Benthic contributions to Adriatic and Mediterranean biogeochemical cycles

Arthur Capet, Paolo Lazzari, Federico Spagnoli, Giorgio Bolzon, and Cosimo Solidoro

July 14, 2017

1. Intro

- 2. The 3D model Set-up
- Comparison with observations
- 4. Contribution to budgets
- 5. The role of biology
- 6. Nutrient retention and recycling
- 7. Conluding remarks

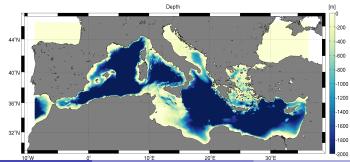
Allowing exchanges between the benthic and pelagic enables :

▶ Retention: (Part of) primary production mineralized locally

- ▶ Retention: (Part of) primary production mineralized locally
- Seasonal inertia: Shape production seasonal cycle

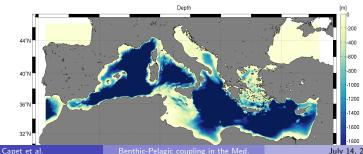
- ▶ Retention: (Part of) primary production mineralized locally
- Seasonal inertia: Shape production seasonal cycle
- ▶ Inter-annual inertia: Delayed response to water quality policies

- ► Retention: (Part of) primary production mineralized locally
- Seasonal inertia: Shape production seasonal cycle
- ▶ Inter-annual inertia: Delayed response to water quality policies
- ▶ Denitrification: Net N removal, eg. Black Sea Capet et al. 2016

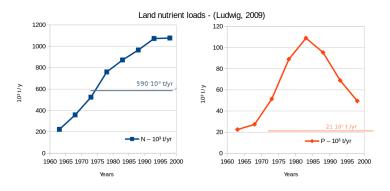

- ▶ Retention: (Part of) primary production mineralized locally
- Seasonal inertia: Shape production seasonal cycle
- Inter-annual inertia: Delayed response to water quality policies
- ▶ Denitrification: Net N removal, eg. Black Sea Capet et al. 2016
- ► Phosphate sequestration: eg. Baltic Sea, North Sea *Slomp et al.* 1998

- ► Retention: (Part of) primary production mineralized locally
- Seasonal inertia: Shape production seasonal cycle
- Inter-annual inertia: Delayed response to water quality policies
- ▶ Denitrification: Net N removal, eg. Black Sea Capet et al. 2016
- ▶ Phosphate sequestration: eg. Baltic Sea, North Sea Slomp et al. 1998
- ▶ Benthic biology services: Filtration, irrigation, turbation, consolidation, production, oxygenation,... Norko et al. 2012

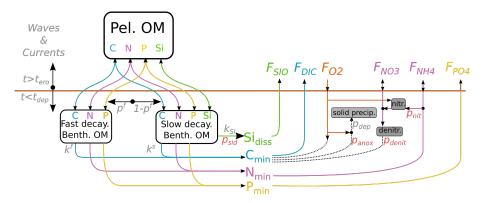
- 1. Intro
- 2. The 3D model Set-up
- Comparison with observations
- 4. Contribution to budgets
- 5. The role of biology
- 6. Nutrient retention and recycling
- 7. Conluding remarks

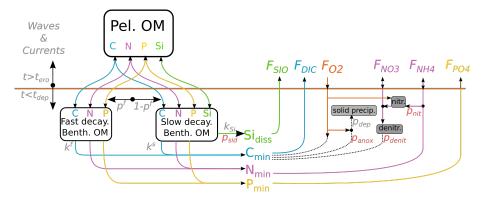

Model Set-up

- ▶ Physics: CMEMS, 1/16°, 72 z-levels, NEMO
 - ► Climatology (1997-2007), offline (24h)

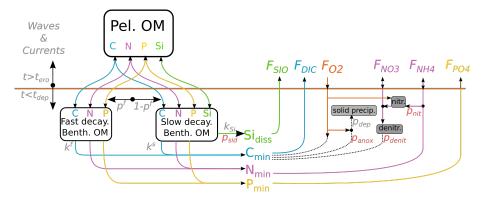

Model Set-up

- ▶ Physics: CMEMS, 1/16°, 72 z-levels, NEMO
- Biogeochemistry: BFM Vichi et al. 2007, Lazzari et al. 2010, 2012
 - C, N, P, Si, O, reduced
 - 4 Phyto., 3 Zoo., 2 Bact.

