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Abstract

We study the one-dimensional (1D) transport properties of
an ultracold gas of Bose-Einstein condensed atoms through
Aharonov-Bohm (AB) rings. Our system consists of a Bose-
Einstein condensate (BEC) that is outcoupled from a mag-
netic trap into a 1D waveguide which is made of two semi-
infinite leads that join a ring geometry exposed to a synthetic
magnetic flux φ. We specifically investigate the effects both of
a disorder potential and of a small atom-atom contact inter-
action strength on the AB oscillations. The main numerical
tools that we use for this purpose are a mean-field Gross-
Pitaevskii (GP) description and the truncated Wigner (tW)
method. We find that a correlated disorder suppress the AB
oscillations leaving thereby place to Aronov-Al’tshuler-Spivak
(AAS) oscillations. The competition between disorder and
interaction leads to a peak inversion at Φ = π, that is a signa-
ture of a coherent backscattering (CBS) peak inversion. This
is confirmed by truncated Wigner simulations.

Aharonov-Bohm rings for BEC

• Toröıdal optical dipole trap
[A. Ramanathan et al. PRL 106, 130401 (2011)]

[L. Amico et al. PRL 95, 063201 (2005)]
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• Intersection of two red-detuned beams
• Connection to two waveguides
• Synthetic gauge fields

[N. Goldman et al. Rep. Prog. Phys. 77, 126401 (2014)]

Theoretical description

• Ring geometry connected to two semi-infinite
homogeneous leads

• Perfect condensation of the reservoir (T = 0K)
with chemical potential µ

• Discretisation of a 1D Bose-Hubbard system
[J. Dujardin et al. Phys. Rev. A 91, 033614 (2015)]
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• Hamiltonian

Ĥ = ĤL + ĤLR + ĤR + ĤS
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ĤS = κ(t)â†αS
b̂ + κ∗(t)b̂†âαS

+ µb̂†b̂

with :

• âα (b̂) and â†α (b̂†) the annihilation and
creation operators at site α (of the source),

•Eδ ∝ 1/δ2 the on-site energy,

•Vα the disorder potential at site α,

• g the interaction strength,

•N → ∞ the number of Bose-Einstein
condensed atoms within the source,

•κ(t) → 0 the coupling strength.

Aharonov-Bohm effect

Theoretical description

• Interference pattern shifted due to the presence
of vector potential A with depashing

∆ϕ = k∆l +
e

~

∮

A · dl
︸ ︷︷ ︸

φ

= k∆l + 2π
φ

φ0︸︷︷︸
Φ

with φ0 = h/2e the magnetic flux quantum
• Oscillations in transport properties within a
two-arm ring due to interferences of partial
waves crossing each arm
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• Transmission periodic with respect to Φ

T = |t1 + t2|
2 = |t1|

2 + |t2|
2 + 2|t1| · |t2| cos∆ϕ

with period φ0.
Numerical results
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With interaction

• Incoherent transmission when g 6= 0
• Resonant transmission peaks move with g and
disappear if g is strong enough

• Transmission totally incoherent at Φ = π, for
all g > 0.

•More incoherent particles created as g ↑

Towards coherent backscattering

• Same origin for coherent backscattering and
Aronov-Al’tshuler-Spivak oscillations
[E. Akkermans et al., PRL 56, 1471 (1986)]

• Constructive wave interference between
reflected classical paths and their time-reversed
counterparts

• Recent verification with BEC
[F. Jendrzejewski, et al., PRL 109, 195302 (2012)]

• Inversion in the presence of nonlinearity (2D)
[M. Hartung et al., PRL 101, 020603 (2008)]
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Higher order interferences

• Presence of higher harmonics of weak intensity
• Schematic approach of the problem
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[Ihn T., Semiconductor nanostructures, Oxford (2010)]

The reflection probability is given by

R =
∣
∣r0 + r1e

iΦ + r1e
−iΦ + . . .

∣
∣
2

= |r0|
2 + |r1|

2 + . . . (1)

+ 4|r0| · |r1| cos Λ cos Φ + . . . (2)

+ 2|r1|
2 cos (2Φ) + . . . (3)

with Λ the disorder-dependent phase accumulated
after one turn with Φ = 0.

(1) no Φ-dependence, classical contributions

(2)Φ-periodicity, AB contribution, damped to zero
when averaged over the disorder

(3) Φ/2-periodicity, AAS contribution, robust to
averages over the disorder

→Appearance of Φ/2 periodic oscillations :
Al’tshuler-Aronov-Spivak oscillations
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AAS oscillations with interaction

• What happens if we set a weak interaction ?
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• The oscillations amplitude is reduced
• The minimum at Φ = π becomes a maximum !

T
ra
n
sm

is
si
on

0.25

0.25

0.125

0.125

0.375

0.375

Φ
π/2π/2π/2

π/2π/2π/2

πππ

πππ

3π/23π/23π/2

3π/23π/23π/2

2π2π2π

2π2π2π

0
0

0
0

0
0

0
0

0
0

0
0

0.50.50.5

0.50.50.5

GP
tW, total
tW, coherent
tW, incoherent

g/Eδ = 0.0002, N |κ|2 = 10 g/Eδ = 0.001, N |κ|2 = 2 g/Eδ = 0.002, N |κ|2 = 1

g/Eδ = 0.004, N |κ|2 = 0.5 g/Eδ = 0.001, N |κ|2 = 0.2 g/Eδ = 0.02, N |κ|2 = 0.1

µ/Eδ = 0.2,W/Eδ = 0.2

• Truncated Wigner simulations confirm the
coherent peak inversion for weak interaction

• Presence of dephasing for strong interaction
• Analytical calculations with our 1D model
more feasible

• Full diagrammatic theory with interaction
(non-linearity)
[T. Hartmann et. al. Ann. Phys. (Amsterdam) 327 (2012)]
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