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ABSTRACT 

When an implicit integration scheme is used, variable step strategies are especially well suited to 

deal with problems characterised by high non-linearities. Constant step size strategies generally 

lead to divergence or extremely costly computations. An automatic time stepping algorithm is 

proposed that is based on estimators of the integration error of the differential dynamic balance 

equations. Additionally, the proposed algorithm automatically takes decisions regarding the 

necessity of updating the tangent matrix or stopping the iterations, further reducing the 

computational cost. As an illustration of the capabilities of this algorithm, several numerical 

simulations of both academic and industrial problems are presented. 
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1  Introduction 

Non-linear dynamics problems integrated in time can be solved with two kind of time stepping 

algorithms: explicit or implicit. For an explicit algorithm, the elements of solution at time tn+1 

depend only on the solution at time tn, while for an implicit algorithm, they also implicitly depend 

on other elements of the solution at time tn+1 itself. The problem must then be solved in an iterative 

fashion. Stability (i.e. positive damping of initial perturbations) imposes different restrictions on 

those two families of algorithms and, with a proper choice of parameters, the time step size can be 

much larger for an implicit algorithm than for an explicit algorithm. The total number of time steps 

in an implicit scheme will thus generally be smaller. Then, even though the cost of a time step is 

higher, as a consequence of the need for computing and inverting a Hessian matrix, the total 

computation time for an implicit scheme is often more interesting than for an explicit scheme. In 

this context, if the time step size is chosen too small, the calculation is very expensive (in term of 

computation time), while if it is chosen too large, the integration is not accurate enough or the 

iterations diverge (when solving the balance equations). Therefore, the time step size should be 

carefully evaluated. Since the problem evolves with time, the time step size should be 

continuously adapted to this evolution. An automatic time stepping algorithm is then the only 

solution to accurately solve the problem in a reasonably short computation time.  

 

For an industrial problem that has a large number of degrees of freedom, the most expensive 

operation of an implicit code is the inversion of the Hessian Matrix. For non-linear problems, the 

Hessian matrix normally evolves with every iteration, but the Newton-Raphson iterations can 

sometimes converge while using the old inverted matrix. Still, this inverted matrix must be 

regularly recomputed to avoid divergence. In a classical strategy, this inversion occurs at the 

beginning of each time step and for some iterations selected (a priori) by the user. But if the 

Hessian matrix is not inverted for too many iterations, the problem diverges, while if the inversion 

occurs too frequently, the computation becomes too expensive. According to the evolution of the 

problem with time, an algorithm automatically selecting if the inverted Hessian matrix must be 

recalculated or not can significantly reduce the total computation cost.  
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Assuming the inverse Hessian matrix is updated at an acceptable frequency, the Newton-Raphson 

iterations can still diverge. The time step is then rejected and the time step size is reduced. A 

problem is to determine when iterations diverge. Divergence can result from a negative Jacobian. 

In this case, divergence detection is trivial. But when there is no negative Jacobian, convergence is 

not garanteed since the residual is not ensured to decrease. In this case, divergence detection is 

more difficult. Usually, a maximum number of iterations is defined. If this number is too small, a 

time step can be rejected while the problem slowly converges. If this number is chosen too large, 

some iterations are needlessly computed when the divergence actually occurs. It is then interesting 

to determine if divergence occurs on the basis of the evolution of the residual. The maximum 

number of iterations is more difficult to be correctly determined when the inverted matrix is not 

computed at each iteration. Indeed, this number depends on how frequently the inverted matrix is 

computed.  

 

This paper proposes an automatic time step control algorithm based on the measure of the 

integration error. This algorithm modifies the time step size only if durable physical changes occur 

in the problem evolution. Estimation of the error is made independent of the implicit scheme’s 

parameters. Three estimators are compared. An algorithm choosing if the Hessian matrix is to be 

recomputed is also proposed. This determination is based on residual evolution with iterations. 

Finally, a divergence criterion based on this residual evolution is implemented. Academic and 

industrial numerical examples are then presented to illustrate these new algorithms. 

 

2 Numerical integration of transient problems 

 

2.1  Equations of motion  

FEM (space) semi-discretization of the equations of motion of a nonlinear structure leads to the 

coupled set of second order nonlinear differential equations [1-5]:  
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where R is the residual vector, x the vector of nodal positions, the vector of nodal 

velocities, the vector of nodal accelerations. M is the mass matrix, F

x&

x&& int the vector of internal 

forces resulting from body’s deformation and Fext the vector of external forces. Fext collects all 

types of loading (applied through local or distributed actions, in a follow-up way or not, reactions 

to imposed displacements and contact situations). Both vectors are non-linear x and in  due to 

phenomena of contact, plastic deformations, geometrical non-linearity… 

x&

 

The set of equations (1) is completed by two sets of given initial conditions at time zero:  

          ( ) ( )0000   and  txxtxx && ==     (2) 

 

2.2 Implicit schemes: The generalized-α trapezoidal scheme 

The most general scheme for implicit integration of (1) is a generalized trapezoidal scheme [1, 2, 

