ARROJADITE-(BaNa), BaNa₃(Na,Ca)Fe²⁺₁₃AI(PO₄)₁₁(PO₃OH)(OH)₂, A NEW PHOSPHATE MINERAL FROM THE LUNA ALBITE PEGMATITE, DORIO COMMUNE, LECCO PROVINCE, ITALY

PIETRO VIGNOLA

CNR, Istituto per la dinamica dei processi ambientali, via Botticelli 23, 20133 Milano, Italia Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, via Botticelli 23, 20133 Milano, Italia

FRÉDÉRIC HATERT, MAXIME BAIJOT, AND FABRICE DAL BO

Laboratoire de Minéralogie, Département de Géologie, Universitè de Liège, Bâtiment B18, Sart Tilman, B-4000 Liège, Belgique

SERGIO ANDO

Dipartimento di Scienze Geologiche e Ambientali, Università Milano-Bicocca, Piazzale della Scienza 4-U4 – 20126 Milano, Italia

DANILO BERSANI

Dipartimento di Fisica e Scienze della Terra, Università di Parma, Viale G.P. Usberti 7/a, 43124 Parma, Italia

ALESSANDRO PAVESE AND ANDREA RISPLENDENTE

Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, via Botticelli 23, 20133 Milano, Italia

FRANCESCO VANINI

via Gradisca 18, 21100 Varese, Italia

Abstract

Arrojadite-(BaNa), BaNa₃(Na,Ca)Fe²⁺₁₃Al(PO₄)₁₁(PO₃OH)(OH)₂, is the Na-, Ba-rich member of the arrojadite group. This primary phosphate was found at the Luna albite pegmatite, Dorio, Lecco province, Italy where it occurs associated with fluorapatite in the blocky-albite unit of the pegmatite. This new phosphate forms greenish or yellowish translucent masses, or rough crystals up to 4–5 cm in diameter hosted by albite. Arrojadite-(BaNa) is anisotropic with α 1.656(2), β 1.660(2), and γ 1.664(2), and is non-fluorescent under both short-wave (254 nm) and long-wave (366 nm) ultraviolet light. The mineral is brittle with an irregular fracture and a good cleavage parallel to {110}; its Mohs hardness is 4–5. Its measured specific gravity is 3.54(2). The empirical formula, calculated on the basis of 12 (P + Si + As) atoms per formula unit is (Ba_{0.62}K_{0.27}Pb_{0.13}Sr_{0.07})_{E1.09} Na₃(Na_{1.19}Ca_{0.85})_{E2.04}(Fe²⁺9.82Mg_{1.92}Mn²⁺¹.64)_{E13.38}Al_{1.01}(PO₄)₁₁(HPO₄)(OH_{1.75}F_{0.25})_{E2}, with the water content calculated considering 2 (OH⁻ + F) per formula unit. Arrojadite-(BaNa) is monoclinic with space group C2/c; its unit-cell parameters are a 16.4984(6) Å, *b* 10.0228(3) Å, *c* 24.648(1) Å, β 105.850(4)°, and *V* 3920.8(2) Å³, for *Z* = 4. The eight strongest lines in the X-ray powder diffraction pattern are [*d* in Å (*I*/*I*₀) *kl*]: 3.137 (100) 5 1 0, 2.818 (61) 3 1 6, 3.303 (46) $\overline{1}$ 3 2, 2.667 (35) 2 0 8, 2.878 (32) 3 3 1, 3.488 (28) 1 1 6, 4.621 (22) $\overline{3}$ 1 3, and 2.936 (22) 3 3 0. The mineral, which has been approved by the CNMNC under number IMA 2014-071, is named arrojadite-(BaNa) since it corresponds to the Ba-Na-rich member of the arrojadite mineral group, in which Ba is the principal element at the X5 (= A1) site and ^MFe^{*} ≤ 0.5 *apfu*. Sodium is the unique element at the cation X1 (= Ca) site.

Keywords: arrojadite-(BaNa), new phosphate mineral species, arrojadite group, Luna albite pegmatite, Piona pegmatite swarm, Lecco province, central Southern Alps, Italy.

[§] Corresponding author e-mail address: pietro.vignola@idpa.cnr.it

INTRODUCTION

Minerals belonging to the arrojadite group are omnipresent phosphates occurring in metamorphic, igneous, and sedimentary environments (Robertson 1982). Members of the arrojadite-dickinsonite series form primary phosphate minerals in granite pegmatites, where they occur as masses up to 15 cm in diameter, exhibiting good cleavage and ranging in color from pale yellow to dark bottle green or brownish (Simmons et al. 2003). Arrojadite-dickinsonite is typical of Lithium-Cesium-Tantalum (LCT) pegmatites belonging to the beryl-columbite-phosphate subtype in the classification of Černý & Ercit (2005). Recently, the crystal-chemistry of this group of phosphates has been reinvestigated by Cámara et al. (2006) and Chopin et al. (2006), who established a new classification scheme for the group, based on the general formula $A_2B_2CaNa_{2-x}M_{13}Al(PO_4)_{11}(PO_3OH_{1-x})W_2$. In this formula, A corresponds to large divalent cations (Ba, Sr, Pb) and vacancies (A1), or monovalent cations (K, Na) (A2); B corresponds to small divalent cations (Fe, Mn. Mg) and vacancies or monovalent Na cations: M sites contain small divalent cations which define the root names arrojadite (Fe) or dickinsonite (Mn); and the W site may be occupied by OH or F (arrojadite or fluorarrojadite).

During the last five years, one of the authors (FV) has found, in the mine dumps of the Luna dike mining locality, several masses or roughly crystallized individuals of a mineral corresponding to a member of the arrojadite group. These masses, up to 5 cm in diameter, are hosted by albite and associated fluorapatite. The crystallochemical investigations indicated that the mineral was a new phosphate, which was named arrojadite-(BaNa). It corresponds to the Ba-Na-rich member of the arrojadite mineral group, in which

FIG. 1. Rough crystal of arrojadite-(BaNa) from the Luna pegmatite. The crystal is 4 cm in diameter.

Ba is the principal element at the A1 site, with $Fe^{2+} \leq$ 0.5 apfu at the M site, and with Na as a unique element at the Ca cation site. The name is in accordance with the nomenclature of the arrojadite group established by Chopin et al. (2006), and the new species was accepted by the CNMNC-IMA under number IMA 2014-071 (Vignola et al. 2015). All analyses were performed using a single specimen which was broken into several fragments. The co-type samples used for the characterization of the new species arrojadite-(BaNa) are stored in the Mineralogical Collection of the Museo Civico di Storia Naturale, Milano, Italy (number 38718: samples used for density measurement, Raman spectroscopy, electron-microprobe analyses, X-ray powder diffraction), as well as in the collections of the Laboratory of Mineralogy, University of Liège (number 20391: grains used for the crystal structure determination and for the optical measurements). Other fragments from the co-type (numbered from 1 to 8) are stored by one of the authors (PV) and in the mineralogical collections of the Department of Min-

FIG. 2. The crystal structure of arrojadite-(BaNa). FeO₆ octahedra are red, AlO₆ octahedra are blue, PO₄ tetrahedra are yellow. Blue circles represent Na atoms, and green circles represent Ba atoms.

Sample	Weight in air (g)	Weight in water (g)	delta	T (°C)	Correction factor for temperature	Density (g/cm ³)
First experir	nent					
Arj-ba1	0.0730	0.0525	0.0205	20.00	0.9982	3.555(1)
Arj-ba2	0.0592	0.0426	0.0166	20.00	0.9982	3.560(1)
Second exp	eriment (dried for 4 h	nours in oven at 50 °C)				
Arj-ba1	0.0731	0.0524	0.0207	20.40	0.99815	3.525(1)
Arj-ba2	0.0593	0.0424	0.0169	20.40	0.99815	3.502(1)
AVERAGE						3.54(2)

TABLE 1. DETERMINATION OF THE DENSITY OF ARROJADITE-(BaNa)

eral Sciences of the National Museum of Natural History (Smithsonian Institution, Washington DC) and of the Department of Geology and Petrography of the Moravian Museum (Brno, Czech Republic).

Occurrence, General Appearance, and Physical Properties

Arrojadite-(BaNa) was found by one of the authors (FV) in the mine dumps of the Luna albite pegmatite, Dorio commune, Lecco province, Italy (46°, 06', 36" N; 9°, 19', 59" E). The Luna pegmatite was mined for ceramic albite from 1960 to 1970 and consists of three different albite pegmatite dikes belonging to the Late Triassic Piona pegmatite swarm (Vignola *et al.* 2011). Arrojadite-(BaNa) occurs as a primary phosphate

mineral in the blocky-plagioclase zone as rounded masses or roughly crystallized individuals up to 4–5 cm in diameter that are hosted by albite (Fig. 1). It is frequently associated with fluorapatite. The color is pale greyish-green, translucent or pale yellowish brown when altered, and the luster is greasy. The mineral is brittle with an irregular fracture and a Mohs hardness of 4–5 was determined by comparison with the other members of the arrojadite group. A good cleavage was observed on {110}.

