Aharonov-Bohm oscillations of bosonic matter-wave beams in the presence of disorder and interaction

R. Chrétien, J. Dujardin, C. Petitjean, and P. Schlagheck

Université
de Liège
Département de Physique, University of Liege, 4000 Liège, Belgium

Abstract

We study the one-dimensional (1D) transport properties of an ultracold gas of Bose-Einstein condensed atoms through Aharonov-Bohm (AB) rings. Our system consists of a BoseEinstein condensate (BEC) that is outcoupled from a magnetic trap into a 1 D waveguide which is made of two semiinfinite leads that join a ring geometry exposed to a synthetic magnetic flux ϕ. We specifically investigate the effects both of a disorder potential and of a small atom-atom contact interaction strength on the AB oscillations. The main numerical tools that we use for this purpose are a mean-field GrossPitaevskii (GP) description and the truncated Wigner (tW) method. We find that a correlated disorder suppress the AB oscillations leaving thereby place to Aronov-Al'tshuler-Spivak AAS) oscillations. The competition between disorder and interaction leads to a peak inversion at $\Phi=\pi$, that is a signature of a coherent backscattering (CBS) peak inversion. This is confirmed by truncated Wigner simulations

Aharonov-Bohm rings for BEC

- Toroïdal optical dipole trap
A. Ramanathan et al. PRL 106, 130401 (2011)

- Intersection of two red-detuned beams
- Connection to two waveguides
- Synthetic gauge fields
[N. Goldman et al. Rep. Prog. Phys. 77, 126401 (2014)]

Theoretical description

- Ring geometry connected to two semi-infinite homogeneous leads
- Perfect condensation of the reservoir ($T=0 \mathrm{~K}$) with chemical potential μ
- Discretisation of a 1D Bose-Hubbard system 4J. Dujardin et al. Phys. Rev. A 91, 033614 (2015)

- Hamiltonian

$$
\hat{H}=\hat{H}_{\mathcal{L}}+\hat{H}_{\mathcal{L} \mathcal{R}}+\hat{H}_{\mathcal{R}}+\hat{H}_{\mathcal{S}}
$$

where
$\hat{H}_{\mathcal{L}}=\sum_{\alpha \in \mathcal{L}}\left[E_{\delta} \hat{a}_{\alpha}^{\dagger} \hat{a}_{\alpha}-\frac{E_{\delta}}{2}\left(\hat{a}_{\alpha+1}^{\dagger} \hat{a}_{\alpha}+\hat{a}_{\alpha}^{\dagger} \hat{a}_{\alpha+1}\right)\right]$ $\hat{H}_{\mathcal{L R}}=-\frac{E_{\delta}}{2}\left(\hat{a}_{-1}^{\dagger} \hat{a}_{0}+\hat{a}_{0}^{\dagger} \hat{a}_{-1}+\hat{a}_{N_{R}}^{\dagger} \hat{a}_{N_{R}+1}+\hat{a}_{N_{R}+1}^{\dagger} \hat{a}_{N_{R}}\right)$ $\hat{H}_{\mathcal{R}}=\left[\sum_{\alpha \in \mathcal{R}}\left(E_{\delta}+V_{\alpha}\right) \hat{a}_{\alpha}^{\dagger} \hat{a}_{\alpha}-\frac{E_{\delta}}{2}\left(\hat{a}_{\alpha-1}^{\dagger} \hat{a}_{\alpha}+\hat{a}_{\alpha+1}^{\dagger} \hat{a}_{\alpha}\right)\right.$ $\left.+g \hat{a}_{\alpha}^{\dagger} \hat{a}_{\alpha}^{\dagger} \hat{a}_{\alpha} \hat{a}_{\alpha}\right]$
$\hat{H}_{\mathcal{S}}=\kappa(t) \hat{a}_{\alpha_{S}}^{\dagger} \hat{b}+\kappa^{*}(t) \hat{b}^{\dagger} \hat{a}_{\alpha_{S}}+\mu \hat{b}^{\dagger} \hat{b}$
with