6] where updating of positions and velocities is based on “averaged” accelerations stemming from 

associated values between tn and tn+1.  It reads for instance 
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The discretized equations of motion (1) can be rewritten under the from proposed by Chung and 

Hulbert [6]: 
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Unconditional stability and second order accuracy of the scheme, for linear problems [6], require 

that the parameters verify the following conditions: 
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Iterative solution of the nonlinear system (5) first requires the elimination of accelerations and 

velocities at time tn+1 with the help of (3) and (4), as well as the writing of the Hessian matrix of 

the system, i.e. 
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where KT, CT are respectively the tangent stiffness and damping matrices. The residual for iteration 

number i+1 is defined by: 
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Then, the iterative solution of system (5, 6, 7) can be written as: 

 

RxS −=∆⋅       (9) 

 

Iterations stop when the non-dimensional residual r becomes lower than the accuracy tolerance δ,  

defined by the user. Therefore, the following relation must be verified: 
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2.3 Implicit schemes: The generalized-θ mid-point scheme (GMP) 

An alternative to the previous scheme is a generalized midpoint scheme with constant acceleration 

over the time step [3,4,5].  In this case, the equations of motion (1) are solved at the sampling 

time: tn+θ  = tn + θ (tn+1-tn ) with  θ > 0, i.e. 
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Iterative solution of the nonlinear system (19) requires the evaluation of the Hessian matrix of the 

system given by: 
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The present scheme is -independent, thus yielding the final acceleration as a post-treatment 

result : 
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3  Automatic time step size control 

3.1  Introduction 
 
A relatively simple method proposed by Ponthot [3] aims at an optimal number of iterations. If the 

number of iterations exceeds this optimal number, the next time step size is reduced, while, if the 
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number of iterations is lower than the optimal number, the time step size is augmented. Givoli and 

Henisberg [7] propose to modify the time step size to keep the displacements difference between 

two successive times lower than a given limit. Géradin [8] (Figure 1) estimates the integration 

error from the accelerations and the inertial forces difference between two successive times 

multiplied by the square of the time step size. This error is divided by a constant depending on the 

initial positions and by another constant that is the average error for a one-degree-of-freedom 

linear system (defined as in section 3.2), the result being the non-dimensional integration error e.  

This error must be lower than a given tolerance (PRCU). If this error is higher, the time step is 

rejected and its size divided by two. If the error is lower than the tolerance but higher than half the 

tolerance, the time step is divided by the ratio between the error and half the tolerance to the power 

one third. If the error is lower than the tolerance divided by sixteen, the time step size is multiplied 

by two.  

  

For Cassano and Cardona [9], the time step control is the same than for Géradin, but the error is 

calculated only from the accelerations difference and is not divided by a constant depending on the 

initial positions but by a term that evolves with positions. Hulbert and Jang [10] (Figure 2) 

estimate the error from the accelerations difference multiplied by the square of time step size. This 

error is then divided by a term that depends on the positions difference. Their time step control 

algorithm is characterised by two tolerances (TOL1 and TOL2) and by a counter of maximal index 

LCOUNT. If the error is higher than TOL2, then the step is rejected and time step size is reduced. 

If the error is lower than TOL2 and higher than TOL1, the time step is accepted and its size is kept 

constant. If the error is lower than TOL1 then the time step is accepted. If it occurs successively 

LCOUNT times, then the time step size is increased. The counter is introduced to avoid 

undesirable change in time step size due to the periodic nature of the local error. 

 

Dutta and Ramakrishnan [11] also calculate the error from the accelerations difference multiplied 

by the square of the time step size. It is made non-dimensional by dividing it by the maximum 

norm of the positions vector, for the previous time step. The time interval is divided in sub-
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domains, and in each sub-domain there are a certain number of time steps of constant size. Once 

the time marching scheme has gone through a whole sub-domain, an average error is calculated. A 

time step size for the next sub-domain is then computed from this average error. 

 

The automatic control scheme presented in this paper is based on the algorithm proposed by 

Géradin [8], [12]. Nevertheless, due to the non-linear characteristics of the problems we are 

interested in, we make sure that the time step size reacts only on evolution in physical modes and 

not on numerical modes. Changes in time step size will also occur only if the new time step size 

can be kept constant for several steps. On the other hand, the error estimator based on the inertial 

forces difference (proposed by Géradin [8] and established for a linear theory) and the error 

estimator based on the acceleration difference (established for linear and non-linear problem) are 

compared. It will appear that for non-linear problems a linear theory is not adequate. 