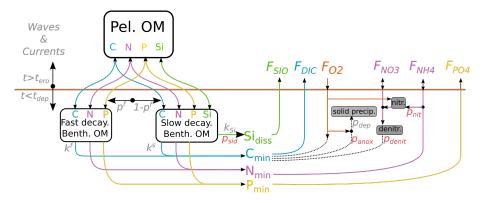



Model Set-up

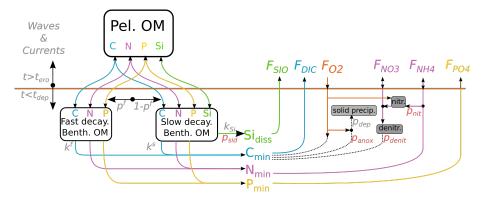
- ▶ Physics: CMEMS, 1/16°, 72 z-levels, NEMO
- ▶ Biogeochemistry: BFM Vichi et al. 2007, Lazzari et al. 2010, 2012
- ► Atmospheric deposits: Nitrate and phosphate deposit *Ribera d'Alcalà* et al., 2003
- ► Gibraltar: Newtonian dumping towards MEDAR-MEDATLAS
- ► Land inputs: Ludwig et al., 2009

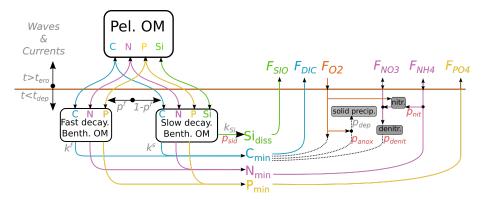


The Benthic module



panox part of anoxic mineralization (ie. producing ODU)


 p_{anox} part of anoxic mineralization (ie. producing ODU) p_{denit} part of denitrification mineralization (ie. using NO_x)

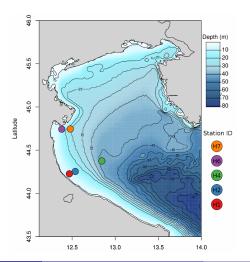

panox part of anoxic mineralization (ie. producing ODU)

 p_{denit} part of denitrification mineralization (ie. using NO_x)

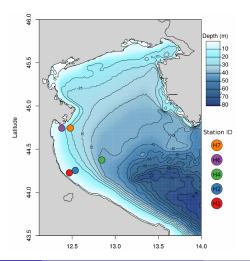
pnit part of produced ammonium nitrified within the sediments

 p_{anox} part of anoxic mineralization (ie. producing ODU) p_{denit} part of denitrification mineralization (ie. using NO_x) p_{nit} part of produced ammonium nitrified within the sediments p_{sid} ratio between potential and effective dissolution (saturation)

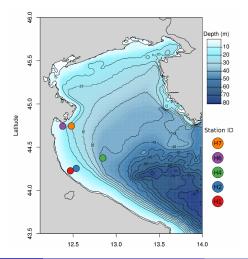
p_{anox} part of anoxic mineralization (ie. producing ODU)


 p_{denit} part of denitrification mineralization (ie. using NO_x)

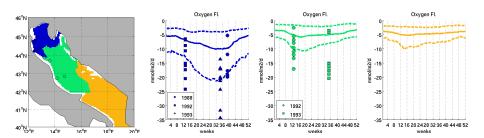
p_{nit} part of produced ammonium nitrified within the sediments


 p_{sid} ratio between potential and effective dissolution (saturation)

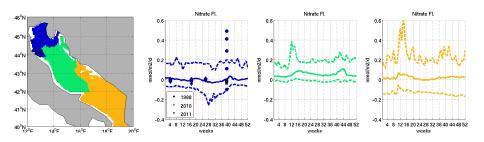
$$\underset{\text{P...}}{\mathsf{p}} = f\left(\mathrm{O}_{2,\mathrm{bottom}}, \mathrm{NO}_{\mathrm{x},\mathrm{bottom}}, \mathrm{NH}_{3,\mathrm{bottom}}, \mathrm{SiO}_{2,\mathrm{bottom}}, \mathrm{C}_{\mathrm{min}}\right)$$


1. Calibrate (extended) OMEXDIA model from observations

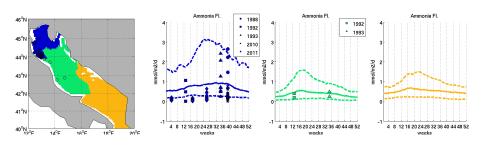
- 1. Calibrate (extended) OMEXDIA model from observations
- 2. Perturbated Monte Carlo simulations

