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Abstract 

Urea has been used in the diets of ruminants as a non-protein nitrogen source. Ureolytic 

bacteria are key organisms in the rumen producing urease enzymes to catalyze the breakdown 

of urea to ammonia (NH3), and the NH3 is used as nitrogen for microbial protein synthesis. In 

the rumen, hydrolysis of urea to NH3 occurs at a greater rate than NH3 can be utilized by 

rumen bacteria, and excess ammonia absorbed into blood may be harmful to the animals. 

Nowadays, little is known about the information of ureolytic microorganisms in the rumen, 

and the changes that occur in the rumen microbial and host metabolites induced by urea 

nitrogen have not been fully characterized. ‘Omics’ approaches, such as metagenomics and 

metabolomics have been applied to analyzing rumen microbial community and nutrients 

metabolism in dairy cows. The objective of this study is to investigate the rumen predominant 

ureolytic bacteria community and the mechanisms of urea utilization in ruminants using 

sequencing and metabolomics approaches. Firstly, an in vitro experiment trying to explore the 

ruminal ureolytic bacterial community was performed. Urea or acetohydroxamic acid were 

supplemented into the rumen simulation systems as the stimulator and inhibitor for ureolytic 

bacteria, respectively. The bacterial 16S rRNA genes were analyzed by Miseq sequencing and 

used to reveal the ureolytic bacteria by comparing different treatments. We found that urea 

supplementation significantly increased the proportion of ureC genes. The rumen ureolytic 

bacteria were abundant in the genera of Pseudomonas, Haemophilus, Neisseria, Streptococcus, 

Actinomyces, Bacillus and unclassified Succinivibrionaceae. Secondly, an in vivo experiment 

was taken to investigate differences in ureolytic bacterial composition between the rumen 

digesta and rumen wall based on ureC gene classification. Six dairy cows with rumen fistula 

were assigned to a two-period cross-over trial. One group was fed a total mixed ration without 

urea and the treatment group was fed rations plus 180 g urea per cow per day. Rumen 

bacterial samples from rumen content and rumen wall fractions were collected for ureC gene 

amplification and sequencing using Miseq. More than 55% of the ureC sequences did not 

affiliate with any known taxonomically assigned urease genes. The wall-adherent bacteria had 

a distinct ureolytic bacterial profile compared to the bacteria in the rumen content. The most 
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abundant ureC genes were affiliated with Methylococcaceae, Clostridiaceae, 

Paenibacillaceae, Helicobacteraceae and Methylophilaceae families. Relative abundance of 

the operational taxonomic units (OTUs) affiliated with Methylophilus and Marinobacter 

genera were significantly higher in the bacteria on the rumen wall than that in the rumen 

content. Thirdly, based on the in vivo experiment, rumen fluid and blood samples were 

collected and analyzed using nuclear magnetic resonance spectroscopy and multivariate 

analysis of variance. Concentrations of valine, aspartate, glutamate, and uracil in the rumen, 

and urea and pyroglutamate in the plasma were increased after urea supplementation. 

Metabolic pathways include pantothenate and CoA biosynthesis, beta-alanine metabolism, 

valine, leucine, and isoleucine metabolism in the rumen, and urea and glutathione metabolism 

in the plasma were significantly increased by urea nitrogen. In conclusion, this study 

identified significant populations of ureolytic bacterial community that have not been 

recognized or studied previously in the rumen and provides a basis for obtaining regulatory 

targets to moderate urea hydrolysis in the rumen. The findings also provided novel 

information to aid understanding of the metabolic pathways affected by urea nitrogen in dairy 

cows, and could potentially help to guide efforts directed at improving the efficiency of urea 

utilization in the rumen. 

Keywords: Dairy cow, rumen, ureolytic bactertia, urea, acetohydroxamic acid, 16S rRNA 

gene, ureC gene, high-throughput sequencing, plasma, metabolites, NMR spectroscopy. 
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Di Jin (2017). Les technologies omiques pour identifier la communauté bactérienne 

uréolytique du rumen et le métabolisme de l'urée chez les vaches laitières 

135 p., 14 Tables, 23 Figures. 

Résumé 

L'urée est utilisée dans les régimes alimentaires des ruminants en tant que source d'azote non 

protéique. Les bactéries uréolytiques sont des organismes clés dans le rumen car ils 

produisent des enzymes du type uréase nécessaires pour catalyser la transformation de l'urée 

en ammoniac (NH3). Le NH3 produit est ensuite utilisé comme source azotée pour la synthèse 

des protéines microbiennes. Dans le rumen, l'hydrolyse de l'urée en NH3 se produit à un taux 

plus élevé que son utilisation par les bactéries, et l'excès d'ammoniac est alors absorbé dans le 

sang qui peut nuire aux animaux. De nos jours, on connaît peu d’informations sur les 

microorganismes uréolytiques dans le rumen et les changements dans les métabolites 

microbiens et hôtes du rumen induits par l’apport d’N non protéique. Les approches 

«omiques» telles que la métagénomique et la métabolomique ont été appliquées à l'analyse de 

la communauté microbienne du rumen et du métabolisme des nutriments chez les vaches 

laitières. L'objectif de cette étude était d'étudier la communauté des bactéries uréolytiques 

prédominantes dans le rumen et les mécanismes de l'utilisation de l'urée chez les ruminants en 

utilisant des approches séquentielles et métabolomiques. Tout d'abord, une expérience in vitro 

explore la communauté bactérienne uréolytique ruminale. L'urée et l'acide acétohydroxamique 

ont été employés dans des systèmes in vitro de simulation du rumen an tant que stimulateur et 

inhibiteur pour les bactéries uréolytiques, respectivement. Les gènes bactériens 16S de 

l'ARNr ont été analysés par séquençage Miseq et utilisés pour révéler les bactéries 

uréolytiques en comparant les différents traitements. Nous avons constaté que la 

supplémentation en urée augmentait de façon significative la proportion de gènes ureC. Les 

bactéries uréolytiques du rumen étaient représentées par les genres Pseudomonas, 

Haemophilus, Neisseria, Streptococcus, Actinomyces, Bacillus et Succinivibrionaceae non 

classés. Deuxièmement, une expérience in vivo a été effectuée pour rechercher des différences 

au sein de la composition bactérienne uréolytique associée au digesta du rumen et à la paroi 

du rumen en se basant sur la classification des gènes ureC. Six vaches laitières munies d’une 

canule au rumen ont été assignées à un essai réalisé en deux périodes. Un groupe témoin a 

reçu une ration mixte totale sans urée et un groupe expérimental a reçu la ration témoin plus 
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180 g d'urée par jour. Les échantillons bactériens du rumen ont été extraits à partir du contenu 

du rumen et de la paroi du rumen pour l'amplification et le séquençage du gène ureC en 

utilisant Miseq. Plus de 55% des séquences de l'ureC ne sont affiliées à aucun gène d'uréase 

taxonomiquement connu. Les bactéries adhérentes à la paroi avaient un profil bactérien 

uréolytique distinct par rapport aux bactéries extraites du contenu du rumen. Les gènes ureC 

les plus abondants ont été affiliés aux familles Methylococcaceae, Clostridiaceae, 

Paenibacillaceae, Helicobacteraceae et Methylophilaceae. L'abondance relative des OTU 

affiliées aux genres Methylophilus et Marinobacter était significativement plus élevée dans les 

bactéries fixées sur la paroi du rumen que dans celles extraites du contenu du rumen. 

Troisièmement, sur la base de l'expérience in vivo, les échantillons de la phase liquide du 

rumen et de sang ont été recueillis et analysés en utilisant la spectroscopie de résonance 

magnétique nucléaire. Les concentrations en valine, aspartate, glutamate et uracile dans la 

phase liquide du rumen, et l'urée et le pyroglutamate dans le plasma étaient augmentées après 

la supplémentation en urée. Les voies métaboliques incluent la biosynthèse du pantothénate et 

du CoA, le métabolisme de la bêta-alanine, le métabolisme de la valine, de la leucine et de 

l'isoleucine dans le rumen, et le métabolisme de l'urée et du glutathion dans le plasma ont été 

significativement augmentées par l’ajout d’urée. En conclusion, cette étude a identifié des 

populations importantes de communautés bactériennes uréolytiques qui n'ont pas été mise en 

évidence auparavant dans le rumen et elles constituent une base de travail pour moduler 

l'hydrolyse de l'urée dans le rumen. Les résultats ont également fourni de nouvelles 

informations pour faciliter la compréhension des voies métaboliques affectées par l’N non 

protéique chez les vaches laitières et pourraient potentiellement aider à guider les efforts 

visant à améliorer l'efficacité de l'utilisation de l'urée dans le rumen et par le ruminant. 

Mots-clés: Vache laitière, rumen, bactéries uréolytiques, urée, acide acétohydroxamique, 16S 

rRNA gene, ureC gene, séquençage à haut débit, métabolites plasmatiques, NMR 

Spectroscopie. 
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General introduction 

1. Context 

As the development of the dairy industry in all over the world, the number of ruminants 

increases rapidly and so as the requirements for feed protein. In ruminant diets, the protein is 

an expensive dietary nutrient, representing approximately 42% of the cost of lactating cow 

rations (St-Pierre, 2012). Urea has been recognized for more than a century that may be 

incorporated in the diets of ruminants, and has been used as a non-protein nitrogen (NPN) in 

ruminant rations to reduce the supplementation of true protein and the costs of rations (Kertz, 

2010). During the 1970s and 1980s, lots of studies were conducted on the utilization of urea 

as a replacement for protein in ruminant diets, especially its effect on dry matter intake 

(Wilson et al., 1975; Polan et al., 1976), rumen fermentation (Pisulewski et al., 1981; Kertz et 

al., 1983), milk yield and reproduction-related parameters (Ryder et al., 1972; Erb et al., 

1976). Since then, research trying to understand the mechanisms of urea utilization in dairy 

cows has been conducted (Balcells et al., 1993; Huntington and Archibeque, 2000; Stewart 

and Smith, 2005).  

Following extensive research on the urea utilization in the rumen, interests began to focus 

on the rumen urea-degrading microbes and mechanisms involved in urea nitrogen utilization 

in dairy cows. Rumen ureolytic bacteria play an important role in dietary urea hydrolysis, for 

they produce ureases which catalyze the breakdown of urea to ammonia (NH3) and carbon 

dioxide (Owens et al., 1980). In the rumen, the ammonia can be assimilated by many rumen 

bacteria for synthesis of microbial protein required to satisfy the protein requirements of 

ruminants (Milton et al., 1997; Firkins et al., 2007). The rumen redundant NH3 is 

subsequently absorbed into the circulation through the rumen wall and is used for hepatic 

urea synthesis (De Visser et al., 1997; Recavarren and Milano, 2014; Holder et al., 2015). 

The endogenous urea was recycled for utilization by transfer across the ruminal wall, and 

salivary secretion (Huntington and Archibeque, 2000). In ruminants, urea that is recycled to 

the rumen is an important source of N for microbial growth and the reported data indicate that 

40 to 80% of endogenously produced urea nitrogen is returned to the gastrointestinal tract 

(Harmeyer and Martens, 1980; Lapierre and Lobley, 2001).  
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However, urea is rapidly hydrolyzed to ammonia within 30 min to 2 h by the urease 

enzyme produced by the ruminal microorganisms (Rekib and Sadhu, 1968), hydrolysis of 

urea to NH3 occurs at a greater rate than NH3 can be utilized, and this is the main cause of 

limited utilization of urea as a non-protein nitrogen (NPN) source for microbial protein 

synthesis (Patra, 2015). Due to the vast diversity and extreme complexity of the rumen 

microbes, and difficulty in cultivating the rumen bacteria, only a small number of rumen 

bacteria have been isolated (Kim et al., 2011). The lack of sufficient understanding of the 

ruminal microbiome is one of the major knowledge gaps that hinder effective enhancement of 

rumen functions (Firkins and Yu, 2006). Therefore, investigation of the rumen ureolytic 

bacterial community and mechanisms of urea nitrogen utilization in ruminants could provide 

basis for obtaining regulatory targets to moderate urea hydrolysis in the rumen, and provided 

novel information to aid understanding the metabolic pathways affected by urea nitrogen in 

dairy cows, and help to improve the efficiency of urea utilization in the rumen.  

Nowadays, there are breakthroughs in molecular strategies for studying the microbiome as 

well as its host metabolism. The rapid advancement of “~omics” technologies, including 

metagenomics, metatranscriptomics, metaproteomics, metabolomics, and bioinformatics have 

been applied for analysis complex rumen microbes and their metabolism as well as functions, 

and will provide the unprecedented opportunities to disentangle the complex relationships 

between feed, rumen microbiome, rumen function and host metabolism. In our research, 

combining the metagenomics, metabolomics and bioinformatic analysis, the rumen ureolytic 

bacterial community, the microbial and host metabolism induced by urea nitrogen were 

investigated, these research could give a better understanding of the microbial and molecular 

mechanism of ruminal urea hydrolysis and utilization, and will provide knowledge for 

helping to improve the efficiency of urea utilization in the rumen. 

2. Objectives 

The objective of this study is to investigate the diversity and distribution of rumen ureolytic 

bacteria community and the mechanisms of urea utilization in dairy cows using sequencing 

and metabolomics. 

(1) To investigate the rumen abundant ureolytic bacterial community and the diversity and 

distribution of the rumen ureolytic bacteria in different rumen fractions using high-

throughput sequencing. 



 

 

4 

 

(2) To identify changes in both rumen microbial and host plasma metabolic profiles induced 

by urea supplementation in dairy cows using metabolomics. 

To achieve these goals, the in vitro and in vivo studies have been designed and completed 

respectively. These experiments and subsequent published or submitted articles that make up 

the body of this thesis are briefly depicted in the following section.  