 

3.2  Error estimator 

The integration error is estimated from the truncation error of equations (3, 4) or equations (12, 

13). Indeed, the truncation error is of the third order: ( ) ( )xtOxtOet &&&&& ∆∆≈∆= 23
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First, this expression must be available for any problem. Then a non-dimensional error end is 

defined (x0 is the vector of the initial positions): 
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To ensure that the error estimator can be used for each implicit scheme (the generalised-α 
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trapezoidal scheme or the generalised-θ mid-point scheme), and for each set of parameters 

(αF, αM, β, γ or θ) without modifying the tolerance on the error (see section 3.3), expression (17) is 

divided by a reference. This reference is the average error (on a period) for a one-degree-of-

freedom linear oscillator. Assuming a constant time step size, and a pulsation ω, we can define the 

non-dimensional pulsation as Ω = ω ∆t. For such a problem, equations (3) to (5) can be rewritten: 
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βαα Ω−+−=Ω 2)1(1)( FMD  

And finally, assuming that for a one-degree-of-freedom linear oscillator we have xn=x0 cos(ω t), 

and that equation (19) can be rewritten as: 

 

 9



⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∆

∆−Ω=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∆

∆−
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+∆
+∆

+
=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∆∆

∆∆

∆

xnt
xnt

xn
IA

xnt
xnt

xn

xnt
xnt

xn

xt

xt
x

&&

&

&&

&

&&

&

&&

&
2

])([
212

1
1

2

  (20) 

it finally comes:  
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Therefore  xt &&∆∆ 2  for the one-degree of freedom linear oscillator is deduced from relation (21): 
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The reference is the average error for a period. It can be noted ε: 
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 10



( )
( )

( ) ⎥⎦
⎤

⎢⎣
⎡ Ω−+−

Ω
+Ω−

=Ω

βααπ

α
ε

2113

4

2
131

FM

F     (25) 

 

If αM = 0, then one gets back the expression calculated by Géradin [8], [12] for the HHT implicit 

scheme. Expression (25) is established for the generalised-α trapezoidal scheme, while for the 

generalised-θ mid-point scheme, the system (18) is replaced by: 
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with:  
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Therefore the matrix A(Ω) in expressions (19, 20, 21) becomes: 
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Finally, the reference error (25) is rewritten: 
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The non-dimensional error (17) is then divided by ε (expression 25 or 28) to have an expression 

independent of the particular scheme used. However, Ω need to be known to estimate ε. For the 

one-degree-of-freedom linear oscillator, ten time steps in a period gives a good accuracy with a 

relatively low computation cost. Therefore with the non-dimensional pulsation corresponding to a 

0.1 Hz frequency, given by Ωk = 0.6, we define, using (17): 
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For linear systems, Géradin demonstrated ([8], [12]) that the error can be evaluated as expression 

(30). This error filters high frequency modes (as numerical modes). However, for non-linear 

systems, no advantage is gained (see academic examples 1 and 2) by replacing the acceleration 

difference by a term depending on the accelerations and the inertial forces difference as in (30), 

yielding: 
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Another possibility (Cassano and Cardona [9]) to evaluate the error is to keep the maximum 

acceleration difference (L -norm) instead of the vector L2-norm. We define e∞ 3, with ndof the 

number of degrees of freedom: 
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In this paper these three error indicators are compared on academic cases. 

 

3.3  Time step size control 

In the next paragraphs, the symbol e is used to represent any one errors of e1 (29), e2 (30) or e3 

(31). The computed error must be of the order of a user-defined tolerance that is noted PRCU. A 

value of this tolerance that lead to a good accuracy to price ratio is typically 10-3. A low PRCU 

gives a good accuracy but a longer computation time. A higher PRCU gives a shorter computation 

time but a lower accuracy. If PRCU is too high, the time step size can result in an error lower than 

PRCU but can be not small enough to allow for iterations to converge. Therefore, if a problem of 

convergence appears (Figure 3), the algorithm reduces PRCU (box 1, Figure 4). Moreover, the 

time step size is divided by RDOWN, that is initialised at 3 by default. After some steps without 

convergence problems, the tolerance PRCU can be augmented. This number of time steps is large 

enough to avoid oscillation in PRCU value. It could depend on divergence occurrences. 

 

If the iterations converge, the algorithm tries to adjust the time step size to have an error equal to 

one half of PRCU (box 2, Figure 5). There exist three possibilities: 

 

• The error is larger than PRCU/2, and the algorithm goes to box 3 (Figure 6): the error is 

considered to be too high, and to ensure a good accuracy, next time step size must be 

smaller. 

• The error is in the interval [TRHLD, PRCU/2], and the algorithm goes to box 4 (Figure 7): 

the time step size ensures a good accuracy with a relatively low computation cost, and it is 

kept constant 

• The error is smaller than a limit TRHLD, and the algorithm goes to box 5 (Figure 8): the 

error is considered to be too small, and to ensure a reduced computation cost, next time step 
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size must be larger. 

