

Increased sea ice cover disrupts food web structure in Antarctic coastal benthic ecosystem

Loïc N. MICHEL, Bruno DANIS, Philippe DUBOIS, Marc ELEAUME, Jérôme FOURNIER, Cyril GALLUT, Philip JANE & Gilles LEPOINT

Contact: loicnmichel@gmail.com

12th SCAR Biology Symposium – 10-14/07/2017 – Leuven, Belgium

Sea ice in Antarctica

Sea ice is a major environmental driver of ecological processes in Antarctica

- Water column mixing
- Benthic-pelagic coupling
- Niche partitioning
- Benthic community structure

■ .

Sea ice in Antarctica

Sea ice is a major environmental driver of ecological processes in Antarctica

- Water column mixing
- Benthic-pelagic coupling
- Niche partitioning
- Benthic community structure

•

Sea ice is a highly dynamic system

Seasonal patterns of sea ice cover

Antarctic Maximum (September 4, 2008)

Normal cycle:

Austral winter Thick sea ice cover

Austral summer Thinning and breakup of sea ice

100

Changes in Antarctic sea ice cover

Climate change causes contrasted changes in sea ice cover in Antarctica

Spatial extent

Changes in sea ice concentration

From King (2014), Nature 505: 491-492. (Data 1979-2012)

Changes in Antarctic sea ice cover

Climate change causes contrasted changes in sea ice cover in Antarctica

Spatial extent

Changes in sea ice concentration

Temporal extent

Changes in sea ice season duration

From King (2014), Nature 505: 491-492. (Data 1979-2012)

(Data 1979 -2004)

East Antarctica, Adélie Land Petrels Island

East Antarctica, Adélie Land Petrels Island

2013-2015: Event of **high** spatial and temporal **sea ice coverage**

No seasonal breakup during austral summers 2013-14 and 2014-15

Time of sampling : Austral summer 2014-15

This is the sea (Please trust me)

Time of sampling : Austral summer 2014-15

This is the sea (Please trust me)

How will **benthic communities** respond to sudden **changes in sea ice cover**?

How could increased sea ice cover **impact** structure of **benthic food webs**?

Horizontal dimension

Vertical dimension

Resources supporting the consumers

Horizontal dimension Vertical dimension Here: models based on trophic markers

on trophic markers (stable isotope ratios) were used to as proxies of both food webs dimensions

Horizontal dimension: use of a mixing model (SIAR) to identify main food items of consumers

Vertical dimension: use of a trophic position model (tRophicPosition)

Sampling: under ice SCUBA diving

Sampling: food items

Sampling: food items

3. Benthic brown algae *Himantothallus* grandifolius

Sampling: food items

4. Benthic biofilm(heterogeneous mix of microalgae, bacteria, amorphous material and detrital items)

Some sampled consumers

Sterechinus neumayeri

Some sampled consumers

Hemigellius sp.

Odontaster validus

Material & methods: analysis

University of Liège's setup: Vario MICRO cube EA coupled to an Isoprime 100 IRMS

High reliance of many benthic invertebrates on sympagic material exported to the seafloor

Main food item of 8 out of 14 primary consumers / omnivores (up to 80% of diet)

Why is it preferred by many consumers over more abundant food items such as biofilm?

Better nutritional value? Unlikely...

Better **palatability**? Pure aggregates of microalgae...

Preliminary microscopic examination: Benthic biofilm = heterogeneous mix of microalgae, bacteria, amorphous material and detrital items

Preliminary microscopic examination: Benthic biofilm = heterogeneous mix of microalgae, bacteria, amorphous material and detrital items

Yannick LARA – Poster nr. 28 Session 1.2 (Tuesday)

Preliminary microscopic examination: Benthic biofilm = heterogeneous mix of microalgae, bacteria, amorphous material and detrital items

Here: **importance** of benthic biofilm in food web comparatively **limited** despite **high abundance**