A specific gravity of 3.54(2) was measured by means of hydrostatic weighting using a Mettler Toledo balance (model JB1603-C/FACT accurate to four decimal places) and two rounded masses of the mineral taken from the holotype. The balance was stabilized for 12 hrs before the measurement and

	á	average of 2	20 analyses		stoichiometry	/ based
	wt.%	e.s.d.	min	max	on 12 P a	apfu
P ₂ O ₅	39.73	0.45	38.88	40.67	Р	12.000
Al_2O_3	2.40	0.06	2.33	2.52	Al	1.010
FeO	32.91	0.28	32.34	33.35	Fe2	9.820
MnO	5.41	0.12	5.23	5.65	Mn2	1.636
MgO	3.60	0.11	3.26	3.76	Mg	1.916
PbO	1.35	0.12	1.15	1.50	Pb	0.130
BaO	4.43	0.25	3.73	4.90	Ва	0.620
SrO	0.35	0.08	0.21	0.53	Sr	0.072
CaO	2.22	0.18	1.84	2.40	Ca	0.849
Na ₂ O	6.06	0.13	5.82	6.32	Na	4.190
K ₂ O	0.59	0.04	0.52	0.65	K	0.268
H ₂ O ^{+ (*)}	0.42				H^+	1.000
H ₂ O ^{- (**)}	0.70				OH-	1.753
F	0.22	0.05	0.15	0.30	F	0.247
sum	100.39				0	50.157
F CI eq	-0.09					
TOTAL	100.30				sum cations sum charges	20.510 0.181

TABLE 2. AVERAGE ELECTRON MICROPROBE ANALYSIS OF ARROJADITE-(BaNa)

Notes: Si, As, Zn, S, and Cl were below detection limit; ^(*) calculated for 1 H *apfu* in stoichiometry; ^(**) calculated for 2 (OH, F, Cl) *apfu* in stoichiometry.

I/I _o	d _{obs}	d _{calc}	h k l	I/I _o	d _{obs}	d _{calc}	h k I
5	8.498	8.530	110	13	2.344	2.343	622
5	7.666	7.672	111	5	2.297	2.298	4 4 1
5	7.455	7.496	112	7	2.275	2.275	046
11	5.941	5.959	004	5	2.264	2.264	2010
9	5.577	5.609	204	1	2.237	2.238	319
9	5.282	5.296	114	4	2.183	2.183	629
10	5.068	5.089	020	6	2.153	2.153	800
10	4.823	4.847	312	4	2.143	2.144	1 3 10
7	4.742	4.746	310	5	2.125	2.126	606
16	4.678	4.693	022	8	2.121	2.118	248
22	4.621	4.626	313	3	2.097	2.097	535
12	4.264	4.273	204	9	2.090	2.090	823
4	4.104	4.096	312	13	2.084	2.084	735
9	3.904	3.909	024	3	2.041	2.041	643
10	3.548	3.534	025	5	2.037	2.037	5310
28	3.488	3.474	116	2	2.025	2.025	731
16	3.400	3.397	406	2	2.014	2.013	645
8	3.327	3.320	224	3	1.985	1.985	912
46	3.303	3.306	1 3 2	12	1.956	1.956	917
14	3.226	3.222	513	7	1.944	1.944	537
100	3.137	3.130	510	3	1.932	1.933	627
5	3.072	3.072	133	3	1.928	1.928	1 1 13
5	3.026	3.024	425	4	1.904	1.905	911
5	2.973	2.973	227	3	1.890	1.890	734
21	2.954	2.952	318	2	1.886	1.887	7310
22	2.936	2.943	330	2	1.879	1.878	358
15	2.910	2.912	134	4	1.873	1.873	538
12	2.890	2.891	408	5	1.870	1.870	10 0 4
32	2.878	2.877	331	6	1.864	1.864	552
20	2.861	2.868	602	8	1.829	1.828	6 4 10
61	2.818	2.815	316	3	1.816	1.817	845
6	2.780	2.783	332	3	1.800	1.800	10 2 3
3	2.733	2.732	335	4	1.794	1.795	930
11	2.714	2.719	427	5	1.791	1.792	2 2 15
14	2.677	2.672	028	3	1.768	1.767	10 2 8
35	2.667	2.668	208	3	1.734	1.735	6016
12	2.633	2.628	041	3	1.723	1.723	808
5	2.553	2.549	623	2	1.716	1.716	464
8	2.542	2.541	119	3	1.704	1.704	738
3	2.412	2.412	228	5	1.692	1.692	465
5	2.398	2.400	318	4	1.686	1.687	173
6	2.359	2.359	710	4	1.645	1.645	10 4 8

TABLE 3. THE X-RAY POWDER DIFFRACTION DATA OF ARROJADITE-(BaNa) (EIGHT STRONGEST LINES ARE IN BOLD)

distilled H_2O was used as the medium. The weight in air was recorded after 60 s and the weight in water was after 120 s (after complete stabilization). Before performing the experiment on the arrojadite samples, the system was tested using two quartz grains with a comparable weight to that of the two specimens of arrojadite. The obtained data are summarized in Table 1. The calculated density is 3.76 g/cm³. Arrojadite-(BaNa) is biaxial (+) with intermediate dispersion. The birefringence is low with first order white or yellow interference colors. The measured refractive indices (wavelength = 589 nm, sodium) are α 1.656(2), β 1.660(2), and γ 1.664(2). The measured $2V=40(1)^{\circ}$ and the calculated angle is 45°. The optical axial plane is perpendicular to {110} (cleavage); the measured Z^c = 17–18°. The compatibility index, 1 –

Crystal shape	Irregular prism
Crystal size (mm ³)	0.17 imes 0.15 imes 0.07
Crystal color	Transparent yellow
T (K)	298
Unit-cell constants	<i>a</i> = 16.4984(6) Å
	b = 10.0228(3) Å
	<i>c</i> = 24.648(1) Å
	$\beta = 105.850(4)^{\circ}$
	$V = 3920.8(2) \text{ Å}^3$
Chemical formula	$BaNa_3(NaCa)Fe_{13}AI(PO_4)_{11}(PO_3OH)OH_2$
Space Group	C2/c
Z	4
Radiation (Å)	0.7107
Diffractometer	Xcalibur – EOS CCD
Data-collection method	ω/φ scan
Step size	0.5°
Max. θ (°)	57.44
Number of frames	414
	-20 < h < 20
	-12 < k < 13
	-30 < / < 33
No. measured reflections	16452
No. unique reflections	4608
No. refined parameters	392
Refinement on	F ²
R_1 (F) with $F_0 > 4\sigma(F_0)$	0.0581
R_1 (F) for all the unique reflections	0.0688
Gool	1.031
Weighting scheme: a, b	0.01, 0
Residuals (<i>e</i> ⁻ / A ³)	-3.393/+4.654

TABLE 4. DETAILS PERTAINING TO THE DATA COLLECTION AND THE STRUCTURE REFINEMENT OF ARROJADITE-(BaNa)

FIG. 3. The Raman spectrum of arrojadite-(BaNa) from the Luna albite pegmatite.

 (K_p/K_c) , is -0.013, which is in the superior category (Mandarino 1981). Arrojadite-(BaNa) is non-fluorescent under both short-wave (254 nm) and long-wave ultraviolet light (366 nm).

CHEMICAL COMPOSITION

Quantitative chemical analyses were performed on a polished section of arrojadite-(BaNa), using a JEOL JXA-8200 electron microprobe working in wavelength-dispersion mode, at the laboratory of the Department of Earth Sciences, University of Milan. The system was operated using an accelerating voltage of 15 kV, a beam current of 5 nA, a spot size of 5 μ m, and a counting time of 30 s on the peaks and 10 s on the background. The following natural minerals were used as standards: graftonite KF16 (Fransolet 1975) for P, Fe, Mn, and Ca; anorthite-An137 for Al and Si; olivine-USNM2566 for Mg; galena for Pb; barite for Ba; celestine for Sr; omphacite-USNM110607 for Na; orthoclase-PSU OR1A for K; hornblende-Hbl123 for F; realgar for As and S; rhodonite for Zn; and scapolite