 

Let us first examine the problem of too high an error (box 3, Figure 6). The next time step size 

must therefore be reduced. But to avoid needless changes of time step, we will make sure that the 

variation of the integration error is due to a durable and physical evolution in the problem. The 

time step is then reduced only if there are a number (CO) of successive time steps for which the 

integration error is larger than PRCU/2. This number CO can be taken equal to three. The factor 

by which the time step size is reduced depends on the maximum error (ERRO) of CO successive 

time steps. Géradin demonstrates that for a linear one-degree-of-freedom system, the factor by 

which the time step size needs to be multiplied to reduce the error from e to PRCU/2 can be 

written: 

 

 η
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e
PRCURAT ,  η ∈  [2, 3]    (32) 

 

For non-linear systems η can be out of this interval. To ensure that the time step size is sufficiently 

reduced, η is taken smaller than two. The factor that finally multiplies the time step size is 

RAT=[0.5 PRCU/ERRO]2/3. But if there is a rapid change in the physical problem (impact…), the 

time step is not immediately adapted. Therefore, if the error e is larger than PRCU, the time step 

size is immediately multiplied by RAT=[0.5 PRCU/e]2/3. If the error e is larger than a limit REJL, 

the time step is rejected and its new value is size is multiplied by RAT=[0.5 PRCU/e]2/3. REJL can 

be taken equal to 1.5 PRCU. 

 

If error is smaller than PRCU/2 and higher than TRHLD, the time step is kept constant (box 4, 

Figure 7). Typical values for TRHLD are discussed in next paragraph. 

 

Let us now examine the problem of too small an error (box 5, Figure 8). The time step size could 

be augmented without degrading the solution. To avoid needless time step size changes, another 
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counter is introduced. If CT successive time steps give an error lower then the limit TRHLD, the 

time step size is then augmented. ERRT is the maximal error of those CT steps. To ensure that the 

time step size is not augmented too much, η from equation (32) is taken larger than 3. The factor 

multiplying the time step size is finally RAT=[0.5 PRCU/ERRT]1/5. A problem due to the 

introduction of a counter occurs when the solution becomes smoother (external forces 

diminish…).   Indeed, TRHLD must be taken small (e.g. PRCU/16) and CT relatively large (e.g. 5) 

to ensure a good accuracy. In these conditions, the time step size augments slowly. To reduce the 

computation cost, TRHLD can be increased and CT can be decreased when the time step size is 

augmented. TRHLD can be multiplied by 1.3 while CT is reduced to 4 first and to 2 next. Once a 

time step size is reduced, TRHLD and CT are set back to their respective initial values PRCU/16 

and 5. In some problems (translation at constant velocities), the error becomes nil. To avoid a 

division by zero, ERRT is limited by TRHLD.PRCU /10. 

 

To complete boxes 1 to 5, let us note that: Parameters ICO and ERRO are reinitialised to their 

initial value if the scheme goes in box 1, 4 or 5 while parameters ICT and ERRT are reinitialised if 

the scheme goes in box 1, 3 or 4.  

 

4 Resolution of the Newton-Raphson iterations 

4.1 Selective updating of the inverse Hessian matrix 

For non-linear problems, if the Hessian matrix is not recomputed and inverted, the convergence of 

Newton-Raphson iterations is slower than if the Hessian matrix were recomputed and inverted at 

each iteration. For some step, divergence could also occur. Therefore, the criterion must consider 

two facts: 

 

• Convergence of the iterations must be ensured. 

• Not updating the Hessian matrix must reduce the total computation cost. Indeed, a problem 

with a small number of degrees of freedom and with strong non-linearities can converge in a 

few iterations when the Hessian matrix is updated at each iteration, but converge with more 
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iterations when the Hessian matrix is not updated. When the number of degrees of freedom 

is reduced, an iteration without recalculation is not much less expensive. The total cost is 

then reduced when the Hessian matrix is often recalculated. On the other hand, if the 

problem has a large number of degrees of freedom and only a few non-linear elements, not 

updating the Hessian matrix can then reduce the computation cost. 

 

The evolution of the non-dimensional residual r (10) could indicate if the problem converges or 

not. While r decreases, iterations converge even if the Hessian matrix is not recalculated and not 

inverted. An indication of how much it could be interesting not to recalculate the Hessian matrix is 

the ratio VALRF between the time needed for an iteration with recalculation and an iteration 

without recalculation. This ratio indicates how much an iteration without recalculation could 

advantageously replace an iteration with recalculation.  

 

The proposed algorithm is the following: 

 

• The Hessian matrix is recalculated at the first iteration if the time step size has changed. 

Indeed, S significantly depends on ∆t (7). 

•  If the number of the iterations is greater than VALRF (rounded to an integer), the next 

iteration is made with recalculation of the Hessian matrix. Then, iterations occur without 

recalculation only if it is less expensive. 

• If the number of the iterations is lower than VALRF (rounded to an integer) in an integer, 

the Hessian matrix is recalculated only if the non-dimensional residual r has not been 

reduced by a ratio chosen equal to RAPRES = VALRF/10 ∈ [0.2, 0.95].  

• If the non-dimensional residual has not been divided by RAPRES, the next iteration then 

needs recalculation of the Hessian matrix. But ideally, this iteration does not take as initial 

values for ( x , , ) the values at the end of the previous iteration, but the value at the end 

of the last iteration which has converged. Some divergences of the iterations are then 

avoided. For practical reasons, the implementation of this last remark in MECANO, one 

x& x&&
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softwares used to validate our algorithms, was not possible. Thus, the following solution 

has been adopted. If the non-dimensional residual has not been reduced, the next iteration 

occurs with recalculation and the initial values are the prediction values. 