3. Thesis structure 

First, a literature review introduces urea hydrolysis by ruminal ureolytic bacterial community 

and urea utilization in ruminants is presented (Chapter II). This review outlined how urea is 

hydrolyzed to ammonia with the help of urease that synthesized by rumen ureolytic bacteria, 

the host urea metabolism, and the regulation of urea hydrolysis and strategies for improving 

urea utilization efficiency in dairy cows. Chapter II has been submitted for publication to 

Annals of Animal Science (Article 1) and is presently under minor revision. 

In Chapter III, we investigated the abundant rumen ureolytic bacterial community using 

rumen simulation system. Urea and acetohydroxamic acid (AHA) were used as the stimulator 

or inhibitor for ureolytic bacteria respectively, and the bacterial 16S rRNA genes were 

sequenced by high-throughput sequencing and used to reveal abundant ureoltyic bacteria 

composition. The results of Chapter III (Article 2) have been published in Frontiers in 

Microbiology (2016), 7:1006. 

The bacterial urease gene (ureC) has been the target gene of choice for analysis of the urea 

degrading microorganisms in various environments. In Chapter IV, we investigated the 

predominant ureC genes of the ureolytic bacteria in the rumen of dairy cows using high-

throughput sequencing. We revealed the differences in ureolytic bacterial composition 

between the rumen digesta and rumen wall based on ureC gene classification. This survey 

has expanded our knowledge of ureC gene information relating to the rumen ureolytic 

microbial community, and provides a basis for obtaining regulatory targets of ureolytic 

bacteria to moderate urea hydrolysis in the rumen. The results of this experiment are 

published in Article 3 in Frontiers in Microbiology (2017), 8: 385. 

Then, in Chapter V, we investigated changes in rumen microbial and plasma metabolite 

profiles in dairy cows induced by urea nitrogen using a metabolomics approach. The varied 

metabolites were identified by nuclear magnetic resonance spectroscopy and multivariate 

analysis of variance. The metabolic pathways of the changed metabolites were also identified 

based on relative databases. These findings provided novel information to aid understanding 
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of the metabolic pathways affected by urea nitrogen in dairy cows, and is presented in Article 

4 which is undergoing under review for publication in Livestock Science. 

Finally, Chapter VI presents a general discussion of the results obtained through previous 

chapters and a perspective for the further study was also presented. 
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CHAPTER II  

This chapter outlined how urea is hydrolyzed to ammonia with the help of urease that 

synthesized by rumen ureolytic bacteria, the host urea metabolism, and the regulation of urea 

hydrolysis and strategies for improving urea utilization efficiency in dairy cows.
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1. Abstract 

Urea is used as non-protein nitrogen in the ration of ruminants as an economical replacement 

for feed proteins. It is rapidly hydrolyzed by rumen bacterial urease to ammonia (NH3) and 

the NH3 is utilized for synthesis of microbial proteins required for the animal growth. Urea 

transferred from the blood to the rumen is also an important source of nitrogen for rumen 

microbial growth. Urea has commonly become an accepted ingredient in the diets of 

ruminants. During the past decades, urea utilization in ruminants has been investigated by 

using traditional research methods. Nowadays, some modern molecular biotechnologies have 

also been applied to analyzing the urea-degrading bacteria or the urea nitrogen metabolism in 

ruminants. Combining the traditional and molecular approach, we can get better information 

and understanding related to the mechanisms of urea metabolism in ruminants. This review 

discusses urea hydrolysis by the rumen ureolytic bacteria and urea utilization metabolism in 

the host. The progress of the accumulated research provides foundations for proposing further 

new strategies to improve efficiency of urea utilization in ruminants. 

Keyword: Rumen, ureolytic bacteria, urease, urea transport, urea recycling.  
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2. Introduction  

Urea has been used as non-protein nitrogen (NPN) in ruminant rations for a long time. Kertz 

(2010) wrote in his paper that more than one hundred years ago, German workers suggested 

that urea could be used to replace a portion of dietary protein in ruminants. Thereafter, some 

studies were conducted on the use of NPN in ruminant diets. During the 1970s and 1980s, 

multiple studies were conducted on the utilization of urea as a replacement for protein in 

ruminant diets, especially its effect on dry matter intake (Wilson et al., 1975; Polan et al., 

1976), rumen fermentation (Pisulewski et al., 1981; Kertz et al., 1983), milk yield and 

reproduction-related parameters (Ryder et al., 1972; Erb et al., 1976). Urea use for dairy 

cattle appeared to be the predominant category for ruminant use. A model has been proposed 

for predicting efficacy of NPN supplementation that based upon the assumption that NPN is 

not utilized when ruminal ammonia concentrations exceed the requirement of the ammonia-

utilizing bacteria (Roffler and Satter, 1975b). Additions of NPN to rations resulting in 

predicted ruminal ammonia concentrations greater than 5 mg ammonia nitrogen/100 ml 

rumen fluid were without benefit. NPN supplementation did not improve milk production if 

the ration contained more than 13% crude protein prior to supplementation (Roffler and 

Satter, 1975a). So, use of NPN supplements should be restricted to those dietary conditions 

which promote conversion of ammonia to microbial protein in the rumen. Following, 

researches trying to understand the mechanisms of urea utilization in dairy cows have been 

conducted (Balcells et al., 1993; Huntington and Archibeque, 2000; Stewart and Smith, 

2005).  

Nowadays, studies for improving urea utilization in dairy cows are ongoing. It is known 

that performance and metabolism of dairy cows depends upon the amount of urea fed 

(Sinclair et al., 2012; Giallongo et al., 2015). For example, ruminal nitrogen metabolism and 

urea kinetics of Holstein steers fed diets containing either rapidly degrading or slowly 

degrading urea at various levels of degradable intake protein (DIP) were estimated by Holder 

et al. (2015). They found that the rapidly degrading urea group had higher dry matter 

digestibility than the slow-release urea group, and gastrointestinal entry of urea-N, urea-N 

lost to feces and urea-N apparently used for anabolism were not different between treatments 

while plasma urea concentration was greater in higher DIP diets and higher for the rapidly 

degrading urea group than the slow release urea group. When 2% of urea was fed to lactating 

dairy cows as a replacement for soybean meal, both the milk protein content and milk yield 

decreased, while plasma urea nitrogen increased (Imaizumi et al., 2015). Urea 
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supplementation could increase nitrogen availability for ruminal microorganisms. A study by 

Wanapat et al. (2016) showed that when swamp buffaloes were fed rice straw supplemented 

with urea, the feed intake, nutrient digestibility and microbial protein synthesis increased. 

More importantly, the author also tried to reveal the effect of urea supplementation on rumen 

microbes and they found that fungal zoospores, total bacteria and the three predominant 

cellulolytic bacteria (Ruminococcus albus, Fibrobacter succinogenes, and Ruminococcus 

flavefaciens) were increased by urea supplementation. 

Following extensive research on urea utilization in the rumen, interests began to focus on 

the urea-degrading microbes and urea utilization mechanisms in dairy cows. Researches for 

regulating bacterial urease for improving urea utilization have also been conducted. The 

advanced molecular biotechnologies provide new strategies to reveal the mechanisms of urea 

nitrogen hydrolysis, transportation and utilization in ruminants, and provide more knowledge 

for the improvement of nitrogen utilization efficiency in practical ruminant production 

system. This review focuses on ruminal urea hydrolysis by ureolytic bacteria, urea utilization 

and its regulation for improving the utilization efficiency in ruminants. 

3. Urea nitrogen recycling in ruminants 

For ruminants, ammonia and urea arise in the rumen from the diet. Urea in the rumen is 

immediately hydrolyzed to ammonia and CO2 by the bacterial enzyme urease. Ammonia 

from urea or from degraded dietary protein is used by the ruminal microbiota for synthesis of 

microbial proteins which are subsequently digested in the intestine. The excess ammonia is 

transported to the liver for endogenous urea synthesis, and urea recycling via the ruminal 

wall, and salivary secretion (Figure 1). Urea recycling to the rumen is an evolutionary 

advantage for ruminants because it provides a source of N for microbial protein synthesis and 

enhances survival (Reynolds and Kristensen, 2008). 
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Figure 1 Urea nitrogen (Urea-N) recycling in ruminants 

3.1. Reutilization of endogenous urea 

Ruminants fed on diets with high NPN had higher portal blood flow, greater hepatic uptake 

of NH3 and increased rates of urea synthesis (Symonds et al., 1981; De Visser et al., 1997; 

Holder et al., 2015). Redundant NH3 transported to the liver is likely to enter the ornithine 

cycle (Zhou et al., 2015). Therefore ammonia detoxification in the liver likely results in part 

to increased plasma urea concentration (Law et al., 2009). Blood urea nitrogen concentrations 

are influenced by many parameters, especially dietary nitrogen intake (Puppel and 

Kuczynska, 2016), and it also has been used to predict nitrogen excretion and efficient 

nitrogen utilization in cattle and several different species of farm animals (Kohn et al., 2005). 

Ruminants recycle substantial amounts of nitrogen as urea by transfer of urea across the 

ruminal wall, and salivary secretion (Huntington and Archibeque, 2000). In ruminants, urea 

that is recycled to the rumen is an important source of N for microbial growth and the 

reported data indicate that 40 to 80% of endogenously produced urea nitrogen is returned to 

the gastrointestinal tract (Harmeyer and Martens, 1980; Lapierre and Lobley, 2001). The 

transfer of endogenous urea through the rumen wall increased when a high concentrate diet 

was fed compared to the a alfalfa hay diet, and this may be due to increased numbers and 

activity of ureolytic bacteria adhering to rumen epithelium and decreased concentration of 

ammonia in the rumen (HUNTINGTON, 1989). Wickersham et al. (2008) evaluated the 

effect of increasing amounts of rumen-degradable intake protein (DIP) on urea kinetics in 

steers consuming prairie hay with jugular infusions of 
15

N
15

N-urea. They found that the 

amount of urea-N entering the gastrointestinal tract was greatest for the high DIP diet and 

decreased linearly with the decreased DIP concentration. Similarly, Zhou et al. (2015) also 

used 
15

N
15

N-urea to detect urea kinetics and nitrogen balance in Tibetan sheep when fed oat 
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hay. Urea-N entry rate, gastrointestinal tract entry rate, return to ornithine cycle and fecal 

urea-N excretion all increased linearly with an increase in dry matter intake.  

Currently, some meta-analytical approaches have been applied in order to get better 

understanding of the efficiency of urea utilization in ruminants. In the study of Marini et al. 

(2008), by utilizing a statistical approach and data obtained from studies reporting duodenal, 

ileal, and fecal N flows in cattle, the endogenous N (EN) losses and true digestibility of N 

were estimated for different segments of the gastrointestinal tract of cattle. The N transactions 

for the reference diet (24.2 g of N/kg of organic matter (OM), 32% neutral detergent fiber and 

carbohydrates of medium fermentation rate) were estimated. The results showed that the 

minimal contribution of EN to the N available in the rumen was 39%. The free EN 

represented 13% of the duodenal N flow, and when bacterial N of EN origin was considered, 

EN contributed 35% of the total N flow. Besides, Batista et al. (2017) also estimated the urea 

kinetics and microbial usage of recycled urea N in ruminants by combining data from studies 

with ruminants (beef cattle, dairy cows and sheep) which were published from 2001 to 2016 

and analyzed according to meta-analysis techniques using linear or non-linear mixed models. 

They concluded that urea N synthesized in the liver and urea N recycled to the gut linearly 

increased as N intake (g/BW
0.75

) increased, with increases corresponding to 71.5% and 35.2% 

of N intake, respectively. However, increasing dietary crude protein (CP) intake led to 

decreases in the fractions of urea N recycled to the gastrointestinal tract and of recycled urea 

N incorporated into microbial N. Therefore, a better understanding of the factors involved in 

EN losses will allow for a more accurate estimation of both N supply and N requirements. 

Since urea-N recycling to the gut is influenced by many dietary and ruminal factors, some 

modulation could be made in the ration of ruminants in order to improve the efficiency of 

utilization of endogenous urea. 

3.2. Urea transport across the rumen epithelium 

Urea produced in the liver, is transferred across the rumen wall from the blood and then it is 

hydrolyzed to ammonia by resident bacteria (Lapierre and Lobley, 2001). As is already 

known, urea transport across the ruminant wall is mediated via urea transporters in the 

epithelium membrane. These transporters allow the passage of urea across cell membranes, 

down a concentration gradient (Smith and Rousselet, 2001). Facilitative urea transporters are 

derived from the UT-A and UT-B genes (Bankir et al., 2004). UT-B mRNA or protein 

expressions have been characterized in the rumen epithelium (Stewart et al., 2005; Simmons 

et al., 2009; Lu et al., 2015). UT-B transporters were also identified to be specifically 
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localized to certain regions of tissue in the bovine gastrointestinal tract (Coyle et al., 2016). In 

addition to the UT-B transporters, some alternative transport mechanisms are also involved in 

urea transport across the rumen epithelium. The aquaporins (AQP), a family of membrane-

spanning proteins predominantly involved in water movement, AQP-3, -7, -9 and -10 are also 

involved in urea uptake or transport (Rojek et al., 2008; Litman et al., 2009). Rojen et al. 

(2011) showed that messenger RNA expression of AQP3, AQP7, and AQP10 and abundance 

of AQP8 increased with increasing nitrogen intake, but their findings do not point to these 

proteins as the cause of increased rumen epithelial urea permeability in dairy cows fed a low 

N diet. Walpole et al. (2015) have determined the functional roles of UT-B and AQP in the 

serosal-to-mucosal urea flux across rumen epithelium using Ussing chambers. The urea flux 

markedly decreased when Phloretin and NiCl2 were added to inhibit UT-B- or AQP-mediated 

urea transport, respectively. Gene transcript abundance for UT-B and AQP was observed to 

be significantly correlated with the ruminal serosal to mucosal urea flux. However, the 

mechanism by which the increased gene expression occurred is unclear. Nowadays, 

transcriptome analysis has been used to analyze the rumen epithelium metabolic pathway 

changes under various conditions (Baldwin et al., 2012; Naeem et al., 2014), and this 

approach may provide better means to understand the regulation of these urea transport 

mechanisms across the rumen wall.  

