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ABSTRACT. This work is dedicated to evaluate the influence of the contact on crack
lips  on crack  path and crack  growth rate  under  multi-axial  loading conditions.  An
important  part  is  dedicated to  algorithmic  robustness when handling contact  in  the
context of XFEM in presence of crack tip enrichment functions. Crack path predictions
as well as crack growth rate are also strongly influenced by the partial contact so that
expressions classically used in the context of uniaxial loading without contact must be
adapted.  Preliminary  simulations  of  a  cracked  cylinder  submitted  to  four  points
bending under multiaxial loading conditions are presented and will  be compared to
experimental results.

INTRODUCTION 

Multiaxial  crack  propagation  simulation  under  fatigue  is  a  challenging  topic  which
requires  a  lot  of  attention  to  guarantee  accurate  results.  All  the  classically  used
hypothesis  for uniaxial  simulation must be reviewed such as the computation of the
equivalent stress intensity factors and the bifurcation criteria.

Even if the mechanical loading occurs in a single direction,  the crack can endure
more complex situations due to its orientation inducing mixed-mode, (partial) contact
on crack lips and/or presence of residual stresses.

Simulation  of  crack  propagation  in  presence  of  contact  on  crack  lips  with  the
eXtended  Finite  Elements  Method  (XFEM) is  the  core  topic  of  this  work.  Several
algorithms have been proposed in order to apply contact conditions in a stable way on
the implicitly  represented crack lips  which are for the first  time combined to  crack
propagation.

This paper is organized as follow. In a first section, the problem is described as well
as  the  augmented  Lagrangian  method  to  solve  the  contact  problem.  Then,  these
equations are discretized in the context of the XFEM method and adopted algorithms to
model contact are presented. Robustness and efficiency are illustrated on a 2D uniaxial
test  case  without  propagation  for  which  an  analytical  solution  is  available.  Next,
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classical rules used in uniaxial and proportional loading to predict crack path and crack
growth rate are discussed in the context of multiaxial loading and presence of contact.
Finally, a 3D multi-axial example is proposed in order to highlight the capability of the
algorithms in presence of partial contact. 

PROBLEM DESCRIPTION

Let's consider a cracked body  with a boundary  subjected to tractions  on part
of the interface  and to Dirichlet boundary conditions  on .

 denotes  the  cracked  interface .  Equations  governing  this
homogeneous isotropic linear elastic problem in absence of body forces are:

(1)
(2)
(3)
(4)

where  is the second-order stress tensor,  is the small strain tensor and  is the fourth-
order Hooke tensor.  is the normal to the boundary,  is the divergence operator, '.'
denotes a contraction over one indice and ':' denotes a double contraction.
   Signori's contact condition on crack lips  reads:

(5)
(6)
(7)

where   denotes the normal stress vector and   is the normal displacement jump
across the crack. This condition imposes that at a given point  , either crack lips are
locally in contact, either the crack is open and lips are locally stress-free.
   Such a problem can be solved by a wide variety of methods: penalization, Lagrangian,
augmented Lagrangian or Nietsche. In the context of this work, the Lagragian one is
adopted.  Its  main  advantage,  with  respect  to  the  penalization,  is  that  no  arbitrary
penalization  term  is  added  so  that  matrix  conditionning  of  the  system  remains
acceptable.  Furthermore,  no arbitrary inter-penetration between surfaces in contact is
observed. 
   The weak form of the Lagrangian frictionless contact problem then reads, find 
(set of admissible displacments) and  (set of admissible lagrangian multipliers)
such that:

(8)

(9)

where  and  are well chosen spaces for test functions  and , respectively.