• If an iteration, with a number lower than VALRF (rounded to an integer) in an integer and 

larger than one, with recalculation of the Hessian matrix occurs, all the subsequent iterations 

of this step will occur with recalculation. Not updating risks to lead to a strategy that 

diverges or that requires more computation time than with updating. 

• If the last iteration of the previous time step has needed recalculation of the Hessian matrix, 

the first iteration of the present step occurs with recalculation. 

 

This algorithm avoids some needless recalculations and inversions of the Hessian matrix. For 

strongly non-linear problems with a small number of degrees of freedom, this algorithm is at 

worst as expensive as an algorithm with recalculation at each iteration. For problems with 

more degrees of freedom, this algorithm is less expensive than an algorithm where the user 

decides, more or less arbitrary, of the number of the iterations with recalculation. In fact, this 

algorithm allows a lot of iterations without recalculation when possible, and recalculates 

frequently the Hessian matrix when needed. 

 

4.2 Criterion of divergence 

 

Two problems of divergence can occur. First an element has a negative Jacobian. In this case, 

detection of divergence is easy to detect by verifying the Jacobian of element. A more difficult 

problem is to detect divergence when all Jacobian are positive, but when the evolution of the 

residual in Newton-Raphson iterations does not lead to a residual lower than the defined tolerance. 

Usually, the user specifies a maximum number of iterations. If upon reaching this number, the 

non-dimensional residual r is not lower than the tolerance δ, the time step is rejected and the time 

step size is divided. But when the residual r decreases slowly, the maximum number of iteration is 

exceeded before r becomes lower than δ. On the other hand, the process can diverge after a few 
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iterations. More iterations are then needless. Finally, if we accept the problem to be solved without 

recalculation of the Hessian matrix, the number of iterations is higher than when frequent 

recalculations occur. A solution consists in considering that divergence occurs if the non-

dimensional residual has not been divided by two after 5 successive iterations with recalculation. 

Several iterations need to be considered, because when divergence occurs, the non-dimensional 

residual usually presents some oscillations.   

 

5  Numerical examples 

In a first part, three academic cases are studied. The problems are solved with the proposed time 

step control algorithm. The error indicator employed are successively those given by relation (29), 

relation (30) and relation (31), respectively denoted e1, e2 and e3. A tolerance PRCU=10-3 is used 

for all the problems except for problem 1 that is more difficult to integrate. For this problem, a 

tolerance PRCU=10-4 is taken. Finally, the problems are also solved with Ponthot ’s method [3] 

described in section 3.1. This solution is called “opti”. The optimal number of iterations is taken 

equal to 4 except for problem 1. For the same reason than with new algorithm, the optimal number 

of iteration is thus taken equal to 2. The problems considered are solved within the formalism of 

large deformations and displacements. Academic cases were computed in the research code 

METAFOR [3], in which the automatic time step size control algorithm has been implemented. The 

criterion of automatic updating and of divergence were also introduced and studied on two others 

academic cases. Contact is treated with the penalty method [14].  

 

In a  second part, industrial problems are studied. The three algorithms (automatic time step size 

control, selective updating of the inverse Hessian matrix, divergence criterion) have been 

implemented in the dynamics module MECANO of SAMCEF [13]. In the commercial version of 

MECANO, time step size is chosen with the scheme proposed by Géradin [8], [12]. The user defines 

the number of the iterations with recalculation of the Hessian matrix and the maximum number of 

iterations. With the current algorithm, recalculation occurs at the first iteration of all time steps, 

according to the fact that time step size can change. Two industrial problems from SNECMA have 
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been computed with the old and the new algorithm.  These problems were three dimensional models 

with thousands of degrees of freedom. Some elements are non-linear, simulating contacts, rupture… 

When comparing the new and the old algorithms, precision parameters (δ , PRCU) are taken 

identical. For the old algorithm, the iteration numbers with recalculation of the Hessian matrix are 

chosen to minimise the total computation cost. Some attempts were necessary to define these 

parameters for having a low cost without divergence of the problems. 

 

5.1   Academic case 1: Contact of an elastic bar  

An elastic bar in plane stress (properties in Table 1) with an initial velocity (Figure 9) of -5 m/s 

(minus sign comes from the orientation of x axis) enters into contact with a rigid matrix initially 

distant of 0.25 mm. Due to a Poisson coefficient equal to zero, and considering vertical 

displacement fixed to zero, the problem is one-dimensional. The analytic solution of this problem 

is knew. In the interval [0 s, 5 10-5 s], the bar is in translation at constant velocity towards the wall. 

