model fit have the same
variance and are normally distributed. When these assumptions are not met, a
non-linear transformation can be applied, as long as the true, biological or physical
meaning that underlies the observed data is preserved. In the Evaluation section,
we show empirically that facewise cortical surface area is largely not normal. In-
stead, the distribution is skewed and can be better characterized as lognormal. A
generic framework that can accommodate arbitrary areal quantities with skewed
distributions is using a power transformation, such as the Box–Cox transformation
(Box and Cox, 1964), which addresses possible violations of these specific assump-
tions, allied with permutation methods for inference (Holmes et al., 1996; Nichols
and Hayasaka, 2003, see also Chapter 3) when the observations can be treated as
independent, such as in most between-subject analysis.

The application of a statistical test at each face allows the creation of a stat-
istical map and also introduces the multiple testing problem, which can also be
addressed using permutation methods. These methods are known to allow exact
significance values to be computed, even when distributional assumptions can-
not be guaranteed, and also to facilitate strong control over family-wise error rate
(fwer) if the distribution of the statistic under the null hypothesis is similar across
tests. If not similar, the result is still valid, yet conservative. An alternative is to
use a relatively assumption-free approach to address multiple testing, controlling
instead the false discovery rate (fdr) (Benjamini and Hochberg, 1995; Genovese
et al., 2002), which offers also weak control over fwer. Other approaches for in-
ference, such as the Random Field Theory (rft) for meshes (Worsley et al., 1999;
Hagler et al., 2006) and theThreshold-Free Cluster Enhancement (tfce) (Smith and
Nichols, 2009) have potential to be used.
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2.2.11 Presentation of results

To display results, facewise data can be projected from the common grid to the
template geometry, which helps to visually identify anatomical landmarks and
name structures. Projecting data from one surface to another is trivial as there
is a one-to-one mapping between faces of the grid and the template geometry.
The statistics and associated p-values can be encoded in colors, and a color scale
can be shown along with the surface model.

However, the presentation of facewise data has conceptual differences in com-
parison with the presentation vertexwise data. For vertexwise data, each vertex
cannot be directly colored, for being dimensionless. Instead, to display data per
vertex, typically each face has its color interpolated according to the colors of its
three defining vertices, forming a linear gradient that covers the whole face. For
facewise data there is no need to perform such interpolation of colors, since the
faces can be shown directly on the 3d space, each one in the uniform color that
represents the underlying data. The difference is shown in Figure 2.6.

Interpolation of colors for vertexwise data should not be confused with the
related, yet different concept of lightning and shading using interpolation. Both
vertexwise and facewise data can be shaded to produce more realistic images. In
Figure 2.6 we give an example of simple flat shading and shading based on linear
interpolation of the lightning at each vertex (Gouraud, 1971).

Currently available software allow the presentation of color-encoded vertex-
wise data on the surface of meshes. However, only very few software applications
can handle a large number of colors per 3d object, being one color per face. One
example is Blender (Blender Foundation, Amsterdam, The Netherlands), which we
used to produce the figures presented in this chapter. Another option, for instance,
is to use low-level mesh commands in matlab (The MathWorks Inc., 2015), such
as “patch”.

2.3 Evaluation

We illustrate themethod using data from the Genetics of Brain Structure and Func-
tion Study, gobs, a collaborative effort involving the Texas Biomedical Institute,
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Figure 2.6: Differences between presentation of facewise and vertexwise data can be ob-
served in this zoomed portion of the mesh representation of the cortex. Vertices are di-
mensionless and, to display vertexwise data, the faces have to be colored using linear
interpolation. This is not necessary for facewise data, which can be shown directly in the
uniform colors that represent the underlying data. In either case, the presentation can be
improved by using a shading model, such as Gouraud in this example. Although the ver-
texwise presentation may be visually more appealing, it contains only half the resolution
of the facewise image.
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the University of Texas Health Science Center at San Antonio (uthscsa) and the
Yale University School of Medicine. The participants are members of 42 families,
and total sample size, at the time of the selection for this study, is 868 subjects. We
randomly chose 84 subjects (9.2%), with the sparseness of the selection minimiz-
ing the possibility of drawing related individuals. The mean age of these subjects
was 45.1 years, standard deviation 13.9, range 18.2–77.5, with 33 males and 51
females. All participants provided written informed consent on forms approved
by each Institutional Review Board. The images were acquired using a Siemens
magnetom Trio 3 T system (Siemens ag, Erlangen, Germany) for 46 participants,
or a Siemens magnetom Trio/tim 3 T system for 38 participants. We used a T1-
weighted, mprage sequence with an adiabatic inversion contrast pulse with the
following scan parameters: te/ti/tr = 3.04/785/2100 ms, flip angle = 13◦, voxel
size (isotropic) = 0.8 mm. Each subject was scanned 7 (seven) times, consecutively,
using the same protocol, and a single image was obtained by linearly coregistering
these images and computing the average, allowing improvement over the signal-
to-noise ratio, reduction of motion artifacts (Kochunov et al., 2006), and ensuring
the generation of smooth, accurate meshes with no manual intervention. The im-
age analysis followed the steps described in the Methods section, with some vari-
ation to test different registration strategies.

2.3.1 Registration

To isolate and evaluate the effect of registration, we computed the area per face
after the spherical transformation⁶ and registered each subject brain hemisphere to
a common target using two different registration methods, the Spherical Demons
(Yeo et al., 2010a) and the FreeSurfer registration algorithm (Fischl et al., 1999b)⁷,
each with and without a study-specific template as the target, resulting in four
different variants. The study-specific targets for each of these methods were pro-
duced using the respective algorithms for registration, using all the 84 subjects

⁶ Note that here the area was computed in the sphere with the aim of evaluating the registra-
tion method. For analyses of areal quantities, these quantities should be defined in the native
geometry, as previously described.

⁷ The software versions used were fs 5.0.0 and sd 1.5.1.
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from the sample. The non-specific target was derived from an independent set of
brain images of 40 subjects, the details of which have been described elsewhere
(Desikan et al., 2006). Areal interpolation was used to resample the areal quantit-
ies to a common grid, a geodesic sphere produced by seven recursive subdivisions
of a regular icosahedron.

The average area per face across subjects was computed after registration and
interpolation to identify eventual systematic patterns of distortion caused bywarp-
ing. This can be understood by observing that, as the vertices are shifted along the
surface of the sphere, the faces that they define, and which carry areal quantities,
are also shifted and distorted. The registration, therefore, causes displacement of
areal quantities across the surface, whichmay accumulate on certain regions while
other become depleted. Ideally, there should be no net accumulation when many
subjects are considered and the target is unbiased with respect to the population
under study. If pockets of accumulated or depleted areal quantities are present,
this means that some regions are showing a tendency to systematically “receive”
more areal quantities than others, which “donate” quantities. The average amount
of area after the registration estimates this accumulation and, therefore, can be
used as a measure of a specific kind of bias in the registration process, in which
some regions consistently attract more vertices, resulting in these regions receiv-
ing more quantities. The result for this analysis is shown in Figure 2.7. Using
default settings, sd caused less areal displacement across the surface, with less
regional variation when compared to fs. The pattern was also more randomly dis-
tributed for sd, without spatial trends matching anatomical features, whereas fs
showed a structure more influenced by brain morphology. Using a study specific
template further helped to reduce areal shifts and biases. The subsequent analyses
we present are based on the sd registration with a study-specific template.

2.3.2 Distributional characterization

To evaluate the normality for the cortical area at the white surface of the nat-
ive geometry, we used the Shapiro–Wilk normality test (Shapiro and Wilk, 1965),
implemented with the approximations for samples larger than 50 as described by
Royston (1993). The test was applied after each hemisphere of the brain was re-
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Figure 2.7: A study-specific template (target for the registration) caused less systematic
accumulation of areal quantities across the brain when compared with a non-specific tem-
plate. Using default parameters, areal accumulation wa less pronounced and unrelated to
sulcal patterns using Spherical Demons in comparison with FreeSurfer registration. Gains
and losses refer to the area per face that would be expected for areal quantities being re-
distributed with no bias, i.e. the zero corresponds to the average total surface area of all
subjects, divided by the number of faces.
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gistered to a study-specific template using the Spherical Demons and interpolated
to the geodesic sphere using areal interpolation.

For the vast majority of the faces, the area of the white surface is not nor-
mally distributed (Figures 2.8–2.13). Instead, the lognormal distribution seems to
be more appropriate to describe the data in most parts of the brain, with the test
declaring a much larger number of faces as normally distributed after a simple
logarithmic transformation. A log-transformation is a particular case of the Box–
Cox transformation (Box and Cox, 1964). For a set of values y = {y1, y2, . . . , yn},
this transformation uses maximum-likelihood methods to seek a parameter λ that
produces a transformed set ỹ = {ỹ1, ỹ2, . . . , ỹn} that approximately conforms to a
normal distribution. The transformation is a piecewise function given by:

ỹ =


yλ − 1

λ
(λ ̸= 0)

ln y (λ = 0)
(2.3)

Not surprisingly, the Box–Cox transformation rendered the data more nor-
mally distributed than a simple log-transformation. However, an interesting as-
pect of this transformation is that the parameter λ is allowed to vary continu-
ously, and it approaches unity when the data is normally distributed, and zero if
lognormally distributed, serving, therefore, as a summary metric of how normally
or lognormally distributed the data is. Throughout most of the brain, λ is close to
zero, although with a relatively wide variation (mode =−0.057, mean =−0.099, sd
= 0.493 for the analysed dataset), indicating that, at the resolution used, the white
surface cortical area can be better characterized across the surface as a gradient
of skewed distributions, with the lognormal being the most common case. The
same was observed for facewise data smoothed in the sphere after interpolation
with fwhm = 10 mm (mode = −0.142, mean = −0.080, sd = 0.578).⁸ Maps for the
parameter λ are shown in Figure 2.14.

⁸ For scale comparison, the sphere has radius fixed and set as 100 mm, such that the Gaussian filter
has an hwhm (half width) = 1.59% of the geodesic distance between the barycenter of any face
and its antipode.
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Figure 2.8: The area of the cortical surface is not normally distributed (upper panels). In-
stead, it is lognormally distributed throughout most of the brain (middle panels). A Box–
Cox transformation can further improve normality (lower panels). The same pattern is
present without (left) or with (right) smoothing (fwhm = 10 mm). Although normality is
not an assumption for inference as proposed, it offers some advantages, as discussed in
the text.
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Figure 2.9: Distribution of the uncorrected p-values of the Shapiro–Wilk normality test.
For normally distributed data, 5% of these tests are always expected to be declared as not
normal with a significance level of α = 0.05. Without transformation or smoothing, near
80% are found as not normal. Logarithmic and Box–Cox transformations render the data
more normally distributed. Observe that the frequencies are shown in logscale. The dashed
line (blue) is at the frequency that would be observed for uniformly distributed p-values.
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Figure 2.10: Maps of the skewness of the areal data, before and after the Box–Cox trans-
formation, andwith andwithout smoothing. The distribution is positively skewed (lognor-
mal) throughout most of the brain, and the transformation successfully brings the data to
symmetry (normality). The histograms are shown in Figure 2.11.
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Figure 2.11: Histograms of the skewness of the areal data, before and after the Box–Cox
transformation, and with and without smoothing. The distribution is positively skewed
(lognormal) throughout most of the brain, and the transformation successfully brings the
data to symmetry (normality). Note that the frequencies are shown in log scale. The
corresponding maps are in Figure 2.10.
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Figure 2.12: Maps of the kurtosis of the areal data, before and after the Box–Cox trans-
formation, and with and without smoothing. The distribution is leptokurtic throughout
most of the brain, and the transformation renders the kurtosis closer to the same value as
for the normal distribution, i.e. closer to the value 3. The histograms are shown in Figure
2.13.
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Figure 2.13: Histograms of the kurtosis of the areal data, before and after the Box–Cox
transformation, and with and without smoothing. The distribution is leptokurtic through-
out most of the brain, and the transformation renders the kurtosis closer to the same value
as for the normal distribution, i.e. closer to the value 3. Note that the frequencies are shown
in log scale. The corresponding maps are in Figure 2.12.
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Figure 2.14: Distribution of the parameter λ of the Box–Cox transformation across the
brain: (a) histogram and (b) spatial map. When λ approaches zero, the distribution of the
underlying data is more lognormal.
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2.3.3 Comparison with expansion/contraction methods

A number of studies have analysed what has been called expansion or contraction
of the cortical surface when compared to a reference brain. Different studies adop-
ted different operational definitions for what these terms would be [e.g. compare
Joyner et al. (2009), Sun et al. (2009b), Hill et al. (2010)], and an unified approach
has not been defined. Notwithstanding, the key difference between these methods
and the proposed areal analysis is that, at the end of the processing pipeline, areal
interpolation ensures the preservation of the amount (mass) of quantities, whereas
these methods do not. Moreover, in the framework we present, a number of po-
tential problems that may arise along the pipeline are explicitly addressed. These
problems, along with the solutions we propose, are summarized in Table 2.1.

With a variety of expansion/contraction methods available, it is difficult to
identify the best to which areal analysis could be compared. Here we retessellate
the each subject brain in native space using the method described by Saad et al.
(2004). The expansion/contraction method was implemented using the following
steps: (1) From the native surface geometry, perform the spherical transformation;
(2) Perform the spherical registration to a standard brain; (3) Treat the coordinates
x, y and z of the vertices from the native geometry as three independent scalar
fields over the registed sphere, and interpolate these values to the common spher-
ical grid using barycentric interpolation⁹; (4) Use the interpolated coordinates, to-
gether with the same connectivity scheme between vertices as in the common grid,
to construct a new model of the brain in a subject-specific geometry (Figure 2.15);
(5) From this new model, compute the area per vertex and divide it by the area
per vertex of the homologous point in the template. Call this measurement expan-
sion/contraction; (6) Optionally, smooth this quantity.

⁹ The three scalar fields can also be treated as a single vector field and the barycentric interpolation
can be performed in a single step as xP

yP
zP

 =

 xA xB xC

yA yB yC
zA zB zC

 δA
δB
δC


where x, y, z represent the coordinates of the triangular face ABC and of the interpolated point
P , both in native geometry, and δ are the barycentric coordinates of P with respect to the same
face after the spherical transformation.
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Table 2.1: The proposed framework for areal analyses addresses a number of potential
problems that may arise along the processing pipeline.

Processing step Problem Solution

Measurements assigned to
vertices at the beginning
of the analysis.

Vertices do not hold or
convey the same spatial
information as the original
faces.

Analyse the faces directly.

Registration methods that
not necessarily produce
smooth and invertible
warps.

Discontinuities on
expansion or contraction
that are not present in the
actual brain.

Use diffeomorphic
registration methods.

Interpolation based on
points.

Areal quantities are not
preserved at any scale
(local, regional or global).

Use areal interpolation.

Use of a standard brain to
compute the same
measurement that is later
analysed.

Results are interpretable
only with respect to that
same reference brain.

Measure and analyse
absolute quantities, not
relative to some reference.

Statistical analysis based
on assumption of
normality.

The local surface area
follows a lognormal
distribution.

Apply a data
transformation. Use
non-parametric methods.

Original tessellation Modified tessellation

Figure 2.15: After barycentric interpolation of the coordinates in the surface of the sphere,
a new, subject-specific retessellated model is constructed. Areas can be computed directly
from the retessellated model and, once divided by the areas of the homologous vertices or
faces of the reference brain, constitute the measurement of expansion/contraction.
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For comparison with the expansion/contraction method, the original facewise
area was converted to vertexwise, therefore halving the spatial resolution of the
areal data (see Section 2.2.9). In this comparison, we addressed some of the prob-
lems presented in Table 2.1, namely, we registered using Spherical Demons, there-
fore ensuring smooth and invertible warps, and as target for registration, we used
the study-specific template that produced the best results in Figure 2.7. Further-
more, the measurements were taken at the white surface, rather than the middle
surface, as the last is more prone to be influenced by the cortical thickness. It is
unclear if, when applicable, these aspects were taken care of in all the different
studies that analysed some form of expansion/contraction.

After establishing an expansion/contraction procedure, there are still different
ways to compare with areal analysis. The comparison can be made across subjects
or across space, can be global or regional, and may or may not include smoothing.
In Figure 2.16 we show that the average amount of area at each vertex did not pro-
duce a similar spatial map as the average expansion/contraction. Although the two
methods follow remarkably different overall spatial patterns, when vertices across
space were pooled together to produce a global measurement, they produced very
similar results. Figure 2.17a shows the relationship between the global cortical
surface area, computed from the sum of the area at each vertex, and a global meas-
ure of expansion computed by averaging the expansion/contraction at each vertex
across space.¹⁰ The correlation was very high and helps to validate both methods
as a whole. Likewise, when each vertex was analysed separately, the correlation
across subjects was also very high, as shown in Figure 2.18, with an R2 above 0.9
throughout virtually the whole cortex. A spatial comparison of the average maps,
on the other hand, showed a very poor relationship between both approaches, as
shown in Figure 2.17b. When looking at each individual subject, rather than at the
average, the correlation across space was still relatively low, albeit not as poor: for
the 168 hemispheres analysed, we found an average linearR2 = 0.572, sd = 0.044

¹⁰ Note that an exact measurement of expansion/contraction relative to the template can be pro-
duced simply by dividing the global area in native geometry by the area of the template geometry.
In this case, the points in Figure 2.17a would lie in a perfectly straight line, and nothing could be
inferred about the relationship between regional variability on expansion estimates and global
measurements.
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Figure 2.16: Average area (left panels) or expansion/contraction (right panels) per ver-
tex, without (upper panels) and with smoothing (lower panels). Areal analyses and expan-
sion/contraction differ across space. Smoothing has little global impact.

without smoothing, and R2 = 0.491, sd = 0.065 after smoothing.
These results suggest that, if each vertex is analysed in isolation, analysis of

surface area and analysis of expansion/contraction tend to produce similar results.
This is the case, for instance, using mass univariate glm-based approaches. How-
ever, for analysis that involve spatial information or that combine information
across neighboring vertices, the results are expected to be rather dissimilar. The
difference stems from the different units of measurement: areal analyses produce
measurements in absolute units of area (e.g. mm2), whereas expansion/contraction
are relative to the a given reference. The result shown in Figure 2.18, left panel,
also demonstrate, indirectly, that areas measured in the retessellated brain with
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Figure 2.17: (a) The sum of the area per vertex correlates well with the average across
space of the expansion/contraction at each vertex (i.e. equivalent to a weighed sum con-
sidering each vertex as having the same initial area) for the 168 hemispheres analysed. For
the expansion/contraction, this is not the same as computing the ratio between the global
surface area in native geometry and of the template, in which case, the result would be a
perfectly straight line. The high correlation implies that the regional differences in gen-
eral compensate each other to produce a similar global effect. (b) The correlation between
average spatial maps across the 84 subjects, both hemispheres, is very poor between the
methods. [Note that, for (b), attempts to simultaneously plot all the > 300 thousand ver-
tices would not produce meaningful plots in a small space; for this reason only 5% of the
vertices were randomly selected for plotting. TheR2 were computed from all vertices and,
for both (a) and (b), the value corresponds to the goodness of a linear fit.]
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Figure 2.18: For each vertex, the linear relationship between areal analyses and expan-
sion/contraction is very high across subjects, being above R2 = 0.90 virtually across the
whole cortex.

the resolution used correlate reasonably well with the areas obtained using areal
interpolation, and so, have potential to be used as a fast approximation to areal in-
terpolation (Section 2.2.6). Conversely, expansion/contraction measurements can
be obtained after areal interpolation simply by dividing the area per face (or per
vertex) by its homologous in the reference brain.

2.3.4 Validation and stability

Measurements of surface area are valid as long as the surface reconstruction from
mr images produces accurate representations of the cortex. The suggested re-
construction method has been previously validated (Fischl and Dale, 2000), and
is widely used for cortical thickness measurements. Comparison between subjects
at the face level depends on good matching of homologies and the registration
method we suggest has, likewise, been previously validated (Yeo et al., 2010a; Klein
et al., 2010). As methods evolve, novel approaches for constructing surface repres-
entations of the cortex and for registration have potential to improve the overall
quality of areal analyses. The validity of areal measurements other than surface
area itself depend on each particular measurement technique.

To assess the stability across sessions and scanners, we compared mr images of
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Table 2.2: Stability and robustness of measurements after registration and interpolation
were assessed using three test images of the same subject. The measurements were similar
across tests, with similar variability across space and high spatial correlation.

Test A Test B Test C

Manufacturer and model Siemens magnetom
Trio 3 T

Siemens magnetom
Trio/tim 3 T

Siemens magnetom
Allegra 3 T

Sequence mprage mprage mprage
te/ti/tr (ms) 3.04/785/2100 2.83/766/2200 2.74/900/2500
Flip angle 13◦ 13◦ 8◦
Voxel size (mm) 0.8× 0.8× 0.8 0.8× 0.8× 0.8 1.0× 1.0× 1.0
Number of acquisitions 14 7 1
Scan date March 2008 March 2008 April 2009
Cortical surface area (mm2) 176,996 177,098 180,949

Not smoothed
Average area per face (mm2) 0.2937 0.2939 0.3003
Standard deviation 0.0938 0.0910 0.0962
Correlation with Test A — 0.8218 0.7589
Correlation with Test B 0.8218 — 0.7863
Correlation with Test C 0.7589 0.7863 —

Smoothed (fwhm = 10 mm)
Average area per face (mm2) 0.2935 0.2936 0.3000
Standard deviation 0.0746 0.0712 0.0748
Correlation with Test A — 0.9509 0.9074
Correlation with Test B 0.9509 — 0.9353
Correlation with Test C 0.9047 0.9353 —

the same subject acquired in three different sessions collected within a 1 year inter-
val. The imaging protocol varied in terms of acquisition parameters, as well as the
number of images used for averaging and improvements on signal and contrast-
to-noise ratio. The details are summarized in Table 2.2. The estimated surface area
produced by summing the facewise areas over the cortex after interpolation was
very similar across tests, with the largest difference being 8.2% between Tests a
and c (see Table 2.2), with or without smoothing. The mean and standard devi-
ation for facewise areas were virtually identical across tests, again regardless of
smoothing. The pairwise Pearson correlation between the tests for the facewise
data after registration and interpolation was above 0.80 without smoothing, and
above 0.90 after smoothing with fwhm = 10 mm, showing that the procedure is
robust at the face level, even under different scanning conditions and degrees of
smoothing.
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2.4 Discussion

2.4.1 Registration

To be valid, facewise analyses rely on the assumption that microscopic structures
can be localized using as reference the features that are identifiable with mri and
which drive the registration. Features with such localizing power are important
because they help to ensure good overlap of homologous areas between subjects.
Despite an implicit assumption already present in most imaging studies, only re-
cently it has been demonstrated valid for some cytoarchitetonic areas when the
references are the cortical folding patterns, even though for non-primary regions,
the mismatch may still be substantial (Fischl et al., 2008, 2009; Hinds et al., 2008,
2009; Da Costa et al., 2011). Other features, some microscopic and detectable only
under ultra-high field strengths (Augustinack et al., 2005; Bridge and Clare, 2006;
Duyn et al., 2007; Kim et al., 2009), have the potential to be used as the reference
as long as they are demonstrated to be markers of histologically or functionally
defined areas, possibly replacing folding patterns altogether, or used to provide
ancillary information. Myeloarchitectural features may be particularly useful for
this application, for being resposible for most of the contrast observed with mri
(Geyer et al., 2011). Likewise, areal analyses can be conducted after registration
based on features derived from functional mri (Sabuncu et al., 2010).

Good matching of homologies, however, depends not only on the features used
to guide the registration, but on the registration method itself. For facewise areal
analyses, invertibility is necessary to prevent faces from being folded over oth-
ers. In addition, methods that produce smooth warps are necessary to ensure that
areal quantities are transferred smoothly, without abrupt variations. Such abrupt
variations would only be acceptable if matching perfectly with areas where struc-
ture and/or function also changes abruptly. A spatial transformation that allows
such perfect matching, however, cannot be obtained easily in practice, since these
borders usually cannot be observed with current, conventional mri methods, and
importantly, since many of the differences between regions are subtle and the
transitions are gradual. However, invertibility and smoothness, as guaranteed by
diffeomorphic methods, albeit important, may not suffice. Our results show that
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even methods that produce smooth varying warps can differ substantially with
respect to how the areal quantities are shifted across the surface. It is possible
that performance differences between these methods might be due to choices on
regularization strategies and associated parameters (Fischl et al., 1999b; Yeo et al.,
2010a), instigating further reseach on selections that may produce the most accur-
ate results (Yeo et al., 2010b). Our experiments also demonstrate that the choice of
the target used for registration affects the distortion in areal measurements.

2.4.2 Areal interpolation

Areal interpolation allows direct analysis of areal quantities in absolute values, in-
cluding the surface area itself. This is because it is the areal quantity proper that
is conservatively transfered between grids. Therefore, there is no need to apply
corrections due to stretches or shrinkages, such as using the Jacobian of the trans-
formation (Good et al., 2001), nor due to the choice of the parametrizable surface
(Thompson and Toga, 1999). Moreover, the results are interpretable directly with
regard to the actual amount of tissue or other measurement under study, rather
than relative to concepts as expansion/contraction, which are always relative to a
given reference, and can create difficulties in interpretation and comparison across
studies, either due to different definitions adopted by different authors, or due to
the the need of a reference brain. Notwithstanding, after areal interpolation, it
continues to be possible to divide the areas by the areas of the homologous faces
or vertices of a reference brain, and so, obtain an expansion/contraction measure-
ment. Moreover, areal quantities that are not area itself can also be divided by the
area of each face or vertex in native geometry, thus converting these quantities to
densities if necessary.

It should be emphasized that, as with other interpolation strategies, areal inter-
polation is not perfectly reversible, i.e. once the cortical area of a subject is trans-
ferred to a different grid, remapping back to the subject surface will not produce
locally identical results, although the global areal quantity is always conserved.
This is because within each face, the areal quantity is implicitly assumed to be ho-
mogeneously distributed. This only becomes a problem if low resolution meshes
are used and if several back-and-forth iterations are performed.
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2.4.3 Statistical analysis of areal quantities

There are a number of reasons that go beyond purely methodological considera-
tions to justify the transformation of the data before statistical analysis. Meas-
urements related to biological morphology, such as lengths, areas, volumes or
weights, are well known to follow non-normal distributions. If the diameter of
a structure, for instance, is normally distributed, inevitably both its cross section
and its surface area follow skewed distributions, whereas its volume follows an
even more skewed (Kapteyn and van Uven, 1916; Gaddum, 1945). All these related
measurements cannot be normally distributed simultaneously. The skewness is
higher when the variability is relatively large in comparison to the measure of
central tendency that best describes the data, such as the arithmetic or the geo-
metric mean. If the non-normality is not considered, statistical models are likely
to produce inaccurate results. In this scenario, a power transformation, such as the
Box–Cox transformation, helps to identify subjacent, possibly causative, normally
distributed effects.