atom x y z U_{11} U_{22}	x y z U_{11} U_{22}	$y = z = U_{11} = U_{22}$	z U ₁₁ U ₂₂	U_{11} U_{22}	U_{22}		U_{33}	U_{12}	U_{13}	U_{23}	Uea
		0 0784/3) 0 48556/14) 0 001/0) 0 000	0.48556(14) 0.001(0) 0.000			22	0.020/0)	0.0150/12	0.0018/16/	-0 0184/14V	0.0010/1
Na 0.1352(4) -0.0167(4) 0.11998(17) 0.086(4) 0.015 Na 0.1352(4) -0.0167(4) 0.11998(17) 0.086(4) 0.015	0.2332(z) 0.2781(3) 0.46335(14) 0.021(z) 0.022 0.1352(4) -0.0167(4) 0.11998(17) 0.086(4) 0.015	-0.0167(4) 0.11998(17) 0.086(4) 0.015 -0.0167(4) 0.11998(17) 0.086(4) 0.015	0.11998(17) 0.086(4) 0.015 0.11998(17) 0.086(4) 0.015	0.086(4) 0.015	0.015	5(2) (18)	0.022(2)	-0.0094(19)	0.020(2) -0.020(2)	-0.0184(14) 0.0025(15)	0.0481(11)
Na 0.5 0 0.5 0.013	0.5 0 0.5 0.037(3) 0.013	0 0.5 0.037(3) 0.013	0.5 0.037(3) 0.013	0.037(3) 0.013	0.013	(2)	0.024(3)	0.0043(18)	-0.006(2)	0.0013(18)	0.0274(12)
Na 0 –0.628(2) 0.25 Ba 0 –0.00188(8) 0.25 0.0197(4) 0.033	0 –0.628(2) 0.25 0 –0.00168(8) 0.25 0.0197(4) 0.033	-0.628(2) 0.25 -0.00168(8) 0.25 0.0107(1) 0.033	0.25 0.167/1 0.033	0 0102/1/	0.033	5(5)	0 0501/6)	c	10177/01	c	0.051(8)
AI 0 0.0077(13) 0.0077(13) 0.0077(13) 0.0077		0 0.0077(13) 0.0077(13) 0.0077	0.5 0.0077(13) 0.007	0.0077(13) 0.007(0.0070	0(13)	0.0081(14)	0.0001(9)	0.0026(11)	0.0000(10)	0.0075(6)
Ca 0.22108(13) -0.3939(2) 0.47407(10) 0.0249(11) 0.0374	0.22108(13) -0.3939(2) 0.47407(10) 0.0249(11) 0.0374	-0.3939(2) 0.47407(10) 0.0249(11) 0.037	0.47407(10) 0.0249(11) 0.0374	0.0249(11) 0.0374	0.0374	t(13)	0.0469(14)	0.0140(8)	0.0201(9)	0.0237(10)	0.0344(8)
Fe 0.21148(7) -0.51064(10) 0.26772(5) 0.0160(6) 0.0126	0.21148(7) -0.51064(10) 0.26772(5) 0.0160(6) 0.0128	-0.51064(10) 0.26772(5) 0.0160(6) 0.0128	0.26772(5) 0.0160(6) 0.0128	0.0160(6) 0.0128	0.0128	3(5)	0.0138(5)	-0.0004(4)	0.0028(4)	0.0003(4)	0.0145(3)
Fe 0.39391(9) -0.01540(13) 0.35984(6) 0.0277(7) 0.0254	0.39391(9) -0.01540(13) 0.35984(6) 0.0277(7) 0.0254	-0.01540(13) 0.35984(6) 0.0277(7) 0.0254	0.35984(6) 0.0277(7) 0.0254	0.0277(7) 0.0254	0.0254	(<u>/</u>)	0.0285(7)	-0.0001(5)	0.0066(6)	-0.0005(5)	0.0274(3)
Fe 0.02189(7) 0.24995(11) 0.40296(5) 0.0179(6) 0.0155	0.02189(7) 0.24995(11) 0.40296(5) 0.0179(6) 0.0155	0.24995(11) 0.40296(5) 0.0179(6) 0.0155	0.40296(5) 0.0179(6) 0.0155	0.0179(6) 0.0155	0.0155	(9)	0.0200(6)	0.0019(4)	0.0065(4)	0.0016(4)	0.0176(3)
Fe 0.03372(7) -0.24503(10) 0.39977(4) 0.0106(5) 0.0132	0.03372(7) -0.24503(10) 0.39977(4) 0.0106(5) 0.0132	-0.24503(10) 0.39977(4) 0.0106(5) 0.0132	0.39977(4) 0.0106(5) 0.0132	0.0106(5) 0.0132	0.0132	<u>(</u> 5)	0.0123(5)	0.0005(4)	0.0029(4)	0.0005(4)	0.0121(2)
Fe 0.20415(7) -0.20051(11) 0.35194(4) 0.0145(5) 0.0161	0.20415(7) -0.20051(11) 0.35194(4) 0.0145(5) 0.0161	-0.20051(11) 0.35194(4) 0.0145(5) 0.0161	0.35194(4) 0.0145(5) 0.0161	0.0145(5) 0.0161	0.0161	(5)	0.0119(5)	0.0012(4)	0.0030(4)	-0.0007(4)	0.0143(2)
Fe 0.21882(7) 0.20516(12) 0.34291(5) 0.0154(5) 0.0233	0.21882(7) 0.20516(12) 0.34291(5) 0.0154(5) 0.0233	0.20516(12) 0.34291(5) 0.0154(5) 0.0233	0.34291(5) 0.0154(5) 0.0233	0.0154(5) 0.0233	0.0233	3(6)	0.0144(6)	-0.0052(4)	0.0040(4)	0.0011(4)	0.0177(3)
P 0.11525(19) -0.5107(2) 0.36780(15) 0.0150(13) 0.0124	0.11525(19) -0.5107(2) 0.36780(15) 0.0150(13) 0.0124	-0.5107(2) 0.36780(15) 0.0150(13) 0.0124	0.36780(15) 0.0150(13) 0.0124	0.0150(13) 0.0124	0.0124	t(12)	0.0218(17)	-0.0016(9)	0.0124(13)	-0.0024(10)	0.0149(6)
P 0.0793(5) -0.4975(6) 0.3342(3) 0.007(3) 0.007(0.0793(5) -0.4975(6) 0.3342(3) 0.007(3) 0.007(-0.4975(6) 0.3342(3) 0.007(3) 0.007(0.3342(3) 0.007(3) 0.007(0.007(3) 0.007(0.007(3)	0.004(3)	0.000(2)	0.003(3)	0.000(2)	0.0058(12)
P 0.12956(11) 0.03269(18) 0.42316(8) 0.0079(8) 0.0094	0.12956(11) 0.03269(18) 0.42316(8) 0.0079(8) 0.0094	0.03269(18) 0.42316(8) 0.0079(8) 0.0094	0.42316(8) 0.0079(8) 0.0094	0.0079(8) 0.009	0.009	4(8)	0.0131(9)	0.0010(6)	0.0045(6)	0.0015(7)	0.0098(3)
P 0.37355(11) -0.25214(17) 0.46097(7) 0.0080(8) 0.009	0.37355(11) -0.25214(17) 0.46097(7) 0.0080(8) 0.009	-0.25214(17) 0.46097(7) 0.0080(8) 0.009	0.46097(7) 0.0080(8) 0.009	0.0080(8) 0.009	0.009	0(8)	0.0100(8)	0.0008(6)	0.0033(6)	0.0010(6)	0.0088(3)
P 0.39786(11) 0.23255(17) 0.45188(7) 0.0101(8) 0.007	0.39786(11) 0.23255(17) 0.45188(7) 0.0101(8) 0.007	0.23255(17) 0.45188(7) 0.0101(8) 0.007	0.45188(7) 0.0101(8) 0.007	0.0101(8) 0.007	0.007	7(8)	0.0101(8)	-0.0004(6)	0.0025(6)	-0.0013(6)	0.0094(3)
P 0.12974(11) -0.22550(18) 0.21279(7) 0.0113(8) 0.008	0.12974(11) -0.22550(18) 0.21279(7) 0.0113(8) 0.008	-0.22550(18) 0.21279(7) 0.0113(8) 0.008	0.21279(7) 0.0113(8) 0.008	0.0113(8) 0.008	0.008	9(8)	0.0086(8)	0.0002(6)	0.0012(6)	0.0000(6)	0.0099(3)
P 0.14283(12) 0.19998(18) 0.20541(8) 0.0133(8) 0.008	0.14283(12) 0.19998(18) 0.20541(8) 0.0133(8) 0.008	0.19998(18) 0.20541(8) 0.0133(8) 0.008	0.20541(8) 0.0133(8) 0.008	0.0133(8) 0.008	0.008	2(8)	0.0115(9)	0.0001(6)	-0.0001(7)	0.0001(6)	0.0117(4)
O 0.0258(3) 0.4371(5) 0.3680(2) 0.017(3) 0.012	0.0258(3) 0.4371(5) 0.3680(2) 0.017(3) 0.012	0.4371(5) 0.3680(2) 0.017(3) 0.012	0.3680(2) 0.017(3) 0.012	0.017(3) 0.012	0.012	(2)	0.020(3)	-0.0005(19)	0.012(2)	0.002(2)	0.0151(10)
O 0.1129(3) -0.3605(5) 0.3630(2) 0.016(3) 0.010	0.1129(3) -0.3605(5) 0.3630(2) 0.016(3) 0.010	-0.3605(5) 0.3630(2) 0.016(3) 0.010	0.3630(2) 0.016(3) 0.010	0.016(3) 0.010	0.010	(2)	0.019(3)	-0.0024(19)	0.007(2)	-0.002(2)	0.0150(10)
O 0.1464(4) -0.5800(6) 0.3237(3) 0.041(4) 0.017	0.1464(4) -0.5800(6) 0.3237(3) 0.041(4) 0.017	-0.5800(6) 0.3237(3) 0.041(4) 0.017	0.3237(3) 0.041(4) 0.017	0.041(4) 0.017	0.017	(3)	0.046(4)	-0.008(3)	0.035(3)	-0.012(3)	0.0301(15)
O 0.1817(5) 0.4563(9) 0.4232(4) 0.033(4) 0.044	0.1817(5) 0.4563(9) 0.4232(4) 0.033(4) 0.044	0.4563(9) 0.4232(4) 0.033(4) 0.044	0.4232(4) 0.033(4) 0.044	0.033(4) 0.044	0.044	(5)	0.067(6)	0.003(4)	0.001(4)	0.011(4)	0.051(2)
O 0.0510(3) 0.0567(5) 0.4451(2) 0.009(2) 0.012	0.0510(3) 0.0567(5) 0.4451(2) 0.009(2) 0.012	0.0567(5) 0.4451(2) 0.009(2) 0.012	0.4451(2) 0.009(2) 0.012	0.009(2) 0.012	0.012	(2)	0.012(2)	0.0016(18)	0.0062(18)	0.0000(18)	0.0101(9)
O 0.1186(3) -0.0962(5) 0.3894(2) 0.015(3) 0.012	0.1186(3) -0.0962(5) 0.3894(2) 0.015(3) 0.012	-0.0962(5) 0.3894(2) 0.015(3) 0.012	0.3894(2) 0.015(3) 0.012	0.015(3) 0.012	0.012	(2)	0.026(3)	-0.0010(19)	0.013(2)	-0.004(2)	0.0163(11)
O 0.1285(3) 0.1572(5) 0.3855(2) 0.014(3) 0.015	0.1285(3) 0.1572(5) 0.3855(2) 0.014(3) 0.015	0.1572(5) 0.3855(2) 0.014(3) 0.015	0.3855(2) 0.014(3) 0.015	0.014(3) 0.015	0.015	(3)	0.023(3)	0.0026(19)	0.012(2)	0.007(2)	0.0159(11)
O 0.2115(3) 0.0348(6) 0.4707(3) 0.009(3) 0.033	0.2115(3) 0.0348(6) 0.4707(3) 0.009(3) 0.033	0.0348(6) 0.4707(3) 0.009(3) 0.033	0.4707(3) 0.009(3) 0.033	0.009(3) 0.033	0.033	(3)	0.020(3)	-0.001(2)	0.000(2)	0.004(2)	0.0217(12)
O 0.4165(3) -0.1667(5) 0.4251(2) 0.014(2) 0.013	0.4165(3) -0.1667(5) 0.4251(2) 0.014(2) 0.013	-0.1667(5) 0.4251(2) 0.014(2) 0.013	0.4251(2) 0.014(2) 0.013	0.014(2) 0.013	0.013	(2)	0.016(3)	0.0012(19)	0.008(2)	0.0028(19)	0.0133(10)
O 0.4046(3) -0.3961(5) 0.4634(2) 0.012(2) 0.008	0.4046(3) -0.3961(5) 0.4634(2) 0.012(2) 0.008	-0.3961(5) 0.4634(2) 0.012(2) 0.008	0.4634(2) 0.012(2) 0.008	0.012(2) 0.008	0.008	(2)	0.012(2)	0.0001(18)	0.0014(19)	-0.0010(18)	0.0110(10)
O 0.3914(3) -0.1893(5) 0.5206(2) 0.015(2) 0.017	0.3914(3) -0.1893(5) 0.5206(2) 0.015(2) 0.017	-0.1893(5) 0.5206(2) 0.015(2) 0.017	0.5206(2) 0.015(2) 0.017	0.015(2) 0.017	0.017	(3)	0.011(2)	0.005(2)	0.0008(19)	-0.002(2)	0.0147(10)
O 0.2771(3) -0.2527(5) 0.4362(2) 0.007(2) 0.014	0.2771(3) -0.2527(5) 0.4362(2) 0.007(2) 0.014	-0.2527(5) 0.4362(2) 0.007(2) 0.014	0.4362(2) 0.007(2) 0.014	0.007(2) 0.014	0.014	(2)	0.023(3)	0.0012(18)	0.003(2)	0.006(2)	0.0148(10)
O 0.4537(3) 0.3574(5) 0.4517(2) 0.012(2) 0.012	0.4537(3) 0.3574(5) 0.4517(2) 0.012(2) 0.012	0.3574(5) 0.4517(2) 0.012(2) 0.012	0.4517(2) 0.012(2) 0.012	0.012(2) 0.012	0.012	(2)	0.012(2)	-0.0008(18)	0.0052(19)	-0.0011(19)	0.0116(10)
O 0.4353(3) 0.1277(5) 0.4200(2) 0.013(2) 0.007	0.4353(3) 0.1277(5) 0.4200(2) 0.013(2) 0.007	0.1277(5) 0.4200(2) 0.013(2) 0.007	0.4200(2) 0.013(2) 0.007	0.013(2) 0.007	0.007	(2)	0.017(3)	0.0008(18)	0.0054(19)	-0.0051(19)	0.0121(10)
O 0.4037(3) 0.1856(5) 0.5117(2) 0.022(3) 0.014	0.4037(3) 0.1856(5) 0.5117(2) 0.022(3) 0.014	0.1856(5) 0.5117(2) 0.022(3) 0.014	0.5117(2) 0.022(3) 0.014	0.022(3) 0.014	0.014	(3)	0.010(2)	-0.003(2)	0.005(2)	0.0007(19)	0.0155(10)
O 0.3059(3) 0.2648(5) 0.4222(2) 0.009(2) 0.019	0.3059(3) 0.2648(5) 0.4222(2) 0.009(2) 0.019	0.2648(5) 0.4222(2) 0.009(2) 0.019	0.4222(2) 0.009(2) 0.019	0.009(2) 0.019	0.019	(3)	0.020(3)	-0.0011(19)	-0.001(2)	-0.001(2)	0.0170(11)
O 0.0486(3) -0.1749(5) 0.1717(2) 0.012(2) 0.013	0.0486(3) -0.1749(5) 0.1717(2) 0.012(2) 0.013	-0.1749(5) 0.1717(2) 0.012(2) 0.013	0.1717(2) 0.012(2) 0.013	0.012(2) 0.013	0.013	3(2)	0.016(3)	0.0021(19)	-0.0006(19)	0.000(2)	0.0145(10)