Contact occurs at 5 10-5s and the velocity of left edge becomes equal to zero. The velocity of the 

wave then appearing in the bar is (E/ρ)1/2=5120 m/s. Given the length of the bar, the wave needs 

10-4 s to go from the left edge to the right edge and back. The velocity of left edge is then equal to 

zero during the interval [5 10-5 s, 15 10-5 s] and becomes equal (due to conservation properties of 

an elastic problem) to 5 m/s after 15 10-5s. The problem is solved with the generalized-α 

trapezoidal scheme (αM = -0.997 and other parameters automatically computed to have a stable 

scheme, i.e. αF = 0.05, γ = 1.997 and β =1.558).These parameters are given the most 

“energetically conservative” values, given the conservative nature of the problem. The numerical 

dissipation must then be reduced as much as possible to ensure the accuracy of the solution. The 

evolution of  left edge’s velocity is illustrated at Figure 10. Oscillations at the end of the computation 

are a typical numerical problem of implicit schemes. To reduce these, more dissipative parameters 

should be chosen but they would reduce the accuracy of the solution with the introduction of 

numerical dissipation at lower frequencies. Relative computation costs are reported in Table 2. 

Critical observations of these results will be done for the three problems altogether in paragraph 

5.3. 
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5.2  Academic case 2: Taylor’s bar 

A cylindrical bar  (properties in Table 3) with an initial velocity enters into contact with a rigid 

wall. A reference computation is defined. This reference is a computation of the problem with a 

small constant time step (∆t = 0.17 µs). The problem is solved with the generalised-θ mid-point 

scheme (θ = 1.1). The solution obtained after 80 µs is illustrated at Figure 11. Relative 

computation costs are reported in Table 2. For this problem, a comparison with an explicit central 

difference scheme is made. The explicit final configuration is nearly identical to the implicit one 

(Figure 11) but, due to the low number of degree of freedom, the explicit solution is much more 

expensive (52 s). 

 

5.3   Academic case 3: Dynamic buckling of a cylinder  

A hollow cylinder [14, 15, 16]  (properties in Table 4) enters into contact with a rigid matrix 

(Figure 12). The left edge of the cylinder is constrained to move with a constant velocity of 9090 

mm/s. The problem is solved with the generalized-α trapezoidal scheme (αM = -0.87 and other 

parameters automatically computed to have a stable scheme, i.e. αF = 0.1, γ = 1.48 and β =0.98).  

The evolution of the geometry every 1.1 ms is showed in Figure 13. The solution obtained after 12 

ms is illustrated in Figure 14. Relative computation costs are illustrated in Table 2.  

 

From the three cases studied up to now, we can say that the automatic time step size control 

algorithm developed is more accurate than the “opti” method. Indeed, a garanty of accuracy is 

introduced (which depends on the PRCU the user has defined). Computation costs (Table 2) can 

be lower ( 70 % for academic case 3)   than with the “opti” method and are never much more 

expensive. Slightly better results (same accuracy and lower computational costs) were obtained 

when the error estimator e1 (29) was used instead of e2 (30). The error e3 is more severe but is 

also more expensive than e1.  In fact, the error indicator e2 was developed for linear problems 

[8], [12] and does not remain appropriate.  

 

 20



5.4 Academic case 4: 3D-Taylor’s bar 

This problem is similar to the academic case 1 but is treated as a three dimensional problem. The 

properties of the bar are those given in Table 1. There is no practical interest in a three dimensional 

model, but it will serve to validate our algorithms. On the basis of the conclusions drown from the 

previous cases, only error e1 is used. Nevertheless, the automatic criterion of Hessian matrix 

updating is introduced. Therefore four resolutions are compared: the “opti” method, the new time 

stepping algorithms with error e1 and with systematic re-computation of the Hessian matrix at each 

iteration, the new time stepping algorithms with error e1 and with criterion of the Hessian matrix 

updating and finally a reference computation with a time step ∆t=3.2 10-7 s and updating of 

Hessian matrix at each iteration. The problem is solved with the generalized-α trapezoidal scheme 

(αM = -0.87 and other parameters automatically computed to have a stable scheme, i.e. αF = 0.1, γ 

= 1.48 and β =0.98). The solution obtained after 80 µs is illustrated in Figure 15. Relative 

computation costs are reported in Table 5. Critical observations of these results will be done 

together with those on next example in paragraph 5.5. 

 

5.5 Academic case 5: Dynamic buckling of a 3D-bar 

The problem is the dynamic buckling of a prism of initial height 600 mm (Table 6), and of 

uniform section (Figure 16). Properties of the bar are given in Table 6. This example models an 

automobile stringer during a frontal crash. The bar than has initial velocity (25 m/s) parallel to its 

axis when it enters into contact with a rigid wall. To simulate the vehicle inertia, the opposite edge 

of the bar is kept moving at constant speed. The methods compared are identical to the previous 

case, but here, a constant time step strategy lead to a very expensive computation (a few days). 