The lognormal distribution, more specifically, is known to arise in a variety
of biological processes. Of particular interest is the autocatalytic growth of tissue
over time. The number of cells present on a tissue that grows in an unrestricted
way can be given by the familiar formula N = N0e

ct, where N0 is the initial
number of cells, and t is the amount of time in which the cell grows under the
circumstances represented by the constant c, a factor that incorporates a variety of
influences, such as genetic and environmental. N will be lognormally distributed if
either c or t are normally distributed (Koch, 1966; Limpert et al., 2001). The finding
that the facewise cortical surface area follows mostly lognormal distributions may
suggest that the method may capture these biological effects. Such interpretation
can only subsist under the tenets of accurate and smooth registration.

From a statistical perspective, permutation methods do not rely on normality,
rendering them appropriate in a variety of situations in which this assumption is
not tenable. Nevertheless, the data should, still, undergo a transformation. As
discussed above, the reason is not merely to conform to normality, although that
comes as a bonus, but also to ensure that underlying biological effects, either mul-
tiplicative or proportionally dependent upon an initial value, can be treated as
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additive in a linear model (Christensen, 2002). Areal quantities that are not the
cortical surface area itself can, notwithstanding, be distributed differently, and the
framework for statistical analysis outlined in the Methods section appears gen-
eric enough to accomodate a variety cases. The Box–Cox transformation has yet
another advantage when used in combination with permutation methods under
multiple testing conditions: the more stable variance after the transformation al-
lows the distribution of the statistic under null hypothesis to become more similar
across tests, allowing fwer to be controlled at a level closer to its nominal value
using the distribution of the maximum statistic.

2.4.4 Box–Cox and log-normality

An interesting aspect related to the Box–Cox transformation is that here it was
used as a metric to quantify how normal or log-normal the data are. This has clear
applications in biology. Tissue growth that depends on cellular multiplication is
exponential, with a constant factor that is often normally distributed, resulting in
tissue size that is log-normally distributed (for a discussion, see McAlister, 1879;
Koch, 1966, 1969). Measurements of the final tissue size in different individuals,
however, does not perfectly conform to the log-normal due to external influences
that may hinder tissue growth. Moreover, it is not always possible to measure the
final amount of tissue that is the product of a single lineage of self-multiplicative
cells. The combination of different cell lineages, each with their own growth rate,
as well as external influences, tend to produce a distribution that is more normally
(Gaussian) distributed. This appears to be the case of the cerebral cortex, with a
distribution gradient between these two extremes of normality and log-normality.
Estimating the parameter λ allows one to estimate also how closer to normal or
log-normal certain measurements are. If λ ≈ 0, the original data tend to be log-
normally distributed, whereas if λ ≈ +1, the data can be considered approximately
more normally distributed.

2.4.5 Further developments and potential applications

Facewise analyses offer the possibility of studying surface area at a much finer
scale than previously. This is a feature of interest in many research fields across
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the neurosciences, as well as in medicine. Although the same applies to vertex-
wise cortical thickness, thickness and area provide different and complementary
insights into processes underlying the development of the brain and disorders (Vo-
ets et al., 2008; Winkler et al., 2010; Sanabria-Diaz et al., 2010).

Provided that the neurons in the cortex retain largely their same relative posi-
tions as the progenitor cells in the embryo (Rakic, 1988, 2009; Pierani and Wassef,
2009; Clowry et al., 2010), facewise comparison of surface area allows one to hy-
pothesize about ontogenetic processes to the extent that they can be observed and
localized with mri, even long after the end of phases of massive tangential cellular
proliferation. Until now, this kind of study could not be performed, either due to
lack of methods to analyse cortical surface area without the constrains imposed by
regions of interest, or due to inherent limitations of methods based on expansion
or contraction.

The study of local cortical surface area offers, moreover, new possibilities for
connectivity analyses, as the need for parcellations based onmacroscopic anatomy
is obviated. Indeed, the results of connectivity analyses are known to be influenced
by the choice of the parcellation that define nodes of putative neuronal networks
(Butts, 2009; Rubinov and Sporns, 2010). Notwithstanding, if a given set of regions
is derived from a different method (Beckmann et al., 2009; Nelson et al., 2010),
these can be directly associated with their corresponding surface-based areas or
areal quantities by means of areal interpolation.

Another potential application is for genetic analyses. Given that cortical sur-
face area and thickness are both heritable, yet genetically not correlated (Panizzon
et al., 2009; Winkler et al., 2010), these traits, separately, can be used in a frame-
work similar to voxelwise genome-wide association studies (vgwas) (Stein et al.,
2010). Identification of genes that influence surface area have potential to elucidate
a myriad of developmental, neurologic and psychiatric disorders.

2.5 Chapter conclusion

We presented an interpolation method for between-subject analyses of cortical
surface area. The method is also suitable for other quantities that are areal by
nature and which require mass conservation (pycnophylactic property) during in-
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terpolation and analysis. We demonstrated that, when the quantity under study is
surface area itself, the distribution of the data does not follow a normal distribu-
tion, being instead better characterized as lognormal, and proposed a framework
for statistical analysis and inference.



Chapter 3

Permutation inference

3.1 Introduction

The field of neuroimaging has continuously expanded to encompass an ever grow-
ing variety of experimental methods. From the early experiments using positron
emission tomography (pet) and functional magnetic resonance imaging (fmri), it
is now often of interest to verify hypotheses using information obtained from, e.g.
tensor-based morphometry (tbm), diffusion tensor imaging (dti), cortical thick-
ness and surface area, cerebral perfusion, as well as many others and variations
and combinations of these. All these different modalities produce images that have
different physical and biological properties, as well as different information con-
tent. Despite this variety, most of the strategies for statistical analysis constitute
linear models, and can be formulated within the general linear model (glm). The
glm is a simple, yet flexible framework of which many different types of analysis
are particular cases (Scheffé, 1959; Searle, 1971; Christensen, 2002). The common
strategy is to construct a plausible explanatory model for the observed data, es-
timate the parameters of this model, and compute a suitable statistic for testing
of hypotheses on some or all of these parameters. The rejection or acceptance of
a given hypothesis depends on the probablility of finding, due to chance alone, a
statistic at least as high as the observed. Typically, but not necessarily, the hypo-
thesis being tested is that one or more parameters are zero, being referred to as
the null hypothesis.

If the parameters of the distribution of the statistic under the hypothesis being

67
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tested, be it the null or not, is known, such probability can be ascertained using
this distribution. In many particular cases, a mathematical expression describes
the behaviour of the statistic as a function of these parameters, and this analytical
representation of the distribution can be used for hypotheses testing as long as
the data satisfies a certain set of requirements under which the distribution arises
and can be recovered asymptotically. A conclusion based on these parametric tests

will only be sound as long as the observed data possess these assumed stochastic
properties, even if other methodological aspects are valid. Strategies that may be
used when these assumptions are not met include, among others, the use of non-
parametric tests.

Permutation tests are a class of non-parametric methods. They were pioneered
by Fisher (1935a) and Pitman (1937a,b, 1938). Fisher demonstrated that the null hy-
pothesis could be tested simply by observing, after permuting observations, how
often the difference between means would exceed the difference found without
permutation, and that for such test, no normality would be required. Pitman
provided the first complete mathematical framework for permutation methods, al-
though similar ideas, based on actually repeating an experiment many times with
the experimental conditions being permuted, can be found even earlier (Peirce
and Jastrow, 1884). Important theoretical and practical advances have been on-
going in the past decades (Pearson, 1937; Scheffé, 1943; Lehmann and Stein, 1949;
Kempthorne, 1955; Edgington, 1995; Good, 2002, 2005;Westfall and Troendle, 2008;
Pesarin and Salmaso, 2010a), and usage only became practical after the availability
sufficient computing power (Efron, 1979).

In neuroimaging, permutation methods were first proposed by Blair and Kar-
niski (1994) for electroencephalography, and later byHolmes et al. (1996) for positron-
emission tomography, with the objective of allowing inferences while taking into
account the multiplicity of tests. These early permutation approaches already ac-
counted for the spatial smoothness of the image data. Arndt et al. (1996) proposed
a permutation scheme for testing the omnibus hypothesis of whether two sets of
images would differ. Structural magnetic resonance imaging (mri) data were con-
sidered by Bullmore et al. (1999), who developed methods for omnibus, voxel and
cluster-mass inference, controlling the expected number of false positives.

Single subject experiments from functional magnetic resonance imaging (fmri)
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presents a challenge to permutation methods, as serial autocorrelation in the time
series violates the fundamental assumption needed for permutation, that of ex-
changeability (discussed below). Even though some early work did not fully ac-
count for autocorrelation (Belmonte and Yurgelun-Todd, 2001), other methods that
accommodated the temporally correlated nature of the fmri signal and noise were
developed (Bullmore et al., 1996, 2001; Locascio et al., 1997; Brammer et al., 1997;
Breakspear et al., 2004; Laird et al., 2004). Some of these methods use a single ref-
erence distribution constructed by pooling permutation statistics over space from
a small number of random permutations, under the (untenable and often invalid)
assumption of spatial homogeneity of distributions.

Nichols and Holmes (2002) provided a practical description of permutation
methods for pet and multi-subject fmri studies, but noted the challenges posed
by nuisance variables. Permutation inference is grounded on exchangeability un-
der the null hypothesis, that data can be permuted (exchanged) without affecting
its joint distribution. However, if a nuisance effect is present in the model, the data
cannot be considered exchangeable even under the null hypothesis. For example, if
one wanted to test for sex differences while controlling for the linear effect of age,
the null hypothesis is “male mean equals female mean”, while allowing age differ-
ences; the problem is that, even when there is no sex effect, a possible age effect
may be present, e.g., younger and older individuals being different, then the data
are not directly exchangeable under this null hypothesis. Another case where this
arises is in factorial experiments, where one factor is to be tested in the presence of
another, or where their interaction is to be tested in the presence of main effects
of either or both. Although permutation strategies for factorial experiments in
neuroimaging were considered by Suckling and Bullmore (2004), a more complete
general framework to account for nuisance variables is still missing.

In this chapter we review the statistical literature for the glm with arbitrary
designs and contrasts, emphasizing useful aspects, yet that have not been con-
sidered for neuroimaging, unify this diverse set of results into a single permutation
strategy and a single generalised statistic, present implementation strategies for
efficient computation and provide a complete algorithm, conduct detailed simula-
tions and evaluations in various settings, and identify certain methods that gener-
ally outperforms others. We will not consider intrasubject (timeseries) fmri data,
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focusing instead on modelling data with independent observations or sets of re-
peated observations from independent subjects. We give examples of applications
to common designs and discuss how these methods, originally intended for in-
dependent data, can in special cases be extended to repeated measurements and
longitudinal designs.

3.2 Theory

3.2.1 Model and notation

At each spatial point (voxel, vertex or face) of an image representation of the brain,
a general linear model (Searle, 1971) can be formulated and expressed as:

Y = Mψ + ϵ (3.1)

where Y is theN×1 vector of observed data¹,M is the full-rankN×r design mat-
rix that includes all effects of interest as well as all modelled nuisance effects, ψ is
the r × 1 vector of r regression coefficients, and ϵ is the N × 1 vector of random
errors. In permutation tests, the errors are not assumed to follow a normal distri-
bution, although some distributional assumptions are needed, as detailed below.
Estimates for the regression coefficients can be computed as ψ̂ = M+Y, where the
superscript (+) denotes the Moore–Penrose pseudo-inverse. Our interest is to test
the null hypothesis that an arbitrary combination (contrast) of some or all of these
parameters is equal to zero, i.e.,H0 : C′ψ = 0, where C is a r× s full-rank matrix
of s contrasts, 1 ⩽ s ⩽ r.

For the discussion that follows, it is useful to consider a transformation of the
model in Equation 3.1 into a partitioned one:

Y = Xβ + Zγ + ϵ (3.2)

where X is the matrix with regressors of interest, Z is the matrix with nuisance re-

¹ While we focus on univariate data, the general principles presented can be applied tomultivariate
linear models.
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gressors, and β and γ are respectively the vectors of regression coefficients. Even
though such partitioning is not unique, it can be defined in terms of the contrast
C in a way that inference on β is equivalent to inference on C′ψ, as described in
Section 3.2.2.

As the models expressed in Equations 3.1 and 3.2 are equivalent, their residuals
are the same and can be obtained as ϵ̂ = RMY, where RM = I−HM is the residual-
forming matrix, HM = MM+ is the projection (“hat”) matrix, and I is the N × N

identity matrix. The residuals due to the nuisance alone are ϵ̂Z = RZY, where
RZ = I − HZ, and HZ = ZZ+. For permutation methods, an important detail
of the linear model is the non-independence of residuals, even when errors ϵ are
independent and have constant variance, a fact that contributes to render these
methods approximately exact. For example, in that setting E (Var(ϵ̂Z)) = RZ ̸= I.
The commonly used F statistic can be computed as (Christensen, 2002):

F =
ψ̂

′
C (C′(M′M)−1C)−1 C′ψ̂

rank (C)

/
ϵ̂′ϵ̂

N − rank (M)

=
β̂

′
(X′X) β̂

rank (C)

/
ϵ̂′ϵ̂

n− rank (X)− rank (Z)

(3.3)

When rank(C) = 1, β̂ is a scalar and the Student’s t statistic can be expressed as
a function of F as t = sign(β̂)

√
F .

Choice of the statistic In non-parametric settings we are not constrained to the
F or t statistics and, in principle, any statistic where large values reflect evidence
against the null hypothesis could be used. This includes regression coefficients
or descriptive statistics, such as differences between medians, trimmed means or
ranks of observations (Ernst, 2004). However, the statistic should be chosen such
that it does not depend on the scale ofmeasurement or on any unknown parameter.
The regression coefficients, for instance, whose variance depends both on the error
variance and on the colinearity of that regressor with the others, are not in prac-
tice a good choice, as certain permutation schemes alter the colinearity among
regressors (Kennedy and Cade, 1996). Specifically with respect to brain imaging,
the correction for multiple testing (discussed later) requires that the statistic has a
distribution that is spatially homogeneous, something that regression coefficients
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cannot provide. In parametric settings, statistics that are independent of any un-
known parameters are called pivotal statistics. Statistics that are pivotal or asymp-
totically pivotal are appropriate and facilitate the equivalence of the tests across the
brain, and their advantages are well established for related non-parametric meth-
ods (Hall and Wilson, 1991; Westfall and Young, 1993). Examples of such pivotal
statistics include the Student’s t, the F ratio, as well as most other statistics used
to construct confidence intervals and to compute p-values in parametric tests. We
will return to the matter of pivotality when discussing exchangeability blocks, and
the choice of an appropriate statistic for these cases.

p-values Regardless of the choice of the test statistic, p-values offer a common
measure of evidence against the null hypothesis. For a certain test statistic T ,
which can be any of those discussed above, and a particular observed value T0 of
this statistic after the experiment has been conducted, the p-value is the probabil-
ity of observing, by chance, a test statistic equal or larger than the one computed
with the observed values, i.e., p-value = P (T ⩾ T0|H0). Although here we only
consider one-sided tests, where evidence against H0 corresponds to larger val-
ues of T0, two-sided or negative-valued tests and their p-values can be similarly
defined. In parametric settings, under a number of assumptions, the p-values can
be obtained by referring to the theoretical distribution of the chosen statistic (such
as the F distribution), either through a known formula, or using tabulated values.
In non-parametric settings, these assumptions are avoided. Instead, the data are
randomly shuffled, many times, in a manner consistent with the null hypothesis.
The model is fitted repeatedly once for every shuffle, and for each fit a new real-
isation of the statistic, T ∗

j , is computed, being j a permutation index. An empirical
distribution of T ∗ under the null hypothesis is constructed, and from this null dis-
tribution a p-value is computed as:

1

J

J∑
j=1

I(T ∗
j ⩾ T0) (3.4)

where J is the number of shufflings performed, and I(·) is the indicator function.
From this it can be seen that the non-parametric p-values are discrete, with each
possible p-value being a multiple of 1/J . The permutation distribution should
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include the observed statistic without permutation (Edgington, 1969; Phipson and
Smyth, 2010), and thus the smallest possible p-value is 1/J , not zero. Even though
such p-value is biased towards conservativeness (Pesarin and Salmaso, 2010a), it is
the value that should be used in scientific research.

3.2.2 Model partitioning

The permutation methods discussed in this chapter require that the design matrix
M is partitioned into effects of interest and nuisance effects. Such partitioning
is not unique, and schemes can be as simple as separating apart the columns of
M as [X Z], with ψ = [β′ γ ′]

′ (Guttman, 1982). More involved strategies can,
however, be devised to obtain some practical benefits. One such partitioning is to
define X = MDC (C′DC)−1 and Z = MDCv (C′

vDCv)
−1, where D = (M′M)−1,

Cv = Cu − C(C′DC)−1C′DCu, and Cu has r − rank (C) columns that span the
null space of C, such that [C Cu] is a r × r invertible, full-rank matrix (Beckmann
et al., 2001; Smith et al., 2007). This partitioning has a number of features: β̂ =

C′ψ̂, Ĉov(β̂) = C′Ĉov(ψ̂)C, i.e., estimates and variances of β for inference on the
partitioned model correspond exactly to the same inference on the original model,
X is orthogonal to Z, and span(X)∪span(Z) = span(M), i.e., the partitionedmodel
spans the same space as the original. This is the partitioning strategy used in this
chapter, and used in the randomise algorithm.

Another useful partitioning scheme, derived by Ridgway (2009), defines X =

M(C+)′ and Z = M − MCC+. As with the previous strategy, the parameters of
interest in the partitioned model are equal to the contrast of the original para-
meters. A full column rank nuisance partition can be obtained from the singular
value decomposition (svd) of Z, which will also provide orthonormal columns for
the nuisance partition. Orthogonality between regressors of interest and nuisance
can be obtained by redefining the regressors of interest as RZX.

3.2.3 Permutations and exchangeability

Perhaps the most important aspect of permutation tests is the manner in which
data are shuffled under the null hypothesis. It is the null hypothesis, together with
assumptions about exchangeability, that determines the permutation strategy. Let
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the j-th permutation be expressed by Pj , a N × N permutation matrix, a matrix
that has all elements being either 0 or 1, each row and column having exactly one
1 (Figure 3.1a). Pre-multiplication of a matrix by Pj permutes its rows. We de-
note P = {Pj} the set of all permutation matrices under consideration, indexed
by the subscript j. We similarly define a sign flipping matrix Sj , a N × N di-
agonal matrix whose non-zero elements consist only of +1 or −1 (Figure 3.1b).
Pre-multiplication of a matrix by Sj implements a set of sign flips for each row.
Likewise, S = {Sj} denotes the set of all sign flipping matrices under consider-
ation. We consider also both schemes together, where Bj = Pj′Sj′′ implements
sign flips followed by permutation; the set of all possible such transformations is
denoted as B = {Bj}. Throughout the chapter, we use generic terms as shuffling

or rearrangement whenever the distinction between permutation, sign flipping or
combined permutation with sign flipping is not pertinent. Finally, let β̂∗

j and T ∗
j ,

respectively, be the estimated regression coefficients and the computed statistic
for the shuffling j.

The essential assumption of permutation methods is that, for a given set of
variables, their joint probability distribution does not change if the observations are

rearranged. This can be expressed in terms of exchangeable errors or independ-
ent and symmetric errors, each of these weakening different assumptions when
compared to parametric methods.

Exchangeable errors (ee) is the traditional permutation requirement (Good, 2005).
The formal statement is that, for any permutation Pj ∈ P ,

ϵ
d
= Pjϵ (3.5)

where the symbol d
= denotes equality of distributions. In other words, the errors

are considered exchangeable if their joint distribution is invariant with respect to
permutation. Exchangeability is similar to, yet more general than, independence,
as exchangeable errors can have all-equal and homogeneous dependence. Relative
to the common parametric assumptions of independent, normally and identically
distributed (iid) errors, ee relaxes two aspects. First, normality is no longer as-
sumed, although identical distributions are required. Second, the independence
assumption is weakened slightly to allow exchangeability when the observations
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Figure 3.1: Examples of a permutation matrix (a), of a sign flipping matrix (b), and of a
matrix that does permutation and sign flipping (c). Pre-multiplication by a permutation
matrix shuffles the order of the data, whereas by a sign flipping matrix changes the sign
of a random subset of datapoints.
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are not independent, but their joint distribution is maintained after permutation.
While exchangeability is a general condition that applies to any distribution, the
multivariate normal distribution is indeed exchangeable if the marginal distribu-
tions are uncorrelated, or if the off-diagonal elements of the covariance matrix are
identical to each other (not necessarily equal to zero).²

Independent and symmetric errors (ise) can be considered for measurements
that arise, for instance, from differences between two groups if the variances are
not assumed to be the same. The formal statement for permutation under ise is
that for any sign flipping matrix Sj ∈ S ,

ϵ
d
= Sjϵ (3.6)

that is, the joint distribution of the error terms is invariant with respect to sign
flipping. Relative to the parametric assumptions of independent, normally and
identically distributed errors, ise relaxes normality, although symmetry of distri-
butions is required. Independence is also required to allow sign flipping of one
observation without perturbing others.

Although the ee does not require symmetry for the distribution of the error
terms, it requires that the variances and covariances of the error terms are all equal,
or have a structure that is compatible with the definition of exchangebility blocks
(discussed below). While the ise assumption has yet more stringent requirements,
if both ee and ise are plausible and available for a given model, permutations and
sign flippings can be performed together, increasing the number of possible re-
arrangements, a feature particularly useful for studies with small sample sizes. The
formal statement for shuffling under both ee and ise is that, as with the previous
cases, for any matrix Bj ∈ B,

ϵ
d
= Bjϵ (3.7)

that is, the joint distribution of the error terms remains unchanged under both
permutation and sign flipping.

² In parametric settings, such dependence structure is often referred to as compound symmetry.
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There are yet other important aspects related to exchangeability. The exper-
imental design may dictate blocks of observations that are jointly exchangeable,
allowing data to be permuted within block or, alternatively, that the blocks may
themselves be exchangeable as a whole. This is the case, for instance, for designs
that involve multiple observations from each subject. While permutation methods
generally do not easily deal with non-independent data, the definition of these ex-
changeability blocks (eb) allows these special cases of well structured dependence
to be accommodated. While eb determine how the data shufflings are performed,
they should not be confused with variance groups (vg), i.e., groups of observations
that are known or assumed to have similar variances, which can be pooled for es-
timation and computation of the statistic. Variance groups need to be compatible
with, yet not necessarily identical to, the exchangeability blocks, as discussed in
Section 3.2.3.2. A summary of the properties discussed this far and some benefits
of permutation methods are shown in Table 3.1.

3.2.3.1 Unrestricted exchangeability

In the absence of nuisance variables, the model reduces to Y = Xβ+ ϵ, and under
the null hypothesis H0 : β = 0 the data are pure error, Y = ϵ. Thus the ee or
ise assumptions on the error (presented above) justify freely permuting or sign
flipping the data underH0. It is equivalent, however, to alter the design instead of
the data. For example, for a nuisance-free design,

PY = Xβ + ϵ ⇐⇒ Y = P′Xβ + P′ϵ (3.8)

since permutation matrices P are orthogonal; the same holds for sign flipping
matrices S. This is an important computational consideration as altering the design
is much less burdensome than altering the image data. Also note that the errors ϵ
are not observed and thus never directly altered; going forward we will suppress
any notation indicating permutation or sign flipping of the errors.

In the presence of nuisance variables (Equation 3.2), however, the problem is
more complex. If the nuisance coefficients γ were somehow known, an exact per-
mutation test would be available:
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Y− Zγ = PXβ + ϵ. (3.9)

The perfectly adjusted data Y−Zγ are then pure error underH0 and inference
could proceed as above. In practice, the nuisance cofficients have to be estimated
and the adjusted data will not behave as ϵ. For example, the obvious solution
is to use the nuisance-only residuals ϵ̂Z as the adjusted data. However, as noted
above, residuals induce dependence and any ee or ise assumptions on ϵ will not
be conveyed to ϵ̂Z.

A number of approaches have been proposed to produce approximate p-values
in these cases (Draper and Stoneman, 1966; Beaton, 1978; Still and White, 1981;
Brown and Maritz, 1982; Levin and Robbins, 1983; Freedman and Lane, 1983; Oja,
1987; Gail et al., 1988;Welch, 1990; ter Braak, 1992; Kennedy, 1995; Edgington, 1995;
Huh and Jhun, 2001; Jung et al., 2006; Manly, 2007; Kherad-Pajouh and Renaud,
2010). We present these methods in a common notation with detailed annotation
in in Table 3.2. While a number of authors have made comparisons between some
of these methods (Kennedy, 1995; Kennedy and Cade, 1996; Gonzalez and Manly,
1998; Anderson and Legendre, 1999; Anderson and Robinson, 2001; Anderson and
ter Braak, 2003; O’Gorman, 2005; Dekker et al., 2007; Nichols et al., 2008; Ridg-
way, 2009), they often only approached particular cases, did not consider repeated
measurements, did not use full matrix notation as more common in neuroimaging
literature, and often did not consider implementation complexities due to the large
size of imaging datasets. In this section we focus on the Freedman–Lane and the
Dekker methods, which, as we show in Section 3.4.2, produce the best results in
terms of control over error rates and power.

The Freedman–Lane procedure (Freedman and Lane, 1983) can be performed
through the following steps:

1. Regress Y against the full model that contains both the effects of interest and
the nuisance variables, i.e. Y = Xβ+Zγ + ϵ. Use the estimated parameters
β̂ to compute the statistic of interest, and call this statistic T0.

2. Regress Y against a reduced model that contains only the nuisance effects,
i.e. Y = Zγ + ϵZ, obtaining estimated parameters γ̂ and estimated residuals
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ϵ̂Z.

3. Compute a set of permuted data Y∗
j . This is done by pre-multiplying the

residuals from the reduced model produced in the previous step, ϵ̂Z, by a
permutation matrix, Pj , then adding back the estimated nuisance effects, i.e.
Y∗
j = Pj ϵ̂Z + Zγ̂.

4. Regress the permuted data Y∗
j against the full model, i.e. Y∗

j = Xβ + Zγ +

ϵ, and use the estimated β̂∗
j to compute the statistic of interest. Call this

statistic T ∗
j .

5. Repeat the Steps 2–4 many times to build the reference distribution of T ∗

under the null hypothesis.

6. Count how many times T ∗
j was found to be equal or larger than T0, and

divide the count by the number of permutations; the result is the p-value.