Role of benthic biofilm in the food web

Preliminary microscopic examination: Benthic biofilm = heterogeneous mix of microalgae, bacteria, amorphous material and detrital items

Here: **importance** of benthic biofilm in food web comparatively **limited** despite **high abundance**

Ross Sea: Benthic invertebrates consume more detritic matter in sea-ice influenced locations (Norkko et al. (2007), Ecology 88: 2810-2820)

Preliminary microscopic examination: Benthic biofilm = heterogeneous mix of microalgae, bacteria, amorphous material and detrital items

Here: **importance** of benthic biofilm in food web comparatively **limited** despite **high abundance**

Ross Sea: Benthic invertebrates consume more detritic matter in sea-ice influenced locations (Norkko et al. (2007), Ecology 88: 2810-2820)

Important variation in benthic ecosystem response to sea ice: sudden changes vs. stable conditions?

However: no data about **dynamics** of biofilm accumulation!

Here: long-lived benthic invertebrates with low metabolic rates → low isotopic turnover? Is isotopic equilibrium reached?

Our model could **underestimate** actual **biofilm importance** for invertebrate feeding

Vertical dimension – Trophic position modelling

Vertical dimension – Trophic position modelling

Overall: low trophic positions compared to literature

Dominant omnivore taxa: very low trophic levels, mostly feeding directly on primary producers

The food web we expected

Shift in resources supporting consumers

Shift in resources supporting consumers

Shift in trophic position of consumers

Trophic positions of many consumers lower than in other studies

Trophic position of the consumers

Shift in trophic position of consumers

Sea ice & food web structure

Increase of sea ice cover strongly influences the benthic food web by modifying both its horizontal and its vertical structure

Take home message

 Important sea ice cover is linked with high reliance of coastal benthic invertebrates on sympagic algae

Take home message

- Important sea ice cover is linked with high reliance of coastal benthic invertebrates on sympagic algae
- Resource use and trophic levels of Adélie Land consumers markedly differed from results obtained in other locations. High trophic plasticity of Antarctic invertebrates? Sudden changes vs. stable conditions?

Take home message

- Important sea ice cover is linked with high reliance of coastal benthic invertebrates on sympagic algae
- Resource use and trophic levels of Adélie Land consumers markedly differed from results obtained in other locations. High trophic plasticity of Antarctic invertebrates? Sudden changes vs. stable conditions?
- Interpretation of results is complicated by lack of background data ("normal" conditions) and by physiological features of studied organisms

Take home message

- Important sea ice cover is linked with high reliance of coastal benthic invertebrates on sympagic algae
- Resource use and trophic levels of Adélie Land consumers markedly differed from results obtained in other locations. High trophic plasticity of Antarctic invertebrates? Sudden changes vs. stable conditions?
- Interpretation of results is complicated by lack of background data ("normal" conditions) and by physiological features of studied organisms

Despite being interpreted as a positive signal by mainstream media, local or large-scale trends of sea ice increase in Antarctica could actually have strong impacts on benthic ecosystems

Funding

Belgian Federal Science Policy **O**ffice (**BELSPO**)

vERSO (Ecosystem Resilience in Southern Ocean) and RECTO (Refugia and Ecosystem Tolerance in the Southern Ocean) projects

French Polar Institute (IPEV)

Thanks for your attention

Download this presentation: http://hdl.handle.net/2268/212612

Horizontal dimension: mixing model

Mixing law: "You are what you eat"

An **animal**'s stable isotope composition is a **proportional mix** of its **food items**' stable isotope compositions

Horizontal dimension: mixing model

Mixing law: "You are what you eat"

An **animal**'s stable isotope composition is a **proportional mix** of its **food items**' stable isotope compositions

Analysis of stable isotope composition of consumers and potential food items

Use of **SIAR** (Stable Isotope Analysis in R) mixing model

Quantitative **estimates** of **contributions** of each food item to each consumer diet