- $\hat{a}_{\alpha}(\hat{b})$ and $\hat{a}_{\alpha}^{\dagger}\left(\hat{b}^{\dagger}\right)$ the annihilation and creation operators at site α (of the source),
- $E_{\delta} \propto 1 / \delta^{2}$ the on-site energy
- V_{α} the disorder potential at site α
- g the interaction strength
- $N \rightarrow \infty$ the number of Bose-Einstein
condensed atoms within the source,
$\bullet \kappa(t) \rightarrow 0$ the coupling strength

Aharonov-Bohm effect

Theoretical description

- Interference pattern shifted due to the presence of vector potential \mathbf{A} with depashing

$$
\Delta \varphi=k \Delta l+\frac{e}{\hbar} \underbrace{\oint \mathbf{A} \cdot \mathrm{~d} \mathbf{l}}_{\infty}=k \Delta l+\underbrace{2 \pi \frac{\phi}{\phi_{0}}}_{\phi}
$$

with $\phi_{0}=h / 2 e$ the magnetic flux quantum

- Oscillations in transport properties within a two-arm ring due to interferences of partial waves crossing each arm

- Transmission periodic with respect to Φ $T=\left|t_{1}+t_{2}\right|^{2}=\left|t_{1}\right|^{2}+\left|t_{2}\right|^{2}+2\left|t_{1}\right| \cdot\left|t_{2}\right| \cos \Delta \varphi$ with period ϕ_{0}

Numerical results

- Incoherent transmission when $g \neq 0$
- Resonant transmission peaks move with g and disappear if g is strong enough
- Transmission totally incoherent at $\Phi=\pi$, for all $g>0$
- More incoherent particles created as $g \uparrow$

Towards coherent backscattering

- Same origin for coherent backscattering and Aronov-Al'tshuler-Spivak oscillations
[E. Akkermans et al., PRL 56, 1471 (1986)]
- Constructive wave interference between reflected classical paths and their time-reversed counterparts

- Recent verification with BEC
[F. Jendrzejewski, et al., PRL 109, 195302 (2012)]
- Inversion in the presence of nonlinearity (2D) [M. Hartung et al., PRL 101, 020603 (2008)]

[^0]
Higher order interferences

- Presence of higher harmonics of weak intensity
- Schematic approach of the problem

[Ihn T., Semiconductor nanostructures, Oxford (2010)]
The reflection probability is given by

$$
\begin{align*}
\mathcal{R}= & \left|r_{0}+r_{1} e^{i \Phi}+r_{1} e^{-i \Phi}+\ldots\right|^{2} \\
= & \left|r_{0}\right|^{2}+\left|r_{1}\right|^{2}+\ldots \tag{1}\\
& +4\left|r_{0}\right| \cdot\left|r_{1}\right| \cos \Lambda \cos \Phi+ \tag{2}\\
& +2\left|r_{1}\right|^{2} \cos (2 \Phi)+\ldots \tag{3}
\end{align*}
$$

with Λ the disorder-dependent phase accumulated after one turn with $\Phi=0$.
(1) no Φ-dependence, classical contributions
(2) Φ-periodicity, AB contribution, damped to zero when averaged over the disorder
(3) $\Phi / 2$-periodicity, AAS contribution, robust to averages over the disorder
\rightarrow Appearance of $\Phi / 2$ periodic oscillations Al'tshuler-Aronov-Spivak oscillations

AAS oscillations with interaction

- What happens if we set a weak interaction ?

- The oscillations amplitude is reduced
- The minimum at $\Phi=\pi$ becomes a maximum !

- Truncated Wigner simulations confirm the coherent peak inversion for weak interaction
- Presence of dephasing for strong interaction
- Analytical calculations with our 1D model more feasible
- Full diagrammatic theory with interaction (non-linearity)
[T. Hartmann et. al. Ann. Phys. (Amsterdam) 327 (2012)

[^0]: Computational resources have been provided by the Consortium de Equipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11