For the Steps 2 and 3, it is not necessary to actually fit the reducedmodel at each
point in the image. The permuted dataset can equivalently be obtained as Y∗

j =

(PjRZ + HZ)Y, which is particularly efficient for neuroimaging applications in the
typical case of a single design matrix for all image points, as the term PjRZ + HZ

is then constant throughout the image and so, needs to be computed just once.
Moreover, add the nuisance variables back in Step 3 is not strictly necessary, and
the model can be expressed simply as PjRZY = Xβ + Zγ + ϵ, implying that the
permutations can actually be performed just by permuting the rows of the residual-
forming matrix RZ. The Freedman–Lane strategy is the one used in the randomise
algorithm, discussed in Section 3.2.6.

The rationale for this permutation method is that, if the null hypothesis is true,
then β = 0, and so the residuals from the reduced model with only nuisance
variables, ϵZ, should not be different than the residuals from the full model, ϵ, and
can, therefore, be used to create the reference distribution fromwhich p-values can
be obtained.

TheDekker procedure consists of orthogonalising the regressors of interest with
respect to the nuisance variables. This is done by pre-multiplication of X by the
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residual forming matrix due to Z, i.e., RZ, then permuting this orthogonalised ver-
sion of the regressors of interest. The nuisance regressors remain in the model.³

For both the Freedman–Lane and the Dekker procedures, if the errors are in-
dependent and symmetric (ise), the permutation matrices Pj can be replaced for
sign flipping matrices Sj . If both ee and ise are considered appropriate, then per-
mutation and sign flipping can be used concomitantly.

3.2.3.2 Restricted exchangeability

Some experimental designs involve multiple observations from each subject, or the
subjects may come from groups that may possess characteristics that may render
their distributions not perfectly comparable. Both situations violate exchangeab-
ility. However, when the dependence between observations has a block structure,
this structure can be taken into account when permuting the model, restricting the
set of all otherwise possible permutations to only those that respect the relation-
ship between observations (Pesarin, 2001).⁴ The ee and ise assumptions are then
asserted at the level of these exchangeability blocks, rather than for each obser-
vation individually. The experimental hypothesis and the study design determine
how the ebs should be formed and how the permutation or sign flipping matrices
should be constructed. Except Huh–Jhun, the other methods can be applied at the
block level as in the unrestricted case.

Within-blockexchangeability Observations that share the same dependence struc-
ture, either assumed or known in advance, can be used to define ebs such that ee

³ In Winkler et al. (2014) we named this method as “Smith” because, although orthogonalisation is
a well known procedure, it did not seem to have been proposed by anyone to address the issues
with permutation methods with the glm until Smith and others presented it in a conference
poster (Nichols et al., 2008). We also tried to keep it consistent with Ridgway (2009), with the
convention of calling the methods by the earliest author that we could identify as the proponent
for eachmethod, even though this method seems to have been proposed by an anonymous referee
of O’Gorman (2005). After publication, however, it was brought to our knowledge that the same
method had in fact been proposed earlier, by Dekker, Krackhard and Snijders, in a conference in
2003 (Dekker et al., 2003, 2007). To give the proper credit to the original authors, we henceforth
call this method simply as “Dekker”.

⁴ Observations that are exchangeable only in some subsets of all possible permutations are said
weakly exchangeable (Good, 2002).
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are asserted with respect to these blocks only, and the empirical distribution is con-
structed by permuting exclusively within block, as shown in Figure 3.2. Once the
blocks have been defined, the regression of nuisance variables and the construction
of the reference distribution can follow strategies as Freedman–Lane or Dekker,
as above. The ise, when applicable, is transparent to this kind of block structure,
so that the sign flips occur as under unrestricted exchangeability. For within-block
exchangeability, in general each eb corresponds to a vg for the computation of the
test statistic. See Section 3.3 for examples.

Whole-block exchangeability Certain experimental hypotheses may require the
comparison of sets of observations to be treated as a whole, being not exchange-
able within set. Exchangeability blocks can be constructed such that each include,
in a consistent order, all the observations pertaining to a given set and, differ-
ently than in within-block exchangeability, here each block is exchanged with the
others on their entirety, while maintaining the order of observations within block
unaltered. For ise, the signs are flipped for all observations within block at once.
Variance groups are not constructed one per block; instead, each vg encompasses
one or more observations per block, all in the same order, e.g., one vg with the
first observation of each block, another with the second of each block and so on.
Consequently, all blocks must be of the same size, and all with their observations
ordered consistently, either for ee or for ise. Examples of permutation and sign
flipping matrices for whole block permutation are shown in Figure 3.3. See Section
3.3 for examples.

Variance groups mismatching exchangeability blocks While variance groups
can be defined implicity, as above, according to whether within- or whole-block
permutation is to be perfomed, this is not compulsory. In some cases the ebs are
defined based on the non-independence between observations, even if the vari-
ances across all observations can still be assumed to be identical. See Section 3.3
for an example using a paired t-test.

Choice of the statistic with exchangebility blocks The statistics F and t, de-
scribed in Section 3.2.1, are pivotal and follow known distributions when, among
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Table 3.1: Compared with parametric methods, permutation tests relax a number of as-
sumptions and can be used in a wider variety of situations. Some of these assumptions
can be further relaxed with the definition of exchangeability blocks.

Assumptions ee ise Parametric

With respect to the dependence structure between error terms:
Independent 3 3 3

Non-independent, exchangeable 3 7 7

Non-independent, non-exchangeable 7 7 7

With respect to the distributions of the error terms:
Normal, identical 3 3 3

Symmetrical, identical 3 3 7

Symmetrical, non-identical 7 3 7

Skewed, identical 3 7 7

Skewed, non-identical 7 7 7

3 Can be used directly if the assumptions regarding dependence structure and
distribution of the error terms are both met.

7 Cannot be used directly, or can be used in particular cases.
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Figure 3.2: Left: Example of a permutation matrix that shuffles data within block only.
The blocks are not required to be of the same size. The elements outside the diagonal
blocks are always equal to zero, such that data cannot be swapped across blocks. Right:
Example of a sign flipping matrix. Differently than within-block permutation matrices,
here sign flipping matrices are transparent to the definitions of the blocks, such that the
block definitions do not need to be taken into account, albeit their corresponding variance
groups are considered when computing the statistic.
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Table 3.2: A number of methods are available to obtain parameter estimates and construct
a reference distribution in the presence of nuisance variables.

Method Model

Draper–Stoneman(a) Y = PXβ + Zγ + ϵ

Still–White(b) PRZY = Xβ + ϵ

Freedman–Lane(c) (PRZ + HZ)Y = Xβ + Zγ + ϵ

ter Braak(d) (PRM + HM)Y = Xβ + Zγ + ϵ

Kennedy(e) PRZY = RZXβ + ϵ

Manly(f) PY = Xβ + Zγ + ϵ

Huh–Jhun(g) PQ′RZY = Q′RZXβ + ϵ

Dekker(h) Y = PRZXβ + Zγ + ϵ

Parametric(i) Y = Xβ + Zγ + ϵ, ϵ ∼ N (0, σ2I)

(a) Draper and Stoneman (1966). This method was called “Shuffle Z” by Kennedy (1995), and using
the same notation adopted here, it would be called “Shuffle X”. (b) Still and White (1981); Levin
and Robbins (1983); Gail et al. (1988). (c) Freedman and Lane (1983). (d) ter Braak (1992). The null
distribution for this method considers β̂

∗
j = β̂, i.e., the permutation happens under the alternative

hypothesis, rather than the null. (e) Kennedy (1995); Kennedy and Cade (1996). This method was
referred to as “Residualize both Y and Z” in the original publication, and using the same notation
adopted here, it would be called “Residualize both Y and X”. (f) Manly (2007). (g) Huh and Jhun
(2001); Jung et al. (2006); Kherad-Pajouh and Renaud (2010). Q is a N × N ′ matrix, where N ′

is the rank of RZ. Q is computed through Schur decomposition of RZ, such that RZ = QQ′ and
IN ′×N ′ = Q′Q. For this method, P is N ′ ×N ′. From the methods in the table, this is the only that
cannot be used directly under restricted exchangeability, as the block structure is not preserved. (h)
The Dekker method consists of orthogonalization of X with respect to Z. In the permutation and
multiple regression literature, this method was proposed by Dekker et al. (2003, 2007), then later
by an anonymous referee of O’Gorman (2005), by Nichols et al. (2008) and discussed by Ridgway
(2009). (i)The parametric method does not use permutations, being instead based on distributional
assumptions.□ For all the methods, the left side of the equations contains the data (regressand), the
right side the regressors and error terms. The unpermuted models can be obtained by replacing P
for I. Even for the unpermuted models, and even if X and Z are orthogonal, not all these methods
produce the same error terms ϵ. This is the case, for instance, of the Kennedy and Huh–Jhun
methods. Under orthogonality between X and Z, some regression methods are equivalent to each
other.
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Figure 3.3: (a) Example of a permutation matrix that shuffles whole blocks of data. The
blocks need to be of the same size. (b) Example of a sign flipping matrix that changes
the signs of the blocks as a whole. Both matrices can be constructed by the Kronecker
product (represented by the symbol ⊗) of a permutation or a sign flipping matrix (with
size determined by the number of blocks) and an identity matrix (with size determined by
the number of observations per block).
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other assumptions, the error terms for all observations are identically distributed.
Under these assumptions, all the errors terms can be pooled to compute the resid-
ual sum of squares (the term ϵ̂′ϵ̂ in the Equation 3.3) and so, the variance of the
parameter estimates. This forms the basis for parametric inference, and is also use-
ful for non-parametric tests. However, the presence of ebs is incompatible with the
equality of distributions across all observations, with the undesired consequence
that pivotality is lost, as shown in Sections 3.4.1 and 3.5.1. Although these stat-
istics can still be used with permutation methods in general, the lack of pivotality
for imaging applications can cause problems for correction for multiple testing.
When exchangebility blocks are present, a suitable statistic can be computed as:

G =
ψ̂

′
C (C′(M′WM)−1C)−1 C′ψ̂

Λ · rank (C) (3.10)

where W is a N ×N diagonal weighting matrix that has elements

Wnn =

∑
n′∈gn Rn′n′

ϵ̂′gn ϵ̂gn
(3.11)

where gn represents the variance group to which the n-th observation belongs,
Rn′n′ is the n′-th diagonal element of the residual forming matrix, and ϵ̂gn is the
vector of residuals associated with the same vg.⁵ In other words, each diagonal
element of W is the reciprocal of the estimated variance for their corresponding
group. This variance estimator is equivalent to the one proposed by Horn et al.
(1975), and corresponds to the “hc2” of (MacKinnon and White, 1985); see also
Guillaume et al. (2014) for further discussion. The remaining term in Equation 3.10
is given by (Welch, 1951):

Λ = 1 +
2(s− 1)

s(s+ 2)

∑
g

1∑
n∈g Rnn

(
1−

∑
n∈g Wnn

trace (W)

)2

(3.12)

where s = rank (C) as before. The statistic G provides a generalisation of a num-

⁵ Note that, for clarity, G is defined in Equation 3.10 as a function of M, ψ and C in the unparti-
tioned model. With the partitioning described in Section 3.2.2, each of these variables is replaced
by their equivalents in the partitioned, full model, i.e., [X Z], [β′ γ′]′ and [Is×s 0s×(r−s)]

′ re-
spectively.
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Table 3.3: The statistic G provides a generalisation for a number of well known statistical
tests.

rank (C) = 1 rank (C) > 1

Homoscedastic errors, unrestricted
exchangeability (Λ = 1)

Square of
Student’s t F -ratio

Homoscedastic within vg, restricted
exchangeability (Λ ̸= 1)

Square of
Aspin–Welch v

Welch’s v2

ber of well known statistical tests, some of them summarised in Table 3.3. When
there is only one vg, variance estimates can be pooled across all observations, res-
ulting in Λ = 1 and so, G = F . If W = V−1, the inverse of the true covariance
matrix, G is the statistic for an F -test in a weighted least squares model (wls)
(Christensen, 2002). If there are multiple variance groups, G is equivalent to the
v2 statistic for the problem of testing the means for these groups under no homos-
cedasticity assumption, i.e., when the variances cannot be assumed to be all equal
(Welch, 1951).⁶ If, despite heteroscedasticity, Λ is replaced by 1, G is equivalent
to the James’ statistic for the same problem (James, 1951). When rank (C) = 1,
and if there are more than one vg, sign(β̂)

√
G is the well-known v statistic for the

Behrens–Fisher problem (Fisher, 1935b; Aspin and Welch, 1949); with only one vg
present, the same expression produces the Student’s t statistic, as shown earlier. If
the definition of the blocks is respected, all these particular cases produce pivotal
statistics, and the generalisation provided byG allows straightforward implement-
ation.

3.2.4 Number of permutations

For a studywithN observations, themaximumnumber of possible permutations is
N !, and themaximumnumber of possible sign flips is 2N . However, in the presence
ofB exchangebility blocks that are exchangeable as a whole, the maximum number

⁶ If the errors are independent and normally distributed, yet not necessarily with equal variances
(i.e., Λ ̸= 1), parametric p-values for G can be approximated by referring to the F -distribution
with degrees of freedom ν1 = s and ν2 = 2(s− 1)/3/(Λ− 1).
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of possible permutations drops to no more than B!, and the maximum number of
sign flips to 2B . For designs where data is only exchangeable within-block, the
maximum number of possible permutations is

∏B
b=1 Nb!, where Nb is the number

of observations for the b-th block, and themaximum number of sign flips continues
to be 2N .

However, the actual number of possible rearrangements may be smaller de-
pending on the null hypothesis, the permutation strategy, or other aspects of the
study design. If there are discrete covariates, or if there are ties among continu-
ous regressors, many permutations may not alter the model at all. The maximum
number of permutations can be calculated generically from the design matrix ob-
serving the number of repeated rows in X for the Freedman–Lane and most other
methods, or in M for the ter Braak and Manly methods. The maximum number of
possible permutations or sign flips, for different restrictions on exchangeability, is
shown in Table 3.4.

Even considering the restrictions dictacted by the study design, the number of
possible shufflings tends to be very large, even for samples of moderate size, and
grows very rapidly as observations are included. When the number of possible
rearrangements is large, not all of them need to be performed for the test to be
valid (Dwass, 1957; Chung and Fraser, 1958), and the resulting procedure will be
approximately exact (Edgington, 1969). The number can be chosen according to
the availability of computational resources and considerations about power and
precision. The smallest p-value that can be obtained is given by 1/J , where J is
the number of permutations performed. The precision of permutation p-values
may be determined considering the confidence interval around the significance
level.

To efficiently avoid permutations that do not change the design matrix, the
Algorithm “l” (Knuth, 2005) can be used. This algorithm is simple and has the
benefit of generating only permutations that are unique, i.e., in the presence of
repeated elements, it correctly avoids synonymous permutations. This is appro-
priate when enumerating all possible permutations. However, the algorithm pro-
duces sequentially permutations that are in lexicographic order. Although this can
be advantageous in other settings, here this behaviour can be problematic when
running only a subset of P , and has potential to bias the results. For imaging ap-
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Table 3.4: Maximum number of unique permutations considering exchangeability blocks.

Exchangeability ee ise

Unrestricted N ! 2N

Unrestricted, repeated rows N !

M∏
m=1

1

Nm!
2N

Within-block
B∏
b=1

Nb! 2N

Within-block, repeated rows
B∏
b=1

Nb!

M |b∏
m=1

1

Nm|b!
2N

Whole-block B! 2B

Whole-block, repeated blocks B!
M̃∏

m̃=1

1

Nm̃!
2B

B Number of exchangebility blocks (eb).

M Number of distinct rows in X.

M |b Number of distinct rows in X within the b-th block.

M̃ Number of distinct blocks of rows in X.

N Number of observations.

Nb Number of observations in the b-th block.

Nm Number of times each of the M distinct rows occurs in X.

Nm|b Number of times each of the m-th unique row occurs within the b-th block.

Nm̃ Number of times each of the M̃ distinct blocks occurs in X.
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plications, where there are many points (voxels, vertices, faces) being analysed, it
is in general computationally less expensive to shuffle many times a sequence of
values and store these permuted sequences, than actually fit the permuted model
for all points. As a consequence, the problem with lexicographically ordered per-
mutations can be solved by generating all the possible permutations, and randomly
drawing J elements from P to do the actual shufflings of the model, or generating
random permutations and checking for duplicates. Alternatively, the procedure
can be conducted without attention to repeated permutations using simple shuff-
ling of the data. This strategy is known as conditional Monte Carlo (cmc) (Trotter
and Tukey, 1956; Pesarin and Salmaso, 2010a), as each of the random realisations
is conditional on the available observed data.

Sign flipping matrices, on the other hand, can be listed using a numeral system
with radix 2, and the sign flipped models can be performed without the need to
enumerate all possible flips or to appeal to cmc. The simplest strategy is to use
the digits 0 and 1 of the binary numeral system, treating 0 as−1when assembling
the matrix. In a binary system, each sign flipping matrix is also its own numerical
identifier, such that avoiding repeated sign flippings is trivial. The binary rep-
resentation can be converted to and from radix 10 if needed, e.g., to allow easier
human readability.

Forwithin-block exchangeability, permutationmatrices are constructedwithin-
block, then concatenated along their diagonal to assemble Pj , which also has a block
structure. The elements outside the blocks are filled with zeros as needed (Fig-
ure 3.2). The block definitions can be ignored for sign flipping matrices for designs
where ise is asserted within-block. For whole-block exchangeability, permutation
and sign flipping matrices are generated by treating each block as an element, and
the final Pj or Sj are assembled via Kronecker multiplication by an identity matrix
of the same size as the blocks (Figure 3.3).

3.2.5 Multiple testing

Differently than with parametric methods, correction for multiple testing using
permutation does not require the introduction of more assumptions. For fami-
lywise error rate correction (fwer), the method was described by Holmes et al.
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(1996). As the statistics T ∗
j are calculated for each shuffling to build the reference

distribution at each point, the maximum value of T ∗
j across the image, Tmax

j , is
also recorded for each rearrangement, and its empirical distribution is obtained.
For each test in the image, an fwer-corrected p-value can then be obtained by
computing the proportion of Tmax

j that is above T0 for each test. A single fwer
threshold can also be applied to the statistical map of T0 values using the distri-
bution of Tmax

j . The same strategy can be used for statistics that combine spatial
extent of signals, such as cluster extent or mass (Bullmore et al., 1999), threshold-
free cluster enhancement (tfce) (Smith and Nichols, 2009) and others (Marroquin
et al., 2011). For these spatial statistics, the effect of lack of pivotality can be mitig-
ated by non-stationarity correction (Hayasaka et al., 2004; Salimi-Khorshidi et al.,
2011).

The p-values under the null hypothesis are uniformly distributed in the interval
[0, 1]. As a consequence, the p-values themselves are pivotal quantities and, in
principle, could be used for multiple testing correction as above. The distribution
of minimum p-value, pmin

j , instead of Tmax
j , can be used. Due to the discreteness

of the p-values, this approach, however, entails some computational difficulties
that may cause considerable loss of power (Pantazis et al., 2005). Correction based
on false-discovery rate (fdr) can be used once the uncorrected p-values have been
obtained for eachpoint in the image. Either a single fdr threshold can be applied to
the map of uncorrected p-values (Benjamini and Hochberg, 1995; Genovese et al.,
2002) or an fdr-adjusted p-value can be calculated at each point (Yekutieli and
Benjamini, 1999).

3.2.6 The randomise algorithm

Algorithm 1 describes a procedure for permutation inference on contrasts of the
glm parameter estimates using the Freedman–Lane method. Modifications for
other methods are trivial. For this algorithm, consider Y as a four-dimensional
array, being the first three dimensions for space and the last for an observation
index. A variable v = [x, y, z] is used to specify the point position in space, so
that the vector of n different observations per point is represented as Y[v]. A set
C of contrasts is specified, as well as the unpartitioned design matrix M. Indicator
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variables are used to specify whether the errors should be treated as exchangeable
(ee = true), independent and symmetric (ise = true), or both, which allows for
permutations to happen together with sign flipping. A positive integer J is spe-
cified as the number permutations to be performed. Optionally, a n × 1 vector
b is provided to indicate the B exchangebility blocks that group the observations,
along with an indicator variable pb that informs whether blocks should be per-
muted as a whole (pb = true), or if permutations should happen within block
only (pb = false). The specification of b and pb obviate the need to specify the
variance groups, as these can be defined implicitly for within or whole-block per-
mutation when the pivotal statistic is computed.

Algorithm 1: The randomise algorithm.

Require: Y,M, C, ee, ise, J . Optional: b, pb. ▷ Input variables.
1: if ¬ exist(pb) then ▷ If pb was not provided.
2: pb← false ▷ Permutations happen within block.
3: end if
4: if ¬ exist(b) then ▷ If b was not provided.
5: b← 1n×1 ▷ A vector of ones is used for b.
6: pb← false ▷ Permutations happen within the single block.
7: end if
8: for all C ∈ C do ▷ For each contrast.
9: X,Z← partition(M,C) ▷ Partition the model.

10: M← [X Z] ▷ For simplicity, replace M.
11: Jmax ← calc_maxshuf(X, b, pb, ee, ise) ▷ Maximum possible shufflings.
12: if ee then ▷ If errors are exchangeable.
13: if J ⩾ Jmax then ▷ Exhaustive or too many permutations requested.
14: P ← algorithm_L(X, b, pb) ▷ List all possible permutations.
15: else
16: P ← permute_randomly(X, b, pb, J − 1) ▷ Ignore repeated Pj .
17: P ← {P, I} ▷ Ensure inclusion of the unpermuted model.
18: end if
19: end if
20: if ise then ▷ If errors are independent and symmetric.
21: if J ⩾ Jmax then ▷ Exhaustive or too many sign flips requested.
22: S ← list_signflips(b, pb) ▷ List all possible sign flippings.
23: else
24: S ← signflip_randomly(n, b, pb, J − 1) ▷ Ignore repeated Sj .
25: S ← {S, I} ▷ Ensure inclusion of the non-sign flipped model.
26: end if
27: end if



92 Chapter 3. Permutation inference

28: if ee ∧ ise then ▷ Errors independent, symmetric and exchangeable.
29: B ← draw_products(P,S, J) ▷ Draw J random products Pj′Sj′′ .
30: if I /∈ B then ▷ If non-shuffled model is absent from B.
31: B ← {B1, . . . ,BJ−1, I} ▷ Ensure non-shuffled model is included.
32: end if
33: B ← P ▷ Treat B as P for simplicity.
34: else if ise ∧ ¬ ee then ▷ If errors are only independent and symmetric.
35: P ← S ▷ Treat S as P for simplicity.
36: end if
37: for all v do ▷ For each image point.
38: U[v]← 0 ▷ Initialise counter for uncorrected p-value.
39: F[v]← 0 ▷ Initialise counter for fwer-corrected p-value.
40: ϵ̂Z[v]← (I− ZZ+)Y[v] ▷ Remove the nuisance effects.
41: ψ̂[v]← M+ϵ̂Z[v] ▷ Estimate regression coefficients.
42: ϵ̂[v]← (I−MM+)ϵ̂Z[v] ▷ Estimate the residuals.
43: T0[v]← pivotal(ψ̂[v], ϵ̂[v],M, b, pb) ▷ Compute a pivotal statistic.
44: end for
45: for Pj ∈ P do ▷ For each shuffling (permutation and/or sign flipping).
46: M∗

j ← PjM ▷ Shuffle the model.
47: for all v do ▷ For each image point.
48: ψ̂

∗
j [v]← (M∗

j )
+ϵ̂Z[v] ▷ Fit permuted model.

49: ϵ̂∗j [v]← (I−M∗
j (M

∗
j )

+)ϵ̂Z[v] ▷ Residuals.
50: T∗

j [v]← pivotal(ψ̂
∗
j [v], ϵ̂

∗
j [v],M∗

j , b, pb) ▷ Shuffled statistic.
51: if T∗

j [v] ⩾ T0[v] then ▷ If shuffled statistic is larger.
52: U[v]← U[v] + 1 ▷ Increment counter for uncorrected.
53: end if
54: end for
55: Tmax

j ← max(T∗
j ) ▷ Find the largest T ∗

j across space.
56: for all v do ▷ For each image point.
57: if Tmax

j ⩾ T0[v] then ▷ If Tmax
j is larger.

58: F[v]← F[v] + 1 ▷ Increment counter for fwer-corrected.
59: end if
60: end for
61: end for
62: p-value← U/J ▷ Significance map for this C, uncorrected.
63: pfwer-value← F/J ▷ Significance map for this C, fwer-corrected.
64: return p-value, pfwer-value. ▷ Save significance images to disk.
65: end for

In the algorithm, the statistics T for each point (voxel, vertex, face) are stored
in the array T, whereas the counters are stored in the arrays U and F. The design
matrix as well as the contrasts can be specific for each image point (voxelwise,
vertexwise, facewise), and there is no challenge other than implementation. It is
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possible to omit the for-loop between lines 56 and 60, and instead store the dis-
tribution of the largest statistic as a vector of size J , which is then used to assess
significance. The code runs faster, but it would be slightly less clear to present.
In programming languages that offer good matrix manipulation capabilities, e.g.
Octave, matlab or r, the for-loops that iterate for each point v can be replaced by
matrix operations that are executed all in a single step. In the Fmrib Software Lib-
rary (fsl)⁷, a fast implementation, in c++, of the randomise algorithm is available.

3.3 Worked examples

The examples below serve to illustrate the permutation aspects discussed in the
chapter, all with tiny samples, N = 12 only, so that the design matrices can be
shown in their full extent. While permutation tests in general remain valid even
with such small samples, these examples are by no means to be understood as a
recommendation for sample sizes. There are many reasons why larger samples
are more appropriate (see Button et al. (2013) for a recent review), and in what
concerns permutations methods, larger samples allow smaller p-values, improve
the variance estimates for each vg (which are embodied in the weighting matrix
under restricted exchangeability), and allow finer control over the familywise error
rate. For each example, the relevant contrasts are also shown.

Example 1: Mean effect Consider a multi-subject fmri study to investigate the
bold response associated with a novel experimental task. After the first-level ana-
lysis (within subject), maps of contrasts of parameter estimates for each subject are
used in a second level analysis. The design matrix for the mean effect is simply a
column of ones, and permutations of the data or of the designmatrix do notchange
the model with respect to the regressor of interest. However, by treating the errors
as symmetric, instead of permutation, the signs of the ones in the design matrix,
or of each datapoint, can be flipped randomly to create the empirical distribution
from which inference can be performed. In the presence of nuisance variables,
such as handedness, the procedure is performed as in either the Freedman–Lane

⁷ Available for download at http://www.fmrib.ox.ac.uk/fsl.

http://www.fmrib.ox.ac.uk/fsl
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or Dekker methods, replacing the permutation matrix for a sign flipping matrix
(Table 3.5).

Table 3.5: Coding of the design matrix, exchangeability blocks and variance groups for
Example 1. Under unrestricted exchangeability, all subjects are assigned to a single block,
and with identical variances, all to a single variance group. The regressorm1 codes for the
overall mean, whereas m2 codes for handedness.