4. Urea hydrolysis by rumen ureolytic bacteria 

Rumen ureolytic bacteria play an important role in dietary urea hydrolysis, for they produce 

ureases which catalyze the breakdown of urea to NH3 and carbon dioxide (Owens et al., 

1980). In the rumen, the ammonia can be assimilated by many rumen bacteria for synthesis of 

microbial proteins (Owens et al., 1980; Milton et al., 1997). However, efficiency of urea 

nitrogen utilization in ruminants is low and this is attributed to the rapid hydrolysis of urea to 

NH3 which occurs at a higher rate than NH3 utilization by rumen bacteria (Patra, 2015). Due 

to the difficulty in cultivating the rumen bacteria, only a small number of bacteria have been 

isolated (Kim et al., 2011). The lack of sufficient understanding of the ruminal microbiome is 

one of the major knowledge gaps that hinder effective enhancement of rumen functions 

(Firkins and Yu, 2006). Also, limited information about the rumen urea-degrading bacteria 

makes regulation of the urea hydrolysis rate by targeting the predominant ureolytic bacteria 

difficult. 
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4.1. Ureolytic bacteria isolated using culture-dependent methods 

Early studies have isolated some ureolytic bacteria from the rumen (Cook, 1976; On et al., 

1998). Wozny et al. (1977) described a rapid qualitative procedure to detect urease in strains 

isolated from the bovine rumen, and found that many species including Succinivibrio 

dextrinosolvens, Treponema sp., Ruminococcus bromii, Butyrivibrio sp., Bifidobacterium sp., 

Bacteroides ruminicola, and Peptostreptococcus productus had urease activity and most P. 

productus strains contain urease. Kakimoto et al. (1989) assayed about 16,000 isolates from 

animal feces and intestines for the production of acid urease and found that most of the 

selected strains belonged to the genera Streptococcus and Lactobacillus. In a similar study by 

Lauková and Koniarová (1994), they tested 909 strains from the rumen of 104 domestic and 

wild ruminants for urease activity, and their results showed that some Selenomonas 

ruminantium strains and lactobacilli manifested medium urease activity and most of the 

Enterococcus faecium and all of the E. faecalis isolates expressed urease activity. In addition, 

Howardella ureilytica, a Gram-positive bacterium has been isolated from the rumen fluid of 

sheep, it was strongly ureolytic and generated ATP through the hydrolysis of urea (Cook et 

al., 2007). All these above studies were conducted using culture-based methods, and limited 

ureolytic bacteria were isolated, also the research only identified the urease activity of the 

isolated bacteria. Information about the urease genes which express the urease activity was 

not achieved. 

4.2. Culture-independent methods in studying the ureolytic bacteria 

In order to get further information about the function of rumen microbes, sequencing and 

phylogenetic analysis of 16S rRNA genes and functional genes have been extensively carried 

out in studies focused on members of the uncultivable bacteria (Chaucheyras-Durand and 

Ossa, 2014). For the ureolytic bacteria, the ureC subunit is the largest of the genes encoding 

urease functional subunits and contains several highly conserved regions that are suitable as 

PCR priming sites (Mobley et al., 1995). Previously, Reed (2001) successfully designed the 

urease PCR primers that can be used to amplify a 340 bp fragment of the ureC gene from a 

variety of urease producing bacteria. Then, primers for ureC gene have been developed and 

applied to the analysis of urea-degrading microorganisms in various environments, including 

the open ocean (Collier et al., 2009), sponges (Su et al., 2013), and soil (Singh et al., 2009) 

(Table 1). Zhao et al. (2015) attempted to examine rumen ureolytic bacterial diversity by 

cloning and sequencing ureC genes, and found that among the total 317 ureC sequences from 

the rumen digesta, some were about 84 % identical (based on amino acid sequence) to the 
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ureC gene of H. pylori. They also developed a vaccine based on ureC of H. pylori, vaccinated 

cows had significantly reduced urease activity in the rumen compared to the control cows that 

were mock immunized. Jin et al. (2016) have attempted to reveal abundant ureolytic bacterial 

communities by high-throughput sequencing when treated with an activator (urea) or 

inhibitor (acetohydroxamic acid, AHA) of ureolytic bacteria in vitro, and results from 16S 

rRNA gene sequencing showed that rumen ureolytic bacteria were abundant in the genera of 

Pseudomonas, Haemophilus, Neisseria, Streptococcus, Actinomyces, Bacillus, and 

unclassified Succinivibrionaceae. Recently, Jin et al. (2017) studied the differences in 

ureolytic bacterial composition between the rumen digesta and rumen wall based on ureC 

Gene Classification, and found that more than 55% of the ureC sequences did not affiliate 

with any known taxonomically assigned urease genes, and the most abundant ureC genes 

were affiliated with Methylococcaceae, Clostridiaceae, Paenibacillaceae, Helicobacteraceae, 

and Methylophilaceae families. They also found that relative abundance of the ureolytic 

bacteria affiliated with Methylophilus and Marinobacter genera were significantly higher in 

the wall-adherent bacteria compared with bacteria in the rumen content. Studies which target 

the ureC genes provide a basis for obtaining the full-length urease functional gene 

information (Yuan et al., 2012). Further insights into abundant ureolytic bacteria 

communities could provide the basis for designing strategies to efficiently manipulate the 

rumen bacteria and improve urea utilization in ruminants. 

5. Bacterial urease 

5.1. Urease activity in the rumen 

Three distinct bacterial populations in the bovine rumen are conventionally defined: the 

liquid-associated bacteria, the solid-associated bacteria, and bacteria adherent to the epithelial 

wall (Cheng et al., 1977; Cheng and Costerton, 1980). The urease activities are contributed 

by the rumen ureolytic bacteria in these three fractions. In the early days, Rahman and 

Decker (1966) had suggested that in ruminant species, urease activity is greatest within the 

stratified layers of the rumen epithelium and the urease in the rumen mucosa originated from 

bacteria. The distribution and changes of urease activity have been investigated by 

Czerkawski and Breckenridge (1982) using a heterogeneous fermentation system. The 

ureolytic activity was found higher in space occupied by micro-organisms that are loosely 

associated with the solid than in strained rumen contents or space occupied by microbial 

population that cannot be washed out of the solid matrix. Javorský et al. (1986) found that in 
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vitro ureolytic activity was highest in the bacteria adhered to the rumen wall, intermediate in 

rumen fluid bacteria and lowest in bacteria adherent to feed particles in rumen of sheep. It is 

thought that ureolytic bacteria attached to the rumen epithelium facilitate the movement of 

urea across the rumen wall (Wallace, 1979; Cheng and Costerton, 1980). Ruminal urease 

activity is likely a major modulator for urea transfer across the rumen wall by producing a 

urea gradient into the rumen (Abdoun et al., 2006). The predominant populations of bacteria 

adhering to the rumen wall have proven to be different from the luminal microorganisms 

(Chen et al., 2011; Petri et al., 2013), and this may be the reason why the urease activities 

varied among different rumen fractions. While research of Moharrery and Das (2001) showed 

that no clear difference of urease activity was found among strained rumen fluid without 

protozoa, cell free rumen fluid and enzymes associated with the bacteria cell.  
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Table 1 Environmental ureolytic bacteria community investigated using sequencing methods 

Environment UreC primers (5’-3’) for sequencing New discovery Reference 

Groundwater Forward: L2F (ATHGGYAARGCNGGNAAYCC) Amplified novel ureC sequences from groundwater isolates 

in the genera Hydrogenophaga, Acidovorax, 

Janthinobacterium, and Arthrobacter. 

(Gresham 

et al., 

2007) 
Reverse: L2R (ATHGGYAARGCNGGNAAYCC) 

Open-ocean and 

estuarine 

plankton 

Forward: HEDWG primer 

(GCTATCGGTCTCAAACTTCAYGARGAYTGGGG) 

709 urease gene fragments from 31 plankton samples 

collected at both estuarine and open-ocean locations were 

sequenced, and 423 amplicons were not closely enough 

related to named organisms to be identified, and belonged to 

96 distinct sequence types of which 43 types were found in 

two or more different samples. 

(Collier 

et al., 

2009) Reverse: cTINP primer 

(GCAATACCATGCGCAATCGCNGCNGGRTTDATNGT) 

Grasslandsoil Forward: ureC-F 

(TGGGCCTTAAATHCAYGARGAYTGGG) 

The ureolytic community comprised of members from a 

range of phylogenetically different taxa including 

Bradyrhizobium, Bacillus, Methylobacter spp., 

Flavobacterium johnsoniae, and Methylobacterium spp. 

(Singh et 

al., 2009) 

Reverse: ureC-R 

(GGTGGTGGCACACCATNANCATRTC) 

Marine Sponge 

Xestospongia 

testudinaria 

Forward: L2F (ATHGGYAARGCNGGNAAYCC) Most of the ureC sequences were similar with the urease 

alpha subunit of members from Proteobacteria, which were 

the predominant component in sponge X. testudinaria, and 

the remaining ureC sequences were related to those from 

Magnetococcus, Cyanobacteria, and Actinobacteria. 

(Su et al., 

2013) Reverse: L2R (ATHGGYAARGCNGGNAAYCC) 

Rumen bacteria 

of dairy cows 

Forward: ureC forward 

(TGGGCCTTAARMTHCAYGARGAYTGGG) 

Most alpha subunit of rumen urease (UreC) proteins shared 

very similar amino acid sequences, which were also highly 

similar to that of H. pylori. 

(Zhao et 

al., 2015) 

Reverse: ureC reverse 

(GTGRTGRCAMACCATNANCATRTC) 



 

 

20 

 

Some studies have focus on the location of urease in the bacteria which could help us to 

understand the varied urease activity in different fraction. The urease in a rumen 

Staphylococcus sp. has been described to be a membrane-bound urease (McLean et al., 

1985). For the Helicobacter pylori, the enzyme was located on the cell surface (Hawtin et al., 

1990). But to date, the urease has not been localized for many other rumen bacteria cells. So, 

in view of the relative importance of urease activity in the nitrogen metabolism of the rumen, 

it is of great interests to ascertain the location of ureolytic activity in the cells of the ruminal 

bacteria, and more work have to been taken to progress this areas.  

5.2. Characterization and activation of bacterial ureases 

Microbial ureases (urea amidohydrolases, EC 3.5.1.5) are nickel-dependent enzymes and 

commonly composed of two or three submits complexes (encoded by genes ureA, ureB, and 

ureC), and require up to several accessory proteins for activation (Mobley et al., 1995a). For 

example, the urease of Klebsiella aerogenes has three subunits (UreABC)3 (Jabri et al., 1995). 

The urease of Helicobacter pylori consists of two subunits ((ureAB)3)4, and ureB in the 

Helicobacter species is equivalent to ureC in the organisms possessing a three-subunit 

enzyme (Hu and Mobley, 1990). Urease accessory genes (such as ureD, ureE, ureF, ureG, 

ureH, and ureI) are required for synthesis of catalytically active urease when the gene 

clusters are expressed in a recombinant bacterial host. Some of the accessory genes were 

shown to play a role in activation of the apoenzyme, and these genes are known to be 

required for assembly of the nickel metallocenter within the active site of the enzyme (Mehta 

et al., 2003; Witte et al., 2005; Boer and Hausinger, 2012). All purified ureases that have 

been analyzed for metal content have been shown to possess nickel, and the presence of 

urease activity in ureolytic organisms uniformly exhibits a dependence on nickel in the 

growth medium. So bacterial ureases universally appear to contain nickel, but the nickel 

content varies among the different enzymes (Mobley et al., 1995b). Taking the urease 

activation of Klebsiella aerogenes as an example, the UreD, UreF, UreG, and UreE are 

sequentially complexed to UreABC as required for its activation (Farrugia et al., 2013) 

(Figure 2). 



 

 

21 

 

 

Figure 2 Model of K. aerogenes urease activation. 

The trimer-of-trimers urease apoprotein (UreA, red; UreB, blue; UreC, green) either 

sequentially binds UreD (yellow), UreF (gray), and UreG (magenta) or binds the UreDFG 

complex (only one protomer of each protein is shown, but the isolated complex contains two 

protomers of each). Formation of the active enzyme requires CO2 to carbamylate Lys-217 at 

the native active site, GTP binding to and hydrolysis by UreG, and nickel delivery by dimeric 

UreE (cyan). It remains unclear whether the accessory proteins are released as a UreDFG unit 

or as individual proteins (Farrugia et al., 2013). 

Some studies have been done to explore the structures for this activation complex (Biagi et 

al., 2013; Fong et al., 2013). Ligabue-Braun et al. (2013) provide an atomic-level model for 

the (UreABC–UreDFG)3 complex from K. aerogenes by employing comparative modeling 

associated to sequential macromolecular dockings, validated through small-angle X-ray 

scattering profiles. The resulting model included a putative orientation for UreG at the 

(UreABC–UreDFG)3 oligomer. Fong et al. (2013) have proposed a mechanism on how 

urease accessory proteins facilitate maturation of urease. They reported the crystal structure 

of the UreG/UreF/UreH complex in Helicobacter pylori, which illustrates how UreF and 

UreH facilitate dimerization of UreG, and assembles its metal binding site by juxtaposing two 

invariant Cys66-Pro67-His68 metal binding motifs at the interface to form the 

(UreG/UreF/UreH)2 complex. Further, Zambelli et al. (2014) identified the nickel binding 

properties of Helicobacter pylori UreF in the nickel-based activation of urease. UreF binds 

two Ni
2+

 ions per dimer, with micromolar dissociation constant. Two nearly identical and 

symmetric tunnels were found, going from the central cavity in the UreG/UreF/UreH 

complex, and UreF was involved in the metal ion transport through these tunnels during 

urease activation. Currently, many aspects of the urease metallocenter assembly still remain 
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obscure. The activation mechanism and roles of each accessory protein in urease maturation 

still need to be answered. 