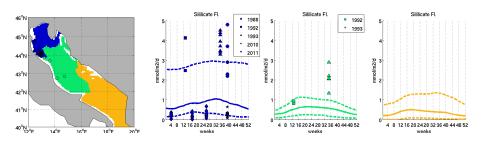


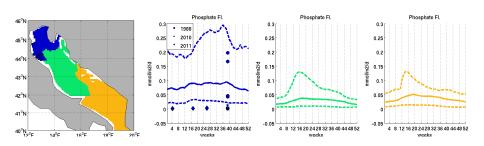
- 1. Calibrate (extended) OMEXDIA model from observations
- 2. Perturbated Monte Carlo simulations
- 3. Derive functions for the coupled model



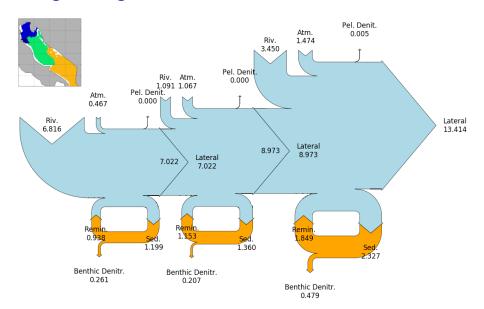
- 1. Intro
- 2. The 3D model Set-up
- 3. Comparison with observations
- 4. Contribution to budgets
- 5. The role of biology
- 6. Nutrient retention and recycling
- 7. Conluding remarks


Benthic Fluxes: Oxygen


Benthic Fluxes : Nitrate + Nitrite


Benthic Fluxes: Ammonia

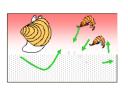
Benthic Fluxes: Silicate

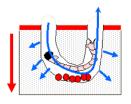


Benthic Fluxes: Phosphate

- 1. Intro
- 2. The 3D model Set-up
- 3. Comparison with observations
- 4. Contribution to budgets
- 5. The role of biology
- 6. Nutrient retention and recycling
- 7. Conluding remarks

Nitrogen Budgets

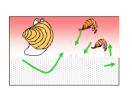


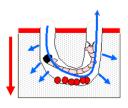

- 1. Intro
- 2. The 3D model Set-up
- Comparison with observations
- 4. Contribution to budgets
- 5. The role of biology
- 6. Nutrient retention and recycling
- 7. Conluding remarks

Biological control on Benthic-Pelagic coupling

Bioturbation

Bioirrigation

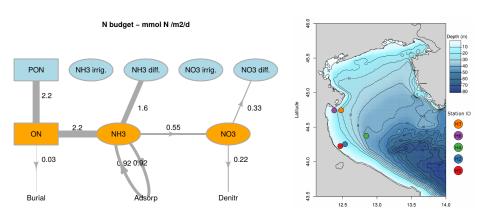



M. Tackx

Biological control on Benthic-Pelagic coupling

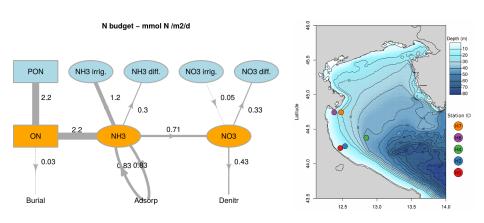
Bioturbation

Bioirrigation

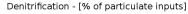

M. Tackx

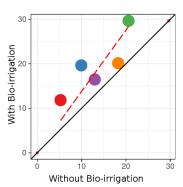
Sensitivity analysis of the (1D diagenetic) OMEXDIA model parameters :

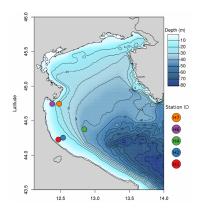
- 1. Quantity of organic matter input
- 2. The mixed layer depth
- 3. Bio-irrigation intensity
- 4. Quality of organic matter input
- 5. Bio-turbation intensity


Biological control

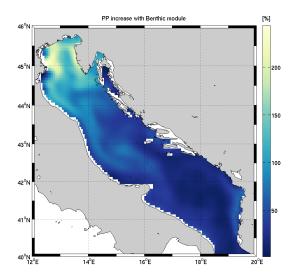
Bio-irrigation impact on benthic denitrification