Coded data (Y) eb vg
Model (M)

m1 m2

Subject 1 1 1 1 h1
Subject 2 1 1 1 h2
Subject 3 1 1 1 h3
Subject 4 1 1 1 h4
Subject 5 1 1 1 h5
Subject 6 1 1 1 h6
Subject 7 1 1 1 h7
Subject 8 1 1 1 h8
Subject 9 1 1 1 h9
Subject 10 1 1 1 h10
Subject 11 1 1 1 h11
Subject 12 1 1 1 h12

Contrast 1 (C′
1) +1 0

Contrast 2 (C′
2) −1 0

Example 2: Multiple regression Consider the analysis of a study that compares
patients and controls with respect to brain cortical thickness, and that recruiting
process ensured that all selected subjects are exchangeable. Elder subjects may,
however, have thinner cortices, regardless of the diagnosis so, without consider-
ing the possibility of interaction. To control for the confounding effect of age, it is
included in the design as a nuisance regressor. Sex is also included. The permuta-
tion strategy follows the Freedman–Lane or Dekker methods, with the residuals of
the reduced model being permuted under unrestricted exchangeability (Table 3.6).

Example 3: Paired t-test Consider a study to investigate the effect of the use of
a certain analgesic in the magnitude of the bold response associated with painful
stimulation. In this example, the response after the treatment is compared with



3.3. Worked examples 95

Table 3.6: Coding for Example 2. Under unrestricted exchangeability, all subjects are
assigned to a single block. The regressors m1 and m2 code for the experimental groups,
m3 and m4 for age and sex.

Coded data (Y) eb vg
Model (M)

m1 m2 m3 m4

Subject 1 1 1 1 0 a1 s1
Subject 2 1 1 1 0 a2 s2
Subject 3 1 1 1 0 a3 s3
Subject 4 1 1 1 0 a4 s4
Subject 5 1 1 1 0 a5 s5
Subject 6 1 1 1 0 a6 s6
Subject 7 1 1 0 1 a7 s7
Subject 8 1 1 0 1 a8 s8
Subject 9 1 1 0 1 a9 s9
Subject 10 1 1 0 1 a10 s10
Subject 11 1 1 0 1 a11 s11
Subject 12 1 1 0 1 a12 s12

Contrast 1 (C′
1) +1 −1 0 0

Contrast 2 (C′
2) −1 +1 0 0

the response before the treatment, i.e., each subject is their own control. The ex-
perimental design is the “paired t-test”. One eb is defined per subject, as the obser-
vatios are not exchangeable across subjects, and as the variance can be assumed to
be homogeneous across all observations, only one vg is defined encompassing all
observations (Table 3.7).

Example 4: Unequal group variances Consider a study using fmri to compare
whether the bold response associated with a certain cognitive task would differ
among subjects with autistic spectrum disorder (asd) and control subjects, while
taking into account differences in age and sex. In this hypothetical example, the
cognitive task is known to producemore erratic signalchanges in the patient group
than in controls. Therefore, variances cannot be assumed to be homogeneous with
respect to the group assignment of subjects. This is an example of the classical
Behrens–Fisher problem. To accommodate heteroscedasticity, two permutation
blocks are defined according to the group of subjects. Under the assumption of
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Table 3.7: Coding of the design matrix exchangebility blocks and variance groups for Ex-
ample 3. Observations are exchangeable only within subject, and variance can be estim-
ated considering all observations as a single group. The regressor m1 codes for treatment,
whereas m2 to m7 code for subject-specific mean.

Coded data (Y) eb vg
Model (M)

m1 m2 m3 m4 m5 m6 m7

Subj. 1, obs. 1 1 1 +1 1 0 0 0 0 0
Subj. 2, obs. 1 2 1 +1 0 1 0 0 0 0
Subj. 3, obs. 1 3 1 +1 0 0 1 0 0 0
Subj. 4, obs. 1 4 1 +1 0 0 0 1 0 0
Subj. 5, obs. 1 5 1 +1 0 0 0 0 1 0
Subj. 6, obs. 1 6 1 +1 0 0 0 0 0 1
Subj. 1, obs. 2 1 1 −1 1 0 0 0 0 0
Subj. 2, obs. 2 2 1 −1 0 1 0 0 0 0
Subj. 3, obs. 2 3 1 −1 0 0 1 0 0 0
Subj. 4, obs. 2 4 1 −1 0 0 0 1 0 0
Subj. 5, obs. 2 5 1 −1 0 0 0 0 1 0
Subj. 6, obs. 2 6 1 −1 0 0 0 0 0 1

Contrast 1 (C′
1) +1 0 0 0 0 0 0

Contrast 2 (C′
2) −1 0 0 0 0 0 0
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independent and symmetric errors, the problem is solved by means of random
sign-flipping (Pesarin, 1995), using the well known Welch’s v statistic, a particular
case of the statistic G shown in Equation 3.10 (Table 3.8).

Table 3.8: Coding of the design matrix and exchangebility blocks for Example 4. As the
group variances cannot be assumed to be the same, each group constitutes an EB and VG;
sign flippings happen within block. The regressors m1 and m2 code for the experimental
groups, m3 and m4 for age and sex.

Coded data (Y) eb vg
Model (M)

m1 m2 m3 m4

Subject 1 1 1 1 0 a1 s1
Subject 2 1 1 1 0 a2 s2
Subject 3 1 1 1 0 a3 s3
Subject 4 1 1 1 0 a4 s4
Subject 5 1 1 1 0 a5 s5
Subject 6 1 1 1 0 a6 s6
Subject 7 2 2 0 1 a7 s7
Subject 8 2 2 0 1 a8 s8
Subject 9 2 2 0 1 a9 s9
Subject 10 2 2 0 1 a10 s10
Subject 11 2 2 0 1 a11 s11
Subject 12 2 2 0 1 a12 s12

Contrast 1 (C′
1) +1 −1 0 0

Contrast 2 (C′
2) −1 +1 0 0

Example 5: Variance as a confound Consider a study using fmri to compare
whether a given medication would modify the bold response associated with a
certain attention task. The subjects are allocated in two groups, one receiving the
drug, the other not. In this hypothetical example, the task is known to produce
very robust and, on average, similar responses for male and female subjects, al-
though it is also known that males tend to display more erratic signal changes,
either very strong or very weak. Therefore, variances cannot be assumed to be
homogeneous with respect to the sex of the subjects. To accommodate heterosce-
dasticity, two permutation blocks are defined according to sex, and each permuta-
tionmatrix is constructed such that permutations only happenwithin each of these
blocks (Table 3.9).
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Table 3.9: Coding for Example 5. The different variances restrict exchangeability for
within same sex only, and two exchangebility blocks are defined, for shuffling within block.
The regressors m1 and m2 code for group (patients and controls), whereas m3 codes for
sex.

Coded data (Y) eb vg
Model (M)

m1 m2 m3

Subject 1 1 1 1 0 1
Subject 2 1 1 1 0 1
Subject 3 1 1 1 0 1
Subject 4 2 2 1 0 −1
Subject 5 2 2 1 0 −1
Subject 6 2 2 1 0 −1
Subject 7 1 1 0 1 1
Subject 8 1 1 0 1 1
Subject 9 1 1 0 1 1
Subject 10 2 2 0 1 −1
Subject 11 2 2 0 1 −1
Subject 12 2 2 0 1 −1

Contrast 1 (C′
1) 1 −1 0

Contrast 2 (C′
2) −1 1 0
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Example 6: Longitudinal study Consider a study to evaluate whether fractional
anisoptropy (fa) would mature differently between boys and girls during middle
childhood. Each child recruited to the study is examined three times, at the ages of
9, 10 and 11 years, and none of them are related in any known way. Permutation
of observations within child cannot be considered, as the null hypothesis is not
the one that fa itself would be zero, but instead, that there would be no changes
in the value of fa along the three yearly observations. The permutations must,
therefore, always keep in the same order the three observations. Blocks are defined
as one per subject, each encompassing all the three observations, and permutation
of each block as a whole is performed. If the variances cannot be assumed to be
equal along time, one variance group can be defined per time point, otherwise
all are assigned to the same vg. If there are nuisance variables to be considered,
these can be included in the model and the procedure is performed using the same
Freedman–Lane or Dekker strategies (Table 3.10).

Table 3.10: Coding of the design matrix, exchangebility blocks and variance groups for
Example 6. Shufflings happen for the blocks as a whole, and variances are not assumed to
be the same across all timepoints.

Coded data (Y) eb vg
Model (M)

m1 m2 m3 m4 m5 m6

Subject 1, Timepoint 1 1 1 a11 0 1 0 0 0
Subject 1, Timepoint 2 1 2 a12 0 1 0 0 0
Subject 1, Timepoint 3 1 3 a13 0 1 0 0 0
Subject 2, Timepoint 1 2 1 a21 0 0 1 0 0
Subject 2, Timepoint 2 2 2 a22 0 0 1 0 0
Subject 2, Timepoint 3 2 3 a23 0 0 1 0 0
Subject 3, Timepoint 1 3 1 0 a31 0 0 1 0
Subject 3, Timepoint 2 3 2 0 a32 0 0 1 0
Subject 3, Timepoint 3 3 3 0 a33 0 0 1 0
Subject 4, Timepoint 1 4 1 0 a41 0 0 0 1
Subject 4, Timepoint 2 4 2 0 a42 0 0 0 1
Subject 4, Timepoint 3 4 3 0 a43 0 0 0 1

Contrast 1 (C′
1) 1 −1 0 0 0 0

Contrast 2 (C′
2) −1 1 0 0 0 0
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3.4 Evaluation methods

3.4.1 Choice of the statistic

We conducted extensive simulations to study the behaviour of the common F

statistic (Equation 3.3) as well as of the generalised G statistic (Equation 3.10),
proposed here for use in neuroimaging, in various scenarios of balanced and un-
balanced designs and variances for the variance groups. Some of the most rep-
resentative of these scenarios are shown in Table 3.11. The main objective of the
simulations was to assess whether these statistics would retain their distributions
when the variances are not equal for each sample. Within each scenario, 3 or 5 dif-
ferent configurations of simulated variances were tested, pairwise, for the equality
of distributions using the two-sample Kolmogorov–Smirnov test (ks) (Press et al.,
1992), with a signficance level α = 0.05, corrected for multiple testing within each
scenario using the Bonferroni correction, as these tests are independent.

For each variance configuration, 1000 voxels containing normally distributed
random noise, with zero expected mean, were simulated and tested for the null
hypothesis of no difference between the means of the groups. The empirical dis-
tribution of the statistic for each configuration was obtained by pooling the results
for the simulated voxels, then compared with the ks test. The process was repeated
1000 times, and the number of times in which the distributions were found to be
significantly different from the others in the scame scenario was recorded. Con-
fidence intervals (95%) were computed using the Wilson method (Wilson, 1927).

By comparing the distributions of the same statistic obtained in different vari-
ance settings, this evaluation strategymimics what is observed when the variances
for each voxel varies across space in the same imaging experiment. The statistic
must be robust to these differences and retain its distributional properties, even
if assessed non-parametrically, otherwise fwer using the distribution of the max-
imum statistic is compromised. The same applies for multiple testing that com-
bines more than one imaging modality.

In addition, the same scenarios and variance configurations were used to assess
the proportion of error type i and the power of the F and G statistics. To assess
power, a simulated signal was added to each of the groups; for the scenarios with
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Table 3.11: The eight different simulation scenarios, each with its own same sample sizes
and different variances. The distributions of the statistic (F orG) for each pair of variance
configuration within scenario were compared using the ks test. The letters in the last
column (marked with a star, ⋆) indicate the variance configurations represented in the
pairwise comparisons shown in Figure 3.4 and results shown in Table 3.12.

Simulation
scenario

Sample sizes for
each vg

Variances for
each vg ⋆

1 8, 4

5, 1 (a)
1.2, 1 (b)
1, 1 (c)
1, 1.2 (d)
1, 5 (e)

2 20, 5

5, 1 (a)
1.2, 1 (b)
1, 1 (c)
1, 1.2 (d)
1, 5 (e)

3 80, 30

5, 1 (a)
1.2, 1 (b)
1, 1 (c)
1, 1.2 (d)
1, 5 (e)

4 40, 30, 20, 10

15, 10, 5, 1 (a)
3.6, 2.4, 1.2, 1 (b)
1, 1, 1, 1 (c)
1, 1.2, 2.4, 3.6 (d)
1, 5, 10, 15 (e)

5 4, 4
1, 1 (a)
1, 1.2 (b)
1, 5 (c)

6 20, 20
1, 1 (a)
1, 1.2 (b)
1, 5 (c)

7 4, 4, 4, 4
1, 1, 1, 1 (a)
1, 1.2, 2.4, 3.6 (b)
1, 5, 10, 15 (c)

8 20, 20, 20, 20
1, 1, 1, 1 (a)
1, 1.2, 2.4, 3.6 (b)
1, 5, 10, 15 (c)
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two groups, the trueψ was defined as [0−1]′, whereas for the scenarios with four
groups, it was defined as [0 −0.33 −0.67 −1]′. In either case, the null hypothesis
was that the groupmeans were all equal. Significance values were computed using
1000 permutations, with α = 0.05, and 95% confidence intervals were calculated
using the Wilson method.

3.4.2 Permutation strategies

We compared the 10methods described in Table 3.2 simulating different regression
scenarios. The design considered one regressor of interest, x1, and two regressors
of no interest, z1 and z2, z2 being a column-vector of just ones (intercept). The
simulation scenarios considered different sample sizes, n = {12, 24, 48, 96}; dif-
ferent combinations for continuous and categorical x1 and z1; different degrees of
correlation between x1 and z1, ρ = {0, 0.8}; different sizes for the regressor of
interest, β1 = {0, 0.5}; and different distributions for the error terms, ϵ, as nor-
mal (µ = 0, σ2 = 1), uniform (

[
−
√
3, +
√
3
]
), exponential (λ = 1) and Weibull

(λ = 1, k = 1/3). The coefficients for the first regressor of no interest and for
the intercept were kept constant as γ1 = 0.5 and γ2 = 1 respectively, and the
distributions of the errors were shifted or scaled as needed to have expected zero
mean and expected unit variance.

The continuous regressors were constructed as a linear trend ranging from−1
to+1 for x1, and the square of this trend, mean-centered, for z1. For this symmetric
range around zero for x1, this procedure causes x1 and z1 to be orthogonal and
uncorrelated. For the discrete regressors, a vector of n/2 ones and n/2 negative
ones was used, the first n/2 values being only +1 and the remaining −1 for x1,
whereas for z1, the first and last n/4 were −1 and the n/2 middle values were
+1. This procedure also causes x1 and z1 to be orthogonal and uncorrelated. For
each different configuration, 1000 simulated vectors Y were constructed as Y =

[x1 z1 z2][β1 γ1 γ2]
′ + ϵ.

Correlationwas introduced in the regressionmodels through Cholesky decom-
position of the desired correlation matrix K, such that K = L′L, then defining the
regressors by multiplication by L, i.e., [xρ1 z

ρ
1] = [x1 z1]L. The unpartitioned design

matrix was constructed as M = [xρ1 zρ1 z2]. A contrast C = [1 0 0]′ was defined



3.5. Results 103

to test the null hypothesis H0 : C′ψ = β1 = 0. This contrast tests only the first
column of the design matrix, so partitioning M = [X Z] using the scheme shown
in Section 3.2.2 might seem unnecessary. However, we wanted to test also the ef-
fect of non-orthogonality between columns of the design matrix for the different
permutation methods, with and without the more involved partitioning scheme
shown in the Appendix. Permutation, sign flipping, and permutation with sign
flipping were tested. Up to 1000 permutations and/or sign flippings were per-
formed using cmc, being less when the maximum possible number of shufflings
was not large enough. In these cases, all the permutations and/or sign flippings
were performed exhaustively.

Error type i was computed using α = 0.05 for configurations that used β1 = 0.
The other configurations were used to examine power. As previously, confidence
intervals (95%) were estimated using the Wilson method.

3.5 Results

3.5.1 Choice of the statistic

Figure 3.4 shows heatmaps with the results of the pairwise comparisons between
variance configurations, within each of the simulation scenarios presented in Table
3.11, using eitherF orG statistic. For unbalanced scenarios with only two samples
(simulation scenarios 1 to 3), andwithmodest variance differences between groups
(configurations b to d), the F statistic often retained its distributional properties,
albeit less often than the G statistic. For large variance differences, however, this
relative stability was lost for F , but not for G (a and e). Moreover, the inclusion
of more groups (scenario 4), with unequal sample sizes, caused the distribution of
the F statistic to be muchmore sensitive to heteroscedasticity, such that almost al-
ways the ks test identified different distributions across different variance config-
urations. TheG statistic, on the other hand, remained robust to heteroscedasticity
even in these cases.

In balanced designs, either with two (simulation scenarios 5 and 6) or more
(scenarios 7 and 8) groups, the F statistic had a better behaviour than in unbal-
anced cases. For two samples of the same size, there is no difference between F
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Figure 3.4: Heatmaps for the comparison of the distributions obtained under different
variance settings for identical sample sizes. In each map, the cells below the main diag-
onal contain the results for the pairwise F statistic, and above, for the G statistic. The
percentages refer to the fraction of the 1000 tests in which the distribution of the statistic
for one variance setting was found different than for another in the same simulation scen-
ario. Each variance setting is indicated by letters (a–e), corresponding to the same letters
in Table 3.11. Smaller percentages indicate robustness of the statistic to heteroscedasticity.
Confidence intervals (95%) are shown in parenthesis.
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andG. For more than two groups, theG statistic behaved consistently better than
F , particularly for large variance differences.

These results suggest that the G statistic is more appropriate under heteros-
cedasticity, with balanced or unbalanced designs, as it preserves its distributional
properties, indicating more adequacy for use with neuroimaging. The F statistic,
on the other hand, does not preserve pivotality and can, nonetheless, be used under
heteroscedasticity when the groups have the same size.

With respect to error type i, both F and G resulted in similar amount of
false positives when assessed non-parametrically. The G yielded generally higher
power than F , particularly in the presence of heteroscedasticity and with unequal
sample sizes. These results are presented in Table 3.12.

3.5.2 Permutation strategies

The different simulation parameters allowed 1536 different regression scenarios,
being 768 without signal and 768 with signal; a summary is shown in Table 3.13,
and some of the most representative in Table 3.14. In “well behaved” scenarios, i.e.,
large number of observations, orthogonal regressors and normally distributed er-
rors, all methods tended to behave generallywell, with adequate control over type i
error and fairly similar power. However, performance differences between the
permutation strategies shown in Table 3.2 became more noticeable as the sample
sizes were decreased and skewed errors were introduced.

Some of the methods are identical to each other in certain circumstances. If
X and Z are orthogonal, Draper–Stoneman and Dekker are equivalent. Like-
wise under orthogonality, Still–White produces identical regression coefficients as
Freedman–Lane, although the statistic will only be the same if the loss in degrees
of freedom due to Z is taken into account, something not always possible when
the data has already been residualised and no information about the original nuis-
ance variables is available. Nonetheless, the two methods remain asymptotically
equivalent as the number of observations diverges from the number of nuisance
regressors.
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Table 3.12: Proportion of error type I and power (%) for the statistics F and G in the
various simulation scenarios and variance configurations shown in Table 3.11. Confidence
intervals (95%) are shown in parenthesis.

Simulation
scenario

⋆
Proportion of error type i Power

F G F G

1

(a) 5.9 (4.6–7.5) 6.1 (4.8–7.8) 20.1 (17.7–22.7) 23.8 (21.3–26.5)
(b) 4.9 (3.7–6.4) 5.3 (4.1–6.9) 28.3 (25.6–31.2) 31.9 (29.1–34.9)
(c) 4.7 (3.6–6.2) 4.5 (3.4–6.0) 29.3 (26.6–32.2) 32.6 (29.8–35.6)
(d) 4.9 (3.7–6.4) 4.6 (3.5–6.1) 29.9 (27.1–32.8) 32.0 (29.2–35.0)
(e) 3.9 (2.9–5.3) 4.1 (3.0–5.5) 14.0 (12.0–16.3) 14.1 (12.1–16.4)

2

(a) 6.7 (5.3–8.4) 6.6 (5.2–8.3) 29.1 (26.4–32.0) 38.3 (35.3–41.4)
(b) 5.0 (3.8–6.5) 4.6 (3.5–6.1) 42.4 (39.4–45.5) 48.8 (45.7–51.9)
(c) 5.0 (3.8–6.5) 5.8 (4.5–7.4) 44.6 (41.6–47.7) 48.9 (45.8–52.0)
(d) 6.1 (4.8–7.8) 6.2 (4.9–7.9) 42.3 (39.3–45.4) 46.7 (43.6–49.8)
(e) 5.9 (4.6–7.5) 6.2 (4.9–7.9) 19.5 (17.2–22.1) 19.0 (16.7–21.6)

3

(a) 5.2 (4.0–6.8) 5.0 (3.8–6.5) 90.4 (88.4–92.1) 92.3 (90.5–93.8)
(b) 4.9 (3.7–6.4) 5.1 (3.9–6.6) 99.7 (99.1–99.9) 99.8 (99.3–100)
(c) 6.3 (5.0–8.0) 6.2 (4.9–7.9) 99.8 (99.3–100) 99.8 (99.3–100)
(d) 4.4 (3.3–5.9) 4.4 (3.3–5.9) 99.6 (99.0–99.8) 99.6 (99.0–99.8)
(e) 4.4 (3.3–5.9) 4.4 (3.3–5.9) 72.9 (70.1–75.6) 72.9 (70.1–75.6)

4

(a) 6.4 (5.0–8.1) 5.7 (4.4–7.3) 10.2 (8.5–12.2) 19.4 (17.1–22.0)
(b) 5.3 (4.1–6.9) 5.6 (4.3–7.2) 37.8 (34.9–40.9) 45.6 (42.5–48.7)
(c) 5.7 (4.4–7.3) 4.9 (3.7–6.4) 72.2 (69.3–74.9) 74.9 (72.1–77.5)
(d) 3.1 (2.2–4.4) 3.7 (2.7–5.1) 34.6 (31.7–37.6) 44.6 (41.6–47.7)
(e) 4.5 (3.4–6.0) 4.2 (3.1–5.6) 9.7 (8.0–11.7) 15.7 (13.6–18.1)

5
(a) 4.3 (3.2–5.7) 4.3 (3.2–5.7) 29.9 (27.1–32.8) 29.9 (27.1–32.8)
(b) 4.3 (3.2–5.7) 4.3 (3.2–5.7) 30.6 (27.8–33.5) 30.6 (27.8–33.5)
(c) 6.9 (5.5–8.6) 6.9 (5.5–8.6) 14.5 (12.5–16.8) 14.5 (12.5–16.8)

6
(a) 3.3 (2.4–4.6) 3.3 (2.4–4.6) 92.6 (90.8–94.1) 92.6 (90.8–94.1)
(b) 4.4 (3.3–5.9) 4.4 (3.3–5.9) 90.5 (88.5–92.2) 90.5 (88.5–92.2)
(c) 4.4 (3.3–5.9) 4.4 (3.3–5.9) 53.7 (50.6–56.8) 53.7 (50.6–56.8)

7
(a) 5.6 (4.3–7.2) 5.5 (4.3–7.1) 11.0 (9.2–13.1) 8.8 (7.2–10.7)
(b) 5.2 (4.0–6.8) 4.4 (3.3–5.9) 6.5 (5.1–8.2) 7.8 (6.3–9.6)
(c) 5.7 (4.4–7.3) 4.8 (3.6–6.3) 5.8 (4.5–7.4) 6.9 (5.5–8.6)

8
(a) 4.6 (3.5–6.1) 4.5 (3.4–6.0) 78.7 (76.1–81.1) 78.1 (75.4–80.6)
(b) 4.6 (3.5–6.1) 5.6 (4.3–7.2) 40.7 (37.7–43.8) 45.5 (42.4–48.6)
(c) 4.7 (3.6–6.2) 4.8 (3.6–6.3) 11.6 (9.8–13.7) 19.3 (17.0–21.9)
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Table 3.13: A summary of the results for the 1536 simulations with different parameters.
The amount of error type i is calculated for the 768 simulations without signal (β1 = 0),
whereas the power was calculated for the remaining 768 simulations with signal (β1 = 0.5).
Confidence intervals (ci) are at 95%.

Method
Proportion of error type i Average

powerWithin ci Below ci Above ci

Draper–Stoneman 86.33% 8.20% 5.47% 72.96%
Still–White 67.84% 14.58% 17.58% 71.82%
Freedman–Lane 88.67% 8.46% 2.86% 73.09%
ter Braak 83.59% 11.07% 5.34% 73.38%
Kennedy 77.60% 1.04% 21.35% 74.81%
Manly 73.31% 15.89% 10.81% 73.38%
Dekker 89.32% 7.81% 2.86% 72.90%
Huh–Jhun 85.81% 9.24% 4.95% 71.62%
Parametric 77.47% 14.84% 7.68% 72.73%

When the amount of errors is below the nominal level (here, α = 0.05), the test is said to be
conservative. If above, it is invalid.

Sample size Increasing the sample size had the effect of approaching the error
rate to closer to the nominal level α = 0.05 for all methods in virtually all para-
meter configurations. For small samples, most methodswere slightly conservative,
whereas Still–White and Kennedy were anticonservative and often invalid, partic-
ularly if the distributions of the errors were skewed.

Continuous or categorical regressors of interest For all methods, using con-
tinuous or categorical regressors of interest did not produce remarkable differences

Table 3.14: (Page 108) Proportion of error type i (for α = 0.05), for some representative
of the 768 simulation scenarios that did not have signal, using the different permutation
methods, and withG as the statistic in the absence of eb (so, equivalent to the F statistic).
Confidence intervals (95%) are shown in parenthesis.

N : number of observations; x1 and z1: regressors of interest and of no interest, respectively, being
either continuous (c) or discrete (d). ρ: correlation between x1 and z1; ": model partitioned or not
(using the Beckmann et al. (2001) scheme, shown in Section 3.2.2); ϵ: distribution of the simulated
errors, which can be normal (N ), uniform (U ), exponential (E ) or Weibull (W); ee: errors treated
as exchangeable; ise: errors treated as independent and symmetric. The methods are the same
shown in Table 3.2: Draper–Stoneman (D–S), Still–White (S–W), Freedman–Lane (F–L), ter Braak
(tB), Kennedy (K), Manly (M), Huh–Jhun (H–J), Dekker (D) and parametric (P), the last not using
permutations.
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in the observed proportions of type i error, except if the distribution of the errors
was skewed and sign flipping was used (in violation of assumptions), in which case
Manly and Huh–Jhun methods showed erratic control over the amount of errors.

Continuous or categorical nuisance regressors The presence of continuous or
categorical nuisance variables did not substantially interfere with either control
over error type i or power, for any of the methods, except in the presence of cor-
related regressors.