Identifications of resources supporting each consumer's populations

OPEN OACCESS Freely available online

Source Partitioning Using Stable Isotopes: Coping with Too Much Variation

1

Andrew C. Parnell¹, Richard Inger², Stuart Bearhop², Andrew L. Jackson³*

DLoS ONE | www.plosone.org

Stable isotopes: you are what you eat

Mixing law: an animal's stable isotope composition is a proportional mix of its food items' stable isotope compositions

Stable isotopes: you are what you eat

Mixing law: an animal's stable isotope composition is a proportional mix of its food items' stable isotope compositions

Analysis of stable isotope composition of a consumer and those of its potential food items through mass spectrometry

Estimation of contributions of each item to consumer diet

Stable isotopes: you are what you eat

Real-life ecosystems : many potential food items + natural variability of isotopic compositions

Necessity of complex mathematical tools: mixing models (SIAR – Stable Isotope Analysis in R)

SIAR parameters

SIAR 4.2 in R 3.2.2

- No concentration dependencies
- TEFs: $\Delta^{13}C = 0.40 \pm 1.20 \%$; $\Delta^{15}N = 2.30 \pm 1.61 \%$ (mean ± SD; TEFs for aquatic consumers from McCutchan *et al.* 2003 Oikos 102: 378-390)
- 10⁶ iterations
- Burn-in size: 10⁵

OV: *O. validus*; SN: *S. neumayeri*; DB: *D. brucei*; HA: Harmothoe sp.; FM: *F. mundata*; PO: Polycirrus sp.; OP: Ophiura sp.; PE: Perkinsiana sp.; TL: *T. longstaffi*; MA: Marsienopsis sp.; HE: Heterocucumis sp.; LE: Laternula elliptica; AC: Adamussium colbecki; ST: Staurocucumis sp.

OV: *O. validus*; SN: *S. neumayeri*; DB: *D. brucei*; HA: Harmothoe sp.; FM: *F. mundata*; PO: Polycirrus sp.; OP: Ophiura sp.; PE: Perkinsiana sp.; TL: *T. longstaffi*; MA: Marsienopsis sp.; HE: Heterocucumis sp.; LE: Laternula elliptica; AC: Adamussium colbecki; ST: Staurocucumis sp.

OV: *O. validus*; SN: *S. neumayeri*; DB: *D. brucei*; HA: Harmothoe sp.; FM: *F. mundata*; PO: Polycirrus sp.; OP: Ophiura sp.; PE: Perkinsiana sp.; TL: *T. longstaffi*; MA: Marsienopsis sp.; HE: Heterocucumis sp.; LE: Laternula elliptica; AC: Adamussium colbecki; ST: Staurocucumis sp.

OV: *O. validus*; SN: *S. neumayeri*; DB: *D. brucei*; HA: Harmothoe sp.; FM: *F. mundata*; PO: Polycirrus sp.; OP: Ophiura sp.; PE: Perkinsiana sp.; TL: *T. longstaffi*; MA: Marsienopsis sp.; HE: Heterocucumis sp.; LE: Laternula elliptica; AC: Adamussium colbecki; ST: Staurocucumis sp.

Vertical dimension: trophic position model

The heavy **nitrogen** stable **isotope** (¹⁵N) follows a predictable stepwise enrichment pattern with increasing trophic level

TI = 1

Vertical dimension: trophic position model

Secondary consumers TL = 3

Primary consumers

TL = 2

The heavy nitrogen stable isotope (¹⁵N) follows a predictable stepwise enrichment pattern with increasing trophic level

Measurement of stable isotope composition of **consumers** and **baseline items** (primary producers)

Use of tRophicPosition model to infer trophic level of animals

A guide to the use of tRophicPosition Claudio Quezada-Romegialli, Andrew L Jackson & Chris Harrod https://github.com/clquezada/tRophicPosition

Primary producers TL = 1

Low trophic positions of consumers

Results: food sources and primary consumers

Results: secondary consumers

Inter-annual change in isotopic compositions