CONTACT ON CRACK LIPS IN AN XFEM CONTEXT



The  XFEM  approach  extends  the  classical  finite  element  discretization  of  the
displacement field  of the problem (1-4) by adding shape functions  to represent the
displacement  jump across  the crack lips  as well  as  crack tip  dedicated  functions  to
represent the stress singularity:

(10)

where   is  the  set  of  nodes  of  the  mesh,   is  the  set  of  nodes  whose  support  is
completely cut by the crack and  is the set of nodes enriched by crack tip functions f:

(11)
where  represents the local polar coordinate system associated with each point of
the crack front.
   Lagrange multipliers are defined on the nodes whose support is fully or partially cut
by the crack. The interpolation is based on the same linear shape functions  that
are used for the displacement  field.  With  XFEM, a naive linear  P1-P1 interpolation
choice for the displacement and Lagrangian multipliers respectively is not stable and
results in oscillations [1]. An adequate reduction of the Lagrangian multiplier space can
efficiently address the problem [2,3]. Solution adopted in this work is the one from
Béchet  et al. [2] which imposes constant relations between well-selected Lagrangian
multipliers. Stability of this approach has been proved on fully-cut geometries. In case
of  presence  of  crack  (i.e.  geometry  is  not  fully  cut)  and crack  tip  enrichments,  an
equality relation is imposed between all the multipliers of the element containing the
crack tip. We have proved that the use of enrichment  functions does not violate the
stability condition on the Lagrange multipliers [4].

VALIDATION OF CONTACT ALGORITHMS (UNIAXIAL CONDITIONS)

In order to validate contact algorithms, results from the numerical simulation of a 2D
cracked  infinite  plate  submitted  to  uniaxial  tension  is  compared  to  the  analytical
solution  [8].  Geometry  and  loading  conditions  are  reported  in  Fig.  1.  Due  to  the
presence of the circular hole (stress raiser), contact forces (i.e. Lagrangian multipliers)
will not be uniform along the crack lips.
   The solution of the norm of the displacement field is illustrated in Fig. 2. It can be
noticed that the displacement norm is almost null in the cracked area and, at least, the
normal  displacement  to  the  crack  lips  is.  This  means  that  no  interpenetration  is
observed, as expected, and that contact is well taken into account.



   As an analytical solution is available for this problem, exact error in terms of energy
norm  can  be  computed.  By  doing  this  on  several  mesh  refinements,  the  optimal
convergence rate of 1 if considering a linear interpolation is reached. Another validation
is to compare the value of the Lagrangian multipliers with the analytical solution. This
is reported on Figure 3. An excellent agreement is obtained. A more detailed analysis of
this problem is available in [4].

Figure 1. Uniform pressure imposed on the two sides of an infinite plate with a crack
emanating from a circular hole.

Figure 2. Norm of displacement field for the infinite plate problem.

Figure 3. Evolution of Lagrangian multipliers along the crack lips - comparison of the
analytical solution with XFEM solution (2 tip-enrichments functions are considered).



STRESS  INTENSITY  FACTORS  COMPUTATION  AND  CRACK
PROPAGATION ALGORITHMS

Based on the numerical solution of discrete problem (8-9), stress intensity factors (SIFs)
are computed at a set of nodes along the crack front. This is based on the computation of
interaction integrals (one for each fracture mode), including a correction in presence of
contact as crack lips are not stress free any more:

(12)

where   designates the interaction strain energy between the present state (1) of
the numerical solution and a well chosen auxiliary state (2) which enables to extract the
SIFs.  Is the Kronecker's delta,  is a direction normal to the crack front and tangent
to the crack surface,  is a weighting function and  is the unit outward normal of C.
  Fatigue crack propagation  is  a point-by-point  based process  along the crack  front
which  aims  at  predicting  a  deviation  angle   and  a  crack  growth  rate  .  The
deviation angle  is classically predicted with the maximum hoop stress criteria, i.e. the
crack is growing in a direction perpendicular to the maximum hoop stress (  in a local
reference frame aligned with the crack at the considered point):

. (13)

The '*' refers to a reference state during the propagation cycle. In case of proportional
loading, the ratio  remains constant during the whole load/unload cycle, so that
choosing the reference state at the minimal load, maximal one or an intermediate one
has no effect on . However, this is not the case any more in case of non proportional
loading. A classical choice is using as reference point the intermediate load:

. (14)

However, this proposition suffers the fact that, in case of strong differences of mode
mixity  between  the  two  load  cases,  the  reference  state  is  over-influenced  by  the
minimum loading. To circumvent this limitation, it is proposed to weight the predicted
angles for each load case by the corresponding equivalent SIF (see definition below):

(15)

A comparison of all these criteria is illustrated on Figure 4.