Degree of non-orthogonality and partitioning All methods provided relatively
adequate control over error type i in the presence of a correlated nuisance re-
gressor, except Still–White (conservative) and Kennedy (inflated rates). The parti-
tioning scheme mitigated the conservativeness of the former, and the anticonser-
vativeness of the latter.

Distribution of the errors Different distributions did not substantially improve
or worsen error rates when using permutation alone. Still–White and Kennedy
tended to fail control over error type i in virtually all situations. Sign flipping alone,
when used with asymmetric distributions (in violation of assumptions), required
larger samples to allow approximately exact control over the amount of error type
i. In these cases, and with small samples, the methods Draper–Stoneman, Manly
and Huh–Jhun tended to display erratic behaviour, with extremes of conservative-
ness and anticonservativeness depending on the other simulation parameters. The
same happened with the parametric method. Freedman–Lane and Dekker meth-
ods, on the other hand, tended to have a relatively constant and somewhat con-
servative behaviour in these situations. Permutation combined with sign-flipping
generally alleviated these issues where they were observed.

From all the methods, the Freedman–Lane and Dekker were those that per-
formed better in most cases, and with their 95% confidence interval covering the
desired error level of 0.05 more often than any of the other methods. The Still–
White and Kennedy methods did not generally control the error type i for most
of the simulation parameters, particularly for smaller sample sizes. On the other
hand, with a few exceptions, the Freedman–Lane and the Dekker methods effect-



110 Chapter 3. Permutation inference

ively controlled the error rates in most cases, even with skewed errors and sign-
flipping, being, at worst, conservative or only slightly above the nominal level. All
methods were, overall, similarly powerful, with only marginal differences among
those that were on average valid.

3.6 Discussion

Ideally, criteria to accept or reject a given hypothesis should be sensitive tochanges
in the parameters of interest (powerful), and insensitive to changes in nuisance
factors (robust). As pointed out long ago by Box and Andersen (1955), the as-
sumptions on which parametric tests are built are such that the first criterion is
generally satisfied, albeit not necessarily the second. Many non-parametric tests,
on the other hand, are constructed such that most or all these assumptions are not
demanded, satisfying the second criterion, but not necessarily the first. For cur-
rent applications in neuroimaging, however, this compromise between robustness
and power gains new contours and a different balance. First, in neuroimaging it is
necessary to address the multiple testing problem, in which one or more tests are
applied to each of thousands of points (commonly voxels, vertices or faces) of the
image representation of the brain. Parametric methods require the introduction of
an even larger set of assumptions to deal with multiple testing. Second, different
imaging modalities not necessarily follow the same set of assumptions regarding
distributions under the null at each test, neither for the covariance between tests
across the brain, so that those that might be acceptably used with onemethod, may
cause others to be invalid. Third, under non-random sampling, as common in case-
control studies, the very presence of the features under investigation (such as a dis-
order) may compromise the assumptions on which parametric tests depend. For
all these reasons, parametric methods, despite common use, are more likely to fail
as candidates to provide a general statistical framework for the current variety of
imaging modalities for research applications, where not only the assumptions may
not be met, but also where robustness may be seen as a key factor. Permutation
methods are a viable alternative, flexible enough to accommodate several experi-
mental needs. Further to all this, our simulations showed similar and sometimes
higher power compared to the parametric approach.
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3.6.1 Permutation tests

Permutation tests require very few assumptions about the data and, therefore, can
be applied in a wider variety of situations than parametric tests. None of the most
common parametric assumptions need to hold for non-parametric tests to be valid.
The assumptions that are eschewed include, for instance, the need of normality for
the error terms, the need of homoscedasticity and the need of random sampling.
With a very basic knowledge of sample properties or of the study design, errors
can be treated as exchangeable (ee) and/or independent and symmetric (ise) and
inferences that otherwise would not be possible with parametric methods become
feasible. Furthermore, permutation tests permit the use of the very same regres-
sion and hypothesis testing framework, even with disparate imaging modalities,
without the need to verify the validity of parametric assumptions for each of them.
The ise can be an alternative to ee when the errors themselves can be considered
exchangeable, but the design is not affected by permutations, as for one-sample
tests. And if the assumptions for ee and ise are both met, permutation and sign
flipping can both be performed to construct the empirical distribution.

The justification for permutation tests has, moreover, more solid foundations
than their parametric counterparts. While the validity of parametric tests rely on
random sampling, permutation tests rely on the idea of random allocation of ex-
perimental units, with no reference to any underlying population. This aspect has
a key importance in biomedical research — including neuroimaging — where only
a small minority of studies effectively use random population sampling. Most ex-
perimental studies need to use the subjects that are available in a given area, and
who accept to participate (e.g. patients of a hospital or students of an univer-
sity near where the mri equipment is installed). True random sampling is rarely
achieved in real applications because, often and for different reasons, selection
criteria are not truly unbiased (Ludbrook and Dudley, 1998; Pesarin and Salmaso,
2010a). Non-parametric methods allow valid inferences to be performed in these
scenarios.
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3.6.2 Pivotal statistics

In addition, permutation methods have the remarkable feature of allowing the use
of non-standard statistics, or for which closed mathematical forms have not been
derived, even asymptotically. Statistics that can be used include, for instance, those
based on ranks of observations (Brunner andMunzel, 2000; Rorden et al., 2007), de-
rived from regression methods other than least squares (Cade and Richards, 1996)
or that are robust to outliers (Theil, 1950; Sen, 1968). For imaging applications, stat-
istics that can be considered include the pseudo-t statistic after variance smooth-
ing (Holmes et al., 1996), the mass of connected voxels (Bullmore et al., 1999),
threshold-free cluster enhancement (tfce) (Smith and Nichols, 2009), as well as
cases in which the distribution of the statistic may lie in a gradient between dis-
tributions, each of them with known analytical forms, such as the distribution of
surface area, as demonstrated in Chapter 2 (published as Winkler et al., 2012). The
only requirement, in the context of neuroimaging, is that these statistics retain
their distributional properties irrespective to the (unknown) population paramet-
ers.

Indeed, a large part of the voluminous literature on statistical tests when the
errors cannot be assumed to be homoscedastic is concerned with the identifica-
tion of the asymptotic distribution of the statistics, its analytical form, and the
consequences of experimental scenarios that include unbalancedness and/or small
samples. This is true even considering that in parametric settings, the statistics are
invariably chosen such that their sampling distribution is independent of underly-
ing and unknown population parameters. Permutation tests render all these issues
irrelevant, as the asymptotic properties of the distributions do not need to be ascer-
tained. For imaging, all that is needed is that the distribution remains invariant to
unknown population parameters, i.e., the statistic needs to be pivotal. Parameters
of the distribution proper do not need to be known, nor the distribution needs to
be characterised analytically. The proposed statisticG, being a generalisation over
various tests that have their niche applications in parametric settings, is appropri-
ate for use with the general linear model and with a permutation framework, for
being pivotal and easily implementable using simple matrix operations. Moreover,
as the simulations showed, this statistic is not less powerful than the commonly
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used F statistic.

3.6.3 Permutation strategies

From the different permutation strategies presented in Table 3.2, the Freedman–
Lane and the Dekker methods provided the most adequate control of type i error
across the various simulation scenarios. This is in line with the study by Ander-
son and Legendre (1999), who found that the Freedman–Lane method is the most
accurate and powerful in various different models. The Dekker method was a
somewhat positive surprise, not only for the overall very good performance in our
simulations, but also because this method had not been extensively evaluated in
previous literature, is computationally simple, and has an intuitive appeal.

Welch (1990) commented that the Freedman–Lane procedure would violate the
ancillarity principle, as the permutation procedure would destroy the relationship
between X and Z, even if these are orthogonal. Notwithstanding, even with ancil-
larity violated, this and other methods perform satisfactorily well.

Freedman and Lane (1983) described their method as having a “non-stochastic”
interpretation, and so, that the computed p-value would be a descriptive statistic.
On the contrary, we share the same view expressed by Anderson and Legendre
(1999), that the rationale for the test and the procedure effectively produces a p-
value that can be interpreted as a true probability for the underlying model.

Regarding differences between the methods, and even though for this study
we did not evaluate the effect of extremely strong signals or of outliers, it is worth
commenting that previous research have shown that the Freedman–Lane method
is relatively robust to the presence of extreme outliers, whereas the ter Braak tends
to become more conservative in these cases (Anderson and Legendre, 1999). The
ter Braak method, however, was shown to be more robust to extremely strong
signals in the data, situations in which signal may “leak” into the permutation
distribution with the Freedman–Lane method (Salimi-Khorshidi et al., 2011).

It should be noted that the Still–White method, as implemented for these sim-
ulations, used for the regression the model containing only the regressors of in-
terest when computing the statistic. as shown in Table 3.2. It is done in this way
to emulate what probably is its more common use, i.e., rearrange the data that has
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already been residualised from nuisance, and when the nuisance regressors are no
longer available. Had the full model been used when computing the statistic, it is
possible that this methodmight have performed somewhat similarly as Freedman–
Lane, specially for larger samples. Moreover, neither the original publication (Still
andWhite, 1981), nor a related method published shortly after (Levin and Robbins,
1983), specify how the degrees of freedom should be treated when computing the
statistic in a generic formulation as we present here.

Finally, although non-parametricmethods are generally considered less power-
ful than their parametric counterparts, we found in the simulations performed that
most of the permutationmethods are not substantially less powerful than the para-
metric method, and sometimes are even more powerful, even when the assump-
tions of the latter are met. With the availability of computing power and reliable
software implementation, there is almost no reason for not using these permuta-
tion methods.

3.7 Chapter conclusion

We presented a generic framework that allows permutation inference using the
general linear model with experimental designs of arbitrary complexity, and which
depends only on the weak requirements of exchangeable or independent and sym-
metric errors, which define permutations, sign flippings, or both. Structured de-
pendence between observations is addressed through the definition of exchange-
ability blocks. We also proposed a statistic that is robust to heteroscedasticity, can
be used for multiple-testing correction, and can be implemented easily with mat-
rix operations. Based on evaluations, we recommend the Freedman–Lane and the
Dekker methods to construct the empirical distribution, and use Freedman–Lane
in the randomise algorithm (3.2.6).



Chapter 4

Combined inference

4.1 Introduction

In this chapter we show that permutation tests can provide a common solution
to seemingly disparate problems that arise when dealing with multiple imaging
measurements. These problems refer to the multiplicity of tests, and to the com-
bination of information across multiple modalities for joint inference. We begin by
describing each of these problems separately, then show how they are related, and
offer a complete and generic solution that can accommodate a myriad of designs
that can mix imaging and non-imaging data. We also present an algorithm that
has with amenable computational demands for treating these problems.

4.1.1 Multiple tests — but not the usual multiplicity

Because in neuroimaging one statistical test is typically performed at each of many
thousands of imaging units (e.g., voxels or vertices), the problems related to such
multiplicity of tests were recognised almost as early as these techniques were de-
veloped (for pioneering examples, see Fox et al., 1988; Friston et al., 1991). There
is now a comprehensive body of literature on multiple testing correction methods
that include those based on the random field theory, on permutation tests, as well
as on other strategies that control the familywise error rate (fwer) or the false
discovery rate (fdr) (for reviews, see Nichols and Hayasaka, 2003; Nichols, 2012).
However, the multiplicity of tests in neuroimaging can appear in other ways that
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are less explicit, and most importantly, that have not been fully appreciated or
made available in software packages. In the context of the general linear model
(glm, Scheffé, 1959), these other multiple tests include:

a. Multiple hypotheses in the same model: Testing more than one hypothesis
regarding a set of explanatory variables. An example is testing the effects
of multiple variables, such as presence of a disease along with its duration,
some clinical score, age and/or sex of the subjects, on a given imaging meas-
urement, such as maps from functional magnetic resonance imaging (fmri)
experiments.

b. Multiple pairwise group comparisons: Often an initial global (omnibus) test is
performed, such as an F -test in the context of analysis of variance (anova),
and if this test is significant, subsequent (post hoc) tests are performed to
verify which pairwise difference(s) drove the global result, thus introducing
a multiple comparisons problem.

c. Multiple models: Testing more than one set of explanatory variables on one
given dataset, that is, assembling and testing more than one design matrix,
each with its own set of regressors, which may differ across designs, and
each with its own set of contrasts. An example is interrogating the effect of
distinct seeds, one at a time, in a resting-state fmri experiment; another is in
an imaging genetics experiment, testing multiple candidate polymorphisms.

d. Multiple modalities: Testing separately, in the same study, more than one
imagingmodality as the response variable, suchas fmri and positron-emission
tomography (pet), or different metrics from the same modality, such as vari-
ous measurements from diffusion tensor imaging (dti), as fractional aniso-
tropy (fa), mean diffusivity (md), or radial diffusivity (rd), or the effect of
various networks identified using independent component analysis (ica).

e. Imaging and non-imaging: Testing separately, in the same study, imaging
and non-imaging measurements as response variables. An example is study-
ing group effects on fmri and on behavioural or cognitive scores, such as
iq, or disease severity scores, among countless other non-imaging measure-
ments.
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f. Multiple processing pipelines: Testing the same imaging modality multiple
times, each time after a different processing pipeline, such as using filters
with different widths for smoothing, or using different strategies for regis-
tration to a common space.

g. Multiple multivariate analyses: Testing more than one multivariate hypo-
thesis with the glm in repeated measurements designs, such as in profile
analyses, in which the same data allows various different hypotheses about
the relationships between explanatory and response variables.

In all these cases, the multiple tests cannot be assumed to be independent, so
that the simple fwer correction using the conventional Bonferroni method risks
a considerable loss in power. Modelling the degree of dependence between these
tests can be a daunting task, and be suboptimal by invariably requiring the in-
troduction of assumptions about the data, which, if at all valid, may not be suffi-
cient. By contrast, robust, generic, multi-step procedures, which do not depend as
much on assumptions, or on independence among tests, such as the Benjamini–
Hochberg procedure that controls the false discovery rate (fdr) (Benjamini and
Hochberg, 1995; Genovese et al., 2002), do not guarantee that the spatial relation-
ship between voxels or vertices within test is preserved when applied across these
multiple tests, therefore being not as useful as in other settings. More specific-
ally, the difficulty relates to correcting across various distinct imaging tests, while
maintaining control across space within any given test, as opposed to controlling
just within a single imaging test as commonly done. For the same reason, vari-
ous multiple testing approaches that are applicable to many particular cases, can
hardly be used for the problems we discuss here; extensive details on these tests
can be found in Hochberg and Tamhane (1987) and in Hsu (1996).

We call the multiple tests that arise in situations as those listed above “mul-
tiple testing problem ii” (mtp-ii), to allow a distinction from the usual multiple
testing problem due to the many voxels/vertices/faces that constitute an image,
which we denote “multiple testing problem i” (mtp-i). Methods that can be used
in neuroimaging for the mtp-i not always can be considered for the mtp-ii, a prob-
lem that has remained largely without treatment; for two rare counter examples
in which the mtp-ii was considered, we point to the studies by Licata et al. (2013)
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and Abou Elseoud et al. (2014).

4.1.2 Combination of imaging modalities

Acquisition of multiple imaging modalities on the same subjects can allow the
examination of more complex hypotheses about physiological processes, and has
potential to increase power to detect group differences. Such combination of mod-
alities can refer strictly to data acquired from different instruments (e.g., mri, pet,
eeg), or more broadly, to data acquired from the same instrument using differ-
ent acquisition parameters (e.g., different mri sequences, different pet ligands);
for an overview, see Uludağ and Roebroeck (2014); Zhu et al. (2014); Calhoun and
Sui (in press), and for example applications, see Hayasaka et al. (2006); Thomas
et al. (in press). Irrespective of which the modalities are, the options in the context
of the glm rest in testing for a single multivariate hypothesis, or in testing for a
combination of multiple univariate hypotheses. Single multivariate tests encom-
pass various classical tests, known in particular cases as multivariate analysis of
variance (manova), multivariate analysis of covariance (mancova), or canonical
correlation/variates analysis (cca/cva); these tests will be referred here as classical
multivariate tests, or cmv.

The combination of multiple univariate hypotheses requires that each is ana-
lysed separately, and that these results are grouped together to test, at each voxel
(or vertex, or face) a joint null hypothesis (jnh); in this context, the separate tests
are termed partial tests. Different criteria to decide upon rejection of the jnh give
rise to three broad categories of combined tests: (i) reject if any partial test is
significant; (ii) reject if all partial tests are significant; and (iii) reject if some
aggregate measure from the partial tests is significant. The first of these can be
traced back to Tippett (1931), and in current terminology, could be defined as re-
jecting the joint null hypothesis if any partial test is rejected at the fwer level us-
ing the Šidák correction (Šidák, 1967); it also corresponds to a union–intersection

test (uit, Roy, 1953). The second is the intersection–union test (iut, Berger, 1982),
that in neuroimaging came to be known as conjunction test (Nichols et al., 2005).
The third offers a trade-off between the two other approaches, and gives rise to a
large number of possible tests, eachwith a different rejection region, and therefore
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with different sensitivity and specificity profiles; some of these tests are popular in
meta-analyses, with the method of Fisher (Fisher, 1932) being one of the most pop-
ular, and new approaches are continually being developed. A summary is shown
in Table 4.1, and a brief overview of these and yet other tests, along with biblio-
graphic information, is in Section 4.2.6.

Both cases — a single multivariate test or the combination of multiple uni-
variate tests — can be assessed parametrically when the asymptotic distribution
of the test statistic is known, which may sometimes be the case if various as-
sumptions about the data are met. These generally refer to the the independence
between observations and between tests, to the distribution of the error terms,
and for brain imaging, to yet other assumptions regarding the relationship, across
space, between the tests. However, if the observations are exchangeable, that
is, if their joint distribution remains unchanged after shuffling, then all such as-
sumptions can be eschewed at once, and instead, permutation tests can be per-
formed. The p-values can then be computed for either the classical multivari-
ate tests, or for the combination of univariate tests; when used in the last case,
the strategy corresponds to Pesarin’s method of non-parametric combination (npc,
Pesarin, 1990, 2001), discussed below. Exchangeability is assumed only for the ob-
servations within each partial test (or for the errors terms of the respective models,

Table 4.1: (page 120) Various functions are available for joint inference on multiple tests.
For each method, both its statistic (T ) and associated p-value, P are shown. These p-
values are only valid if, for each method, certain assumptions are met, particularly with
respect to the independence between tests, but sometimes also with respect to underlying
distributions. Under exchangeability, the p-values can be computed using permutation
tests, and the formulæ in the last column are no longer necessary. The tests are shown in
chronological order; see Section 4.2.6 for details and bibliographic information.

T is the statistic for each method and P its asymptotic p-value. All methods are shown as func-
tion of the p-values for the partial tests. For certain methods, however, the test statistic for the
partial tests, if available, can be used directly. K is the number of tests being combined, pk ,
k = {1, 2, . . . ,K} are the partial p-values, wk are positive weights assigned to the respect-
ive pk , p(r) are the pk with rank r in ascending order (most significant first), α is the signific-
ance level for the partial tests, I(·) is an indicator function that evaluates as 1 if the condition
is satisfied, 0 otherwise, ⌊·⌋ represents the floor function, χ2

ν is the cumulative distribution func-
tion (cdf) for a χ2 distribution, with the ν degrees of freedom, tcdf is the cdf of the Student’s t
distribution with degrees of freedom ν, and t−1

cdf its inverse, Φ is the cdf of the normal distri-
bution with mean µ and variance σ2, and Φ−1 its inverse, and F and G are the cdf of arbit-
rary, yet well chosen distributions. For the two Dudbridge–Koeleman methods, A (T, a, b) =

I
(
T > ab

)
ab + I

(
T ⩽ ab

)
T
∑b−1

j=0 (b ln a− lnT )j/j!.
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see below); exchangeability is not assumed between the partial tests for either cmv
or npc. Moreover, non-independence does not need to be explicitly modelled,
either between observations, between partial tests, or across space for imaging
data, thus making such tests applicable to a wide variety of situations.

4.1.3 Overview of the chapter

We show that a single, elegant permutation solution is available for all the situ-
ations described above, addressing the comparisons of response variables when
these can be put in comparable scale, the correction of p-values, via adjustment to
allow exact control over fwer in the various multiple testing scenarios described
above, and the combination of multiple imaging modalities to allow for joint infer-
ence. The conjunction of multiple tests is a special case in which the null hypothesis
differs from that of a combination, even though it can be approached in a similar
fashion; because the distinction is quite an important one, it is also discussed.

In the next section we outline the notation used throughout the chapter. We
then use the definition of union-intersection tests, closed testing procedures, and
synchronised permutations to correct for multiple hypotheses, allowing flexibil-
ity to mix in the same framework imaging data with different spatial resolutions,
surface and/or volume-based representations of the brain, and even non-imaging
data. For the problem of joint inference, we propose and evaluate a modification
of the npc, such that instead of two phases and large data storage requirements,
the permutation inference can be performed in a single phase, without prohibitive
memory needs. We also evaluate, in the context of permutation tests, various com-
bining methods that have been proposed in the past decades, and identify those
that provide the best control over error rate and power across a range of situations.
We also exemplify the potential gains in power with the reanalysis of the data from
a pain study. In the Appendix, we provide a brief historical review of various com-
bining functions, discuss criteria of consistency and admissibility, and provide an
algorithm that allows combination and correction in a unified framework.
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4.2 Theory

4.2.1 History

Historically, as in the case of the permutation tests discussed in Chapter 3, Ronald
A. Fisher was among the first to propose such joint analysis of various tests. In the
fourth edition of his now classical book Statistical Methods for Research Workers

(Fisher, 1932), his approach was described rather succinctly:

When a number of quite independent tests of significance have been

made, it sometimes happens that although few or none can be claimed

individually as significant, yet the aggregate gives an impression that the

probabilities are on the whole lower than would often have been obtained

by chance. It is sometimes desired, taking account only of these probabil-

ities, and not of the detailed composition of the data from which they are

derived, which may be of very different kinds, to obtain a single test of

the significance of the aggregate, based on the product of the probabilities

individually observed.

The circumstance that the sum of a number of values of χ2 is itself dis-

tributed in the χ2 distribution with the appropriate number of degrees

of freedom, may be made the basis of such a test. For in the particular

case when n = 2, the natural logarithm of the probability is equal to
1
2
χ2. If therefore we take the natural logarithm of a probability, change

its sign and double it, we have the equivalent value of χ2 for 2 degrees

of freedom. Any number of such values may be added together, to give

a composite test, using the Table of χ2 to examine the significance of the

result. — Fisher (1932)

The logic of this test is based on the fact that the probability of rejecting the
global null hypothesis is related to intersection of the probabilities of each indi-
vidual test, i.e.,

∏
i Pi. However,

∏
i Pi is not uniformly distributed, even if the

null is true for all partial tests, and cannot be used itself as the joint significance
level for the global test. To remediate this fact, some interesting properties and re-
lationships among distributions of random variables were exploited by Fisher and
embodied in the succinct excerpt above:
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The logarithm of uniform is exponential The cumulative distribution function
(cdf) of an exponential distribution is F (x) = 1 − e−λx where λ is the rate para-
meter, the only parameter of this distribution. The inverse cdf is, therefore, given
by x = − 1

λ
ln(1 − F (x)). F (x) = P is a random variable uniformly distributed

in the interval [0, 1], and so is 1 − P , and it is immaterial to differ between them.
As a consequence, the same can be written as x = − 1

λ
ln(P ), where P ∼ U(0, 1),

which highlights the fact that the negative of the natural logarithm of a random
variable distributed uniformly between 0 and 1 follows an exponential distribution
with rate parameter λ = 1.

An exponential with rate 1/2 is χ2 distributed The cdf of a chi-squared distri-
bution with ν degrees of freedom, i.e. χ2

ν , is given by F (x; ν) =
∫ x/2
0 t

ν
2−1e−tdt

( ν
2
−1)!

. If

ν = 2, the expression simplifies to F (x; ν = 2) = 1 − e−x/2. In other words, a
χ2 distribution with ν = 2 is equivalent to an exponential distribution with rate
parameter λ = 1/2.

The sum of chi-squared is also chi-squared The moment-generating function
(mgf) of a sum of independent variables is the product of the mgfs of the respective
variables. The mgf of a χ2

ν is M(t) = (1 − 2t)−ν/2. The mgf of the sum of K
independent variables that follow each aχ2

2 distribution is then given byMsum(t) =∏K
i=1(1−2t)−2/2 = (1−2t)−K , which also defines a χ2 distribution, however with

degrees of freedom ν = 2K .

With these facts in mind, the product
∏

i Pi can be transformed into a p-value
that is uniformly distributed when the global null is true. The product can be
converted into a sum by taking the logarithm. And as shown above, the logarithm
of uniformly distributed variables follows an exponential distribution with rate
parameter λ = 1. Multiplication of each ln(Pi) by 2 changes the rate parameter to
λ = 1/2 andmakes this distribution equivalent to a χ2 distribution with degrees of
freedom ν = 2. The sum of k of these logarithms also follow a χ2 distribution, now
with ν = 2K degrees of freedom, i.e., χ2

2K . Thus, the statistic for the Fisher method
is given by TFisher =−2

∑K
i=1 ln(Pi), with TFisher following a χ2

2K distribution, from
which a p-value for the global hypothesis can be easily obtained.
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The elegance of the combination strategy devised by Fisher resides in that it
depends solely on the uniformity of the distribution of the p-values for each of the
separateK tests under the null hypothesis, something that, by definition, is always
attained whenever a statistical test is exact. This also renders the test, in a certain
sense, non-parametric, although arguably, the number of tests can be considered
a parameter upon which the resulting combined statistic depends.

4.2.2 Notation and general aspects

For a given voxel (or vertex, or face), consider a multivariate glm:

Y = Xβ + ϵ (4.1)

where Y is the N × K matrix of observed data, with N observations of K dis-
tinct (possibly non-independent) variables, X is the full-rankN ×R design matrix
that includes explanatory variables (i.e., effects of interest and possibly nuisance
effects), β is the R × K matrix of R regression coefficients for each of the K

variables, and ϵ is theN ×K array of random errors. Estimates for β can be com-
puted by ordinary least squares, i.e., β̂ = X+Y, where the superscript (+) denotes
a pseudo-inverse. One generally wants to test the null hypothesis that a given
combination (contrast) of the elements in β equals to zero, that is,H0 : C′βD = 0,
where C is aR×S full-rank matrix of S contrasts of coefficients on the regressors
encoded in X, 1 ⩽ S ⩽ R and D is a K × Q full-rank matrix of Q contrasts of
coefficients on the dependent, response variables in Y, 1 ⩽ Q ⩽ K . Often more
than one such standard multivariate hypothesis is tested, each regarding differ-
ent aspects of the same data, and each using a different pair of contrasts C and
D. Not uncommonly, even different sets of explanatory variables are considered,
sometimes arranged in entirely different designs. We denote the set of such design
matrices as X = {X}, the set of pairs of contrasts for each hypothesis related to
that design as CX = {(C,D)}, and the set of sets of such contrasts as {CX}.