TABLE 5. REFINED POSITIONAL AND ANISOTROPIC (EXCEPT Na AT X4) DISPLACEMENT PARAMETERS (Å2) OF ARROJADITE-(BaNa)

Site	atom	x	У	Z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}	$U_{ m eq}$
018	0	0.1316(3)	-0.1751(5)	0.2714(2)	0.021(3)	0.015(3)	0.010(2)	0.003(2)	0.003(2)	-0.0013(19)	0.0153(10)
019	0	0.1357(4)	-0.3796(5)	0.2108(2)	0.028(3)	0.008(2)	0.017(3)	0.002(2)	-0.004(2)	0.000(2)	0.0194(12)
020	0	0.2053(3)	-0.1663(5)	0.1945(2)	0.012(2)	0.017(3)	0.017(3)	-0.002(2)	0.005(2)	0.001(2)	0.0152(10)
021	0	0.0583(3)	0.1541(5)	0.1657(2)	0.017(3)	0.012(2)	0.016(3)	-0.003(2)	0.000(2)	0.002(2)	0.0159(11)
022	0	-0.1503(4)	0.1438(6)	0.2360(2)	0.031(3)	0.019(3)	0.015(3)	0.009(2)	-0.001(2)	-0.005(2)	0.0229(12)
023	0	0.1475(3)	0.3537(5)	0.2059(2)	0.021(3)	0.010(2)	0.012(3)	0.000(2)	-0.002(2)	-0.0002(19)	0.0156(11)
024	0	0.2170(3)	0.1443(6)	0.1842(2)	0.014(3)	0.018(3)	0.021(3)	0.002(2)	0.003(2)	-0.002(2)	0.0182(11)
025	0	0.2703(3)	-0.0024(5)	0.3630(2)	0.008(2)	0.015(3)	0.018(3)	-0.0012(17)	0.004(2)	-0.0014(19)	0.0137(10)
Notes:	The anisc	otropic displacer	ment factor expo	onent takes the	form: $-2\pi^2$ [(,	ha*) ² U ₁₁ +	+ 2hka*b*U ₁₂]	. U _{ea} is defined a	s one third of t	he trace of the o	rthogonalizec

Uij tensor

TABLE 5. CONTINUED

for Cl. The raw data were corrected for matrix effects using the $\phi\rho Z$ method from the JEOL series of programs.