   Crack growth rate is based on a law valid at each point of the crack front function of
the increment  of  equivalent  stress  intensity  factor. A suitable  crack propagation  law
when considering contact is the Elber one which can take into account the crack closure
effect:

(16)

where   is  the  difference,  at  a  given  point  along the  crack  front,  between  the
equivalent stress intensity factor of the first and the second load (denoted  and 
,  respectively).  Each  one  being  computed  from  the  stress  intensity  factors  of  the
corresponding load:

. (17)

This expression is thus function of the propagation angle  previously computed. It was
initially developed for mode-I dominated propagation and must be used with care in
case of strong mode-mixity along the crack front as well as in case of non-proportional
loading (e.g. presence of residual stresses, partial contact,...).
   In case of a maximum crack increment controlled propagation ( ), this increment
is assigned to the point with the maximum , while increments of the other points
on the crack front are given by . Once this is done, the two
level  sets  representing  implicitly  the  crack  are  updated  according  to  the  algorithm
proposed by Duflot [6].

 
INFLUENCE  OF  CONTACT  ON  CRACK  PROPAGATION  WITH
MULTIAXIAL BOUNDARY CONDITIONS

The example used in this section considers a cylinder subjected to 4-points bending,
which is cracked in a V-notch at the middle of the bar, as illustrated on figure 5. With a
null  load  ratio,  almost  no  contact  exists  and  the  crack  propagates  in  pure  mode-I.

Figure 4. Various evaluation of the reference SIF ratio during one load cycle.
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However, once crack reaches half of the cross-section, the cylinder is rotated of 90° so
that partial contact on crack faces appears and the loading is becoming multi-axial. This
problem has been described by Billardon [7] and experimental results are available.

 
   In order to easily apply boundary conditions on a rotated specimen, at both ends of the
cylinder, polyhedral cross sections (24 faces) are considered (see Fig. 6). Doing so, in
the numerical  model,  forces  are  simply  applied  at  the  different  locations  instead  of
rotating the specimen (rotations must be a multiple of 15°).

   
   After rotation, forces are imposed from the back to front side so that the previously
generated crack becomes partially in contact, as illustrated on Figure 7. Top side is open
while contact apply on the front side.

Figure 5: Experimental setup of the cylinder bar submitted to 4 points bending [7].

Figure 6: Mesh used for the numerical simulation; Polyhedral sectors are considered at
both ends for BCs applications; V-notch containing the crack is highly refined

Figure 7: Illustration of partial contact during crack propagation after rotation: top side
of the crack is open while front one is closed.



   In the context of this work, a comparison of the numerical results when considering or
not the contact will be confronted to the experimental results. Furthermore, following
points will be discussed in the context of multi-axial crack propagation in presence of
contact: choice of the propagation law, computation of the equivalent SIF increment and
choice of the reference state to compute the propagation angle.

DISCUSSION

Handling  partial  contact  in  crack  propagation  simulation  under  multi-axial  loading
conditions  is  a  complex  task  which  requires  a  lot  of  attention  to  obtain  accurate
predictions. First of all, robust algorithms must be adopted in order to tackle numerical
problems due to presence of contact  in an XFEM context.  Secondly, model  choices
must be used with care and eventually adapted, as for the computation of the equivalent
SIF increment and the choice of the reference state. Even if these concepts are described
in the context of this work, an in-depth analysis of these effects will be presented during
the conference.
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