Depending on the values of K , Q, and S,H0 can be tested using various com-
mon statistics. If K = 1, or if K > 1 and Q = 1, the problem reduces to the
univariate case, in which a t statistic can be used if S = 1, or an F -statistic if
S ⩾ 1. If K > 1 and Q > 1, the problem is a multivariate proper and can be
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approached via cmv when respective multivariate Gaussian assumptions are sat-
isfied; in these cases, if S = 1, the Hotelling’s T 2 statistic can be used (Hotelling,
1931), whereas if S > 1, various other statistics are available, such as the Wilks’
λ (Wilks, 1932), the Lawley–Hotelling’s trace (Lawley, 1938; Hotelling, 1951), the
Roy’s largest root(s) (Roy, 1953; Kuhfeld, 1986), and the Pillai’s trace (Pillai, 1955);
the merits of each in the parametric case are discussed in various textbooks (e.g.,
Christensen, 2001; Timm, 2002; Anderson and ter Braak, 2003; Johnson and Wich-
ern, 2007), and such tests have been applied to neuroimaging applications (Chen
et al., 2014).

The model in Equation 4.1 can be rewritten as Ỹ = Xβ̃ + ϵ̃, where Ỹ = YD,
β̃ = βD and ϵ̃ = ϵD. If Q = 1, this is a univariate model, otherwise it remains
multivariate, with Ỹ having K̃ = Q columns, and the null hypothesis simplified
as H0 : C′β̃ = 0. This null is equivalent to the original, and can be split into
multiple partial hypothesesH0

k̃
: C′β̃k̃ = 0, where β̃k̃ is the k̃-th column of β̃, k̃ =

1, . . . , K̃ . This transformation is useful as it defines a set of separate, even if not
independent, partial hypotheses, that can be tested and interpreted separately. We
drop heretofore the “∼” symbol, with the modified model always implied.

Non-parametric inference for these tests can be obtained via permutations, by
means of shuffling the data, themodel, the residuals, or variants of these, in a direct
extension from the univariate case (Winkler et al., 2014, Table 3.2, also published
in). To allow such rearrangements, some assumptions need to be made: either
of exchangeable errors (ee) or of independent and symmetric errors (ise). The first
allows permutations, the second sign flippings; if both are available for a given
model, permutations and sign flippings can be performed together. We use gen-
erically the terms rearrangement or shuffling when the distinction between per-
mutations or sign flippings is not pertinent. These are represented by permutation
and/or sign flipping matrices Pj , j = 1, . . . , J , where J is the number of such
rearrangements.

Another aspect that concerns permutation tests refers to the use of statistics
that are pivotal, i.e., that have sampling distributions that do not depend on un-
known parameters. Most statistics used with parametric tests (and all the uni- and
multivariate examples from the previous paragraph) are pivotal if certain assump-
tions are met, especially homoscedasticity. Their benefits in non-parametric tests
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Table 4.2: Joint hypotheses tested with union–intersection and intersection–union of K
partial tests. In the uit, the null is also called global null hypothesis, whereas in the iut,
the null is also called conjunction null hypothesis.

uit iut

Null hypothesis (H0)
K∩
k=1

H0
k

K∪
k=1

H0
k

Alternative hypothesis (H1)
K∪
k=1

H1
k

K∩
k=1

H1
k

are well known (Hall and Wilson, 1991), and for neuroimaging, pivotal statistics
are useful to allow exact correction for the mtp-i.

4.2.3 Union–intersection and intersection–union tests

Consider the set of p-values {pk} for testing the respective set of partial null hy-
potheses {H0

k}. A union–intersection test (uit, Roy, 1953) considers the jnh cor-
responding to a global null hypothesis that all H0

k are true; if any such partial null
is rejected, the global null hypothesis is also rejected. An intersection–union test
(iut, Berger, 1982) considers the jnh corresponding to a conjunction null hypothesis
(also termed disjunction of null hypotheses) that any H0

k is true; if all partial nulls
are rejected, the conjunction null hypothesis is also rejected. In the uit, the null
is the intersection of the null hypotheses for all partial tests; the alternative is the
union of the alternatives. In the iut, the null is the union of the null hypotheses
for all partial tests; the alternative is the intersection of the alternatives. A uit
is significant if the smallest pk is significant, whereas an iut is significant if the
largest pk is significant. Figure 4.1 illustrates the rejection regions for uit and iut
cases based on two independent t-tests, in which the statistic larger than a cer-
tain critical level is considered significant. Table 4.2 shows the null and alternative
hypotheses for each case.

Enlarging the number of tests affects uits and iuts differently. For the uitwith
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t1

t2

Figure 4.1: (a) Rejection region of a union–intersection test (uit) based on two independ-
ent t-tests. The null is rejected if either of the partial tests has a statistic that is large
enough to be qualified as significant. (b) Rejection region of an intersection–union test
(iut) based the same tests. The null is rejected if both the partial tests have a statistic is
large enough to be qualified as significant.
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a given statistic threshold, more tests increase the chances of false positives, and
correction for this multiplicity needs to be applied. In fact, it can be shown that a
uit at a significance level α is equivalent to controlling the fwer at α for the same
tests. In other words, a union-intersection procedure is an fwer procedure. For an
iut, in contrast, the procedure does not change with more tests. The conjunction
null hypothesis is composite, consisting of different parameter settings. For the
extreme case that exactly one partial null is true and K − 1 effects are real, an
iut is exact for any K ; if two or more more partial nulls are true, an iut becomes
increasingly conservative with larger K .

The null hypothesis of the uit can be rejected if the smallest pk is significant
or, equivalently, its corresponding statistic, that is, the extremum statistic. For
tests in which larger statistics provide evidence against the null hypothesis, the
relevant extremum is the maximum. Conversely, for tests in which smaller stat-
istics provide evidence against the null, the extremum is the minimum. Clearly, if
the most extreme statistic is significant, at least one partial hypothesis is rejected,
therefore the global null hypothesis can be rejected without the need to continue
testing the other K − 1 partial hypotheses. The null hypothesis of the iut can
be rejected if the largest pk is significant or, equivalently, its corresponding least
extreme statistic. Clearly, if the least extreme statistic is significant, all partial
hypotheses can be rejected, therefore the conjunction hypothesis can be rejected
without the need to continue testing all other K − 1 partial hypotheses.

In brain imaging, the term conjunction refers to a test performed when one
wants to localise regions where there is signal in all partial tests, that is, a logical
and of all alternative hypotheses (Nichols et al., 2005), and is synonymous with
the iut. In noting the lack of power of such a proper conjunction test, Friston
et al. (2005) suggested a partial conjunction, in which fewer than all alternatives
need to intersect. Using the same notation of Table 4.1, both approaches have the
same statistic, T = max (pk), but the p-value of the latter can be computed as
TK−v+1, so that the test is a conjunction of at least v alternative hypotheses; if
v = K , it is an iut, and if v = 1 the null is equivalent to that of a uit (such a test,
however, is inconsistent for a uit; see Section 4.2.9). Benjamini and Heller (2008)
further generalised the procedure by allowing the combination of the largest p-
values using any of various possible combining functions, such as those we present
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in Table 4.1 and in Section 4.2.6.

4.2.4 Closed testing

In a closed testing procedure (ctp), eachH0
k is rejected if, and only if, it is significant

in its own right at a certain level α, and if all possible sub-jnhs that include the
same H0

k and comprise some or all of the partial hypotheses (that is, subsets of
the global jnh formed by some of the partial tests) are also rejected at α using a
suitable test. Various such tests can be considered, including cmvs and npc (next
section).

A ctp guarantees strong control over fwer (Marcus et al., 1976). To produce
adjusted p-values, the original method requires that all 2K−1 sub-jnhs are tested¹,
a requirement that is computationally onerous, even for a moderate number of
tests, a problem aggravated by the large number of tests that are considered in
an imaging experiment. There exists, however, a particular test for the sub-jnhs
that obviates the need for such a gargantuan computational venture: the union–
intersection test. In a uit using the extremum statistic, the most extreme of the
global jnh that comprises all the K partial tests is also the most extreme of any
other sub-jnh that includes that particular partial hypothesis, such that the other
joint subtests can be bypassed altogether. As a uit is also an fwer-controlling
procedure, this raises various possibilities for correction of both mtp-i and mtp-ii.
While such a shortcut can be considered for both parametric (Holm, 1979) and non-
parametric cases (Westfall and Young, 1993), for the non-parametric methods using
permutation, one additional feature is needed: that the joint sampling distribution
of the statistic used to test each of the sub-jnh is the same regardless whether the
null is true for all the K partial tests, or just some of them. This property is called
subset pivotality (Westfall and Young, 1993; Westfall and Troendle, 2008), and it
constitutes the multivariate counterpart to the univariate pivotality.

¹ From the Pascal triangle:
∑K

i=1

(
K
i

)
= 2K − 1.
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4.2.5 Non-parametric combination

The npc consists of testing each of the H0
k using shufflings that are performed

synchronously for all K partial tests. The resulting statistics for each permutation
are recorded, allowing an estimate of the complete empirical null distribution to
be constructed for each partial test. In a second stage, the empirical p-values for
each statistic are combined, for each permutation, into a joint statistic. As such a
combined joint statistic is produced from the previous permutations, an estimate
of its empirical distribution function is immediately known, and so the p-value of
the unpermuted statistic, hence of the joint test, can be assessed. The method was
proposed by Pesarin (1990, 1992), and independently, though less generically, by
Blair and Karniski (1993); Blair et al. (1994); a thorough description is available
in Pesarin (2001) and Pesarin and Salmaso (2010a). An early application to brain
imaging can be found in Hayasaka et al. (2006), its use to combine different stat-
istics within the same modality in Hayasaka and Nichols (2004), and a summary
description and practical examples are presented in Brombin et al. (2013). The jnh
of the combined test is that all partial null hypotheses are true, and the alternative
that any is false, which is the same null of a uit, although the rejection region
may differ widely from the example in Figure 4.1a, depending on the combining
function.

The only two requirements for the validity of the npc are that the partial test
statistics have the same direction suggesting the rejection of the null hypothesis,
and that they are consistent (see Section 4.2.9). For the combining function, it is
desirable that (i) it is non-decreasing with respect to all its arguments (which are
the p-values pk, or 1 − pk, depending on the combining function), (ii) that it ap-
proaches its maximum (or minimum, depending on the function) when at least one
of the partial tests approaches maximum significance (that is, when at least one p-
value approaches zero), and (iii) that for a test level α > 0, the critical significance
threshold is smaller than the function maximum value. These requirements are
easily satisfied by almost all functions shown in Table 4.1, which therefore can
be used as combining functions in the framework of npc (see Section 4.2.9 for a
discussion on the few exceptions).

One of the most remarkable features of npc is that the synchronised permuta-
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tions implicitly account for the dependence structure among the partial tests. This
means that even combining methods originally derived under an assumption of in-
dependence, such as Tippett or Fisher, can be used even when independence is un-
tenable. In fact, modifications to these procedures to account for non-independence
(e.g., Brown, 1975; Kost and McDermott, 2002, for the Fisher method) are made re-
dundant. As the p-values are assessed via permutations, distributional restrictions
are likewise not necessary, rendering the npc free of most assumptions that thwart
parametric methods in general. This is why npc methods are an alternative to cmv
tests, as each of the response variables in a manova or mancova analysis can be
seen as an univariate partial test in the context of the combination.

4.2.6 Overview of combining functions

Below are a few details and references for the methods shown in Table 4.1, plus a
few others, presented inchronological order. A number of studies comparing some
of these functions in various scenarios have been published (Birnbaum, 1954; van
Zwet and Oosterhoff, 1967; Oosterhoff, 1969; Rosenthal, 1978; Berk and Cohen,
1979; Westberg, 1985; Lazar et al., 2002; Loughin, 2004; Whitlock, 2005; Wu, 2006;
Won et al., 2009; Bhandary and Zhang, 2011; Chen, 2011; Zaykin, 2011; Chang
et al., 2013). Some of these are permutationally equivalent to each other, that is,
their rejection region under permutation is the same, and it becomes immaterial
which is chosen.

Tippett This is the oldest and probably the simplest of the combination methods,
having appeared in Tippett (1931). The combined test statistic is simply the min-
imum p-value across all partial tests, i.e. TTippett = mink (pk). The probability is
computed as PTippett = 1−

(
1− TTippett

)K .

Fisher This is certainly the most well known of the combination strategies. It
appeared in Fisher (1932) and follows from the idea of treating the joint probability
as the intersection of all partial tests, which is given by their product

∏
k pk. A

statistic for the global hypothesis can be constructed as TFisher =−2
∑

k ln (pk), as
shown earlier in this chapter, which follows a χ2 distribution with 2k degrees of
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freedom, and from which an uniformly distributed significance level, PFisher, can
be obtained.

Pearson–David The same product suggested by Fisher,
∏

k pk, was used by Pear-
son (1933) to test equality of distributions. David (1934) discussed that a similar
test could be used with

∏
k(1−pk) and suggested using the most extreme of these

two products as the statistic, a view later shared by Pearson himself (Pearson,
1934). The test statistic is, therefore, given by TPearson–David = −2min

(∑
k ln (pk) ,∑

k ln (1− pk)
)
, which, as in the Fisher method, follows a χ2 distribution with

2k degrees of freedom, and from which the significance PPearson–David can be com-
puted.²

Stouffer This method appeared as a footnote in the report of the sociological
study conducted among veterans of the World War ii by Stouffer et al. (1949). The
idea is to convert the p-values to normally-distributed z-scores, sum these scores,
and compute a new p-value. The conversion to a normal distribution is irrespective
to the distributions from which the partial p-values, pk, may have arisen. The
test statistic is given by TStouffer =

1√
K

∑
k Φ

−1 (1− pk), where Φ−1 is the inverse
cumulative distribution function (cdf) of the normal distribution (i.e. the probit
function). The statistic TStouffer follows a normal distribution with zero mean and
unit variance, from which a probability PStouffer can be obtained.

Wilkinson The probability of observing r significant p-values at level α out of
theK tests performed can be computed using a binomial expansion as proposed by
Wilkinson (1951). The statistic TWilkinson is simply r, and the probabilty of finding
no more or less than r by chance is given by PWilkinson =

∑K
k=r

(
K
k

)
αk(1− α)K−k.

If the partial p-values are sorted in ascending order, p(1) ⩽ p(2) ⩽ . . . ⩽, p(K),
and if the significance level is defined as α = p(1), the approach is equivalent
to the Tippett method. Note that the probability does not depend on the actual
probabilities for the partial tests, but only on r and α.

² Historical details regarding this method are recounted in Owen (2009). The authors also com-
ment that the significance level could be doubled to account for the fact that two tests are being
performed, although this is not in the original publications.
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Good A generalisation of the Fisher method, and which assigns arbitrary, un-
equal positive weights wk for each of the p-values of the partial tests, was sugges-
ted by Good (1955). Each partial test can be weighted according to some criteria,
for instance, the sample size for each of the partial test, the number of degrees
of freedom, or some other desirable feature, such as ecological or internal valid-
ity (Rosenthal, 1978). The statistic is given by TGood =

∏
k p

wk
k , and its significance

can be assessed as PGood =
∑

k WkT
1/wk

Good , whereWk =wK−1
k

(∏k−1
i=1 (wk − wi)

−1
)

(∏K
i=k+1 (wk − wi)

−1
)
.

Lipták Another generalised combined statistic can be produced using the inverse
cdf, F−1, of the pk, summing the values of the statistics, and computing a new p-
value for the global null using the cdf G of the sum of the statistics, a method
proposed by Lipták (1958). Each summand can be arbitrarily weighted, as in the
Good method. In principle, any continuously increasing function with support in
the interval [0; 1] can be used for F , albeit a more obvious choice is the cdf of
the normal distribution, which can be used as both F and G, and which makes
the approach virtually identical to the Stouffer method if all weights are 1 (van
Zwet and Oosterhoff, 1967). In this case, the statistic for the method is given by
TLipták =

∑
k wkΦ

−1 (1− pk), which follows a normal distribution with zero mean
and variance K . F can also be a χ2

ν distribution, in which case, and also when all
wk = 1, G is a χ2

Kν distribution. If ν = 2, the approach is equivalent to the Fisher
method.

Lancaster While Lipták method generalises combining strategies such as Fisher
and Stouffer, the Lancaster method (Lancaster, 1961) further generalises the Lipták
approach by allowing different F−1

k for each partial test. Choices for F−1
k include,

for instance, the cdf of the gamma distributionwith scale parameter θ = 2, possibly
with different shape parameters taking the place of the weights wk for each partial
test. If the weights are all positive integers, the significances can be assessed from
the cdf of aχ2 distribution, with degrees of freedom ν = 2

∑
k wk (Berk and Cohen,

1979).
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Winer A combination strategy that resembles the Stouffer method, but uses Stu-
dent’s t statistics, rather than z-scores was proposed by Winer (1962). The idea is
to sum the t statistics for all the K partial tests, and normalising the sum so that
the resulting statistic follows a standard normal distribution. The normalisation
is based on the fact that the variance of the t distribution can be determined from
its the degrees of freedom ν as ν/(ν − 2). The statistic for this method is given
by TWiner =

∑
k tk

/√∑
k

νk
νk−2

. The Winer method cannot be applied if νk ⩽ 2

for any of the partial tests. Moreover, νk should not be too small for the normal
approximation to be reasonably valid (e.g., νk ⩾ 10). The Winer method is a par-
ticular case of the Lancaster method.

Edgington The probability of observing, due to chance, a value equal or smaller
than the sum of the partial p-values, TEdgington =

∑
k pk, was proposed by Edging-

ton (1972) as a more powerful alternative to the Fisher method. This probability
can be calculated as PEdgington = TK

K!
when T ⩽ 1, where T is the TEdgington stat-

istic. More generally, or if T > 1 the probability can be computed as PEdgington =∑⌊T ⌋
j=0(−1)j

(
K
j

) (T−j)K

K!
, where ⌊·⌋ is the floor function.

Mudholkar–George It is possible to use a simple logit transformation to com-
pute a statistic that approximates a scaled version of the Student’s t distribution, as
shown byMudholkar and George (1979). The scaling can be applied to the result of
the logit transformation itself, such that the statistic is computed as TMudholkar–George

= 1
π

√
3(5K+4)
K(5K+2)

∑
k ln
(

1−pk
pk

)
, which follows a t distribution with 5K + 4 degrees

of freedom.

Friston (global null) Friston et al. (1999) proposed the use of the minimum stat-
istic, or equivalently, the maximum pk, across the K tests as a way to test the
null hypothesis of no effect for all the tests. The fact that it had originally been
called a “conjunction” caused some confusion in the literature, because the even-
tual rejection of the global null cannot be used to infer that the null for each of
the partial tests are all rejected, as it would be in a logical conjunction (Nichols
et al., 2005). The statistic for this method can be expressed in terms of the p-values
for the partial tests as TFriston = maxk (pk), and its significance can be assessed as
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PFriston-GN = TK
Friston. The Friston method is equivalent to the Wilkinson method if

α = p(K) and so, r = K .

Darlington–Hayes In a discussion about pooling p-values formeta-analysis, Dar-
lington and Hayes (2000) raised a number of limitations of these methods, and pro-
posed a modification over the Stouffer method that would address some of these
concerns. The modified method, called Stouffer-max, uses as test statistic the mean
of the r highest z-scores, i.e. TDarlington–Hayes =

1
r

∑r
k=1 Φ

−1
(
1− p(k)

)
, rather than

the normalised sum all the z-scores as in the Stouffer method. When r = 1, it
is equivalent to the Tippett method, whereas when r = K , equivalent to the ori-
ginal Stouffer. Significances can be computed for intermediate values of r through
Monte Carlo simulation, and the authors provided tables with critical values.

Zaykin Thismethod, called truncated product method (tpm) was proposed by Za-
ykin et al. (2002) as away to combine features of the Fisher andWilkinsonmethods.
The statistic is given by TZaykin =

∏K
k=1 p

I(pk⩽α)
k , where I (·) is an indicator func-

tion that evaluates as 1 if the given condition is satisfied, and 0 otherwise. In other
words, the statistic is the product of only the partial p-values that are significant at
the level α, whereas in the Fisher method, all p-values are used. The significance
for the combination is given by PZaykin =

∑K
k=1

(
K
k

)
(1− α)K−k

(
I
(
T > αk

)
αk +

I
(
T ⩽ αk

)
T
∑k−1

j=0
(k lnα−lnT )j

j!

)
, where T is TZaykin. If α = mink (pk), then the ap-

proach is equivalent to the Tippett method. If maxk (pk) ⩽ α ⩽ 1, the approach is
equivalent to the Fisher method. Although exact, computationally the expression
for PZaykin is prone to over/underflows for certain combinations of large K and α,
and because of this, when a global significance cannot be obtained analytically,
Monte Carlo methods can be used.

Dudbridge–Koeleman While the Zaykin method combines only the partial tests
that are significant at the level α, it is also possible to create a statistic that com-
bines only themost r significant tests, where r is specified in advance. Thismethod
was proposed byDudbridge and Koeleman (2003) and called rank truncated product
(rtp). The main benefit of this strategy is that it depends only on a predetermined
number of partial tests to be rejected, rather than on their significances, which
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are random quantities. The statistic is computed as TDudbridge–Koeleman =
∏r

k=1 p(k),
where p(k) is the p-value for the k-th most significant partial test. The signi-
ficance can be assessed as PDudbridge–Koeleman =

(
K
r+1

)
(r + 1) ×

∫ 1

0
(1− t)K−r−1(

I (T > tr) tr + I (T ⩽ tr)T
∑r−1

j=0
(r ln t−lnT )j

j!

)
dt, where T = TDudbridge–Koeleman.

As with the Zaykin method, for certain combinations of r and large K , the signi-
ficances need to be computed through Monte Carlo methods.³

Nichols Addressing logical issues regarding the original Friston method⁴ when
used for conjunctions, Nichols et al. (2005) observed that the same minimum stat-
istic (or, equivalently, the maximum p-value) could still be used for true conjunc-
tion inference. The idea is that, if the least significant test, i.e. the largest pk, is
significant at α, then all the partial tests are also significant at that level, and so,
the conjunction null hypothesis⁵, i.e. the hypothesis that there is no effect for all or
for some of the tests, can be rejected. This was the first conjunction test proposed
in the neuroimaging literature⁶ and it does not assume independence between the
partial tests.

Friston (conjunction null) To address the issues that emerged about the misuse
of the original test to reject the global null as a “conjunction”, Friston et al. (2005)
suggested another test, which uses the same statistic, but with the significance be-
ing computed as PFriston-CN = TK−u+1

Friston , where u is the minimum number of partial
tests that need to be rejected so that the test is a true conjunction of at least u tests.
When u = K , the approach is equivalent to the Nichols method, and when u = 1,
it is equivalent to the original Friston method. For other values of u, the test can

³ A combination of the tpm and rtp has been also proposed and named rank-and-threshold trun-
cated product or dual truncated product (dtp). The statistic is max

(
TZaykin, TDudbridge–Koeleman

)
and

its significance can be computed analytically or via Monte Carlo methods. See the Appendix of
Dudbridge and Koeleman (2003) for details.

⁴ By original we mean the method in Friston et al. (1999). Another conjunction method had previ-
ously been proposed (Price and Friston, 1997), which suffered from different issues (Caplan and
Moo, 2004).

⁵ Also called disjunction of null hypotheses (Benjamini and Heller, 2008).
⁶ The authors had presented a the test in a poster at the x Annual Meeting of the Organization for
Human Brain Mapping (ohbm), in 2004 in Budapest, Hungary (Brett et al., 2004). A similar test,
with the null and alternative hypotheses reversed, had been proposed by Berger (1982).



4.2. Theory 137

be termed a partial conjunction test.

Taylor–Tibshirani If the p-values are sorted in ascending order, p(1) ⩽ p(2) ⩽
. . . ⩽, p(K), these ranked significances can be compared to their expectations un-
der the global null hypothesis. Large deviations from the expected values suggest
the presence of the effect among the tests. Taylor and Tibshirani (2006) sugges-
ted that a measurement of this deviation could be used to infer the overall sig-
nificance of the tests. This measurement, termed tail strength (ts), is defined as
TTaylor–Tibshirani =

1
K

∑K
k=1

(
1− p(k)

K+1
k

)
. Under the assumptions that the global

null is true and the tests are independent, this statistic follows a normal distribu-
tion with zero mean and a variance that can be approximated as σ2 = 1

K
when

K → ∞, from which significance can be assessed. When these assumptions are
not met, bootstrap inference can be used.

Benjamini–Heller Recognising that sometimes a compromise between the global
null and the conjunction null may be necessary, as in the Friston (conjunction
null) method, Benjamini and Heller (2008) proposed a generic approach in which
a probability for rejecting the conjunction null in at least u out of the K tests is
computed. In this method, the p-values are sorted in ascending order, and only
those larger than p(u) are combined. The combination can use any of the methods
that reject the global null discussed above, or others, including methods that take
non-independence into account.

Jiang The statistic of the Taylor–Tibshirani method has a variance that depends
asymptotically only on the number of tests K . However, the value of the statistic
can be small when effect is truly present in only a few partial tests, therefore redu-
cing the power of the method. In an analogy with the Zaykin method, Jiang et al.
(2011) proposed to compute the tail strength using only partial tests with p-values
smaller than a certain level α. The method is called truncated tail strength (tts),
and the statistic is computed as TJiang =

1
K

∑K
k=1 I

(
p(k) ⩽ α

) (
1− p(k)

K+1
k

)
. This

statistic has no known analytical distribution and the authors propose computing
their significance using Monte Carlo or permutation methods.
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4.2.7 Transformation of the statistics

While npc offers flexibility in a simple and uncomplicated formulation, its imple-
mentation for brain imaging applications poses certain challenges. Because the
statistics for all partial tests for all permutations need to be recorded, enormous
amounts of data storage space may be necessary, a problem further aggravated
when more recent, high resolution imaging methods are considered. Even if stor-
age space were not a problem, however, the discreteness of the p-values for the
partial tests becomes problematic when correcting for multiple testing, because
with thousands of tests in an image, ties are very likely to occur among the p-
values, further causing ties among the combined statistics. If too many tests across
an image share the samemost extreme statistic, correction for the mtp-i, while still
valid, becomes less powerful (Westfall and Young, 1993; Pantazis et al., 2005). The
most obvious workaround — run an ever larger number of permutations to break
the ties — may not be possible for small sample sizes, or when possible, requires
correspondingly larger data storage.

