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The harmonic balance method (HBM) is used to investigate the dynamical behavior of the geo-
metrical nonlinear plate. The middle plane displacements are included in the plate in which the 
equations of motion are developed by the principle virtual work. Moreover, the nonlinear fre-
quency response curves, or NFRCs, are obtained by a continuation method. 
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1. Introduction 

When thin plates are subjected to large external loads, the plates experience a large amplitude of 
deflections; in other words, the plates exhibit geometrical nonlinear vibrations. Geometrical nonline-
arity often occurs in aircraft skin-panels when the aircraft is subjected to high levels of aerodynamic 
forces. This nonlinearity, developed by in-plane membrane stresses in the plates, generally results in 
an increase of resonance frequencies (i.e., hardening effect) and changes of mode shapes with respect 
to external force levels. Extensive reviews on the nonlinear vibration of thin plates are given in Refs. 
[1-3], in which they introduced accurate formulas for the highly nonlinear large deformations.  

Many researchers have analyzed the nonlinearity of plates using the continuum method [4] and the 
finite element method [5]. If the finite element model is subjected to harmonic excitation, the steady 
state periodic response can be estimated by the harmonic balance method (HBM) [6]. The HBM, or 
the Fourier-Galerkin method, is performed in the frequency domain. Recently, this method has been 
applied to nonlinear large scale structures such as a full scale vehicle, aircraft and bladed disk because 
HBM has much less computational burden than time domain methods [7-10].  

The present study introduces finite element formulas for a thin plate that employed von Kármán’s 
nonlinear strain-displacement relationships. In addition, the nonlinear frequency response curves 
(NFRCs) are obtained to confirm the changes in resonance frequencies with respect to the increase 
of external force levels. To this end, the HBM is applied to the finite element model. The analytic 
form of the Jacobian matrix, which is used in the HBM, is derived from the presented finite element 
formulas. The analytic form allows for improvement of computational efficiency, especially for large 
scale structures, compared to the finite difference method (FDM). 

 

2. Theory 

2.1 Equations of motion  
The nonlinear strain-displacement relationships of von-Kármán are defined as follows: 
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where p
Lε and b

Lε are the linear membrane and bending strains, and p
Nε is the geometrically nonlin-

ear membrane strain. u  and v  are in-plane displacements in x and y coordinates, and w  is lateral 
displacement in z coordinate. The equations of motion can be derived from the virtual work principles:  

       U T W             (2) 

where  
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In Eq. (2), U, T and W are virtual works by the restoring forces, inertia and the external forces, 
respectively. D and D′ are the membrane and flexural rigidity matrices, respectively. A is the area, 
and ρ and h are the mass density and the thickness, respectively. N is the shape function matrix and 
fw is the external force vector in the transverse direction. In this study, only the external force in the 
transverse direction is considered. The superscript T denotes the transpose matrix. Substituting Eq. 
(1) into Eq. (2) and neglecting in-plane inertia yields the equations of motion:  

      w w w w L w NL w w   M r C r K r K w r f          (6) 

where 

            1

4 3 1 2
p

NL



 K w K w K w K K w        (7) 

In Eq. (6), M and r are the mass matrix and response vector, respectively, and viscous matrix C is 
introduced. Subscript w represents the transverse direction. KL and KNL are the linear and nonlinear 
bending stiffness matrices, respectively. Here, the nonlinear stiffness matrix is a quadratic function 
of the transverse displacement vector, w. The detailed form of the nonlinear stiffness matrix is repre-
sented in Eq. (7). Here, K2 and K3 are the nonlinear stiffness matrices which linearly depend on rw 
and K4 is the nonlinear matrix which quadratically depends on rw. It is noted that the equations of 
motion of a thin plate can be represented only by the transverse direction because the term “in-plane 
inertia” is neglected. 

 

2.2 Harmonic Balance Method (HBM) 
The present study presents only a summary of the HBM for the Jacobian matrix. More detailed 

information regarding the HBM can be found in the reference [10]. The equations of motion (6) can 
be transformed to the following: 
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where fNL represents the nonlinear force vector by the nonlinear stiffness matrix and the transverse 
displacement vector. f is the general force vector, including the linear and nonlinear forces. The as-
sumed periodic solutions, rw and f, are approximated by Fourier series truncated to the Nth harmonic: 
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where sk and ck are vectors of the Fourier coefficients to the sine and cosine terms, respectively. 
Further, the superscripts r and f stand for the response and force terms, respectively. ω is the external 
excitation frequency. Substituting Eq. (9) into Eq. (8) and following simple manipulations yields the 
following:  

       , ( ) ( , )    h z A z b z 0        (10) 