The averaged analytical results are reported in Table 2. The water content was calculated considering $2(OH^- + F)$ per formula unit. The empirical formula was calculated on the basis of 12 (P + Si + As) atoms per formula unit, which assumes that Si and As can substitute for P at the tetrahedral sites (essentially 12 P *apfu* because As and Si were below detection limit in all analyzed points). The calculated formula is: $(Ba_{0.62}K_{0.27}Pb_{0.13}Sr_{0.07})\Sigma_{1.09}Na_3(Na_{1.19}Ca_{0.85})\Sigma_{2.04}$ (Fe²⁺9.82Mg1.92Mn²⁺1.64) $\Sigma_{13.38}Al_{1.01}(PO_4)_{11}(PO_3OH)$ (OH_{1.75}F_{0.25}) Σ_2 . The simplified formula is BaNa₃ (NaCa)Fe²⁺1.3Al(PO_4)_{11}(PO_3OH)OH₂, which theoretically requires: BaO 7.07, Na₂O 5.72, CaO 1.29, FeO 43.06, Al₂O₃ 2.35, P₂O₅ 39.72, and H₂O 1.25 wt.% for a total of 100.00 wt.%.

X-ray Diffraction Data and Crystal Structure Determination

The X-ray powder diffraction (XRPD) pattern of arrojadite-(BaNa) was obtained with a high-resolution PANalytical X'pert Pro X-ray powder diffractometer equipped with an X'Celerator-type detector at the Department of Earth Sciences of the University of Milan. Operating conditions were: filtered CuKa radiation, 40 kV, 40 mA, 20-range from 5° to 105°, step size $0.017^{\circ} 2\theta$, and a counting time of 70 s per step. Silicon NIST 640c was used as an internal standard, and the refinement of unit-cell parameters and indexing of Bragg reflections were performed using the least-squares indexing program CELREF 3, beta version (Laugier & Bochu 1999). The refined unit-cell parameters for space group C2/c are a 15.551(4) Å, b 10.058(2) Å, c 24.648(7) Å, β $106.51(2)^{\circ}$, and V 3933(2) Å³, for Z = 4. The complete list of indexed reflections is reported in Table 3. The eight strongest measured lines are [d in Å (I/I_0) hkl]: 3.137 (100) 5 1 0, 2.818 (61) 3 1 6, 3.303 (46) 1 3 2, 2.667 (35) 2 0 8, 2.878 (32) 3 3 1, 3.488 (28) 1 1 6, $4.621(22)\overline{3}13$, and 2.936(22)330.

The X-ray structural study was carried out with an Agilent Xcalibur four-circle diffractometer equipped with an EOS CCD detector at the Laboratoire de Minéralogie et de Cristallochimie of the University of Liège, using a fragment of arrojadite-(BaNa) measuring $0.170 \times 0.150 \times 0.080$ mm. A total of 414 frames with a spatial resolution of 1° were collected with the ϕ/ω scan technique, with a counting time of 100 s per frame, in the range $5.83 < 2\theta < 57.44^\circ$. A total of 16452 reflections were extracted from these frames, corresponding to 4608 unique reflections. The details of the single-crystal data collection and crystal