However, another possible approach can be considered after examining the two
requirements for the partial tests, and also the desirable properties (i)–(iii) of the
combining functions, all listed earlier. These requirements and properties are quite
mild, and if the sample size is reasonably large and the test statistics homogeneous,
i.e., they share the same asymptotic permutation distribution, a direct combination

based not on the p-values, but on the statistics themselves, such as their sum, can
be considered (Pesarin and Salmaso, 2010a, page 131). Sums of statistics are in-
deed present in combining functions such as of Stouffer, Lancaster, Winer, and
Darlington–Hayes, but not others listed in Table 4.1 and Section 4.2.6. In order
to use these other combining functions, most of them based on p-values for the
partial tests, and under the same premises, the statistics need to be transformed
to quantities that behave as p-values. In the parametric case, these would be the
parametric p-values, computed from the parametric cumulative distribution func-
tion (cdf) of the test statistic. If the parametric assumptions are all met for the
partial tests, their respective parametric p-values are all valid and exact; if the as-
sumptions are not met, these values are no longer appropriate for inference on
the partial tests, but may still be valid for npc, for satisfying all requirements and
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desirable properties of the combining functions. As they are not guaranteed to
be appropriate for inference on the partial tests, to avoid confusion, we call these
parametric p-values “u-values”.

Another reason for not treating u-values as valid p-values is that they do not
necessarily need to be obtained via an assumed, parametric cumulative distribution
function for the statistics of the partial tests. If appropriate, other transformations
applied to the statistics for the partial tests can be considered; whichever is more
accurate to yield values in the interval [0; 1] can be used. The interpretation of a u-
value should not be that of a probability, but merely of a monotonic, deterministic
transformation of the statistic of a partial test, so that it conforms to the needs of
the combining functions.

Transformation of the statistic to produce quantities that can be used in place
of the non-parametric p-values effectively simplifies the npc algorithm, greatly
reducing the data storage requirements and computational overhead, and avoiding
the losses in power induced by the discreteness of p-values. This simplification is
shown in Figure 4.2, alongside the original npc algorithm.

Regardless of the above transformation, the distribution of the combined stat-
istic, T , may vary greatly depending on the combining function, and it is always as-
sessed non-parametrically, via permutations. Different distributions for different
combining functions can, however, pose practical difficulties when computing spa-
tial statistics such as cluster extent, cluster mass, and even threshold-free cluster
enhancement (tfce, Smith and Nichols, 2009). Consider for instance the threshold
used to define clusters: prescribed values such as 2.3 or 3.1 (Woo et al., 2014) relate
to the normal distribution and are not necessarily sensible choices for combining
functions such as Tippett or Fisher. Moreover, for some combining functions, such
as Tippett and Edgington, smaller values for the statistic are evidence towards the
rejection of the null, as opposed to larger as with most of the others. To address
these practical issues, a monotonic transformation can be applied to the combined
statistic, so that its behaviour becomes more similar to, for instance, the z-statistic
(Efron, 2004). This can be done again by resorting to the asymptotic behaviour of
the tests: the combined statistic is converted to a parametric p-value (the formulas
are summarised in Table 4.1), which, although not valid for inference unless cer-
tain assumptions are met, particularly with respect to the independence among the
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Figure 4.2: The original npc algorithm combines non-parametric p-values and, for ima-
ging applications, requires substantial amount of data storage space. Two modifications
simplify the procedures: (i) the statistic tk for each partial test k is transformed into a
related quantity uk that has a behaviour similar to the p-values, and (ii) the combined
statistic is transformed to a variable that follows approximately a normal distribution, so
that spatial statistics (such as cluster extent, cluster mass, and tfce) can be computed as
usual. The first simplification allows the procedure to run in a single phase, without the
need to retrieve data for the empirical distribution of the partial tests.
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partial tests, are useful to transform, at each permutation, the combined statistic
to the z-statistic, which can then be used for inference using cluster extent, mass,
or tfce.

4.2.8 Directed, non-directed, and concordant hypotheses

When the partial hypotheses are one-sided, i.e., H0
k : C′βk > 0 or H0

k : C′βk < 0,
and all have the same direction (either), the methods presented thus far can be
used as described. If not all have the same direction, a subset of the tests can be
scaled by −1 to ensure a common direction for all.

If the direction is not relevant, but the concordance of signs towards one of
them (either) is, a new combining test can be constructed using one-sided p-values,
pk, and another using 1−pk, then taking the best of these two results after correct-
ing for the fact that two tests were performed. For example, for the Fisher method,
we would have:

T = max
(
−2

K∑
k=1

ln (pk) ,−2
K∑
k=1

ln (1− pk)

)
(4.2)

where T is the combined test statistic, with its p-value, P , assessed via permuta-
tions.

If direction or concordance of the signs are not relevant, two-sided (non-directed)
tests and p-values can be used before combining, that is, ignoring the sign of the
test statistic for the partial tests, or using a statistic that is non-directional (e.g.,
with F -tests for the partial hypotheses). It worth mentioning, however, that it is
not appropriate to simultaneously ignore directions of the partial tests and use a
combination that favours concordant signs. Such a test would lack meaning and
would be inadmissible, with examples shown in Section 4.2.10.

Rejection regions for these three cases, for four different combining functions,
are shown in Figure 4.3, as functions of the partial p-values, for K = 2 partial
tests.
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Figure 4.3: Upper row: Rejection regions for the combination of two partial tests using
four different combining functions, and with the p-values assessed parametrically (Table
4.1). The regions are shown as function of the p-values of the partial tests (pk). Middle
row: Rejection regions for the same functions with the modification to favour alternative
hypotheses with concordant directions. Lower row: Rejection regions for the same func-
tions with the modification to ignore the direction altogether, that is, for two-tailed partial
tests.
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4.2.9 Consistency of combined tests

A hypothesis test is said to be consistent if, for a fixed test level, its power goes to
unity as the sample size increases to infinity. The use of a non-consistent combin-
ing function to form an npc test is problematic, as the rejection region may not be
reached even if the p-value for one or more of the partial tests approach zero, thus
violating the second of the three desirable properties of the combining functions,
presented in Section 4.2.5.

Among the functions shown in Table 4.1, the notable non-consistent combin-
ing functions are the Edgington and Wilkinson (see Section 4.2.6). Also, it should
be noted that functions that define conjunctions (iut), such as those based on
max (pk), are likewise not consistent in the context of npc, as the latter serves
to test the global null hypothesis. Figure 4.4 shows rejection regions for some
inconsistent combining functions, and variants, similarly as for the (consistent)
shown in Figure 4.3.

4.2.10 Admissibility of combined tests

A combined hypothesis test is said to be admissible if there exists no other test
that, at the same significance level, without being less powerful to all possible
alternative hypotheses, is more powerful to at least one alternative (Lehmann and
Romano, 2005). This can be stated in terms of either of two sufficient conditions for
admissibility: (i) that rejection of the null for a given p-value implies the rejection
of the null for all other p-values smaller or equal than that, or (ii) that the rejection
region is convex in the space of the test statistic.

Combinations that favour tests with concordant directions (Section 4.2.8), if
used with of non-directional partial tests, create tests that are inadmissible, that
is, tests that are not optimal in the sense that there exist other tests that, without
being less powerful to some true alternative hypotheses, are more powerful to at
least one true alternative. Inadmissibility implies that the test cannot be used, as
certain combinations of partial tests lead to nonsensical results, such as rejecting
the jnh for some partial p-values, and failing to reject for some p-values that are
even smaller. Figure 4.5 shows rejection regions of inadmissible versions of the
combining functions considered in Figures 4.3 and 4.4; clearly none of the two
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Figure 4.4: Examples of inconsistent combining functions for testing the global null hy-
pothesis: (a) Addition of p-values for the partial tests (Edgington, 1972); (b) Maximum of
p-values for the partial tests, with the p-value computed as TK (Friston et al., 1999, 2005);
(c) Maximum of p-values for the partial tests, but with the p-value computed as T (Nichols
et al., 2005). While the last is not appropriate for testing the global null, it is appropriate
for the conjunction null.
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conditions above are satisfied. The particular combining function shown in Equa-
tion 4.2 was suggested by Pearson (1933) and used by David (1934), but after an
influential paper by Birnbaum (1954), it was for decades thought to be inadmiss-
ible. However, it is in fact admissible (Owen, 2009).

Admissibility is important in that it allows, for more than just two partial tests,
combined tests that favour alternative hypotheses with the same direction. Other
possibilities favouring alternatives with common direction, such as multiplying
together the partial test statistics to produce a combined statistic, work for two
partial tests only (Hayasaka et al., 2006).

4.2.11 The method of Tippett

From the various combining functions listed in Table 4.1, consider the combining
function of Tippett (1931), that has statistic T = min pk and, when all partial tests
are independent, a p-value P = 1− (1− T )K . This test has interesting properties
that render it particularly attractive for imaging:

– It defines a uit test: If the minimum p-value remains significant when all
tests are considered, clearly the global null hypothesis can be rejected.

– It controls the fwer: Controlling the error rate of a uit is equivalent to an
fwer-controlling procedure over the partial tests.

– If the partial tests are independent, it defines an exact fwer threshold: The
function is closely related to Šidák (1967) correction: set P = αfwer, then
T fwer = 1 − (1 − αfwer)

1
K ; one can retain only the partial p-values that

satisfy pk ⩽ T fwer. Adjusted p-values can be obtained similarly through the
Šidák procedure, that is pfwer

k = 1− (1− pk)
1
K .

– If the partial tests are not independent, it still defines an fwer threshold and
adjusted p-values: As a uit, the Tippett function can be used in a closed
testing procedure. Further, it is the function that makes ctp with large K

feasible in practice; adjusted p-values are obtained with the distribution of
the minimum p-value (or of the extremum statistic).
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Figure 4.5: Upper row: Inadmissible versions of the four consistent combining functions
shown in Figure 4.3 (in the same order). Lower row: Inadmissible versions of the three
inconsistent combining functions shown in Figure 4.4 (in the same order). These inad-
missible functions arise if one attempts to favour alternatives with the same sign while
performing two-tailed partial tests.
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– Because it subsumes correction using the extremum statistic that is already
in use in imaging to account for mtp-i, the correction for the mtp-ii can
be done by pooling the maximum statistics across both space and the set
of partial tests. This allows algorithmic advantages that we exploit in the
proposed implementation shown in Section 4.2.13.

– It can be used as the combining function with npc, thus providing a common
procedure for correction and for combination of p-values.

– It is fast to compute: Taking the extremum statistic or minimum p-value is
trivial compared to other functions that require cumulative sums or products,
multiple parameters, integrations, or that depend on Monte Carlo simula-
tions.

While the Tippett function is advantageous for all these reasons, note that, even
when other combining functions are used for npc, the extremal statistic (equivalent
to the Tippett combining function) is also used for the mtp-i to control fwer over
space.

4.2.12 A unified procedure

Armed with these concepts, and with the modifications to the original npc al-
gorithm, we are positioned to tackle the various problems identified in the Intro-
duction:

Combination of multiple modalities WithK modalities, all in register and with
the same spatial resolution, each is tested separately, using synchronised permuta-
tions, and their statistics converted to u-values for each shuffling. These are are
combined using a suitable combining function, such as one from those shown in
Table 4.1. The p-values for the combined statistic are produced using the same
set of permutations used to assess each test separately. This is the modified npc
algorithm that we propose, shown in Figure 4.2.

Correction for multiple modalities With K modalities, which are not necessar-
ily in register, nor with the same resolution, nor of the same type (e.g., some from

sec:comb:intro
sec:comb:intro
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volumetric, some from surface representations of the brain), or which may not ne-
cessarily be all related to imaging (e.g., some imaging and some non-imaging data),
each is tested separately using a suitable test statistic. The permutation distribu-
tion of the extremum statistic across all tests is produced and used to compute
fwer-adjusted p-values that simultaneously address the mtp-i and mtp-ii.

Correction for multiple designs and contrasts Each pair of contrasts defined by
(C,D) allows the corresponding design matrix to be partitioned into effects of in-
terest and nuisance effects (Section 3.2.2), and also the redefinition of the response
variables (Section 4.2.2). Thus, multiple designs and their respective contrasts can
be tested separately. Differently than for the correction for multiple modalities,
however, with different contrasts, their respective statistics may possess differ-
ent asymptotic behaviour (due to, e.g., the contrasts having different ranks, or the
designs having different degrees of freedom), thus precluding the use of the distri-
bution of the extremum statistic. When known, the asymptotic behaviour can be
used to convert these statistics — univariate or multivariate — to a z-statistic. The
distribution of the maximum across the results of the various designs and contrasts
can then be computed and used for correction.

Correction for multiple modalities, designs and contrasts Following the same
principles, it is also possible to account for the multiplicity of input modalities,
each tested with their respective design and set of contrasts, or each tested versus
all designs and contrasts. Each test is applied separately, statistics converted to a z-
statistic based on their asymptotic behaviour, and the distribution of the extremum
used to obtain adjusted p-values for all in a ctp using a uit. It is not necessary that
all are in register, neither that all use the same kind of image representation of the
brain (i.e., volume or surface), nor that they are even all (or any) imaging-related,
and can therefore include clinical or behavioural, biomarkers, and other types of
data.

Conjunctions An iut can be assessed through permutations simply by comput-
ing max (pk), which is, in its own right, the p-value of the iut, such that there is no
need for transformation into u-values for the assessment of the combined statistic.
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In the context of imaging, such conjunctions can be used with statistics at every
voxel (or vertex or face), thus allowing also certain spatial statistics such as tfce.

Since combinations and conjunctions are performed at each individual image
point, it is necessary that all images have been registered to the same common
space and possess similar spatial resolution (Lazar et al., 2002). This can be accom-
plished through intra-subject and inter-subject registration and resampling. By
contrast, correction for the multiplicity of tests uses the maximum statistic across
such tests, thus not requiring that the tests match on space, or even that they are
all related to imaging. However, they explicitly require pivotal statistics, as dis-
cussed in Section 3.2.1, so that the extreme is taken from statistics that share the
same sampling distribution. The statistics used with cmv and npc are all pivotal
and therefore can be used. Spatial statistics, however, lack this property and re-
quire similar search volumes and resolutions, even for correction. Moreover, by
including information from neighbouring voxels, such as using spatial smoothing
or spatial statistics like tfce (Smith and Nichols, 2009), subset pivotality is lost,
meaning that strong control of fwer cannot be guaranteed. In practice, though,
the power gained by pooling information over space is essential. In the Section
4.2.13 we provide an algorithm that generically implements the combination and
correction methods presented.

4.2.13 Implementation

A unified algorithm for combination and correction that is amenable for use with
imaging applications is shown below. It has many similarities with the random-

ise algorithm (Section 3.2.6; Winkler et al., 2014), with various modifications to
accommodate combination and correction. The p-values adjusted for the multipli-
city of tests are computed using the distribution of the extremum statistic, which
can be collapsed across modalities and/or designs and contrasts for each case, ren-
dering the algorithm simpler. The notation below is slightly different than that
used throughout the chapter. The inputs are:

– Y: The input data for each of the K modalities and image points. Each
column vector ofN observations for the k-th modality is accessed as Y[k, v],
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where v = [x, y, z] is used to specify the point position in space; this is so
without loss of generality for non-imaging data.

– X : The set of design matrices X.

– {CX}: The set of sets of contrasts for each design matrix X. Each element of
each subset is a pair of multivariate contrasts (C,D). This definition allows
each design to be tested with multiple such pairs of contrasts, and allows
various designs to be tested with the same input data.

– B: Definition of exchangeability blocks, used to define valid shufflings that
respect the data structure; these can be multi-level (Winkler et al., 2015).

– V: Definition of the variance groups, useful to compute statistics that are
robust to heteroscedasticity.

– ee, ise: Boolean flags (true/false) indicating whether errors can be treated as
exchangeable (ee), allowing permutations, independent and symmetric (ise),
allowing sign-flippings, or both.

– J : Number of permutations to be performed.

– npcmod, npccon: Boolean indicating whether combination should be per-
formed respectively across modalities, across designs and contrasts, or both.

– fwemod, fwecon: Boolean indicating whether familywise error rate cor-
rection should be performed respectively across modalities, across designs
and contrasts, or both.

The output of interest is the p-value. For simplicity, as shown, the output is
always fwer-adjusted across the image points indexed by v, and for the non-
combined, further adjusted based on the contrasts and modalities; these are shown
in the algorithm topped by a tilde, that is, as “p̃-value”, as opposed to simply “p-
value”. Also for simplicity, p-values for combination of modalities are not shown
adjusted for multiple contrasts, nor vice-versa. These can also be obtained follow-
ing the same logic used for the fwer-adjustment of the non-combined statistics.
Uncorrected p-values, useful for correction using false discovery rate (fdr, Ben-
jamini and Hochberg, 1995) can be obtained with trivial modifications.
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Algorithm 2: Unified algorithm. See the main text for details.

Require: Y,X , {CX},B,V, ee, ise, J,npcmod,npccon, fwemod, fwecon.
1: P ← sync_perms(X , {CX},B, ee, ise, J − 1) ▷ Define the permutation set.
2: P ← {I,P} ▷ Ensure first permutation is no permutation.
3: for j = 1, . . . , J do ▷ For each shuffling.
4: c← 1 ▷ Counter for the number of designs and contrasts.
5: for all X ∈ X do ▷ For each design matrix.
6: for all (C,D) ∈ CX do ▷ For each pair of contrasts.
7: Y← YD ▷ Redefine the data, discard D.
8: X∗ ← PjX ▷ Shuffle the model.
9: for all k ∈ {1, . . . ,K} do ▷ For each partial test.

10: for all v do ▷ For each image point.
11: β̂ ← (X∗)+Y[k, v] ▷ Estimated regression coefficients.
12: Ê← Y[k, v]− X∗β̂ ▷ Estimation residuals.
13: G← pivotal(X∗, β̂, ϵ̂,C,V) ▷ Test statistic.
14: U[j, k, c, v]← transform(G) ▷ Transform to u-value.
15: if j = 1 then ▷ In the first permutation (no permutation).
16: U0[k, c, v]← U[1, k, c, v] ▷ Keep the unpermuted u-value.
17: end if
18: end for
19: Ue[j, k, c]← extremum(U[j, k, c, ·]) ▷ Extremum across space.
20: end for
21: c← c+ 1 ▷ Increment counter for the number of designs and contrasts.
22: end for
23: end for
24: C ← c ▷ Keep the total number of designs and contrasts for later use.
25: if npcmod ∧ ¬ npccon then ▷ Combine modalities only.
26: for all c ∈ {1, . . . , C} do ▷ For each design/contrast.
27: for all v do ▷ For each image point.
28: T[c, v]← combine(U[j, ·, c, v]) ▷ Combined statistic.
29: end for
30: Te[j, c]← extremum(T[c, ·]) ▷ Distribution of the extrema across tests.
31: end for
32: else if npccon ∧ ¬ npcmod then ▷ Combine designs/contrasts only.
33: for all k ∈ {1, . . . ,K} do ▷ For each design/contrast.
34: for all v do ▷ For each image point.
35: T[k, v]← combine(U[j, k, ·, v]) ▷ Combined statistic.
36: end for
37: Te[j, k]← extremum(T[k, ·]) ▷ Distribution of the extrema across tests.
38: end for
39: else if npcmod ∧ npccon then ▷ Combine modalities & designs/contrasts.
40: for all v do ▷ For each image point.
41: T[v]← combine(U[j, ·, ·, v]) ▷ Combined statistic.
42: end for
43: Te[j]← extremum(T[·]) ▷ Distribution of the extrema across tests.
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44: end if
45: if j = 1 then ▷ In the first permutation (no permutation).
46: T0 ← T ▷ Keep the unpermuted combined statistic.
47: end if
48: end for
49: if npcmod ∧ ¬ npccon then ▷ Combine modalities only.
50: for all c ∈ {1, . . . , C} do ▷ For each design/contrast.
51: for all v do ▷ For each image point.
52: p-value[c, v]← data_pval(T0[c, v],Te[·, c]) ▷ Combined p-value.
53: end for
54: end for
55: else if npccon ∧ ¬ npcmod then ▷ Combine designs/contrasts only.
56: for all k ∈ {1, . . . ,K} do ▷ For each design/contrast.
57: for all v do ▷ For each image point.
58: p-value[k, v]← data_pval(T0[k, v],Te[·, k]) ▷ Combined p-value.
59: end for
60: end for
61: else if npcmod ∧ npccon then ▷ Combine modalities & designs/contrasts.
62: for all v do ▷ For each image point.
63: p-value[v]← data_pval(T0[v],Te[·]) ▷ Combined p-value.
64: end for
65: end if
66: if fwemod ∧ ¬ fwecon then ▷ Correct over modalities only.
67: for all c ∈ {1, . . . , C} do ▷ For each design/contrast.
68: for all j ∈ {1, . . . , J} do ▷ For each shuffling.
69: U′

e[j, c]← extremum(Ue[j, ·, c]) ▷ Distribution of the extrema.
70: end for
71: for all k ∈ {1, . . . ,K} do ▷ For each modality.
72: for all v do ▷ For each image point.
73: p̃-value[k, c, v]← data_pval(U0[k, c, v],U′

e[·, c]) ▷ Adjusted p-value.
74: end for
75: end for
76: end for
77: else if fwecon ∧ ¬ fwemod then ▷ Correct over designs/contrasts only.
78: for all k ∈ {1, . . . ,K} do ▷ For each modality.
79: for all j ∈ {1, . . . , J} do ▷ For each shuffling.
80: U′

e[j, k]← extremum(Ue[j, k, ·]) ▷ Distribution of the extrema.
81: end for
82: for all c ∈ {1, . . . , C} do ▷ For each design/contrast.
83: for all v do ▷ For each image point.
84: p̃-value[k, c, v]← data_pval(U0[k, c, v],U′

e[·, k]) ▷ Adjusted p-value.
85: end for
86: end for
87: end for
88: else if fwemod ∧ fwecon then ▷ Correct over modalities & des./contr.
89: for all j ∈ {1, . . . , J} do ▷ For each shuffling.
90: U′

e[j]← extremum(Ue[j, ·, ·]) ▷ Distribution of the extrema.
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91: end for
92: for all k ∈ {1, . . . ,K} do ▷ For each modality.
93: for all c ∈ {1, . . . , C} do ▷ For each design/contrast.
94: for all v do ▷ For each image point.
95: p̃-value[k, c, v]← data_pval(U0[k, c, v],U′

e[·]) ▷ Adjusted p-value.
96: end for
97: end for
98: end for
99: end if

Within the algorithm, the functions are:

– sync_perms: This function produces a set P of permutation and/or sign flip-
ping matrices that can be performed sychronously to test a joint null hy-
potheses about the input data. The synchronisation is always necessary to
allow combination/correction over modalities, and it may also be necessary
acrossmultiple designs and/or contrasts if these are to be combined/corrected
as well. If synchronisation is not necessary for designs and/or contrasts, the
algorithm can be modified so that P can be defined inside the for-loops that
iterate over designs and contrasts.

– transform: This converts the test statistic into a u-value, thus rendering the
npc method feasible for imaging applications. If no combination is to be
performed, the algorithm can be modified to skip this step and work directly
with the test statistic.

– extremum: For statistics in which larger values are evidence against the null
hypothesis, this function takes the maximum. For statistics in which smaller
values are indication against the null, this takes the minimum. In either case,
it is always the most extreme towards evidence favouring the alternative.
This function effectively implements a ctp using an iut.

– combine: This combines the inputs (p- or u-values) into a new, combined
statistic. Any of the combining functions from Table 4.1 can be considered.
For the method of Tippett, combine and extremum are the same.
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– data_pval: This function produces a p-value based on a set of empirical val-
ues for the test statistic after shuffling. This works by computing the fraction
of the test statistics after shuffling that is larger or equal than the unpermuted
test statistic, while taking care of ties.

The algorithm has four major parts: the first consists of the loop that begins in
line 5 of the pseudocode above, and which consists of a simplified version of the
randomise algorithm. The second begins with the conditional structure in line
27, which performs the combination and computes distribution of the extremum
statistics for each case of npc, thus also treating the mtp-i. These initial two parts
are repeated for each shufflong, in the loop that begins in line 3. The third part
begins with the conditional in line 51, that is, once all rearrangements have been
performed; in this part, the distributions are used to compute the combined p-
values. Finally, the fourth part begins with the conditional in line 68, in which the
mtp-ii is addressed.

As shown, the algorithm is simplified so as to emphasise the most important
aspects of combination and correction. However, various modifications and im-
provements can be applied for particular circumstances, and for speed, including
the partitioning discussed in the Section 3.2.2. An open-source working imple-
mentation, that can be executed in Matlab (The MathWorks Inc., 2015) or Octave
(Eaton et al., 2015), is available in the tool Permutation Analysis of Linear Models

(palm), available for download at www.fmrib.ox.ac.uk/fsl.

4.3 Evaluation methods

4.3.1 Validity of the modified npc

To assess the validity of the proposed modification to the npc, we consider one of
the simplest scenarios that would have potential to invalidate the method and re-
duce power: this is the case of having a small number of partial tests, small sample
size, and with each partial test possessing substantially different distributions for
the error terms. We investigated such a scenario withK = 2, varying sample sizes
N = {8, 12, 20, 30, 40, 50, 60, 70, 80, 120, 200}, and different error distributions.
Using the notation defined in Section 4.2.2, response variables were generated for

http://www.fmrib.ox.ac.uk/fsl
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each simulation using the model Y = Xβ + ϵ, with Y sized N ×K . Each modal-
ity was simulated as having 500 points, these representing, for instance, voxels or
vertices of an image representation of the brain. The errors, ϵ = [ϵ1, ϵ2], were sim-
ulated following either a Gaussian distribution with zero mean and unit variance,
or a Weibull distribution (skewed), with scale parameter 1 and shape parameter
1/3, shifted and scaled so as to have expected zero mean and unit variance. Differ-
ent combinations of error distributions were used: Gaussian for both partial tests,
Weibull for both partial tests, or Gaussian for the first, and Weibull for the second
partial test.

The response data, Y, were constructed by adding the simulated effects, Xβ,
to the simulated errors, where β = [β1,β2], with βk = [β1, 0]

′, β1 being either
0 (no signal) or t−1

cdf (1− α;N − rank (X))
/√

N (with signal), where α = 0.05

is the significance level of the permutation test to be performed. This procedure
ensures a calibrated signal strength sufficient to yield an approximate power of
50% for each partial test, with Gaussian errors, irrespective of the sample size; for
non-Gaussian errors this procedure does not guarantee power at the same level.
The actual effect was coded in the first regressor of X, constructed as a vector of
randomvalues following aGaussian distributionwith zeromean and unit variance;
the second regressor was modelled an intercept. All four possible combinations of
presence/absence of effect among the K = 2 partial tests were simulated, that is,
(1) with no signal in any of the two partial tests, (2) with signal in the first partial
test only, (3) with signal in the second partial test only, and (4) with signal in both
partial tests.