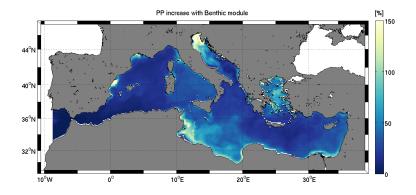

Biological control

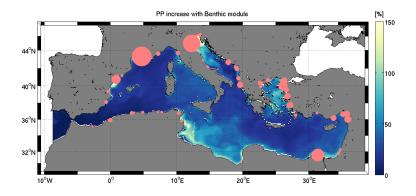

Bio-irrigation impact on benthic denitrification

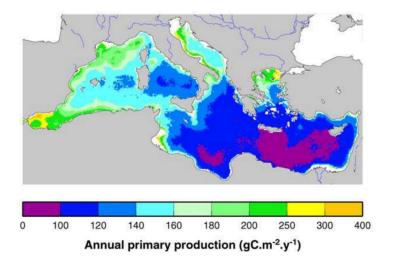


Biological control

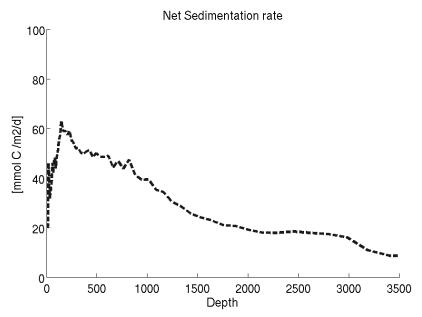

Bio-irrigation impact on benthic denitrification : + [10 - 100] %

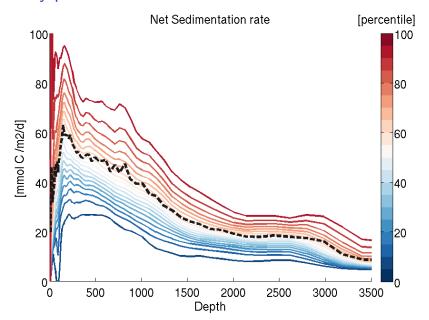


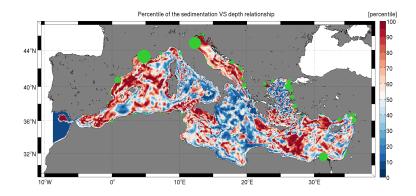


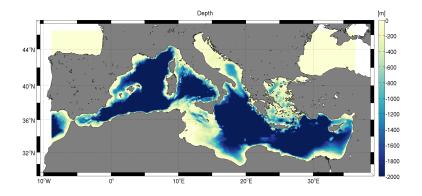


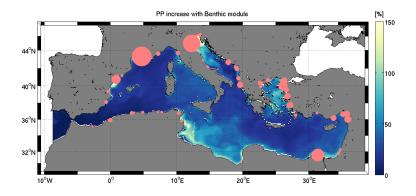
- 1. Intro
- 2. The 3D model Set-up
- 3. Comparison with observations
- 4. Contribution to budgets
- 5. The role of biology
- 6. Nutrient retention and recycling
- 7. Conluding remarks










Bosc et al. 2004

- 1. Intro
- 2. The 3D model Set-up
- Comparison with observations
- 4. Contribution to budgets
- 5. The role of biology
- 6. Nutrient retention and recycling
- 7. Conluding remarks

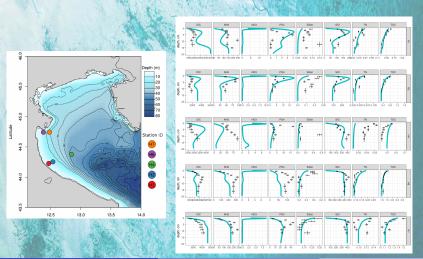
▶ Benthic-Pelagic coupling increases the retention and productivity in land-influenced areas and in regions of OM accumulation

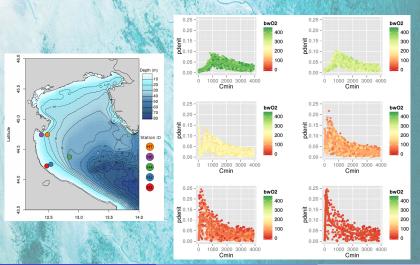
- ► Benthic-Pelagic coupling increases the retention and productivity in land-influenced areas and in regions of OM accumulation
- → Benthic-pelagic coupling in spatially resolved frameworks

- ► Benthic-Pelagic coupling increases the retention and productivity in land-influenced areas and in regions of OM accumulation
- → Benthic-pelagic coupling in spatially resolved frameworks
 - ► Significant & spatially variable contribution of benthic fauna