TABLE 6. BOND DISTANCE (Å) AND ANGLES (°) FOR ARROJADITE-(BaNa)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Al–O(5) Al–O(10) Al–O(13)	×2 ×2 ×2	1.867(5) 1.898(5) 1.884(5)	P(1)–O(1) P(1)–O(2) P(1)–O(3)	1.567(6) 1.509(6) 1.495(6)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M(1) O(2)		2.840(6)	P(1)–O(4)	1.536(9)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M(1) = O(2) M(1) = O(4)		2.849(8)	O(1)-P(1)-O(2)	109.2(3)
$\begin{array}{c ccccc} M(1)-O(10) & 3.109(5) & O(1)-P(1)-O(4) & 104.1(5) \\ M(1)-O(11) & 2.071(5) & O(2)-P(1)-O(4) & 106.3(4) \\ M(1)-O(12) & 2.648(6) & O(2)-P(1)-O(4) & 104.1(5) \\ M(2)-O(12) & 2.049(5) & O(3)-P(1)-O(4) & 104.1(5) \\ M(2)-O(12) & 2.049(5) & O(3)-P(1)-O(4) & 104.1(5) \\ M(2)-O(19) & 2.073(5) & P(2)-O(6) & 1.521(5) \\ M(2)-O(20) & 2.119(5) & P(2)-O(7) & 1.553(5) \\ M(2)-O(24) & 2.108(6) \\ M(3)-O(25) & 2.066(5) & O(5)-P(2)-O(7) & 102.1(3) \\ M(3)-O(1) & 2.183(5) & O(5)-P(2)-O(8) & 112.3(3) \\ M(3)-O(1) & 2.183(5) & O(6)-P(2)-O(7) & 112.0(3) \\ M(3)-O(1) & 2.188(5) & O(6)-P(2)-O(7) & 112.0(3) \\ M(3)-O(19) & 2.168(6) & O(7)-P(2)-O(8) & 112.3(3) \\ M(3)-O(19) & 2.158(6) & O(7)-P(2)-O(8) & 112.3(3) \\ M(3)-O(19) & 2.158(6) & O(7)-P(2)-O(8) & 112.3(3) \\ M(3)-O(19) & 2.158(6) & O(7)-P(2)-O(8) & 112.3(3) \\ M(3)-O(12) & 2.053(5) \\ \hline \\ X(1)-O(1) & 2.358(9) & P(3)-O(10) & 1.527(5) \\ X(1)-O(1) & 2.358(9) & P(3)-O(11) & 1.527(5) \\ X(1)-O(1) & 2.358(7) & P(3)-O(11) & 1.527(5) \\ X(1)-O(16) & 2.231(7) \\ X(1)-O(15) & 2.306(6) & O(9)-P(3)-O(11) & 108.7(3) \\ X(1)-O(16) & 2.219(6) & O(10)-P(3)-O(11) & 108.7(3) \\ X(1)-O(16) & 2.219(6) & O(10)-P(3)-O(11) & 111.3(3) \\ X(1)-O(16) & 2.565(7) & O(9)-P(3)-O(11) & 113.3(3) \\ X(1)-O(16) & 2.565(7) & O(9)-P(3)-O(12) & 111.3(3) \\ X(1)-O(16) & 2.565(7) & O(9)-P(3)-O(12) & 111.3(3) \\ X(1)-O(16) & 2.578(8) & P(4)-O(14) & 1.554(5) \\ X(2)-O(10) & 2.319(6) & O(10)-P(3)-O(12) & 113.3(3) \\ X(1)-O(16) & 2.569(8) & P(4)-O(14) & 1.554(5) \\ X(2)-O(10) & 2.319(6) & O(11)-P(3)-O(12) & 108.1(3) \\ X(2)-O(11) & 2.186(5) & O(14)-P(4)-O(15) & 1.528(5) \\ X(2)-O(12) & 2.407(6) & P(4)-O(15) & 1.528(5) \\ X(2)-O(12) & 2.407(6) & P(4)-O(15) & 112.6(3) \\ M(4)-O(1) & 2.072(5) & O(13)-P(4)-O(16) & 102.6(3) \\ M(4)-O(15) & 2.222(5) \\ M(4)-O(15) & 2.222(5) \\ M(4)-O(15) & 2.222(5) \\ M(4)-O(16) & 2.138(5) & O(17)-P(5)-O(18) & 1.528(5) \\ M(4)-O(15) & 2.222(5) \\ M(4)-O(15) & 2.314(5) & O(17)-P(5)-O(18) & 105.8(3) \\ M(5)-O(11) & 2.118(5) \\ M(5)-O(11) & 2.118(5) \\ M(5)-O(11) & 2.138(5) \\ P(1)-P(5)-O(20) & 1.555(5) \\ M(5)-O(14) & 2.22$	M(1)–O(8)		2.063(6)	O(1) - P(1) - O(3)	111.0(4)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M(1)–O(10)		3.109(5)	O(1)-P(1)-O(4)	104.1(5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M(1)–O(11)		2.071(5)	O(2)-P(1)-O(3)	114.4(4)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M(1)–O(12)		2.648(6)	O(2)-P(1)-O(4)	106.3(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	M(1)–O(12)		2.049(5)	O(3)–P(1)–O(4)	104.1(5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M(2)–O(3)		2.086(6)	P(2)–O(5)	1.553(5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M(2)–O(19)		2.073(5)	P(2)–O(6)	1.521(5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M(2)–O(20)		2.119(5)	P(2)-O(7)	1.553(5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M(2)–O(23) M(2)–O(24)		2.099(5) 2.108(6)	P(2)–O(8)	1.528(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(_) = (_ !)		()	O(5)–P(2)–O(6)	109.6(3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M(3)–O(25)		2.066(5)	O(5)–P(2)–O(7)	102.1(3)
$\begin{array}{cccccccc} M(3)-O(9) & 2.168(5) & O(6)-P(2)-O(7) & 112.0(3) \\ M(3)-O(14) & 2.041(5) & O(6)-P(2)-O(8) & 112.3(3) \\ M(3)-O(19) & 2.158(6) & O(7)-P(2)-O(8) & 108.1(3) \\ \\ M(3)-O(23) & 2.053(5) \\ & & & & & & & & & & & & & & & & & & $	M(3)–O(1)		2.183(5)	O(5)–P(2)–O(8)	112.3(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M(3)–O(9)		2.168(5)	O(6)–P(2)–O(7)	112.0(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M(3)–O(14)		2.041(5)	O(6) - P(2) - O(8)	112.3(3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M(3)–O(19) M(3)–O(23)		2.158(6) 2.053(5)	O(7)-P(2)-O(8)	108.1(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(-) - (-)		(-)	P(3)–O(9)	1.536(5)
$\begin{array}{cccccccc} X(1)-O(7) & 2.865(7) & P(3)-O(11) & 1.552(5) \\ X(1)-O(8) & 2.477(7) & P(3)-O(12) & 1.541(5) \\ X(1)-O(8) & 2.231(7) & & & & & & & & & & & & & & & & & & &$	X(1)–O(4)		2.358(9)	P(3)-O(10)	1.527(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X(1)–O(7)		2.865(7)	P(3)–O(11)	1.552(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	X(1)–O(8)		2.477(7)	P(3)–O(12)	1.541(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X(1)–O(8)		2.231(7)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X(1)–O(15)		2.306(6)	O(9)–P(3)–O(10)	110.3(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X(1)–O(15)		2.864(7)	O(9)–P(3)–O(11)	108.7(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X(1)–O(16)		2.565(7)	O(9)–P(3)–O(12)	111.3(3)
$\begin{array}{c ccccc} O(10)-P(3)-O(12) & 108.1(3) \\ 108.1(3) & 2.319(6) & O(11)-P(3)-O(12) & 106.5(3) \\ \hline X(2)-O(13) & 2.334(6) & & & & & & & & & & & & & & & & & & &$	X(1)–O(16)		2.219(6)	O(10) - P(3) - O(11)	111.8(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(0) 0(10)		0.040(0)	O(10) - P(3) - O(12)	108.1(3)
$\begin{array}{cccccccc} X(2) - O(13) & 2.334(6) \\ X(2) - O(16) & 2.714(7) & P(4) - O(13) & 1.554(5) \\ X(2) - O(17) & 2.679(8) & P(4) - O(14) & 1.540(5) \\ X(2) - O(20) & 2.407(6) & P(4) - O(15) & 1.526(5) \\ X(2) - O(21) & 2.569(8) & P(4) - O(16) & 1.528(5) \\ X(2) - O(24) & 2.401(7) & & & & & & & & & & & & & & & & & & &$	X(2) = O(10)		2.319(6)	O(11)-P(3)=O(12)	106.5(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X(2) = O(13) X(2) = O(16)		2.334(0) 2.714(7)	$P(4) \cap (12)$	1 554(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X(2) = O(10) X(2) = O(17)		2.714(7)	P(4) = O(13) P(4) = O(14)	1.554(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X(2) = O(20)		2.073(0)	P(4) = O(15)	1.546(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X(2) = O(21)		2.569(8)	P(4) - O(16)	1.528(5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X(2)–O(24)		2.401(7)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				O(13)–P(4)–O(14)	103.1(3)
$\begin{array}{ccccccc} M(4)-O(1) & 2.072(5) & O(13)-P(4)-O(16) & 109.9(3) \\ M(4)-O(5) & 2.188(5) & O(14)-P(4)-O(15) & 110.8(3) \\ M(4)-O(7) & 2.136(5) & O(14)-P(4)-O(16) & 112.6(3) \\ M(4)-O(9) & 2.130(5) & O(15)-P(4)-O(16) & 108.7(3) \\ M(4)-O(15) & 2.222(5) & & & & \\ M(4)-O(21) & 2.078(5) & P(5)-O(17) & 1.528(5) \\ P(5)-O(18) & 1.522(5) \\ M(5)-O(2) & 2.125(5) & P(5)-O(19) & 1.549(5) \\ M(5)-O(6) & 2.108(5) & P(5)-O(20) & 1.555(5) \\ M(5)-O(11) & 2.118(5) & & & \\ M(5)-O(13) & 2.314(5) & O(17)-P(5)-O(18) & 107.8(3) \\ M(5)-O(14) & 2.225(5) & O(17)-P(5)-O(19) & 111.2(3) \\ M(5)-O(17) & 2.033(5) & O(17)-P(5)-O(20) & 107.9(3) \\ \end{array}$				O(13)–P(4)–O(15)	111.7(3)
$\begin{array}{ccccccc} M(4)-O(5) & 2.188(5) & O(14)-P(4)-O(15) & 110.8(3) \\ M(4)-O(7) & 2.136(5) & O(14)-P(4)-O(16) & 112.6(3) \\ M(4)-O(9) & 2.130(5) & O(15)-P(4)-O(16) & 108.7(3) \\ M(4)-O(15) & 2.222(5) & & & & \\ M(4)-O(21) & 2.078(5) & P(5)-O(17) & 1.528(5) \\ P(5)-O(18) & 1.522(5) \\ M(5)-O(2) & 2.125(5) & P(5)-O(19) & 1.549(5) \\ M(5)-O(6) & 2.108(5) & P(5)-O(20) & 1.555(5) \\ M(5)-O(11) & 2.118(5) & & & \\ M(5)-O(13) & 2.314(5) & O(17)-P(5)-O(18) & 107.8(3) \\ M(5)-O(14) & 2.225(5) & O(17)-P(5)-O(19) & 111.2(3) \\ M(5)-O(17) & 2.033(5) & O(17)-P(5)-O(20) & 107.9(3) \\ \end{array}$	M(4)–O(1)		2.072(5)	O(13)–P(4)–O(16)	109.9(3)
$\begin{array}{ccccccc} M(4)-O(7) & 2.136(5) & O(14)-P(4)-O(16) & 112.6(3) \\ M(4)-O(9) & 2.130(5) & O(15)-P(4)-O(16) & 108.7(3) \\ M(4)-O(15) & 2.222(5) & & & & \\ M(4)-O(21) & 2.078(5) & P(5)-O(17) & 1.528(5) \\ P(5)-O(18) & 1.522(5) & \\ M(5)-O(2) & 2.125(5) & P(5)-O(19) & 1.549(5) \\ M(5)-O(6) & 2.108(5) & P(5)-O(20) & 1.555(5) \\ M(5)-O(11) & 2.118(5) & & & \\ M(5)-O(13) & 2.314(5) & O(17)-P(5)-O(18) & 107.8(3) \\ M(5)-O(14) & 2.225(5) & O(17)-P(5)-O(19) & 111.2(3) \\ M(5)-O(17) & 2.033(5) & O(17)-P(5)-O(20) & 107.9(3) \\ \end{array}$	M(4)–O(5)		2.188(5)	O(14)–P(4)–O(15)	110.8(3)
$\begin{array}{ccccccc} M(4)-O(9) & 2.130(5) & O(15)-P(4)-O(16) & 108.7(3) \\ M(4)-O(15) & 2.222(5) & & & & & \\ M(4)-O(21) & 2.078(5) & P(5)-O(17) & 1.528(5) \\ P(5)-O(18) & 1.522(5) & & \\ M(5)-O(2) & 2.125(5) & P(5)-O(19) & 1.549(5) \\ M(5)-O(6) & 2.108(5) & P(5)-O(20) & 1.555(5) \\ M(5)-O(11) & 2.118(5) & & & & \\ M(5)-O(13) & 2.314(5) & O(17)-P(5)-O(18) & 107.8(3) \\ M(5)-O(14) & 2.225(5) & O(17)-P(5)-O(19) & 111.2(3) \\ M(5)-O(17) & 2.033(5) & O(17)-P(5)-O(20) & 107.9(3) \\ \end{array}$	M(4)–O(7)		2.136(5)	O(14)–P(4)–O(16)	112.6(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M(4)–O(9)		2.130(5)	O(15)–P(4)–O(16)	108.7(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M(4)–O(15)		2.222(5)		
$\begin{array}{c ccccc} P(5)-O(18) & 1.522(5) \\ M(5)-O(2) & 2.125(5) & P(5)-O(19) & 1.549(5) \\ M(5)-O(6) & 2.108(5) & P(5)-O(20) & 1.555(5) \\ M(5)-O(11) & 2.118(5) & & & & & \\ M(5)-O(13) & 2.314(5) & O(17)-P(5)-O(18) & 107.8(3) \\ M(5)-O(14) & 2.225(5) & O(17)-P(5)-O(19) & 111.2(3) \\ M(5)-O(17) & 2.033(5) & O(17)-P(5)-O(20) & 107.9(3) \\ \end{array}$	M(4)–O(21)		2.078(5)	P(5)-O(17)	1.528(5)
M(5)-O(2) 2.125(5) P(5)-O(19) 1.549(5) M(5)-O(6) 2.108(5) P(5)-O(20) 1.555(5) M(5)-O(11) 2.118(5) V V M(5)-O(13) 2.314(5) O(17)-P(5)-O(18) 107.8(3) M(5)-O(14) 2.225(5) O(17)-P(5)-O(19) 111.2(3) M(5)-O(17) 2.033(5) O(17)-P(5)-O(20) 107.9(3)			0.105(5)	P(5) = O(18)	1.522(5)
M(5)-O(1) 2.106(3) P(3)-O(20) 1.555(5) M(5)-O(11) 2.118(5) 0(17)-P(5)-O(18) 107.8(3) M(5)-O(14) 2.225(5) O(17)-P(5)-O(19) 111.2(3) M(5)-O(17) 2.033(5) O(17)-P(5)-O(20) 107.9(3)	M(5) = O(2)		2.125(5)	P(5) = O(19) P(5) = O(20)	1.549(5)
M(5)-O(13)2.314(5)O(17)-P(5)-O(18)107.8(3)M(5)-O(14)2.225(5)O(17)-P(5)-O(19)111.2(3)M(5)-O(17)2.033(5)O(17)-P(5)-O(20)107.9(3)	M(5) = O(0) M(5) = O(11)		2.100(0)	F(0)-0(20)	1.555(5)
M(5)-O(14)2.225(5)O(17)-P(5)-O(19)101.0(3)M(5)-O(17)2.033(5)O(17)-P(5)-O(20)107.9(3)	M(5) = O(13)		2.110(5)	O(17) = P(5) = O(18)	107 8(3)
M(5)–O(17) 2.033(5) O(17)–P(5)–O(20) 107.9(3)	M(5)–O(14)		2.225(5)	O(17) - P(5) - O(19)	111.2(3)
	M(5)–O(17)		2.033(5)	O(17)–P(5)–O(20)	107.9(3)