The simulated data was tested using the Tippett and Fisher methods. The case
with complete absence of signal was used to assess error rates, and the others to
assess power. The p-values were computed with 500 permutations, and the whole
process was repeated 500 times, allowing histograms of p-values to be construc-
ted, as well as to estimate the variability around the heights of the histogram bars.
Confidence intervals (95%) were computed for the empirical error rates and power
using the Wilson method (Wilson, 1927). The p-values were also compared us-
ing Bland–Altman plots (Bland and Altman, 1986), modified so as to include the
confidence intervals around the means of the methods.
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Figure 4.6: The simulations a–d. Each was constructed with a set of K partial tests, a
number of which (Ks) had synthetic signal added.

4.3.2 Performance of combined tests

We also took the opportunity to compare the combining functions shown in Table
4.1. While other comparisons have been made in the past (for a list of references,
see Section 4.2.6), none included all these functions, nor explored their perform-
ance under permutation or npc, and therefore, did not consider the modifications
that we introduce to the procedure to render it feasible for imaging applications.
In addition, we investigate the performance of two classical multivariate tests, the
Hotelling’s T 2, and the Wilks’ λ, both assessed through permutations.

Four different simulation sets were conducted, named a–d; in all, the number
of partial tests being combined could vary in the range K = 2, . . . , 16, and the
number of partial tests containing true, synthetic signal could vary in the range
Ks = 0, . . . , K . In simulation a, K varied, while Ks was held fixed at 0, that is,
no synthetic signal was added. In simulation b,K varied, whileKs was held fixed
at 1, that is, just one partial test had signal added. In simulation c, K was held
fixed at 16, while Ks varied. Finally, in simulation d, K varied, and Ks was set as
equal to K , that is, all partial tests had synthetic signal added. Figure 4.6 shows
graphically how K and Ks varied in each simulation.

The response variables Y had sizeN×K ,N = 20, that is, simulating measure-
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ments for 20 subjects, each with K image modalities (partial tests). Each modality
was simulated as having 500 points, these representing, for instance, voxels or
vertices. The errors were simulated following either a Gaussian distribution with
zero mean and unit variance, or a Weibull distribution, with scale parameter 1 and
shape parameter 1/3, shifted and scaled so as to have expected zero mean and unit
variance. The response data were constructed by adding to the errors the simu-
lated effects — either no signal, or a signal with strength callibrated to yield an
approximate power of 50% with Gaussian errors, irrespective of the sample size,
as described above for the simulations that tested the validity of the modified npc;
for the Weibull errors, the signal was further decreased, in all these four simula-
tions, by a factor 5/8, thus minimising saturation at maximum power in simulation
d. The actual effect was coded in the first regressor only, which was constructed
as a set of random values following a Gaussian distribution with zero mean and
unit variance; the second regressor was modelled as an intercept.

The simulated datawas tested using 500 shufflings (permutations, sign-flippings,
and permutations with sign-flippings). For all the simulations, the whole process
was repeated 100 times, allowing histograms of p-values to be constructed, as well
as to estimate the variability around the heights of the histogram bars. Confidence
intervals (95%) were computed for the empirical error rates and power using the
Wilson method.

4.3.3 Example: Pain study

While the proposed correction for the mtp-ii has a predictable consequence, that
is, controlling the familywise error rate at the nominal level, the combination of
modalities, designs, and contrasts may not be quite as obvious. In this section
we show a re-analysis of the data of the pain study by Brooks et al. (2005). In
brief, subjects received, in separate tests, painful, hot stimuli in the right side of
the face (just below the lower lip), dorsum of the right hand, and dorsum of the
right foot. The objective was to investigate somatotopic organisation of the pain
response in the insular cortex using fmri, and the complete experimental details,
stimulation and imaging acquisition protocols, analysis and conclusions can be
found in the original publication. Here we sought to identify, at the group level, in
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standard space, areas within the insula that jointly respond to hot painful stimuli
across the three topologically distinct body regions. We used the modified npc,
comparing the combining functions of Tippett, Fisher, Stouffer and Mudholkar–
George, as well as the Hotelling’s T 2 statistic, and an iut (conjunction). At the
group level, the design is a one-sample t-test, for which only sign flippings can
be used to test the null hypothesis. We used twelve of the original subjects, and
performed exhaustively all the 4096 sign flippings possible.

4.4 Results

A large number of plots and tables were produced and are shown in the Appendix
B. The Figures below contain only the most representative results, that are suffi-
cient to highlight the major points.

4.4.1 Validity of the modified npc

Both the original and the modified npc methods controlled the error rates at ex-
actly the level of the test. Such validity was not limited to α = 0.05, and the
histograms of uncorrected p-values under complete absence of signal were flat
throughout the whole [0, 1] interval for both the original and modified npc meth-
ods, using either the Tippett or the Fisher combining functions. A representative
subset of the results, for the Fisher method only, and for sample sizes N = {8, 12,
20, 40}, is shown in Figure 4.7.

When considering the uncorrected p-values, the modified npc yielded a mostly
negligible increase in power when compared to the original npc, with the differ-
ence always within the 95% confidence interval. Although this slight gain can be
hardly observed in the histograms and Bland–Altman plots for the uncorrected
p-values, they are clearly visible in the Bland–Altman plots for the p-values cor-
rected across the 500 tests. In these plots, the predominance of smaller (towards
more significant) p-values can be seen as a positive difference between the ori-
ginal and modified npc p-values. A representative subset of the results is shown
in Figure 4.8.
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Figure 4.7: Histograms of p-values for the simulation without signal in either of the two
partial tests (upper panel, blue bars) or with signal in both (lower panel, green bars). The
values below each plot indicate the height (in percentage) of the first bar, which corres-
ponds to p-values smaller than or equal to 0.05, along with the confidence interval (95%,
italic). Both original and modified npc methods controlled the error rates at the nom-
inal level, and produced flat histograms in the absence of signal. The histograms suggest
similar power for both approaches. See also Appendix B.
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Figure 4.8: Bland–Altman plots comparing the original and modified npc, for both uncor-
rected and corrected p-values, without signal in either of the two partial tests (upper panel,
blue dots) or with signal in both (lower panel, green dots). The values below each plot in-
dicate the percentage of points within the 95% confidence interval ellipsoid. For smaller
sample sizes and non-Gaussian error distributions, the methods differ, but the differences
become negligible as the sample size increases. In the presence of signal, the modification
caused increases in power, particularly for the corrected p-values, with dots outside and
above the ellipsoid. See the Supplementary Material for zoomed in plots, in which axes
tick labels are visible.
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4.4.2 Performance of combined tests

Representative results demonstrating the performance of the methods of Tippett,
Fisher, Stouffer, Mudholkar–George, as well as Hotelling’s T 2, is shown in Figure
4.9. The remaining results are browsable in Appendix B. In the absence of signal
(simulation a), all combining functions controlled the error rate at the level of the
test or below it, never above, thus confirming their validity. With normally dis-
tributed (Gaussian) errors, most functions yielded uniformly distributed p-values,
although some functions seemed to converge towards uniformity only as the num-
ber of partial tests is increased; this was the case for the methods of Wilkinson,
Zaykin, Dudbridge–Koeleman (dtp) and Jiang. With skewed (Weibullian) errors,
the error rate was controlled at the test level with the use of permutations; with
sign-flippings or permutations with sign-flippings, the combined results tended
to be conservative, and more so for the Hotelling’s T 2 statistics (and likewise the
Wilks’ λ).

With signal added to just one of the partial tests (simulation b), the method of
Tippett was generally the most powerful, followed by the methods of Fisher and
Dudbridge–Koeleman (both rtp and dtp variants). As the number of tests was
increased, predictably, the power was reduced for all tests. The method of Stouffer
did not in general have good performancewith skewed errors, presumably because
the dependence on z-statistics strengthens the dependence on the assumption of
normality of the statistics for the partial tests in the modified npc. The cmv did
not deliver a good performance either, being generally among the least powerful.

With the number of partial tests held fixed, as the number of tests with signal
was increased (simulation c), the power of the method of Fisher increased more
quickly than of the other methods, although when most of the partial tests had
signal, most of the combining functions reached similar power, all close to 100%
for both normal or skewed errors. Hotelling’s T 2 test was the considerably less
powerful than any of the combining functions used with the modified npc.

As the total number of partial tests and the number of partial tests with signal
were both increased (simulation d), almost all combined tests had similar power,
and reached saturation (100% power) quickly, particularly for theWeibullian errors,
in which the calibration, even after reduction with the 5/8 factor, yielded power
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Figure 4.9: Performance of the modified npcwith four representative combining functions
(Tippett, Fisher, Stouffer, and Mudholkar–George) and of one cmv (Hotelling’s T 2), using
normal or skewed errors, and using permutations (ee), sign flippings (ise), or both. All
resulted in error rates controlled at or below the level of the test. The Tippett and Fisher
were generally the most powerful, with Tippett outperforming others with signal present
in a small fraction of the tests, and with Fisher having the best power in the other settings.
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above 50% for each partial test. With Gaussian errors, in which calibration ensured
average 50% power, two tests had considerably lower sensitivity: Tippett’s and
Hotelling’s T 2, the last with the remarkable result that power reached a peak, then
began to fall as the number of tests kept increasing.

4.4.3 Example: Pain study

Using a conventional, mass univariate voxelwise tests, assessed through sign flip-
pings, and after correction for multiple testing (mtp-i), only a few, sparse voxels
could be identified at the group level for face, hand, and foot stimulation separ-
ately, in all cases with multiple distinct foci of activity observed bilaterally in the
anterior and posterior insula. However, the joint analysis using the modified npc
with Fisher, Stouffer and Mudholkar–George evidenced robust activity in the an-
terior insula bilaterally, posterior insula, secondary somatosensory cortex (sii),
and a small focus of activity in the midbrain, in the periaqueductal gray area. The
combining function of Tippett, however, did not identify these regions, presum-
ably because this method is less sensitive than the others when signal is present in
more than a single partial test, as suggested by the findings in the previous section.

The Hotelling’s T 2 was not able to identify these regions, with almost negli-
gible, sparse, single-voxel findings in the anterior insula, bilaterally. The conjunc-
tion test, that has a different jnh, and searches for areas where all partial tests are
significant, identified a single, barely visible, isolated voxel in the right anterior
insula.

The above results are shown in Figure 4.10. Cluster-level maps that can directly
be compared to the original findings of Brooks et al. (2005) are shown in Appendix
B.

4.5 Discussion

4.5.1 Validity of the modified npc

The modified npc combines u-values, which are simply parametric p-values here
renamed to avoid confusion. The renaming, however, emphasises the fact that
the conversion to u-values via a parametric approximation should only be seen as
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Figure 4.10: Without combination, and with correction across voxels (mtp-i), no signi-
ficant results were observed at the group level for any of the three tests. Combination
using the methods of Fisher, Stouffer and Mudholkar–George (M–G), however, evidenced
bilateral activity in the insula in response to hot, painful stimulation. A classical multivari-
ate test, Hotelling’s T 2, as well as the Tippett method, failed to identify these areas. An
intersection-union test (conjunction) could not locate significant results; such a test has a
different null hypothesis that distinguishes it from the others. Images are in radiological
orientation. For cluster-level results, comparable to Brooks et al. (2005), see Appendix B.
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a data transformation, in which the interpretation as a p-value is not preserved
due to untenable assumptions. The combination method continues to be non-
parametric as the combined statistic is assessed non-parametrically. More im-
portantly, irrespective of the validity of parametric assumptions, any dependence
between the tests is accounted for, implicitly, by the combination procedure, without
the need of any modelling that could, at best, introduce complex and perhaps un-
tenable assumptions, and at worst, be completely intractable.

The results suggest that, even in the cases in which the modified npc could
have failed, i.e., with small sample sizes and different distributions, the combined
statistic controlled the error rate at the level of the test. This control, maintained
even in such difficult scenarios, suggests that the modified npc controls the error
rates in general. The results also suggest that the modification increases power,
even if such increase is minute in some scenarios. The Bland–Altman plots in-
dicate that gains in sensitivity are more pronounced in the results corrected for
the mtp-i, suggesting that the modified method is appropriate not merely due to
its expediency for imaging applications, but also for having increased sensitivity
compared to the original npc.

4.5.2 Performance of combined tests

The results also demonstrate that the npc method is more powerful than the Ho-
telling’s T 2. The superiority of combined permutation tests when compared to
classical multivariate tests has been observed in the literature (Blair et al., 1994),
and the fact that power increases as the number of partial tests with signal in-
creases is one of its most remarkable features. While cmv depends on the positive-
definiteness of the covariance matrix of the vectors of residuals, such limitation
does not apply to npc (Pesarin and Salmaso, 2010b). As a consequence, although
in the comparisons only the Hotelling’s T 2 and theWilks’ λ statistics were used (in
the simulations, rank (C) = 1), and had their p-values assessed through permuta-
tions, similar behaviour can be expected when using other cmvs, such as Pillai’s
trace (and with rank (C) > 1). With effect, npc can be used even when the num-
ber of variables equals or even greatly exceeds the number of observations, that is,
when K ⩾ N . In the results shown in Figure 4.9, this can be noted as a reduction
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in power that can be seen with the Hotelling’s T 2, particularly for simulation d,
and this is the case even considering that the test is assessed through permutations.

Regarding the different combining functions, the simulations show that the
method of Tippett is the most powerful when signal is present in only a small
fraction of the partial tests. For other cases, other combining functions, particu-
larly that of Fisher, tend to be considerably more powerful.

The results also indicate that the use of sign flipping when the errors are not
symmetric (a violation of assumptions) tends to produce a conservative test, with
error rates below the nominal level, even if the power eventually remained un-
altered when compared with permutations. While permutations together with
sign flippings did alleviate conservativeness, at least for the Tippett method, the
error rate remained below the nominal level. In general, if the errors are known to
be skewed, only permutations should be used; if sign flippings are used, the error
rate can be expected to be below the nominal level.

4.5.3 Interpretation of combined tests

The key aspect of the npc is that these tests seek to identify, on the aggregate of
the partial tests, a measure of evidence against the jnh, even if only some or none
of them can be considered significant when seen in isolation, just as originally
pointed out by Fisher (1932) (Section 4.2.1). This is the logic and interpretation of
all of these combining statistics, with the exception of the conjunction inference.
Combination is known to be able to answer questions that could otherwise not be
answered be at all, or be answered less accurately if each information source were
considered separately (Draper et al., 1992). Here the simulations and the pain study
exemplify these aspects, and the improved sensitivity compared to each partial test
when seen in separate.

As they depend on fewer assumptions than classical multivariate tests, npc
can be considered whenever the validity of the former cannot be guaranteed. Even
when parametric cmv assumptions hold, note that the npc can have superior power
when sample size is small and prevents precise estimation of a covariance.

It should be noted that the aggregation of information follows a different prin-
ciple than using different measurements separately to interrogate particular as-
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pects of the brain (or of any other experiment or physiological phenomenon). Used
judiciously, npc provides a complete framework that can be used for both the ag-
gregate and for the correction of tests separately, with the valuable feature of being
based on minimal assumptions.

4.5.4 Correction over contrasts and over modalities

Correction over contrasts using synchronised permutations provides a novel solu-
tion to themultiple comparisons problem for certain common experimental designs,
in particular, for the popular one-way anova layout, that is, when the means of
multiple groups are compared. The classical Fisher’s protected least significant dif-
ference (lsd), that consists of performing an omnibus F -test and only proceeding
to the group-wise post hoc tests if this initial test is significant, is known to fail
to control the error rate if there are more than just three groups (Hayter, 1986;
Hsu, 1996; Meier, 2006), and the failure can be by a wide margin, that grows as
the number of groups being compared increases. Even though the same may not
happen with other correction methods (e.g., Tukey’s range test, Tukey, 1949), the
correction done non-parametrically also renders these older, parametric methods,
redundant.

The correction over contrasts further obviates methods that are based on what
has been termed “logical constraints” among hypotheses (Shaffer, 1986; Hochberg
and Tamhane, 1987), as the dependencies among the tests are implicitly taken into
account by the correction using the distribution of the extremum across contrasts,
with or without concomitant combination or correction across multiple K vari-
ables. In fact, the use of an omnibus F -test as a way to guard against multiple
testing becomes quite unnecessary.

In the same manner, while combination across multiple modalities is a power-
ful substitute for classical multivariate tests as shown earlier, the correction across
such modalities can replace the post hoc tests that are usually performed after sig-
nificant results are found with cmvs.
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4.5.5 Pain study

Joint significance is an important consideration when trying to interpret data such
as these, that are distinct in some aspects (here, the topography of the stimulation),
but similar in others (here, the type of stimulation, hot and painful), strengthen-
ing the case for distinct representations in some brain regions, but not in others.
In terms of identifying areas with significant joint activity, the results suggest in-
volvement of large portions of the anterior insula and secondary somatosensory
cortex. The Fisher, Stouffer and Mudholkar–George combining functions were
particularly successful in recovering a small area of activity in the midbrain and
periaqueductal gray area that would be expected from previous studies on pain
(Reynolds, 1969; Petrovic et al., 2002; Tracey et al., 2002; Roy et al., 2014), but that
could not be located from the original, non-combined data.

4.5.6 Relationship with meta-analysis

Most of the combining functions shown in Table 4.1 were originally defined based
on p-values, and some of them are popular inmeta-analyses, such as those of Fisher
and Stouffer (Borenstein et al., 2009). Although there are commonalities between
these meta-analytical methods and npc, it is worth emphasising that the two con-
stitute distinct approaches to entirely different problems. In the npc, the objective
is to interrogate joint significance across the multiple observed variables (or mul-
tiple designs and contrasts if these are instead combined) when the data for each in-
dividual observation is readily available to the researcher. Meta-analyses methods
based on p-values, while sometimes using the same combining functions, attempt
to identify a joint effect across multiple studies that not have necessarily been
performed on the same experimental units, and when the data for the individual
observations are not available. Moreover, the p-value of the combined statistic in
the npc is produced through permutations, a procedure that is not available for
ordinary meta-analytical methods.

The fact that npc andmeta-analysis form different approaches to separate prob-
lems also imply that certain criticisms levelled at the use of certain combined func-
tions in the context of meta-analysis do not extend trivially to npc. As the sim-
ulations show, various of the combining functions more recently developed did
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not in general outperform older combining methods, such as Fisher and Stouffer,
even though these were developed precisely for that purpose, in the context of
meta-analyses, or for problems framed as such.

4.5.7 Applicability for cortical volumes

In the scope of this doctoral thesis, it is convenient to ask about the differences
between investigating gray matter volume (an areal quantity) directly, as an uni-
variate measurement computed as proposed in Section 2.2.3, or as a multivari-
ate measurement, assessed through thickness and area separately, then combined
through the modified npc as proposed in this chapter. These two types of test
would provide information about gray matter in two different ways. In the uni-
variate case, a test could be significant in the presence of an effect affecting volume
as a whole, but not necessarily either thickness or area in significant ways. Con-
versely, if either thickness or area is significant, due to the consistency of the com-
bining functions used in npc, it is expected that the joint analysis would assist in
rejecting the null hypothesis of no effects in neither of the two. This can be the
case even if effects acting on thickness and area follow opposite trends, such that
volumes would remain generally unaltered (Brown and Jernigan, 2012).

4.6 Chapter conclusion

We proposed and evaluated a modified version of Non-Parametric Combination
that is feasible and useful for imaging applications, and serves as a more power-
ful alternative to classical multivariate tests. We presented and discussed aspects
related multiple testing problems in brain imaging, and proposed a single frame-
work that addresses all these concerns at once. We showed that combination and
correction of multiple imaging modalities, designs, and contrasts, are related to
each other in the logic of their implementation, and also through the use of the
simplest and the oldest of the combining functions, attributed to Tippett.
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Appendix A

Valorisation

According to the regulation governing the attainment of doctoral degrees at Uni-
versiteit Maastricht, an addendum about valorisation must be added to each doc-
toral thesis. This is the purpose of this section. Note that each of the previous
chapters has its own conclusion.

A.1 Introduction

Before this work, there was a considerable confusion on what would be the proper
way of studying the surface area of the cerebral cortex at a finer scale, across sub-
jects, with many improvised approaches having appeared. None of these, however
had sufficiently considered the deleterious impact that non-pycnophylactic meth-
ods would have on measurements. The work presented in Chapter 2 provided a
much missed ground truth to which other, possibly faster even if approximate,
strategies can be compared.

While the study of surface area is definitely not the only one to benefit from
permutation inference, it is one where such non-parametric techniques can be ap-
plied in their whole potential, for providing robust inference even when assump-
tions about normality do not hold, and allowing correction for multiplicity of tests
in spite of the complex dependence structure and irregular lattice of facewise areal
data. The investigation of various regression and permutation strategies provided
in Chapter 3, allied with the use of exchangeability blocks, variance groups, per-
mutations together with sign-flippings, and a statistic that is robust to heterosce-
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dasticity, the G-statistic, allows researchers to use permutation tests confidently
even with complex designs.

For multimodal data, and for unexplored, yet pervasive types of multiple test-
ing, the non-parametric combination (npc) framework provided in Chapter 4 com-
pares favourably against classical multivariate tests, such as mancova, with power
that grows intuitively and consistently with the inclusion of data that truly con-
tains the effect being sought. The npc allows the analysis of cortical gray matter
volume from surface-basedmethods, evenwhen its separate constituent parts have
possibly cancelling effects on each other.

A.2 Thesis impact

The most obvious impact of this thesis is that it provided:

– A method to study the surface area of the cortex, of populations of subjects,
at a fine resolution.

– A thorough investigation of permutation tests in the presence of nuisance
variables.

– Assessment of permutations with sign flippings.

– Whole-block and within-block permutation.

– A heteroscedasticity-robust test statistic.

– A version of npc that is feasible for neuroimaging applications.

– A demonstration of the superior power of npc when compared to classical
tests.

A.2.1 Peer-reviewed publications

– Winkler AM, Sabuncu MR, Yeo BT, Fischl B, Greve DN, Kochunov P, Nichols
TE, Blangero J, Glahn DC. Measuring and comparing brain cortical surface
area and other areal quantities. NeuroImage. 2012 Mar 15;61(4):1428-43.
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– Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation
inference for the general linear model. NeuroImage. 2014 May 15;92:381-97.

– Winkler AM, Webster MA, Brooks JC, Tracey I, Smith SM and Nichols TE.
Non-parametric combination and related permutation tests for neuroima-
ging. Human Brain Mapping. 2016 (in press).

A.2.2 Presentations in conferences

– Winkler AM, Sabuncu MR, Yeo BT, Fischl B, Greve DN, Kochunov P, Nichols
TE, Blangero J, Glahn DC. Measuring and comparing brain cortical surface

area and other areal quantities. 18th Human Brain Mapping, 10-14 June 2012,
Beijing, China.

– Winkler AM, Smith SM, Nichols TE. Non-parametric combination for ana-

lyses of multi-modal imaging. 19th Human Brain Mapping, 16-20 June 2013,
Seattle, WA, USA; also presented at: Neuroimaging Data Analysis. Statist-
ical and Applied Mathematical Sciences Institute (samsi), 04-14 June 2013,
Research Triangle Park, North Carolina, usa.

– Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation

inference for the general linear model and the G-statistic. 20th Human Brain
Mapping, 8-12 June 2014, Hamburg, Germany.

A.2.3 Talks

– Areal analysis. Talk at the fmrib Analysis Group meeting, 13 February 2013,
University of Oxford, uk.

– Permutation for the general linear model. Talk at at the Department of Stat-
istics, University of Warwick, uk, on 27 March 2014.

– Permutation for the general linear model. This was a series of three talks de-
livered in 3, 10 and 17 September 2015 at fmrib, University of Oxford, uk.
The talks covered permutation for the general linear model, block permuta-
tion, multivariate methods (classical manova, etc), non-parametric combin-
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ation for brain imaging data (npc), and multi-level block permutation, there-
fore including topics beyond those covered in this dissertation.

– Areal and volumetric analyses. Talk at the Department of Laboratory Medi-
cine, Children’s and Women’s Health, 14 April 2015, Norwegian University
of Science and Technology, Trondheim, Norway.

A.2.4 Public engagement

Various small pieces of information that were studied during the development
of this dissertation have been published in the blog of the author: brainder.org.
This includes entries about normality tests, the Box–Cox transformation and log-
normality, quality inspection of results of FreeSurfer surface reconstruction, ver-
texwise and facewise file formats, confidence intervals for Bernoulli trials, biases
on permutation p-values, the logic of the method of Fisher to combine p-values,
the classic “lady tasting tea” experiment (a form of permutation test), among oth-
ers. Scripts for areal analyses, for smoothing quickly vertexwise or facewise data
after interpolation to a regular mesh, to generate a regular spherical mesh, and for
visualisation of areal quantities (facewise) are also provided in the blog.

A.2.5 Software

Scripts for areal interpolation, smoothing, conversion from facewise to vertexwise,
and facewise data visualisation, as presented in Chapter 2, have been made avail-
able, and can be obtained from brainder.org. The permutation tests, as discussed
in Chapters 3 and 4, have been made available in the tool Permutation Analysis of

Linear Models (palm), a text-based application that can be invoked from scripts,
and that can be downloaded from fsl.fmrib.ox.ac.uk/fsl/fslwiki/palm (Figure A.1).
It should be noted, however, that palm includes various other features that are
not covered by this dissertation. Both palm and the scripts for areal analysis are
licensed under the General Public Licence (gpl), thus can be distributed freely, and
run in either Matlab or Octave.

http://brainder.org
http://brainder.org
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM
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=======================================================================
                 Permutation Analysis of Linear Models
=======================================================================

Figure A.1: The permutation tests discussed and proposed in Chapters 3 and 4 have been
made available in the tool Permutation Analysis of Linear Models (palm), a text-based ap-
plication that can be invoked from scripts.

A.3 Further perspectives

The work in this thesis has already unfolded into rich consequences. The whole-
block and within-block exchangeability can be nested into each other, so as to allow
multi-level exchangeability blocks, a work that the author has already developed
as a side-project, and that is already published (Winkler et al., 2015).

While the pycnophylactic interpolation is clearly the most appropriate way of
assessing area, it is computationally demanding given the high resolution of the
cortical meshes typically used, and an assessment of other, approximate methods,
is necessary so as to reduce computational costs. In the same line, permutation
tests are much slower than their parametric counterparts. Strategies for accelera-
tion should to be considered if these methods are to be used for routine analysis.
These are left as future work. Likewise, the promising use of npc for joint ana-
lysis of cortical surface area and thickness, as a replacement for analysis of cortical
volume, is left as future work.

Finally, the demonstration that permutation tests can be used in complex ex-
perimental designs as those considered opens up many possibilities, particularly
for the analysis of multi-level fmri data, as well as for cases in which not all ob-
servations are present. This includes cases that currently can only be treated with
linear mixed effects models, which has all the disadvantages inherent to iterative
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methods.



Appendix B

Supporting Information

Chapter 4 is complemented by supporting materials: a browsable set of pages
with the results of the various simulations mentioned in that chapter. This ma-
terial accessible at the url http://bit.ly/2dOmt3M. The same material is available
as the Supporting Information of the paper that includes most of the content of
this chapter, Winkler et al. (2016).
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