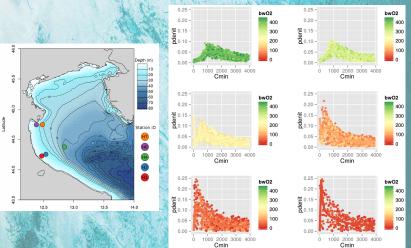
- ▶ Benthic-Pelagic coupling increases the retention and productivity in land-influenced areas and in regions of OM accumulation
- → Benthic-pelagic coupling in spatially resolved frameworks
 - ► Significant & spatially variable contribution of benthic fauna
 - ▶ Need for benthic monitoring targetting spatial and seasonal variability

Thanks for your attention ... and questions



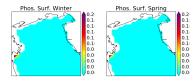

The Benthic module: transfer function

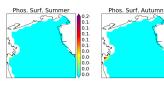
1. Calibrate (extended) OMEXDIA model from observations


The Benthic module: transfer function

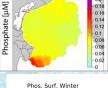
- 1. Calibrate (extended) OMEXDIA model from observations
- 2. Perturbated Monte Carlo simulations

The Benthic module: transfer function


- 1. Calibrate (extended) OMEXDIA model from observations
- 2. Perturbated Monte Carlo simulations
- 3. Derive functions for the coupled model


Phosphate, Surface $[\mu M]$

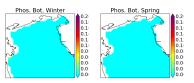
WIN


without Benthic Module

SPR

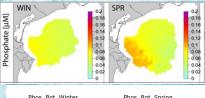
Solidoro et al, 2009

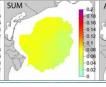
with Benthic Module



0.10 0.10 0.10 0.00 0.00 0.00 0.00

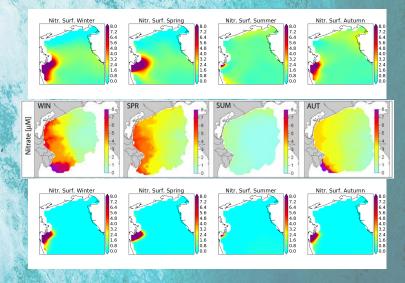
Phosphate, Bottom $[\mu M]$


without Benthic Module



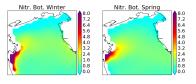
Solidoro et al, 2009

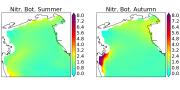
with Benthic Module

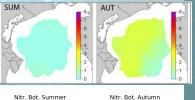


Nitrate + Nitrite, Surface $[\mu M]$

without Benthic Module


Climatology [1986–2006] Solidoro et al, 2009


with Benthic Module

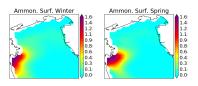


Nitrate + Nitrite, Bottom [μM]

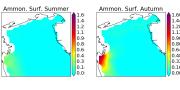
without Benthic Module

Solidoro et al, 2009

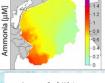
with Benthic Module



Nitrate [µM]


Ammonia, Surface $[\mu M]$

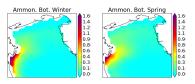
WIN

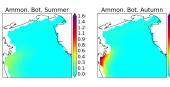

without Benthic Module

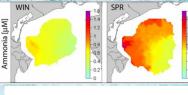
SPR

Solidoro et al, 2009

with Benthic Module



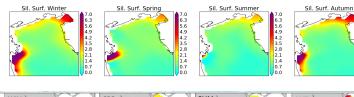



Ammonia, Bottom $[\mu M]$

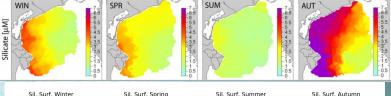

without Benthic Module

Solidoro et al, 2009

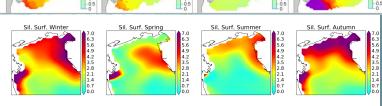
with Benthic Module



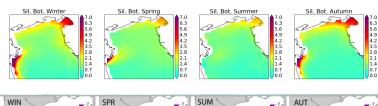
1.13 0.96 0.86 0.66 0.41 0.33

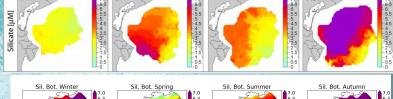

-0.4

Silicate, Surface [µM]

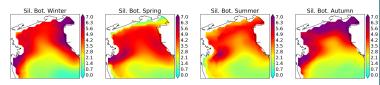

without Benthic Module

Solidoro et al, 2009


with Benthic Module


1.4 0.7 0.0

Silicate, Bottom $[\mu M]$


without Benthic Module

Solidoro et al, 2009

with Benthic Module