Therefore we defined the reference computation, as resolution using error e3 (that is, the most 

severe criteria) and a lower PRCU (i.e. 10-5). Moreover we impose time step size to be kept lower 

than 10-5 s. The problem is solved with the generalised-θ mid-point scheme (θ = 1.1). The evolution 

of the geometry every 1.7 ms is showed at Figure 17. The solution obtained after 17 ms is illustrated 

in Figure 18. Relative computation costs are reported in Table 5. 
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When the criterion of automatic updating is introduced, the new time stepping algorithm requires a 

lower expensive (from 5% to 50% in term of CPU) computation cost than with the “opti” method, 

even if the solution is less accurate (15 % difference in the maximal von Mises stress for problem 

5). Let us note that the updating criterion is efficient with the new time stepping because the time 

step size is kept constant on long periods and that the Hessian matrix must not be updated only 

because the time step size has changed.  

 

This problem (and previous ones) leads to the next concluding remarks: 

 

• For most  problems, an automatic time stepping is necessary. A constant time step 

strategy is too expensive for practical usage. 

• Time stepping algorithms based on an integration error ensure an accuracy that the 

“opti” method cannot ensure. This accuracy depends on the tolerance PRCU chosen 

by the user. For elaborate problems (buckling , auto-contact and dynamic effects), a 

better convergence  (and a better accuracy) is obtained when PRCU is chosen equal to 

10-4 than when it is choose at 10-3 (academic cases 1 and 5) or when “opti” (academic 

cases 1, 3 and 5) method is used. Indeed, the evolution of time step size is then more 

appropriate to the evolution of the problem. 

• The automatic criterion for Hessian matrix updating allows to reduce computation 

times (CPU) in some cases (academic case 4). For problems with a lot of 

modifications of contact (academic example 5), the automatic criterion is reduced to a 

re-actualisation for most of the iterations. Nevertheless, the problem converges with a 

good accuracy (in critical academic case 5 there is a lack of 15% accuracy). It allows 

us to say that, for industrial problems where only a part of the elements are as critical 

as in academic case 5, the automatic updating criterion will allow to reduce 

computation costs without loss in accuracy. 

• The robustness of the proposed algorithms is established since the algorithm has 

 22



always produced accurate results without leading to an exaggerated computational 

cost for all the highly non linear problems treated. 

Let us now confirm these conclusions on industrial cases from SNECMA. 

 

5.6 Industrial case 1 

It consist in a three-dimensional model of unbalance in an aircraft engine. The number of 

degrees of freedom is about ten thousands. Some non-linear element are used (contact between 

blades and casing, contact between shaft and bearing …). This problem is solved with the old 

algorithms (commercial version of MECANO) and the new ones (time step control, Hessian 

matrix recalculation and divergence criterion). In both cases, the tolerance δ on the non-

dimensional residual r (10) is taken equal to 10-3. Tolerance PRCU on the integration error is 

taken equal to 10-3. The initial time step size is the same. With the old algorithm, there is 

recalculation of the Hessian matrix for iterations 1, 3, 6,  7,  8,  9…  Figure 19 is showing the time 

evolution of the displacement of a bearing degree of freedom. New algorithms give a solution   

nearly  identical to the old ones.  

 

Figure 20 shows the energy balance, i.e. the potential energy plus kinetic energy minus the 

work of external forces. If this balance is positive, energy appears with time and the 

computation is unstable. If this balance is negative, energy disappears. It could be due to 

physical dissipation or to numerical dissipation, and if the numerical dissipation is too high, 

the integration is not accurate. On Figure 20, we see that dissipation with new algorithms is a 

little lower (0.5%) than with the old algorithms. The new algorithms thus give a good 

accuracy. Moreover they decrease the computational cost (CPU) to 40% of the old ones. 

 
5.7  Industrial case 2 
 
It consist in a three-dimensional model of a bearing rupture in an aircraft engine. The number of 

degrees of freedom is about ten thousands. This problem is solved with the old algorithms 

(commercial version of MECANO) and the new ones (time step control, Hessian matrix 
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recalculation and divergence criterion).  In both cases, tolerance δ on the non-dimensional residual 

r is taken equal to 10-4. The tolerance PRCU on the integration error is taken equal to 10-3. The 

initial time step size is the same. With the old algorithms, there is recalculation of the Hessian 

matrix for iterations 1, 3, 5, 6, 7, 8… Figure 21 represents the force evolution for an intact 

bearing degree on freedom. The new algorithms give the same solutions than the old ones. 

Figure 22 shows the evolution of time step size. With the new algorithm of time step control, 

the time step size is constant during longer periods. Costly updating of the Hessian matrix 

because of time step size changes can thus be avoided. New algorithms reduce the 

computation time (CPU) to 60% of the old ones. 

 

6  Conclusions 

A new time step size control algorithm has been presented. This algorithm is based on the measure 

of an integration error. By introducing counters, the time step size is modified only for physical 

and durable variations in dynamical problems. But for a sudden change such as an impact or a 

contact, the integration error increases in one time step and the algorithm reduces instantaneously 

the time step size. By modifying the limit under which the time step could be augmented, if the 

problem becomes smoother, time step size can increase rapidly. This algorithm thus gives a good 

accuracy with a low computation time and a constant time step for long period. If problems of 

convergence occur, tolerance on the integration error is reduced to adapt the time step size. Costly 

time step, nevertheless rejected, are thus avoided. This algorithm has been applied to academic 

problems with contacts and large deformations. Associated to an estimator of the integration error 

based on the average acceleration jump (relation 29), the algorithm has been shown to ensure 

accuracy at a relatively low cost. 