A is the matrix describing the linear dynamics of the plate and its size: (2NH+1)n × (2NH+1)n. z is 
the coefficient vector which consists of the Fourier coefficients of the displacement rw and force f. 
Detailed forms of the matrix and vectors in Eq. (10) can be found in Ref. [10]. Eq. (10) is nonlinear 
because b is a function of z. Therefore, it must be solved using an iterative method (e.g., Newton-
Raphson) in which the Jacobian matrix must be calculated at each iteration. The Jacobian matrix of 
Eq. (10) with respect to the Fourier coefficient vector z can be represented as follows: 

       z

 
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The resultant matrix by the derivative between the displacement and force coefficient vectors can 
be expressed by the chain rule:  
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Where r  and f  are the newly defined vectors, including N number of concatenated responses and 
forces for all DOFs. Γ  and Γ  show the relationship between the coefficient vectors in the time and 
frequency domains; thus, Γ  and Γ can be interpreted as operators for the Fourier and inverse Fou-
rier transforms, respectively. Here, the superscript + represents the Moore-Penrose pseudo-inverse. 
The two operators can be expressed using explicit formulas [10]. Assuming the external forces are 
independent of the responses, the terms in the thin plate corresponding to the resultant matrix by the 
derivative between the vectors of r  and f  in Eq. (12) can be represented only by the nonlinear force 
term. The derivative of the nonlinear force vector with respect to the transverse displacement in the 
thin plate is as follows: 
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w NL w
w w

 
    

K rf
r K r

r r
      (13) 

where 
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Consequently, Eq. (13) is the analytic expression of the Jacobian matrix for a thin plate. And, as 
shown in Eq. (14), the third order tensor must be managed in order to compute the Jacobian matrix. 
The nonlinear response corresponding to the excitation frequency is computed by the continuation 
procedure.  
 

3. Case study 

The proposed method is demonstrated on a thin, rectangular plate in which the clamped-clamped 
boundary conditions are imposed on the left and right sides, as shown in Fig. 1. The defined properties 
and parameters are as follows: 

Geometric properties: a = 600 mm, b = 50 mm and h = 1 mm.  
Material properties: E = 2e10 N/m2, ρ = 7980 kg/m3 and ν = 0.33. 
External force levels: Fw = 5e-4 N, 8e-4 N and 1e-3 N.  
External forcing location: x = 120 mm, y = 25 mm. 
 

 
Fig. 1. Configuration of thin plate 

 
Prior to performing simulations, a process was conducted to verify the derived analytic form of 

the Jacobian matrix. The Jacobian matrices were evaluated using the derived analytic formula and by 
the FDM when the smallest force among the defined levels is applied. Moreover, ten arbitrary ele-
ments were selected in both cases of the analytic formula and of the FDM on the same locations of 
the Jacobian matrices.  
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Table 1. The Jacobian matrices estimated by the analytic formula versus by the FDM 

Analytic Formula FDM Error (%) 

-8434688.818 -8435650.46 0.011 

-5919363.77 -5918966.21 0.006 

-19266242.8 -19264043.5 0.011 

-5919362.8 -5921317.8 0.033 

-8434687.81 -8435257.69 0.006 

-8455452.28 -8455446.39 6.97E-05 

-5768988.81 -5771214.04 0.038 

-19257163.7 -19256256 0.004 

-5768987.88 -5768803.58 0.003 

-8455451.277 -8455605.02 0.001 

 
As shown in Table 1, the differences in the estimated values between the two methods are less 

than 1% across the elements. Thus, the validity of the proposed method was confirmed. The NFRCs 
corresponding to the external force levels were obtained at the forcing location (i.e., point FRFs).  

 

 
Fig. 2. Frequency response curves of the thin plate for external force levels: (a) frequency range 

from 10 to 160 (b) zoomed frequency range near 4th mode 
 
Fig. 2 shows the obtained frequency response curves for the defined external force levels, and their 

magnitudes are shown in log scale. As shown in the figure, the resonance frequency of each mode 
increases as the external force level increases. The results, displayed in the figure, confirmed the 
expected hardening effect.  
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4. Conclusion 

The present study introduced the numerical model of a thin plate, in which the geometrical non-
linearity is included, and reviewed the use of HBM for analyzing dynamic characteristics of the plate. 
In addition, the relationship between the forces and the responses was presented in the analytic form 
to obtain the Jacobian matrix that is used in the HBM. Simulations were conducted to verify the 
introduced analytic form, and the proposed method was verified by comparing its results with those 
obtained from the FDM. Lastly, the hardening effect was confirmed through the obtained NFRCs at 
the defined external forces. 
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