5.3. Regulation of bacterial urease synthesis 

The regulation of urease synthesis in ureolytic bacteria is complex. In some organisms 

such as Bacillus pasteurii and Morganella morganii, urease synthesis is constitutive 

(Mörsdorf and Kaltwasser, 1989; Burbank et al., 2012). However, urease synthesis in some 

bacteria is regulated by environmental conditions, such as concentration of urea and nitrogen 

or pH (Weeks and Sachs, 2001; Dyhrman and Anderson, 2003; Belzer et al., 2005; Liu et al., 

2008). Urease activity of Providencia stuartiiin, for example, is induced by the presence of 

urea (Armbruster et al., 2014), while Klebsiella pneumoniae can use urea as the sole source 

of nitrogen, and the urease expression is regulated by the supply of nitrogen in the growth 

medium (Liu and Bender, 2007). The regulation of urease gene expression of Actinomyces 

naeslundii under different environmental conditions has been investigated by Liu et al. 

(2008). They found that the conditions of neutral pH, fast dilution rate, increased 

carbohydrate supply or low amino acid nitrogen supply in the medium all resulted in the 

enhancement of urease activity in Actinomyces naeslundii. In research comparing the 

regulation of urease activity in Helicobacter hepaticus and Helicobacter pylori, the urease 

activity of H. hepaticus was found to be acid-independent, which contrasts with the acid-

induced urease system of H. pylori (Belzer et al., 2005). When the model rumen Firmicutes 

organism Ruminococcus albus 8 were supplied with different nitrogen sources (urea, 

ammonia and peptides), the urease activity was higher in the presence of urea than in the 

presence of ammonia and peptides (Kim et al., 2014). But urease transcript abundance in R. 

albus 8 is not predicated on the presence of urea in the medium. This urease activity may 

demonstrate that R. albus 8 expresses urease to acquire urea as an alternative nitrogen source 

when the ammonia concentration in the medium is limited. Since the regulation of urease 

activity is complex and the rumen harbors a large diversity of ureolytic bacteria, the 

mechanisms controlling urease synthesis in the complicated rumen environment need further 

research. 

6. Utilization of urea in the rumen: ammonia assimilation 

In the rumen, great amounts of ammonia are produced during both the protein and NPN 

degradation, and ammonia is both a satisfactory and essential source of nitrogen for most of 
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rumen bacteria (Patra, 2015). It has been suggested that NH3 uptake is mediated by an active 

carrier for the translocation of NH3 into the cell (Thomas et al., 2000). Ammonia assimilation 

is the process of ammonia incorporation into carbon skeleton which is the first step for NH3 

utilization (Wang and Tan, 2013). There are two classic routes for ammonia assimilation in 

bacteria, one pathway fixed NH4
+
 through the action of an NADPH-linked glutamate 

dehydrogenase (GDH). The second pathway fixed NH4
+
 into the amide of glutamine by an 

ATP-dependent glutamine synthetase (GS) (DANIEL, 2009). The GDH is the main 

mechanism of NH3 assimilation, GS activity was highest in cells grown under nitrogen 

limitation (Wallace, 1979). Most of the rumen bacteria such as Selenomonas ruminantium, 

Ruminococcus flavefaciens and Streptococcus bovis were found to possess two pathways for 

ammonia assimilation that resulted in glutamate synthesis (Griffith and Carlsson, 1974; 

Pettipher and Latham, 1979; Smith et al., 1980; Duncan et al., 1992). In some rumen bacteria, 

asparagine synthetase also participates in the ammonia assimilation (Ciustea et al., 2005). 

The rumen bacteria could also possess effective mechanisms for alanine synthesis from 

ammonia by alanine dehydrogenase (Morrison and Mackie, 1996; Oba et al., 2005). Hence, 

the rumen bacteria use ammonia to synthesize amino acids and peptides required for 

synthesis of microbial protein (Pfeffer and Hristov, 2005). The detailed pathways and 

regulation mechanisms of ammonia assimilation in ruminal bacteria have been demonstrated 

by Wang and Tan (2013). 

7. Strategys for improving urea utilization in rumen 

For ruminants, reducing the rate of rumen urea hydrolysis is of great importance for 

improving feed urea utilization and minimizing ammonia wastage. Some strategys such as 

urea inhibitors and some new forms of urea have been developed to slow ammonia release in 

the rumen. 

7.1. Urease inhibitors 

Urease inhibitors are one of the available options proven to be an effective way to reduce 

feed urea hydrolysis. Supplementation of urease inhibitors have proven to be an effective way 

to reduce urea hydrolysis in the rumen, and several urease inhibitors, including 

acetohydroxamic acid (AHA) (Brent et al., 1971; Jones and Milligan, 1975), 

phenylphosphorodiamidate (Voigt et al., 1980a; Voigt et al., 1980b; Whitelaw et al., 1991), 

and N-(n-butyl) thiophosphoric triamide (NBPT) have been investigated (Ludden et al., 

2000).  Zhang et al. (2001) also studied the effect of hydroquinone on ruminal urease activity 
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and found the hydroquinone at concentrations of 0.01 ppm to 10 ppm inhibited urease 

activity of intact rumen microbes in vitro by 25% to 64%. Urease inhibitors also provide 

insight to understanding the mechanism of enzyme catalytic activity present at the active site 

of enzyme and the importance of nickel to urease, the metalloenzyme (Upadhyay, 2012). The 

mechanism of Bacillus pasteurii urease inhibition with acetohydroxamic acid was solved, the 

inhibitor anion symmetrically bridging the two Ni ions in the active site through the 

hydroxamate oxygen and chelating one Ni ion through the carbonyl oxygen (Benini et al., 

2000). Although, recent studies have already evaluated the function of different urease 

inhibitors in improving urea utilization efficiency (Ludden et al., 2000; Giallongo et al., 

2015), further research is needed to investigate the response of the rumen bacteria community, 

especially the ureolytic bacteria to these inhibitors. 

7.2. Slow-release urea 

Slow release urea is another solution to control urea hydrolysis rate so that NH3 release more 

closely parallels carbohydrate digestion (Pinos-Rodríguez et al., 2010). Slow release urea 

compounds include biuret, starea, urea phosphate, coatings based on oil, formaldehyde 

treated urea and polymer-coated urea have been fed to ruminants (Cherdthong and Wanapat, 

2010). More recently, Cherdthong and Wanapat (2013) have investigated the influence of 

urea-calcium sulphate mixture (U-CaS), a kind of slow release urea, in feed blocks on rumen 

micro-organisms and microbial protein synthesis in Thai native beef cattle. Results showed 

that microbial crude protein yield and efficiency of microbial nitroge synthesis were linearly 

increased with different levels of U-CaS addition, so as the concentrations of total bacteria 

and Fibrobacter succinogenes. The U–CaS not only contains urea, but also contains CaSO4, 

a good available source of sulphur, which is an essential element for rumen bacterial growth 

and its metabolism is closely related to N metabolism. Thus, the continuous availability of N 

and sulphur for ruminal fermentation is important. What’s more, research of Giallongo et al. 

(2015) showed that total-tract apparent digestibility of crude protein was increased with the 

addition of slow release urea (Optigen) to the metabolizable protein-deficient diet. Besides, 

supplementation of urea and cassava hay for buffaloes fed rice straw improved rumen 

ecology and increased fermentation end products and microbial protein synthesis while 

reducing protozoal populations (Ampapon et al., 2016). Slow-release urea products provide 

constant supply of ammonia to rumen microorganism for their growth, which also improves 

nutrition utilization for low-quality forages (Patra, 2015). 
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8. Summary 

Urea is one of the major non-protein nitrogen feeds for ruminants and the optimal utilization 

of urea in feed can alleviate to some extent the cost of dietary protein. Urea is hydrolyzed 

quickly by ureolytic bacteria in the rumen. Since about 90% of rumen microbes have not 

been pure-cultured to date, only limited information about active ureolytic bacteria 

communities are known, which limits the regulation and efficient application of urea in 

ruminant production. The rapid advancement of “~omics” technologies, including 

metagenomics, metatranscriptomics, metabolomics, and bioinformatics could give a better 

understanding of the microbial and molecular mechanisms of ruminal urea hydrolysis and 

utilization, and will provide the knowledge for improving urea utilization efficiency in 

ruminants.  
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CHAPTER III  

Urea, a kind of non-protein nitrogen for dairy cows, is rapidly hydrolyzed to ammonia by 

urease produced by ureolytic bacteria in the rumen, and the ammonia is used as nitrogen for 

rumen bacterial growth. Ureolytic bacteria play important role in urea hydrolysis in the 

rumen. This study revealed abundant ureolytic bacterial community by high-throughput 

sequencing in a rumen simulation system when treated with an activator (urea) or inhibitor 

(AHA) of ureolytic bacteria. 
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1. Abstract 

Urea, a non-protein nitrogen for dairy cows, is rapidly hydrolyzed to ammonia by urease 

produced by ureolytic bacteria in the rumen, and the ammonia is used as nitrogen for rumen 

bacterial growth. However, there is limited knowledge with regard to the ureolytic bacteria 

community in the rumen. To explore the ruminal ureolytic bacterial community, urea or 

acetohydroxamic acid (AHA, an inhibitor of urea hydrolysis) were supplemented into the 

rumen simulation systems. The bacterial 16S rRNA genes were sequenced by Miseq high-

throughput sequencing and used to reveal the ureoltyic bacteria by comparing different 

treatments. The results revealed that urea supplementation significantly increased the 

ammonia concentration, and AHA addition inhibited urea hydrolysis. Urea supplementation 

significantly increased the richness of bacterial community and the proportion of ureC genes. 

The composition of bacterial community following urea or AHA supplementation showed no 

significant difference compared to the groups without supplementation. The abundance of 

Bacillus and unclassified Succinivibrionaceae increased significantly following urea 

supplementation. Pseudomonas, Haemophilus, Neisseria, Streptococcus, and Actinomyces 

exhibited a positive response to urea supplementation and a negative response to AHA 

addition. Results retrieved from the NCBI protein database and publications confirmed that 

the representative bacteria in these genera mentioned above had urease genes or urease 

activities. Therefore, the rumen ureolytic bacteria were abundant in the genera of 

Pseudomonas, Haemophilus, Neisseria, Streptococcus, Actinomyces, Bacillus and 

unclassified Succinivibrionaceae. Insights into abundant rumen ureolytic bacteria provide the 

regulation targets to mitigate urea hydrolysis and increase efficiency of urea nitrogen 

utilization in ruminants. 

Keywords: Rumen, ureolytic bacteria, urea, acetohydroxamic acid, high-throughput 

sequencing.  
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2. Introduction 

The use of urea in feeds of ruminants is increasing to reduce the supplementation of true 

protein and the costs of rations. The recommendations of urea would be for no more than 1% 

in the concentrate, approximately 135 g/cow daily (Kertz, 2010). In the rumen, ureolytic 

bacteria produce urease to hydrolyze urea to ammonia, which is subsequently used for the 

synthesis of amino acids and microbial protein. Normally, the rate of urea hydrolysis exceeds 

the rate of ammonia utilization, which leads to poor efficiency of urea utilization in the rumen 

and increase the toxic ammonia in the blood (Patra, 2015). Acetohydroxamic acid (AHA), an 

inhibitor of urease activity that prevents the rapid hydrolysis of urea and consequent 

explosion of ammonia in rumen, is commonly applied in the rations of ruminants (Upadhyay, 

2012). 

Ureolytic bacteria play an important role in the hydrolysis of urea in the rumen. Previous 

studies have isolated some ureolytic bacteria from the rumen including Succinovibrio 

dextrinosolvens, Treponema sp., Ruminococcus bromii, Butyrivibrio sp., Bifidobacterium sp., 

Prevotella ruminicola, and Peptostreptococcus productus (Wozny et al., 1977). However, 

due to the difficulty in cultivating the rumen bacteria, those that have been isolated represent 

only 6.5% of the community (Kim et al., 2011). Thus, sequencing and phylogenetic analysis 

of 16S rRNA genes and functional genes have been extensively used in studies focused on 

members of the uncultured bacteria. By sequencing, ureolytic bacterial diversity has been 

observed in the environment including open oceans (Collier et al., 2009), groundwater 

(Gresham et al., 2007), sponges (Su et al., 2013), and soil (Singh et al., 2009). We have 

previously studied rumen ureolytic bacteria using a urease gene clone library, and found that 

ureolytic bacterial composition in the rumen was distinct from that in the environment (Zhao 

et al., 2015). Therefore, it is interesting and meaningful to explore the rumen ureolytic 

bacterial communities further. 

Rumen simulation systems have been developed and used in the evaluation of feeds 

nutrients degradation and rumen fermentation manipulation in order to avoid the use of 

animals or decrease study costs (Hristov et al., 2012). We invented a dual-flow continuous 

rumen simulation system with real-time monitoring of pH, temperature, gas production, 

methane and carbon dioxide concentration (Figure 3). We demonstrated that the conditions of 

microbial fermentation in the system were similar to those in the rumen of dairy cows (Shen 

et al., 2012), making it a powerful and practical tool for the study of rumen microbes or 

fermentation. 
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The objective of this study was to reveal abundant ureolytic bacterial community by high-

throughput sequencing in a rumen simulation system when treated with an activator (urea) or 

inhibitor (AHA) of ureolytic bacteria. 