			O(18)–P(5)–O(19)	O19
M(6)–O(2)		2.266(5)	O(18)-P(5)-O(20)	O20
M(6)–O(6)		2.157(5)	O(19)-P(5)-O(20)	108.0(3)
M(6)–O(12)		2.161(5)		
M(6)–O(18)		2.035(5)	P(6)–O(21)	1.538(5)
M(6)–O(24)		2.354(6)	P(6)–O(22)	1.523(6)
M(6)–O(25)		2.247(5)	P(6)–O(23)	1.542(5)
			P(6)–O(24)	1.559(6)
M(7)–O(25)		2.251(5)		
M(7)–O(7)		2.098(5)	O(21)-P(6)-O(22)	108.4(3)
M(7)–O(16)		2.169(5)	O(21)-P(6)-O(23)	109.8(3)
M(7)–O(20)		2.169(5)	O(21)-P(6)-O(24)	109.8(3)
M(7)–O(22)		2.059(6)	O(22)-P(6)-O(23)	111.7(3)
			O(22)-P(6)-O(24)	76.1(3)
X(3)–O(9)	×2	2.589(5)	O(23)-P(6)-O(24)	108.6(3)
X(3)–O(11)	imes2	2.751(6)		
X(3)–O(14)	×2	2.349(5)		
X(3)–O(15)	×2	2.514(5)		
X(4)–O(1)	×2	2.898(7)		
X(4)–O(3)	×2	2.641(8)		
X(4)–O(23)	×2	2.929(6)		
X(5)–O(17)	×2	2.868(5)		
X(5)–O(18)	×2	2.718(5)		
X(5)–O(21)	×2	2.961(5)		
X(5)–O(22)	×2	2.815(6)		

TABLE 6. CONTINUED.

structure refinement are summarized in Table 4. Unitcell parameters refined from these reflections are in good agreement with those refined from the X-ray powder data: a 16.4984(6) Å, b 10.0228(3) Å, c 24.648(1) Å, β 105.850(4)°, and V 3920.8(2) Å³, Z=4 space group C2/c. Data were corrected for Lorenz, polarization, and absorption effects, the latter with an empirical method using the SCALE3 ABSPACK scaling algorithm included in the CrysAlisRED package (Oxford Diffraction 2007). The crystal structure of arrojadite-(BaNa) (Fig. 2) was refined in space group C2/c. Although the Cc space group displayed a worse figure of merit, we also attempted a refinement in this space group (as suggested by Cámara et al. 2006), but obtained a bad R_1 factor, with splitting of several sites and bad anisotropic thermal parameters. Consequently, the C2/c space group and the atomic coordinates suggested by Demartin et al. (1996) were chosen for the crystalstructure refinement. Scattering curves for neutral atoms, together with anomalous dispersion corrections, were taken from the International Tables for X-ray Crystallography (Wilson 1992). In the final refinement cycle, all atoms except Na occurring at the X4 site were refined anisotropically, leading to an R_1 value of 0.0581. Atomic coordinates and thermal parameters for arrojadite-(BaNa) are summarized in Table 5, and bond lengths and angles are summarized in Table 6. The crystal structure of arrojadite-(BaNa) is similar to that of arrojadite-(BaFe) (Demartin *et al.* 1996), with the X2 to X4 sites occupied by Na, the X5 site occupied by Ba, and the M2 to M7 sites occupied mainly by Fe^{2+} . The X4 site is split in arrojadite-(BaFe), while this splitting does not occur in arrojadite-(BaNa). However, as shown in Table 5, the P1 site is split in arrojadite-(BaFe) (Demartin *et al.* 1996). In arrojadite-(BaNa), the X1 site is occupied by Na and the M1 site by Ca (Table 5).

Spectroscopic Properties

Unpolarized micro-Raman spectra (Fig. 3) were obtained in nearly backscattered geometry, with a Jobin-Yvon Horiba "Labram" apparatus at the Department of Physics and Earth Sciences of the University of Parma. The instrument is equipped with a motorized x-y stage and an Olympus microscope with a ULWD 50× objective. The 473.1 nm line of a doubled Nd:YAG laser was used for excitation. The minimum lateral and depth resolution were set to a few micrometres. The system was calibrated using the 520.6 cm⁻¹ Raman peak of silicon before each experimental session. Spectra were collected through multiple acquisitions with single counting times ranging from 20 to 180 s.

TABLE 7. RAMAN WAVENUMBERS AND VIBRATIONAL MODES IN ARROJADITE-(BaNa)

162 173 193 220 245 268 293	Lattice modes
409 422 433 456 484 498	Bending modes ν_2 of PO_4 and H_2PO_4 units
530 557 582 602 619 642	Out-of-plane bending modes v_4 of PO_4 and H_2PO_4 units
917 938 962 982 998 1020	$PO_4{}^{3-}\nu_1$ symmetric stretching modes
1055 1087 1113 1141 1161	$PO_4{}^{3-}\nu_3$ antisymmetric stretching modes
1595	OH bending
3522 3529 3549 3567	OH stretching

The Raman spectra of phosphate minerals are usually dominated by the strong signals of the phosphate groups. The isolated PO₄ unit is expected to show four Raman bands, v_1 being the symmetric PO₄ stretching mode, v_3 the asymmetric stretching mode, and v_2 and v_4 the bending modes (Nakamoto 1986). The attribution of the modes was made by comparison with those for arrojadite-(KFe) (Frost et al. 2013), and is reported in Table 7. For each phosphate mode, many bands (five to six) with different wavenumbers are observed. This indicates the presence of different non-equivalent phosphate groups in the structure, even if a strong PO₄ tetrahedron asymmetry could be the explanation for the increased multiplicity of the v_2 , v_3 , and v_4 bands (Adler 1964). In a similar way, the presence of different OH stretching peaks in the 3500-3600 cm⁻¹ region indicates the presence of non-equivalent OH groups. The Raman spectra show clear similarities with the one reported by Frost et al. (2013) for arrojadite-(KFe), but the differences in the band positions are large enough to allow a good discrimination of the two species.

DISCUSSION

From the classification point of view, arrojadite-(BaNa) is a phosphate mineral belonging to the arrojadite group, arrojadite subgroup (Dana classification 41.07.02, Anhydrous phosphates containing hydroxyl or halogen - arrojadite group - arrojadite subgroup. Strunz classification 08.BF.05, Phosphates, arsenates vanadates, with additional anions, without H₂O, with medium-sized and large cations), and corresponds to the Ba- and Na-rich member of the arrojadite group. Arrojadite-(BaNa) corresponds to the Na-rich analogue of arrojadite-(BaFe) (ex sigismundite, see Demartin et al. 1996 and Chopin et al. 2006). The physical properties of the valid mineral species of the arrojadite subgroup are shown in Table 8.