 

Next, an algorithm deciding if the Hessian matrix must be re-evaluated has been proposed. This 

algorithm re-computes the Hessian matrix only if it is necessary for convergence. If not, the old 

Hessian matrix is used in the iterative process and the computation time is reduced.  Finally, a 

criterion of divergence was implemented. It considers that the problem does not converge if the 
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non-dimensional residual does not decrease when iterating. A lot of needless iterations are thus 

avoided. 

 

These algorithms were also validated on academic cases. Moreover they were implemented in 

SAMCEF’s module MECANO [13], with the proposed time stepping algorithm, and they were 

validated on industrial cases from SNECMA. Solutions obtained with these algorithms are similar 

to the old ones but computational cost have been reduced to about 50%. 
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Height Length Initial distance to 

matrix 
Density   Young modulus Poisson coefficient Initial velocity

d=40 mm l=247.65 mm di=0.25 mm 
 

ρ = 7895 kg/m3 E=206.84 109 kg/m² ν=0.0 0x& =5 m/s 

 
Table 1: Properties of elastic bar 

  



 

  
 

Problem e1 e2 e3 "opti" "reference"
Problem 1 330 380 430 28 (analytic) 
Problem 2       467 528 627 418 2292
Problem 3 7745 6538 12670 25500 27680 

 
Table 2: Computation cost (ms) comparison for the first three problem 

 



 

     

 

 
Diameter Length Density Young modulus Poisson

coefficient 
Yield stress Hardening 

parameter 
Initial velocity 

d=6.4 mm l=32.4 mm ρ = 8930 kg/m3 E=117 109 kg/m² ν=0.35 σ0=4 108 N/m² h=1 108 N/m² 0x& =227 m/s 
 

Table 3: Properties of Taylor’s bar 
 

 



 

   
 

Internal 
diameter 

External 
diameter 

Length Density Young modulus Poisson
coefficient 

Yield stress Hardening 
parameter 

Matrix velocity 

di=27 mm de=31.17 mm l=180 mm ρ = 7850 kg/m3 E=2.1 1011 
kg/m2

ν=0.3 σ0=700 N/mm2 h=808 N/mm2
0x& =9.09 m/s 

 
Table 4: Properties of buckling cylinder  

 

 

 



 

 
Problem e1 with updating at each 

iteration 
e1 with automatic updating "opti" "reference" 

Problem 4      6.35 4.43 4.7 12.6
Problem 5      264 254 395 917

 
Table 5: Computation cost (min) comparison for problems 4 and 5 

 



 

 
Length Density Young modulus Poisson coefficient Yield stress Hardening 

parameter 
Matrix velocity 

l=600 mm ρ = 8900 kg/m3 E=2 1011 kg/m2 ν=0.3 σ0=200 N/mm2 h=630 N/mm2
0z& =25 m/s 

 
Table 6: Properties of buckling 3D-bar  

 

 



Figure 1: Time step size control proposed by Géradin [8] 

Figure 2: Time step size control proposed by Hulbert and Jang [10] 

Figure 3: Iterations convergence test 

Figure 4:Description of box 1, step size control when iterations diverge 

Figure 5: Description of box 2, step size control when itrations converge 

Figure 6: Description of box 3, step size control when error is too large 

Figure 7: Description of box4 , step size control when error is correct 

Figure 8: Description of box 5, step size control when error is too small 

Figure 9: Model of contact of an elastic bar  

Figure 10: Velocity of left edge for contact of an elastic bar  

Figure 11: Configuration and Von-Mises stress (N/mm2) for Taylor’s bar 

Figure 12: Model of dynamic buckling of a cylinder 

Figure 13: Configuration (every 1.1 ms)  for the dynamic buckling of a cylinder 

Figure 14: Configuration and Von-Mises stress (N/mm2) for the dynamic buckling of a cylinder 

Figure 15: Configuration and Von-Mises stress (N/mm2) for 3D-Taylor’s bar  

Figure 16: Section of buckling 3D-bar 

Figure 17: Configuration at each 4.25 ms for dynamic buckilng of 3D-bar (representation of a 

fourth of the bar) 

Figure 18: Configuration and Von-Mises stress (N/mm2) for dynamic buckilng of 3D-bar 

(representation of a fourth of the bar) 

Figure 19: Displacement of industrial case 1 

Figure 20: Energy balance of industrial case 1 

Figure 21: Force for industrial case 2 

Figure 22: Time step size evolution for industrial case 2 

Table 1: Properties of elastic bar  

Table 2: Computation cost (ms) comparison for the first three problem 

Table 3: Properties of Taylor’s bar 

Table 4: Properties of buckling cylinder  

  



Table 5: Computation cost (min) comparison for problems 4 and 5 

Table 6: Properties of buckling 3D-bar  
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