 

Figure 3 Appearance of the rumen stimulation system used in this study 

3. Materials and methods 

3.1 Experimental design and continuous cultivation 

The rumen simulation system with eight fermenters were used in two replicated periods of 10 

d each (7 d for adaptation and 3 d for sampling) (Shen et al., 2012). The basic total mixed 

ration (TMR) was ground down to 1 mm for subsequent use. Fermenters were assigned to 

four treatments: U0_A0 (basic diet only), U0_A0.45 (basic diet plus AHA of 0.45 g/kg dry 

matter (DM)), U5_A0 (basic diet plus urea of 5 g/kg DM), U5_A0.45 (basic diet plus urea of 

5 g/kg DM and AHA of 0.45 g/kg DM). Two fermenters were randomly assigned to each 

treatment in each period. A total of 40 g feed (DM based) was placed into each fermenter 

daily in two equal portions at 09:00 and 21:00. The dilution rate for the liquid is 8%/h and for 

the solid is 200 ml/d during the fermentation. Urea and AHA were dissolved in artificial 

saliva referenced to Weller and Pilgrim (1974) with some modification (NaHCO3 9.8 g, 

Na2HPO4.12H2O, NaCl 0.47 g, KCl 0.57 g, MgSO4. 7H2O 0.12 g, CaCl2 0.04 g per litre) and 
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were added directly into the fermenters after each feeding. The basic diet (DM based) 

primarily consisted of alfalfa hay (17.72 %), corn silage (17.50 %), oaten hay (5.09 %), 

cotton seed (5.61%), apple pulp (3.74%), sugar beet pulp (6.71%), and compound packet 

(40.95 %). The compound packet provided the following per kg of diets: steam corn 180.39 g, 

soybean skin 55.84 g, soybean meal 64.43 g, extruded soybean 38.66 g, distillers dried grains 

with soluble (DDGS) 24.48 g, double-low rapeseed meal 25.77 g, Ca(HCO3)2 2.58 g, CaCO3 

2.58 g, NaCl 3.44 g and NaHCO3 6.01 g (Table 2). 

Table 2 Composition and nutrient levels of basal diets (Dry matter based) 

Item Content (%) 

Ingredients  

Alfalfa hay 17.72 

Corn silage 17.50 

Oaten hay 5.09 

Cotton seed 5.61 

Apple pulp 3.74 

Sugar beet pulp 6.71 

Molasses (30%) 2.68 

Compound packet
 a
 40.95 

Nutrient levels  

CP 16.50 

NDF 35.46 

ADF 21.71 

EE 6.46 

Ca 0.97 

P 0.35 

a 
The compound packet provided the following per kg of diets: Steam corn 180.39 g, Soybean 

skin 55.84 g, Soybean meal 64.43 g, Extruded soybean 38.66 g, DDGS 24.48 g, Double-low 

rapeseed meal 25.77 g, Ca(HCO3)2 2.58 g, CaCO3 2.58 g, NaCl 3.44 g, NaHCO3 6.01 g. 

On the first day of each period, all fermenters were inoculated with ruminal fluid obtained 

from three rumen-fistulated cows fed the same TMR diet as used in the in vitro study. 

Animals involved in this study were cared for according to the principles of the Chinese 

Academy of Agricultural Sciences Animal Care and Use Committee (Beijing, China). 

Ruminal fluid was strained through four layers of cheesecloth and transferred to the 
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laboratory in a sealed container. A total 500 mL of the strained ruminal fluid was added to 

each of the eight fermenters, which also contained 500 mL of artificial saliva. Anaerobic 

conditions were established by flushing the headspace of the fermenters with N2 at a rate of 

20 mL min
–1

. The artificial saliva was continuously infused into the flasks. The temperature 

of the fermenters was maintained at 39°C by circulating water, and the fermenter content was 

stirred continuously at 25 rpm. 

3.2 Rumen fluid sampling and DNA extraction 

During the last three days of each period, 3 mL of fermenter liquid was collected from each 

fermenter at 0, 2, 4, 6, 8, and 10 h after morning feeding. Collected samples were stored at –

80°C for detection of ammonia nitrogen (NH3-N) and urea nitrogen (urea-N) concentrations. 

The NH3-N concentration was determined using the method based on the Berthelot (phenol–

hypochlorite) reaction (Broderick and Kang, 1980). Urea nitrogen (urea-N) concentration was 

determined using the diacetyl monoxime method with a commercial kit (Nanjing Jiancheng 

Co., Nanjing, China). Rumen fluid collected at 2 h was used to extract microbial DNA with a 

cetyl trimethylammonium bromide (CTAB) plus bead beating method (Minas et al., 2011). 

Extracted DNA was assessed by agarose gel (1%) electrophoresis and quantified using a 

Nanodrop
TM

 spectrometer (Thermo Scientific, Waltham, MA, USA). 

3.3 Quantitative PCR of urease and 16S rRNA genes 

The urease alpha subunit encoding gene (ureC) primers UreC-F (5'-

TGGGCCTTAAAATHCAYGARGAYTGGG-3') and UreC-R (5'-

SGGTGGTGGCACACCATNANCATRTC-3) were used to quantify the ureC gene copies 

(Reed, 2001). 16S rRNA genes of total bacteria were quantified using 338-F (5'-

ACTCCTACGGGAGGCAGCAG-3') and 533-R (5'-TTACCGCGGCTGCTGGCAC -3') as 

primers (Huse et al., 2008). The assays were performed in an iQ
TM

5 Multicolor Real-Time 

PCR Detection System (Bio-Rad, Hercules, CA, USA) using SYBR
®
 Premix Ex Taq™ II 

(Takara, Dalian, China). Standard curves for urease gene of rumen ureolytic bacteria and 16S 

rRNA gene of total bacteria were established respectively. PCR were performed using UreC-

F/UreC-R or 338F/533R as primers respectively and rumen microbial DNA as templates. The 

amplicons were ligated into the pMD18-T Easy vector (TaKaRa, Dalian, China), and the 

recombinant plasmids were transformed into E. coli JM109 cells (TaKaRa, Dalian, China). 

Plasmids with bacterial ureC gene or 16S rRNA gene were used to build standard curves. The 
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copy numbers of the plasmids were calculated and then the plasmids were serial diluted 

(1:10). The standard curves were generated using the diluted plasmids DNA (Figure 4). 

 

Figure 4 Standard curves generated from plasmid DNA containing ureC gene (A) and partial 

16S rRNA gene (B) 

The DNA quantification was performed in an iQ
TM

5 Multicolor Real-Time PCR Detection 

System (Bio-Rad, USA) using SYBR
®
 Premix Ex Taq™ II (Takara, Dalian). Each qPCR 

reaction (20 μL) included 10 μL 2 × SYBR Master Mix, 4 μL nuclease-free water, 0.8 μL 

each forward and reverse primer (10 μM) and 2 μL DNA template. PCR cycle parameters for 

ureC gene detection were as follows: 95 °C for 3 min, followed by 40 cycles at 95 °C for 15 s, 

52 °C for 30 s and 72 °C for 30 s. PCR cycle parameters for detecting 16S rRNA genes were 

as follows: 95 °C for 3 min, followed by 40 cycles at 95 °C for 15 s, 60 °C for 30 s and 72 °C 

for 30 s. Melting curves were prepared for each PCR reaction by collecting fluorescence 

signal at every 0.5°C increment when the temperature ramped from 60°C to 95°C. Each 

sample was run in triplicate, and both standards and samples were assayed on the same qPCR 

plate. The qPCR reaction efficiencies with the degenerate primers ureC-F/R and 338F/533R 

were 106.5% and 100.7% respectively. Copy number of ureC gene or 16S rRNA gene in per 

ng of DNA was determined by relating the CT value to the standard curves. The proportion 

of ureC gene copies was calculated as the ratio of ureC gene copies to total 16S rRNA gene 

copies. The detailed qPCR protocols were provided in the Supplementary Material. The 

proportion of ureC gene copies in each treatment were shown in a boxplot constructed using 

R (R Core Team, 2014). 
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3.4 Bacterial 16S rRNA genes amplification and Illumina sequencing 

Microbial DNA was used as a template for amplification of partial 16S rDNA sequence using 

the universal bacterial primers 515F (5ʹ-GTGCCAGCMGCCGCGGTAA-3ʹ) and 806R (5ʹ- 

GGACTACHVGGGTWTCTAAT-3ʹ) (Nelson et al., 2014) with both primers tagged with 

unique barcode sequences for each sample. All polymerase chain reactions (PCRs) were 

carried out in 50 μL reactions with 0.5 μL of PrimeSTAR
®
 HS DNA Polymerase (TaKaRa, 

Dalian, China), 10 μL 5×PrimeSTAR Buffer (plus Mg
2+

) (TaKaRa), 0.2 μM of the forward 

and reverse primers, 200 μM dNTP (TaKaRa), and 100 ng microbial DNA. Thermal cycling 

consisted of initial denaturation at 98ºC for 1 min, followed by 30 cycles of denaturation at 

98ºC for 10 s, annealing at 50ºC for 30 s, and elongation at 72ºC for 60 s, and a final 

elongation at 72ºC for 5 min. Unique bands were identified using agarose gel (2%) 

electrophoresis of PCR amplicons (Figure 5). The bands were cut and purified with a 

QIAGEN MinElute PCR Purification Kit (Qiagen, Valencia, CA, USA). Amplicon libraries 

were generated using NEB Next
®
 Ultra™ DNA Library Prep Kit for Illumina (New England 

Biolabs, Ipswich, MA, USA) following the manufacturer’s recommendations, with the 

addition of index codes. Library quality was assessed on the Qubit
®
 2.0 Fluorometer (Thermo 

Scientific) and Agilent Bioanalyzer 2100 system. The library was sequenced on an Illumina 

MiSeq platform (2×250 bp). 

 

Figure 5 PCR products amplified using the universal bacterial primers 515F and 806R. 

M, 100bp ladder; 1-16, PCR products amplified using DNA samples as templates (U0_A0: 1, 

2, 9 and 10; U0_A0.45: 3, 4, 11 and 12; U5_A0: 5, 6, 13 and 14; U5_A0.45: 7, 8, 15 and 16); 

CK, PCR product amplified using sterile water as template. 

3.5 Sequencing data processing and analysis 

Paired-end reads were merged using FLASH (Magoč and Salzberg, 2011). Merged reads 

were assigned to each sample based on the unique barcode, after which the barcodes and 
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primers were removed. The quality of raw reads was checked, and reads were truncated at 

any site of >3 sequential bases receiving a quality score of <Q20, and reads with <75 % (of 

total read length) consecutive high quality base calls were removed (Caporaso et al., 2010; 

Bokulich et al., 2013). Chimeric sequences were detected and removed using UCHIME 

(Haas et al., 2011). Operational taxonomic units (OTU) were generated by aligning the reads 

to the GreenGenes database released in May 2013 (DeSantis et al., 2006) and clustered at 

97% sequence identity using the PyNAST tool (Caporaso et al., 2010) and the UCLUST 

algorithm (Edgar et al., 2011). The OTUs were filtered based on the total observation count 

of an OTU <10 and the number of samples in an OTU <2 in QIIME (Caporaso et al., 2010). 

The OTUs were further assigned to taxa using the RDP classifier (Wang et al., 2007). The 

OTU table was rarified for alpha diversity analysis. Simpson, Shannon, Chao1, and the 

PD_whole_tree index were calculated for each sample. Good’s coverage was used to estimate 

the percentage of the total species that were sequenced in each sample (Caporaso et al., 

2010). QIIME was used to calculate the weighted UniFrac distances, which are phylogenetic 

measures of beta diversity. The weighted UniFrac distance was used for Principal Coordinate 

Analysis (PCoA) (Lozupone et al., 2007). The significance of grouping in the PCoA plot was 

tested by analysis of similarity (ANOSIM) in QIIME with 999 permutations (R Core Team, 

2014; Mahnert et al., 2015). The relative abundance of bacteria was expressed as the 

percentage. The potential ureolytic bacteria were selected using the criterion that their 

abundance increased with urea treatment and decreased with AHA treatment. The urease 

alpha subunit sequences of representative species from potential ureolytic bacteria were 

checked against the NCBI protein database and the urease activities of these bacteria were 

verified by published studies. 

3.6 Statistical analysis 

Urea-N, ammonia, proportion of ureC gene copies, bacterial abundance and diversity index 

were statistical analyzed using the SAS MIXED procedure (SAS Institute, Inc, Cary, NC) as 

shown in the following model: Y𝑖jk = 𝜇+ a𝑖+b𝑗+ab𝑖j+𝑒𝑖jk, where Yijk is the dependent variable, 

μ is the overall mean, ai is the effect of urea treatment i, bj is the effect of AHA treatment j, 

abij is the interaction between ai and bj (Both factors and their interaction are considered fixed 

effects),, and 𝑒𝑖jk is the residual, assumed to be normally distributed. Data of bacterial 

abundance were transformed to log10 (n+1) if necessary to ensure normal distribution. Mean 

separation was conducted by using Fisher’s least significant difference test. Differences were 



 

 

47 

 

declared significant at P <0.05. Tukey's test was used to determine where the differences 

occurred. 

3.7 Nucleotide sequence accession number 

All the raw sequences after assembling and filtering were submitted to the NCBI Sequence 

Read Archive (SRA; http://www.ncbi.nlm.nih.gov/Traces/sra/), under accession number 

SRP074113. 

4. Results 

4.1 Changes of urea, ammonia concentrations and proportion of ureC genes 

The urea-N concentrations in the two urea treated groups were higher (P <0.01) than the 

other two groups at 2 h after morning feeding (Figure 6). In the two urea treated groups, 

Group U5_A0.45 exhibited a higher (P <0.01) urea concentration than group U5_A0, 

indicating a decreased urea hydrolysis rate with AHA inhibition (Figure 6). The NH3-N 

concentrations of all four treatments showed a peak value after fermentation for 2 h. Urea 

supplementation significantly increased (P <0.01) NH3-N concentration during whole 

sampling period, while in the two urea-treated groups, AHA addition also decreased NH3-N 

concentration significantly (P <0.01). Two hours after the morning feeding, the proportion of 

ureC genes was higher (P <0.05) in urea-treated groups than in non-urea treated groups. The 

addition of AHA did not have a significant effect on the proportion of ureC genes (Figure 7). 