Since the nomenclature of the arrojadite-group minerals has been revised considering space group Cc, it is difficult to compare our data with the nomenclature scheme established by Cámara et al. (2006) and Chopin et al. (2006). However, the electron-microprobe analysis and crystal-structure refinement clearly show that Ba is dominant at the X5 (= A1) site, thus implying the use of "Ba" as first suffix. According to Chopin et al. (2006), the second suffix depends on the divalent cations at the M sites. For arrojadite-(BaNa), the ^MFe^{*} value (^MFe^{*} = Fe²⁺ + Mn²⁺ + Mg + Zn + Li -13) is 0.38 (see electron-microprobe data above). thus lower than 0.5 ^MFe^{*} per formula unit. The second prefix must consequently be "Na", in agreement with the accepted nomenclature scheme (Chopin et al. 2006). A careful examination of cation distributions in arrojadite-(BaNa) (Table 5) indicates, however, significant differences compared to the data previously reported in the literature (Demartin et al. 1996, Cámara et al. 2006, Chopin et al. 2006). Indeed, the X1 site, generally populated by Ca in arrojadite-group minerals, hosts Na in arrojadite-(BaNa), and the M1 site, dominated by Fe in arrojadite-(BaFe), is filled by Ca in arrojadite-(BaNa). Therefore, the structural formulae of arrojadite-(BaNa) and arrojadite-(BaFe) can be written as follows:

- arrojadite-(BaNa): ^{X5}Ba^{X2X3X4}Na₃(^{X1}Na^{M1}Ca)
- $^{M2-M7}Fe^{2+}_{13}AlAl(PO_{4})_{12}OH_{2}$

Mineral	Arrojadite-(BaNa)	Arrojadite-(BaFe)	Arrojadite-(PbFe)	Arrojadite-(SrFe)	Arrojadite-(KNa)
l ype locality Reference	Luna pegmatite, Italy This work	Alpe Groppera, Italy [1, 2, 3]	Sapucala, Brazil [2, 3]	Horrsjoberg, Sweden [2, 3]	big Fish River, Canada [2, 3]
ldeal formula	BaNa ₃ (NaCa)Fe ²⁺ ₁₃ Al(PO ₄)11 (PO ₃ OH)OH ₂	BaNa ₃ (CaFe)Fe ²⁺ ₁₃ Al (PO ₄) ₁₂ OH ₂	PbFe ²⁺ (Ca,Na) ₂ Fe ²⁺ ₁₃ Al(PO ₄) ₁₁ (PO ₃ OH)OH ₂	SrFe ²⁺ (Ca,Na) ₂ Fe ²⁺ ₁₃ Al(PO ₄) ₁₁ (PO ₃ OH)OH ₂	KNa ₃ (Ca,Na) ₂ Fe ²⁺ ₁₃ Al(PO ₄) ₁₁ (PO ₃ OH)OH ₂
Space group	C2/c	C2/c or Cc	CC	CC	Cc
a (Å)	16.4984(6)	16.406(5)	16.4304(9)	16.3992(7)	16.5220(11)
<i>b</i> (Å)	10.0228(3)	9.945(3)	9.9745(5)	9.9400(4)	10.0529(7)
c (Å)	24.648(1)	24.470(5)	24.5869(13)	24.4434(11)	24.6477(16)
β (Å)	105.850(4)	105.73(2)	105.485(2)	105.489(1)	106.509(2)
Vol (Å ³)	3920.8(2)	3843(2)	3883.2(5)	3839.76(46)	3932.2(7)
N	4	4	4	4	4
Strong X-ray			ı		5.861 (29)
lines	·			ı	5.026(27)
	4.521 (22)	4.560 (27)	4.553(25)	ı	ı
	3.388 (28)	3.400 (31)	3.396(24)	3.378 (26)	ı
	3.300 (16)	3.310(20)	3.305(22)	3.293(21)	ı
	3.203 (46)	3.211 (47)	3.208(43)	3.192 (41)	3.186(33)
	3.037 (100)	3.032 (100)	3.019(100)	3.009 (100)	3.050 (100)
	2.854 (21)	2.841(34)	ı	ı	2.853(22)
	2.836 (22)	2.828(30)	2.829(35)	2.820 (23)	ı
	2.810 (15)	2.824(27)	2.819(33)	I	ı
			2.813(29)		ı
	2.778 (32)	2.797 (16)		2.805 (2)	2.798 (25)
	ı	ı	ı	ı	2.793 (28)
	ı	ı	ı	ı	2.777 (24)
	2.761 (20)	2.758 (32)	2.750(29)	ı	2.753(23)
	ı	ı	ı	2.737 (28)	ı
	2.718 (61)	2.706(39)	2.694(32)	2.685 (70)	2.691 (71)
	ı	2.703(68)	2.690(55)	ı	ı
	2.567 (35)	2.543(38)	2.538(30)	2.529 (23)	
Density	3.535(1)	3.54	3.65	3.57	3.44
Hardness	4-5	ı	4–5	ı	ı
Color	Pale grayish-green,	Grayish-green,	Pale honey,		Brownish transparent
	translucent	translucent	transparent		
Morphology	Aggregates of numerous grains	Aggregates of numerous grains	Granular masses or subhedral crystals	ı	Prismatic crystals
	•	,	•		

TABLE 8. COMPARISON OF THE PHYSICAL PROPERTIES FOR MINERALS OF THE ARROJADITE SUBGROUP

ARROJADITE-(BaNa), A NEW PHOSPHATE MINERAL

1031

[1] Demartin et al. (1996), [2] Cámara et al. (2006), [3] Chopin et al. (2006).

ACKNOWLEDGMENTS

The authors are happy to dedicate this work to William B "Skip" Simmons and Karen Louise Webber for their research and teaching in the field of pegmatology.

The authors are particularly grateful to Sarah Hanson and an anonymous referee for their suggestions which largely improved this article and to Guest Editor Al Falster who handled the manuscript.

References

- ADLER, H.H. (1964) Infrared spectra of phosphate minerals: Symmetry and substitutional effects in the pyromorphite series. *American Mineralogist* 49, 1002–1015.
- CÁMARA, F., OBERTI, R., CHOPIN, C., & MEDENBACH, O. (2006) The arrojadite enigma: I. a new formula and a new model for the arrojadite structure. *American Mineralogist* **91**, 1249–1259.
- ČERNÝ, P. & ERCIT, S. (2005) The classification of granitic pegmatites revisited. *Canadian Mineralogist* 43, 2005– 2026.
- CHOPIN, C., OBERTI, R., & CÁMARA, F. (2006) The arrojadite enigma: II compositional space, new members, and nomenclature of the group. *American Mineralogist* 91, 1260–1270.
- DEMARTIN, F., GRAMACCIOLI, C.M., PILATI, T., & SCIESA, E. (1996) Sigismundite, (Ba,K,Pb)Na₃(Ca,Sr)(Fe,Mg,Mn)₁₄ (OH)₂(PO₄)₁₂, a new Ba-rich member of the arrojadite group from Spluga Valley, Italy. *Canadian Mineralogist* 34, 827–834.
- FRANSOLET, A.-M. (1975) Etude minéralogique et pétrologique des phosphates de pegmatites granitiques. Ph.D. Thesis, University of Liège, Belgium, 333 pp.
- FROST, R.L., XI, Y., SCHOLZ, R., & CAMPOS HORTA, L.F. (2013) The phosphate mineral arrojadite-(KFe) and its spectroscopic characterization. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 109, 138–145.

- LAUGIER, J. & BOCHU, B. (1999) CELREF: Cell parameters refinement program from powder diffraction diagram. Laboratoire des Matériaux et du Génie Physique, Ecole Nationale Supérieur de Physique de Grenoble (INGP), Grenoble, France.
- MANDARINO, J.A. (1981) The Gladstone-Dale relationship: part IV. The compatibility concept and its application. *Canadian Mineralogist* **19**, 441–450.
- NAKAMOTO, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley, University of Michigan, 484 pp.
- OXFORD DIFFRACTION (2007) CrysAlis CCD and CrysAlis RED, version 1.71. Oxford Diffraction, Oxford, England.
- ROBERTSON, B.T. (1982) Occurrence of epigenetic phosphate minerals in a phosphatic iron-formation, Yukon Territory. *Canadian Mineralogist* 20, 177–187.
- SIMMONS, W.B., WEBBER, K.L., FALSTER, A.U., & NIZAMOFF, J.W. (2003) Pegmatology: pegmatite mineralogy, petrology & petrogenesis. Rubellite Press, New Orleans, Louisiana.
- VIGNOLA, P., DIELLA, V., FERRARI, E.S., & FRANSOLET, A.-M. (2011) Complex mechanisms of alteration in a graftonite + sarcopside + triphylite association from the Luna pegmatite, Piona, Lecco province, Italy. *Canadian Mineralogist* 49, 765–776.
- VIGNOLA, P., HATERT, F., BALIOT, M., DAL BO, F., ANDÒ, S., BERSANI, D., RISPLENDENTE, A., & VANINI, F. (2015) Arrojadite-(BaNa), IMA 2014-071. CNMNC Newsletter No. 23, February 2015, page 55. *Mineralogical Magazine* 79, 51–58.
- WILSON, A.J.C. (1992) International Tables for X-ray Crystallography, Vol. C. Kluwer Academic Press, London, England.
- Received November 4, 2015. Revised manuscript accepted January 19, 2016.