 

Figure 6 Changes of NH3-N and urea-N concentrations induced by urea and AHA 

supplementation. (N=4) 

(A) Changes of NH3-N concentration. (B) Changes of urea-N concentration.U0_A0: basic 

diet only, U0_A0.45: basic diet plus AHA of 0.45 g/kg DM, U5_A0: basic diet plus urea of 5 
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g/kg DM, U5_A0.45: basic diet plus urea of 5 g/kg DM and AHA of 0.45 g/kg DM. *Means 

values in group U5_A0 was significantly different from that in group U5_A0.45 (P <0.05). 

 

Figure 7 Changes in the proportion of ureC gene copies induced by urea and AHA 

supplementation. 

The proportion of ureC gene copies was calculated as the ratio of ureC gene copies to total 

16S rRNA gene copies. U0_A0: basic diet only, U0_A0.45: basic diet plus AHA of 0.45 g/kg 

DM, U5_A0: basic diet plus urea of 5 g/kg DM, U5_A0.45: basic diet plus urea of 5 g/kg 

DM and AHA of 0.45 g/kg DM. 
a, b

 Different letters for different treatments indicate 

statistically significant differences (P <0.05). (N=4) 

4.2 Changes of ureolytic bacterial diversity 

A total of 2,105,448 merged sequences were acquired from 16 samples, and 1,672,529 high-

quality sequences, with an average read length of 253 bases were obtained. After removing 

chimeric sequences, the remaining 1,603,997 sequences were used to generate OTUs with 

97% sequence similarity across all samples. The OTU table was filtered, leaving 5,075 OTUs 

for subsequent analysis. Collectively, 24 bacterial phyla were identified. Bacteroidetes, 

Firmicutes and Proteobacteria were the three predominant phyla, representing 35%, 28%, 

and 23% of all sequences, respectively (Figure 8). Genera that were each represented by 

≥0.1% of the total sequences in at least 1 of the 16 samples were selected for further analysis. 

The ten predominant genera were Prevotella, Treponema, YRC22, Succinivibrio, 
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Porphyromonas, Oscillospira, Roseburia, Bacteroides, Butyrivibrio, and Coprococcus 

(Figure 9). 

 

Figure 8 Composition of the most predominant bacterial phyla in the rumen. 

U0_A0: basic diet only, U0_A0.45: basic diet plus AHA of 0.45 g/kg DM, U5_A0: basic diet 

plus urea of 5 g/kg DM, U5_A0.45: basic diet plus urea of 5 g/kg DM and AHA of 0.45 g/kg 

DM. 

 

Figure 9 Composition of the most predominant bacterial genera in the rumen. 

U0_A0: basic diet only, U0_A0.45: basic diet plus AHA of 0.45 g/kg DM, U5_A0: basic diet 

plus urea of 5 g/kg DM, U5_A0.45: basic diet plus urea of 5 g/kg DM and AHA of 0.45 g/kg 
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DM. The top fifteen abundant bacteria genera were shown and the others were not shown. 

Other genera accounted for 60.11% in group U0_A0, 57.81% in group U0_A0.45, 66.68% in 

group U5_A0 and 61.31% in group U5_A0.45. 

After rarefaction, 9000 sequences per sample were used for diversity analysis. Alpha 

bacterial diversity was presented in Table 3. Group U5_A0 had the highest Chao 1 and 

PD_whole_tree estimates, followed by groups U5_A0.45, U0_A0.45, and U0_A0. No 

significant differences were observed among the four groups based on the results of the 

Simpson and Shannon diversity index. PCoA analysis of overall diversity based on the 

unweighted UniFrac metrics was performed to compare the four treatments (Figure 10). 

ANOSIM (cutoff =0.01) showed no significant differences in bacterial community 

composition between treatments U0_A0 and U0_A0.45 (R =-0.198, P =0.925) or between 

treatments U5_A0 and U5_A0.45 (R =-0.135, P =0.888). A tendency of difference was found 

between treatments U0_A0 and U5_A0 (R = 0.323, P = 0.091). Principal Coordinate 1 and 2 

accounted for 44.19% and 25.14% of the total variation, respectively. 

 

Figure 10 Principal coordinate analysis (PCoA) of the rumen bacterial community. 

The principal coordinate analysis is based on the weighted UniFrac distances between the 

microbiome profiles. U0_A0: basic diet only, U0_A0.45: basic diet plus AHA of 0.45 g/kg 

DM, U5_A0: basic diet plus urea of 5 g/kg DM, U5_A0.45: basic diet plus urea of 5 g/kg 

DM and AHA of 0.45 g/kg DM. 
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Table 3 Alpha diversity index of rumen bacteria among all treatments (N=4) 

Indices 

U0  U5 

SEM 

P value 

A0
 

A0.45
 

A0 A0.45 Urea AHA Urea*AHA 

Observed_species 1442 1496 1557 1563 25 0.11 0.54 0.62 

Good’s coverage 0.914
a
 0.911

ab
 0.905

b
 0.906

b
 0.002 0.02 0.62 0.46 

PD_whole_tree 106
b
 109

ab
 111

a
 109

ab
 0.89 0.09 0.70 0.11 

Chao 1 2860
c
 2942

bc
 3142

a
 3043

ab
 43 0.01 0.85 0.11 

Shannon 7.59 7.73 7.77 7.59 0.08 0.92 0.92 0.46 

Simpson 0.96 0.96 0.97 0.95 0.01 0.89 0.50 0.36 

Note: 
a-c Mean values within a row with different letters differ significantly (P <0.05). 

SEM: standard error of the mean. 

U0: basic diet without urea, U5: basic diet plus urea of 5 g/kg DM, A0: basic diet without AHA, 

A0.45: basic diet plus AHA of 0.45 g/kg DM. 

4.3 Changes of the relative abundance of ureolytic bacteria 

At the phylum level, the group treated with urea only had the highest proportion of 

Proteobacteria and Actinobacteria, and the lowest proportion of Bacteroidetes compared 

with the other three groups (Figure 8). Both of the two urea-treated groups had relatively high 

proportions of Acidobacteria and low proportions of Spirochaetes compared with the other 

two groups. In addition, the two urea-treated groups had higher percentages of unclassified 

bacteria than the other two groups. At the genus level, the relative abundance represented by 

≥0.1% of the total sequences in at least one of the whole samples were further analyzed 

(Table 4). Pseudomonas (1.25%) from Proteobacteria and Streptococcus (1.00%) from 

Firmicutes were more predominant in group U5_A0 compared to the other three groups (P 

<0.01). Haemophilus and Neisseria from Proteobacteria, and Actinomyces from 

Actinobacteria were the most abundant in the U5_A0 group compared with the other three 

groups (P <0.05). The relative abundance of Bacillus from Firmicutes and unclassified 

Succinivibrionaceae were higher in the two urea-treated groups compared with the other two 

groups (P <0.01). According to the results retrieved from the NCBI protein database and 

reported in previous studies, the representative species from Pseudomonas, Haemophilus, 

Streptococcus, Neisseria, Bacillus, Actinomyces, and unclassified Succinivibrionaceae were 

identified as containing urease genes and having urease activity (Table 5). 
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5. Discussion 

In the rumen, urea is a source of nitrogen for the growth of ureolytic bacteria. AHA, an 

inhibitor of urease, inhibits urea usage by ureolytic bacteria and results in insufficient 

nitrogen source for bacterial growth. In this study, we used urea and AHA to promote or 

inhibit the growth of rumen ureolytic bacteria, respectively. We observed that AHA is a 

useful inhibitor for slowing down the hydrolysis of urea within the rumen fluid. This is 

consistent with previously published studies in vivo (Jones and Milligan, 1975; Makkar et al., 

1981). 

Urea supplementation significantly increased bacterial community richness and the number 

of bacterial species. AHA supplementation resulted in no changes of richness and diversity of 

bacterial community. The proportion of urease gene copies was served as a proxy to observe 

changes in the proportion of ureolytic bacteria. Urea supplementation significantly increased 

the proportion of ureolytic bacteria, which suggested that urea stimulated the growth of 

rumen ureolytic bacteria. In addition, ANOSIM revealed that the composition of the entire 

bacterial community in urea-treated groups showed a trend of difference from those in non-

urea treated groups (P <0.10). Changes of the bacterial community in response to urea 

treatment were possibly related to urease activity and the production of ammonia. Kim et al. 

(2014) found that urease genes and enzyme activities were regulated by the level of ammonia 

in ruminal cellulytic bacteria Ruminococcus albus 8. The lack of a significant effect by AHA 

on the diversity of the rumen bacterial community may be due to microbial adaption of AHA. 

Previous studies found that rumen microbes could adapt to chronic AHA supplementation, 

while AHA was capable of short-term inhibition of urease activity in the rumen (Zhang et al., 

2001). 

Across the four groups, three phyla (Bacteroidetes, Firmicutes and Proteobacteria) were 

predominant. Similar to our results previously published studies have reported that the 

distribution of phylotypes of rumen bacterial communities fell predominantly into these three 

phyla (Hook et al., 2011; Wu et al., 2012; Zhang et al., 2014). The bacterial community from 

our in vitro simulation system was thus similar to the communities observed in vivo. The 

group treated with urea only had the highest proportion of Proteobacteria and the lowest 

proportion of Bacteroidetes. In accordance, Collier et al. (2009) investigated the diversity of 

ureolytic microorganisms in open ocean and estuarine planktonic communities, and found 

that ureolytic microorganisms were most commonly found in Proteobacteria and rare in 

Bacteroidetes.   
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Table 4 Bacterial genera that accounted for ≥ 0.1% of the total sequences in at least one of the samples with significant variation under different 1 

treatments (abundance of the genera was expressed as %) (N=4) 2 

Taxa (family and genus within each phylum) 
U0  U5 

SEM 
P value 

A0 
 

A0.45
 

 A0 A0.45 Urea AHA Urea*AHA 

Bacteroidetes Porphyromonadaceae; Paludibacter 0.13
ab

 0.20
a
 0.02

b
 0.00

b
 0.0003  0.0175  0.6091  0.3539 

 Chitinophagaceae; unclassified genus 0.15
b
 0.19

a
 0.16

ab
 0.11

b
 0.0001  0.0361  0.5310  0.0080 

Proteobacteria Succinivibrionaceae; others 8.17
a
 6.76

ab
 5.06

b
 4.04

b
 0.0063  0.0067  0.0989  0.7615 

 Succinivibrionaceae; unclassified genus 1.11
b
 1.05

b
 6.05

a
 4.38

a
 0.0083  0.0008  0.1279  0.1488 

 Pseudomonadaceae; Pseudomonas 0.49
b
 0.50

b
 1.25

a
 0.05

b
 0.0020  0.2671  0.0075  0.0071 

 Pasteurellaceae; Haemophilus 0.02
b
 0.03

b
 1.92

a
 0.00

b
 0.0005  <.0001 <.0001 <.0001 

 Neisseriaceae; Neisseria 0.05
b
 0.02

b
 0.66

a
 0.00

b
 0.0003  0.0193  0.0111  0.0153 

 Desulfobulbaceae; Desulfobulbus 0.21
a
 0.14

ab
 0.02

ab
 0.01

b
 0.0004  0.0360  0.4308  0.6472 

 Campylobacteraceae; Campylobacter 0.11
ab

 0.13
a
 0.04

ab
 0.00

b
 0.0002  0.0400  0.7626  0.3891 

 Moraxellaceae; Acinetobacter 0.04
ab

 0.02
b
 0.07

ab
 1.10

a
 0.0001  0.0516  0.5991  0.2099 

Firmicutes Clostridiaceae; unclassified genus 8.04
ab

 6.10
b
 8.40

ab
 9.32

a
 0.0051  0.0483  0.4704  0.0888 

 Acidaminobacteraceae; unclassified genus 0.15
a
 0.16

a
 0.04

b
 0.00

b
 0.0003  0.0182  0.6995  0.5929 

 Lachnospiraceae; Roseburia 0.72
b
 0.73

b
 1.08

b
 1.64

a
 0.0016  0.0051  0.0634  0.0731 

 Lachnospiraceae; Lachnospira 0.20
b
 0.16

b
 0.23

ab
 0.37

a
 0.0003  0.0338  0.2710  0.0818 

 Veillonellaceae; Anaerovibrio 0.63
ab

 0.75
a
 0.42

b
 0.43

b
 0.0006  0.0297  0.4459  0.5064 

 Veillonellaceae; Veillonella 0.00
b
 0.01

b
 0.53

a
 0.00

b
 0.0026  0.0096  0.0093  0.0090 

 Peptostreptococcaceae; Filifactor 0.81
a
 0.69

a
 0.25

b
 0.00

b
 0.0014  0.0041  0.1435  0.5827 

 Streptococcaceae; Streptococcus 0.17
b
 0.31

b
 1.00

a
 0.14

b
 0.0002  0.0135  0.0103  0.0030 

 Bacillaceae; Bacillus 0.06
c
 0.09

bc
 0.13

a
 0.17

a
 0.0051  0.0062  0.0858  0.7493 

Actinobacteria Micrococcaceae; Arthrobacter 0.07
b
 0.09

ab
 0.11

a
 0.03

b
 0.0001  0.5271  0.0651  0.0076 

 Actinomycetaceae; Actinomyces 0.03
b
 0.04

b
 0.18

a
 0.00

b
 0.0026  0.1007  0.0286  0.0199 

Note: 
a-c

 Means values within a row with different letters differ significantly (P <0.05). 3 

SEM: standard error of the mean. 4 

U0: basic diet without urea, U5: basic diet plus urea of 5 g/kg DM, A0: basic diet without AHA, A0.45: basic diet plus AHA of 0.45 g/kg DM.5 
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Table 5 Urease gene and enzyme activity of selected genera containing ureolytic bacteria in rumen (N=4) 

Genus Representative species 

Urease gene 

(Alpha subunit  

accession in NCBI) 

Urease activity 

(Reference) 

Unclassified Succinivibrionaceae Succinivibrionaceae WG-1 + (WP 010457200) + (Pope et al., 2011) 

Pseudomonas Pseudomonas aeruginosa BG + (KM657955) + (Goswami et al., 2015) 

 Pseudomonas fluorescens + (KPU59664) + (Jyothi and Umamahe, 2013) 

Haemophilus Haemophilus influenza Rd + (KMZ31254) + (McCrea et al., 2008) 

 Haemophilus haemolyticus + (WP 005644404) + (McCrea et al., 2008) 

Streptococcus Streptococcus thermophiles + (KPL38034) + (Zotta et al., 2008) 

 Streptococcus salivarius 57.I + (AEJ54136) + (Chen et al., 2000) 

Neisseria Neisseria sp. KH1503 + (KLT73764) + (Sakai et al., 1996) 

Bacillus Bacillus cereus + (AAS42567) + (Rasko et al., 2004) 

 Bacillus pasteurii + (1S3T_C) + (Benini et al., 2000) 

Actinomyces Actinomyces naeslundii + (AAD13732) + (Morou-Bermudez and Burne, 

2000) 

 Actinomyces johnsonii + (WP 021610181) + (Schaal and Yassin, 2015) 

+ Positive urease genes or enzyme activity. 
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Bacillus was in higher abundance in the two groups supplemented with urea, indicating it 

was more responsive to urea. Bacillus spp. in the rumen is able to degrade hemicellulose, and 

produce polysaccharidases and glycoside hydrolases to utilize polysaccharide (Williams and 

Withers, 1983). B. pasteurii, B. lentus, and B. cereus have proven to be ureolytic bacteria 

(Benini et al., 2000; Rasko et al., 2004; Sarda et al., 2009), and the urease activity of B. 

pasteurii is inhibited by AHA (Benini et al., 2000). The unclassified Succinivibrionaceae was 

also observed at a higher relative abundance in the two urea-treated groups. In the rumen, 

Succinivibrionaceae is very common and important for degradation of starch, pectin, and 

dextrin to succinate and propionate (Santos and Thompson, 2014). Succinivibrionaceae WG-

1 isolated from the foregut of tammar wallaby produced urease for urea catabolism (Pope et 

al., 2011). Several isolates of S. dextrinosolvens from the rumen were also shown to have 

urease activity (Wozny et al., 1977). 

Pseudomonas and Streptococcus were both relatively more abundant in the group treated 

with urea only, but these bacteria had lower abundance in AHA-treated groups. These results 

confirmed the urea stimulating and AHA inhibiting effects on the microbial community. 

Several species of Pseudomonas and Streptococcus are able to hydrolyze cellulose (Lynd et 

al., 2002; Oyeleke and Okusanmi, 2008). In the genus Pseudomonas, species such as P. 

fluorescens (isolated from soil) and P. aeruginosa (isolated from ocean) possess urease 

activity (Jyothi and Umamahe, 2013; Goswami et al., 2015). In addition, two Streptococcal 

species, S. thermophiles and S. salivarius, also produce urease (Chen et al., 2000; Zotta et al., 

2008). Kakimoto et al. (1989) assayed about 16,000 isolates from animal feces and intestines 

for production of acid urease, and found 370 urease-positive strains belonging to the genus 

Streptococcus. This is consistent with the results of our study in which Streptococcus were 

found in higher abundance in response to urea supplementation. 

The relative abundance of genera Haemophilus, Neisseria, and Actinomyces increased in 

response to urea and decrease in response to AHA supplementation. The members of 

Haemophilus ferment glucose (Kilian, 2015), and H. haemolyticus and H. influenzae Rd have 

urease activity (McCrea et al., 2008). The H. somnus strains of ruminants have varying urea 

hydrolysis ability (Garcia-Delgado et al., 1977). Neisseria, a gram-negative aerobic cocci, 

produces acid from different types of sugars, and some species are disease-causing (Marri et 

al., 2010). N. sicca strains SB and SC isolated from soil have proven to be urease positive 

(Sakai et al., 1996). Neisseria had a higher proportion in groups treated with urea, suggesting 

the potential of bacterial species in the rumen to have urea hydrolysis activity. 
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Actinobacteria, a group of Gram-positive bacteria, represent up to 3.00 % of the total rumen 

bacteria (Pandya et al., 2010; Sulak et al., 2012). Some strains of A. meyeri, A. radicidentis, 

and A. johnsonii are known to have urease activity (Schaal and Yassin, 2015), and A. 

naeslundii had urease gene and activity (Morou-Bermudez and Burne, 1999, 2000). 

However, An et al. (2006) described a novel species, Actinomyces ruminicola sp., from cattle 

rumen, was unable to hydrolyze urea. So it needs to be verified for ureolytic activity of 

different Actinomyces species. 

6. Conclusion 

The composition of bacterial community following urea or AHA supplementation treatment 

showed no significant difference compared to the groups without supplementation. In the 

rumen, the ureolytic bacteria were abundant in the genera including Pseudomonas, 

Streptococcus, Haemophilus, Bacillus, Neisseria, Actinomyces and unclassified 

Succinivibrionaceae. The insights into abundant ureolytic bacteria provide the basis for 

designing strategies to efficiently manipulate the bacterial community or function and 

improve urea utilization in ruminant production. 
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CHAPTER IV  

In this study, we investigated the diversity of the ureC genes in different rumen fractions, and 

revealed the predominant ureC gene OTUs in the rumen of dairy cows using Miseq 

sequencing. Animals were also fed with urea to determine if supplementation alters the 

growth of some populations of ureolytic bacteria or alters the ureolytic community 

composition.
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1. Abstract 

Ureolytic bacteria are key organisms in the rumen producing urease enzymes to catalyse the 

breakdown of urea to ammonia for the synthesis of microbial protein. However, little is 

known about the diversity and distribution of rumen ureolytic microorganisms. The urease 

gene (ureC) has been the target gene of choice for analysis of the urea-degrading 

microorganisms in various environments. In this study, we investigated the predominant ureC 

genes of the ureolytic bacteria in the rumen of dairy cows using high-throughput sequencing. 

Six dairy cows with rumen fistulas were assigned to a two-period cross-over trial. A control 

group (n = 3) were fed a total mixed ration without urea and the treatment group (n = 3) were 

fed rations plus 180 g urea per cow per day at three separate times. Rumen bacterial samples 

from liquid and solid digesta and rumen wall fractions were collected for ureC gene 

amplification and sequencing using Miseq. The wall-adherent bacteria (WAB) had a distinct 

ureolytic bacterial profile compared to the solid-adherent bacteria (SAB) and liquid-

associated bacteria (LAB) but more than 55% of the ureC sequences did not affiliate with any 

known taxonomically assigned urease genes. Diversity analysis of the ureC genes showed 

that the Shannon and Chao1 indices for the rumen WAB was lower than those observed for 

the SAB and LAB (P < 0.01). The most abundant ureC genes were affiliated with 

Methylococcaceae, Clostridiaceae, Paenibacillaceae, Helicobacteraceae and 

Methylophilaceae families. Compared with the rumen LAB and SAB, relative abundance of 

the OTUs affiliated with Methylophilus and Marinobacter genera were significantly higher 

(P < 0.05) in the WAB. Supplementation with urea did not alter the composition of the 

detected ureolytic bacteria. This study has identified significant populations of ureolytic 

WAB representing genera that have not been recognized or studied previously in the rumen. 

The taxonomic classification of rumen ureC genes in the dairy cow indicates that the majority 

of ureolytic bacteria are yet to be identified. This survey has expanded our knowledge of 

ureC gene information relating to the rumen ureolytic microbial community, and provides a 

basis for obtaining regulatory targets of ureolytic bacteria to moderate urea hydrolysis in the 

rumen. 

 

Keywords: Rumen, ureolytic bacteria, ureC gene, diversity, predominant   
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2. Introduction 

Urea is used commonly as a non-protein nitrogen source in the diet of ruminants as an 

economical replacement for feed proteins (Kertz, 2010). Rumen ureolytic bacteria produce 

ureases which catalyze the breakdown of urea to ammonia and carbon dioxide (Owens et al., 

1980). The ammonia from urea can be assimilated by many rumen bacteria for synthesis of 

microbial protein required for animal growth and thus partially replaces feed protein as a N 

source in the diet of the ruminant (Milton et al., 1997). Nowadays, urea, as a highly rumen-

degradable nitrogen source, has been included in the rations of ruminants to supply adequate 

amounts of nitrogen for microbial protein synthesis and improve ruminal fermentation 

(Wagner et al., 2010; Ceconi et al., 2015). However, urea hydrolysis to ammonia often 

exceeds the rate of ammonia utilization, which leads to poor efficiency of urea utilization in 

the rumen (Patra, 2015). 

Following extensive research on the utilization of urea as a replacement for protein in 

ruminant diets, interest has focused on urea-hydrolyzing microbes for a better understanding 

of urea metabolism in the rumen (Cook, 1976; Wozny et al., 1977; On et al., 1998). 

Kakimoto et al. (1989) assayed about 16,000 isolates from animal faeces and intestines for 

the production of acid urease and found that most of the selected strains belonged to the 

genera Streptococcus and Lactobacillus. In a similar study by Lauková and Koniarová (1994), 

they tested 909 strains from the rumen of 104 domestic and wild ruminants for urease activity, 

and their results showed that some Selenomonas ruminantium strains and lactobacilli 

demonstrated medium urease activity and most of the Enterococcus faecium and all of the E. 

faecalis isolates expressed urease activity. In addition, Howardella ureilytica, a Gram-

positive bacterium has been isolated from the rumen fluid of a sheep, which was strongly 

ureolytic and generated ATP through the hydrolysis of urea (Cook et al., 2007). All these 

above studies were conducted using culture based methods. However, most rumen 

microorganisms remain uncultured (Edwards et al., 2004), and therefore little is known about 

the identities and diversity of rumen organisms capable of urea hydrolysis. 

Ureases synthesized by ureolytic bacteria are commonly composed of two or three subunits 

(ureA, ureB, and ureC) and require up to several accessory proteins (such as ureD, ureE, 

ureF, ureG, ureH, and ureI) for activation (Mobley et al., 1995). The ureC subunit is the 

largest of the genes encoding urease functional subunits and contains several highly 

conserved regions that are suitable as PCR priming sites. Primers for ureC gene have been 

designed and applied for analysis of the urea-degrading microorganisms in various 
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environments, including the open ocean (Collier et al., 2009), sponges (Su et al., 2013), and 

soil (Singh et al., 2009). We have previously studied the rumen ureolytic bacteria using an 

ureC gene clone library, and found that ureolytic bacterial composition in the rumen is 

distinct from that in other environments (Zhao et al., 2015). So it is of great interest to 

investigate the unknown rumen ureolytic bacteria in further detail. In this study, we 

investigated the diversity of the ureC genes in different rumen fractions, and revealed the 

predominant ureC gene OTUs in the rumen of dairy cows using Miseq sequencing. Animals 

were also fed with urea to determine if supplementation alters the growth of some 

populations of ureolytic bacteria or alters the ureolytic community composition. 

3. Materials and methods 

3.1. Animals and diets 

Six Chinese Holstein dairy cows (550 ± 50 kg BW and 100 ± 21 days in milk) fitted with 

ruminal cannulas were used in a two-period cross-over trial. All cows were fed ad libitum the 

same total mixed ration (TMR) for two weeks prior to the study. Cows were divided into the 

following groups: Urea group received 180 g daily urea as a stimulator for ureolytic bacteria, 

and the control group, which did not receive urea supplementation. The experiment 

proceeded for a period of 21 days, followed by a 14 d washout period, after which the 

intervention was crossed. This cross-over was used to assess the functional diversity of the 

bacterial communities. Each day, the total urea was separated into three parts (70, 55 and 55 

g for morning, afternoon and evening feeding respectively) and was packaged in filter paper 

to prevent ammonia toxicity from rapid hydrolysis. Urea was added into the rumen through a 

cannula during each feeding. All cows were kept in individual pens with free access to water 

and were fed TMR three times daily (7:00, 14:00 and 19:00). The TMR consists primarily of 

alfalfa hay (28.4 %), corn silage (26.7 %), corn (22.6 %) and soybean meal (11.8 %) (Dry 

matter (DM) basis) (Table 6). Animals involved in this study were cared for according to the 

principles of the Chinese Academy of Agricultural Sciences Animal Care and Use Committee 

(Beijing, China). 
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Table 6 Composition and nutrient levels of basal diets (air-dry basis) 

Item Content (%) 

Ingredients  

Chinese wild rye 3.7 

Alfalfa hay 28.4 

Corn silage 26.7 

Corn 22.6 

Soybean meal 11.8 

Cottonseed fuzzy 5.1 

CaHPO4 0.6 

NaCl 0.5 

Premix
a
 0.6 

Nutrient levels, % of DM  

Crude protein (CP)  16.7 

Ether Extract (EE) 2.2 

Neutral detergent fiber (NDF) 44.2 

Acid detergent fiber (ADF) 26.1 

Ash 7.7 

Ca 0.8 

P 0.3 
a
 One kilogram of premix DM contained the following: VA, 2,000,000 IU; VD, 600,000 IU; 

VE, 10,800 mg; Fe, 5,500 mg; Cu, 4,080 mg; Mn, 4,989 mg; Zn, 17,500 mg; I, 180 mg; Se, 

110 mg; Co, 8,805 mg. 

3.2. Rumen sampling and sample detection 

For each animal, samples of rumen contents (solid and liquid phase) and rumen papilla were 

obtained on days 20 and 21 of the experiment shortly before morning feeding (0 h) and at 2, 4 

and 6 h after morning feeding. Essentially, approximately 300 g of mixed rumen contents 

were taken from each cow through the rumen fistula. Rumen samples were filtered with four 

layers of cheesecloth, allowing the separation of rumen solids from the liquid fraction. The 

aliquots of the liquid fraction were dispensed into centrifuge tubes. Approximately 100 µL of 

hydrochloric acid (6 mol L
-1

) was added to 10 mL of filtered rumen fluid for detection of urea 

nitrogen (Urea-N) and ammonia nitrogen (NH3-N). The solid fraction was washed with 50 

mL of ice-cold phosphate-buffered saline (PBS) twice and residues were kept. Rumen 

papillae samples were collected by scraping with a spatula from different rumen locations 

(the front-, middle- and post-ventral sac) via the rumen cannula and washed twice in ice-cold 

PBS (Petri et al., 2013). All rumen samples were snap frozen in liquid nitrogen and stored at -

80 °C for further analysis. 

javascript:void(0);
javascript:void(0);
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Rumen fluid samples were centrifuged (13, 000 × g at 4°C for 15 min) and supernatants 

were stored at -20 ºC until analyzed. NH3-N concentration was determined by using an 

adaptation of the method based on the Berthelot (phenol-hypochlorite) reaction (Broderick 

and Kang, 1980). Urea-N concentration was determined by the diacetyl monoxime method 

using a commercial kit (Nanjing Jiancheng Co., Nanjing, China). Urease activity was 

evaluated on total rumen microbial protein extracts by measuring the amount of ammonia 

released from urea according to Zhao et al. (2015). One unit of urease activity was defined as 

1 μmol of ammonia released per min per mg microbial cytoplasmic protein. 

3.3. Microbial DNA extraction 

The rumen contents and papilla samples collected at 2 h after morning feeding were chosen 

for DNA extraction based on the high urea hydrolysis rates at this time. Rumen liquid 

fraction samples (1 ml) were centrifuged at 350 × g at 4°C for 10 min to remove the feed 

residue, and the supernatant were centrifuged at 16 000 × g at 4°C for 15 min to collect the 

liquid-associated bacteria (LAB). Approximate 0.5 g thawed rumen papilla and 0.5 g solid 

fraction was directly used for solid-associated bacteria (SAB) and wall-associated bacteria 

(WAB) DNA extraction, respectively. Total DNA of bacteria was extracted using 

cetyltrimethylammonium bromide (CTAB) plus bead beating method (Minas et al., 2011). 

Briefly, samples from each fraction was homogenized with 0.5 g zirconium beads (0.5 mm 

diameter) and 800 μL CTAB buffer (100 mM Tris-HCl, pH 8.0; 1.4 M NaCl; 20 mM EDTA; 

2 % CTAB) using a Mixer Mill MM 400 (Retsch, Haan, Germany) with vibrational 

frequency of 1800 min
-1

 and grinding time of 60 s. Then samples were incubated at 70°C for 

20 min and centrifuged at 13, 000 × g for 10 min, and the supernatant was mixed with 600 μL 

phenol-chloroform-isoamyl alcohol (volume 25:24:1). The upper layer was transferred to 

new tube and mixed with 0.8 times volume of isopropanol to precipitate DNA. Extracted 

DNA was qualitatively assessed by agarose gel electrophoresis and quantified using a 

Nanodrop
TM

 spectrometer (Thermo Scientific, USA). DNA was diluted to a concentration of 

50 ng μL
-1

, and was used as templates for amplification in the following PCRs. 

3.4. PCR amplification of urease genes (ureC) and Illumina sequencing 

Urease (ureC) genes were amplified with the modified primer set, UreC-F 5'-barcode- 

TGGGCCTTAAAATHCAYGARGAYTGGG-3' and UreC-R 5'-

GGTGGTGGCACACCATNANCATRTC-3' (Reed, 2001), where the barcode is an eight-

base sequence unique to each sample. Reactions were performed in a MyCycler
TM

 Thermal 
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Cycler (Bio-Rad, USA) using a 50 μL mixture containing 5 μL 10 × PCR buffer (Invitrogen, 

Carlsbad, CA, USA), 1.5 μL MgCl2 (50 mM), 1 μL dNTP mixture (10 mM), 1.5 μL each 

forward and reverse primer (10 μM), 0.4 μL Platinum Taq DNA polymerase (Invitrogen), 2 

μL rumen microbial DNA (100 ng μL
−1

), and 37.1 μL sterile ddH2O. PCR amplification 

began with a 5 min denaturing step at 94 °C, followed by 30 cycles at 94 °C for 30 s, 50 °C 

for 30 s, and 72 °C for 30 s; extension was achieved at 72 °C for 15 min. PCR amplicons of 

approximately 324 bp were extracted from 2 % agarose gels and purified using the AxyPrep 

DNA Gel Extraction Kit (Axygen Biosciences, Union, CA, USA) according to the 

manufacturer’s instructions and quantified using QuantiFluor™-ST (Promega US, Madison, 

WI, USA). Purified amplicons were pooled in equimolar and paired-end sequenced (2 × 300) 

on an Illumina MiSeq platform according to the standard protocols. 

3.5. Sequencing data processing and sequence analysis 

Low-quality raw reads were eliminated using Trimmomatic (Bolger et al., 2014) based on the 

following criteria: a) reads were truncated at any site receiving an average quality score < 20 

over a 50 bp sliding window, and the truncated reads shorter than 50 bp; b) 1 or more 

mismatch in barcode; c) > 2 nucleotide mismatch in primers. Paired-end reads were merged 

using FLASH (Magoč and Salzberg, 2011) with the parameter that overlap was longer than 

10 bp and its mismatch rate was lower than 20%. Merged reads with length of > 200 bp were 

kept and assigned to each sample based on the unique barcode (Caporaso et al., 2010; 

Bokulich et al., 2013). Chimera sequences were detected and removed using the UCHIME 

denovo algorithm (Edgar et al., 2011). Operational taxonomic units (OTU) were clustered at a 

cut-off value of 0.97 similarity using USEARCH in the QIIME package (Caporaso et al., 

2010; Edgar, 2010). A clustering value of 0.97 similarity was empirically confirmed by 

analyzing the clustering of taxonomical known ureC genes. Taxonomic assignment of 

representative sequences of OTUs was performed using GraftM 

(https://github.com/geronimp/graftM) with a likelihood cutoff of 0.75 when using pplacer 

(Matsen et al., 2010) for placement of the sequences against a compiled ureC gene package. 

The ureC gene package was compiled in graftM with the create command using a manually 

edited ureC alignment file. The alignment was generated from bacterial and archaeal ureC 

gene sequences with taxonomic assignment data which were downloaded from NCBI. The 

genes were aligned and manually edited using ARB software and then the region 

corresponding to the PCR amplicon was exported (Ludwig et al., 2004). Sequences 

containing more than 50% gaps in this region were removed with Belvue (Sonnhammer and 

https://github.com/geronimp/graftM
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Hollich, 2005). A phylogenetic tree was generated using FastTree (Price et al., 2009) in 

QIIME for calculating UniFrac distances. Alpha and beta diversity and significant fold 

changes of OTU's were performed in the R packages ade4, Phyloseq, and DESeq2 (Chessel 

et al., 2004; McMurdie and Holmes, 2013; Love et al., 2014). The significances of grouping 

in the PCoA plots were tested by analysis of similarity (ANOSIM) with 999 permutations. 

Family level heatmap plots were generated in R using the ampvis R package (Albertsen et al., 

2015), while annotated heatmaps of the top 50 OTUs were created using the NMF R package 

(Gaujoux and Seoighe, 2010). 

3.6. Statistical analysis 

The rumen NH3-N and urea-N concentration, urease activity, and diversity indices were 

analyzed using the SAS mixed procedure (SAS Institute, Inc, Cary, NC, USA) as shown in 

the following equation: Yijkl =μ + ti + bk + c(b)jk + pl + eijkl, where Yijkl is the observation on 

cow j with treatment i, order of treatment k and period l; μ is the overall mean; ti is the fixed 

effect of treatment i; bk is the effect of order k of applying treatments; c(b)jk is the random 

effect of cow j within order k; pl is the effect of period l; and eijkl is the random error. 

Differences were declared significant at P < 0.05. 

3.7. Nucleotide sequence accession number 

All the raw sequences after assembling and filtering were submitted to the NCBI Sequence 

Read Archive (SRA; http://www.ncbi.nlm.nih.gov/Traces/sra/), under accession number 

SRP076839. 

4. Results  

4.1. Urea metabolism in the rumen 

Urea supplementation significantly increased (P < 0.05) rumen NH3-N concentration at 2 and 

4 h after morning feeding with the peak at 2 h (Table 7). No significant difference in the 

urease activity was observed between the control and urea groups, with both exhibiting 

maximum activity 2 h after feeding (P > 0.05). For the urea supplemented group, the 

increased urease activity at 2 hours also coincided with higher NH3-N concentration. 
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Table 7 NH3-N and urea nitrogen (urea-N) concentrations and urease activity in the rumen of 

dairy cows from different treatments (N=6) 

Item 
Time 

(h) 

Treatment 
SEM 

P 

Control Urea Treatment Period Treatment*Period 

NH3-N 

concentration 

(μmol dL
-1

) 

0  18.16 21.95 1.550 0.24 0.07 0.67 

2  15.56
b
 31.05

a
 1.747 < 0.01 0.58 0.22 

4  10.65
b
 23.81

a
 2.132 0.03 0.90 0.96 

6  8.61 14.32 1.148 0.1 0.78 0.49 

Urea-N 

concentration  

(mg L
-1

) 

0  4.90 6.60 1.092 0.28 0.51 0.28 

2  5.16 5.33 0.195 0.54 < 0.01 0.14 

4  5.56 5.59 0.097 0.86 0.08 0.06 

6  5.52 5.58 0.156 0.76 0.05 0.45 

Urease activity 

(nmol min
-1

 

mg
-1

) 

0  53.24 58.16 3.999 0.54 0.52 0.99 

2  61.37 62.32 10.397 0.97 0.75 0.80 

4  41.56 44.62 6.867 0.79 0.51 0.92 

6  33.59 31.62 6.204 0.73 0.40 0.50 

a,b 
Different letters in the same row indicate statistically significant differences for treatment 

effect at P < 0.05. 

4.2. Comparison of ureC gene diversity and distribution 

In total, 1,059,496 quality sequence reads were obtained with an average read length of 299 

bases from the 36 samples. The total number of reads from each sample varied from 20,591-

39,908 and the average reads number was 29,430. The total sequences were assigned to 588 

OTUs using a cut-off of 97 % sequence similarity.  

Alpha diversity estimates are summarized in Figure 11 and Table 8. The total number of 

observed OTUs from the WAB was lower compared to the LAB and SAB fractions (P < 

0.001). Good’s coverage estimates of sampling completeness showed greater than 99 % 

coverage (Table 8). Similar values for estimator Chao1, Shannon and Simpson indices were 

obtained for bacterial samples from the control  and  urea groups in each rumen fraction (P > 

0.05), demonstrating no significant difference of the diversity measure and evenness of ureC 

genes after exogenous urea was provided to dairy cows. The Shannon diversity index for the 

WAB was lower than for the LAB and SAB fractions (P = 0.002). 
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Figure 11 Alpha diversity measures for ureC rumen microbiomes across different treatments 

and fractions. 

(A) Total observed taxonomic units, (B) Chao1 estimates and, (C) the Shannon diversity 

index. Boxplots indicate the first and third quartiles with the median value indicated as a 

horizontal line the whickers extend to 1.5 times the inter quartile range. LAB, liquid-

associated bacteria; SAB, solid-adherent bacteria; WAB, wall-adherent bacteria. Urea, 

urea group; Ctrl, control group. 
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Table 8 Alpha diversity indices for the rumen bacteria ureC genes from each treatment 

groups and rumen fraction (N=6) 

Indices 

Control  Urea 

SEM 

P 

LAB SAB WAB 
 

LAB SAB WAB Trt Fraction 
Trt* 

Fraction 

Observed 317
a
 319

a
 268

b
  306

ab
 301

ab
 277

ab
 12.30 0.694 <0.001 0.394 

Good’s 

coverage 
0.9963

c
 0.9968

abc
 0.9970b

a
 

 
0.9965

bc
 0.9970

ab
 0.9971

a
 <0.001 0.355 0.012 1.000 

PD 20.91 19.52 19.02  20.75 19.18 19.85 0.298 0.857 0.087 0.682 

Chao1 373.52
a
 367.88

a
 314.19

bc
  362.37

ab
 347.23

ab
 311.09

c
 13.12 0.544 <0.001 0.776 

Shannon 3.756
ab

 4.086
a
 3.254b

c
  3.378

ab
 3.991

a
 3.222

bc
 0.125 0.790 0.002 0.978 

Simpson 0.938
ab

 0.968
a
 0.875

ab
  0.942

ab
 0.965

ab
 0.869

b
 0.014 0.939 0.023 0.989 

a, b, c
 Different letters among various treatment groups and fractions indicate statistically 

significant differences (P < 0.05). 

Observed, observed taxonomic units. PD, phylogenetic diversity; LAB, liquid-associated 

bacteria; SAB, solid-adherent bacteria; WAB, wall-adherent bacteria. 

 

The community composition of ureolytic microbiome as assessed by beta diversity 

measures demonstrated that the bacterial ureC gene composition of the WAB was 

significantly different from LAB and SAB fractions, with approximately 36 and 64% of the 

variance explained for the Bray–Curtis and weighted UniFrac metrics, respectively (Bray-

Curtis, R
2
 = 0.198, P = 0.001; Weighted UniFrac, R

2
 = 0.343, P = 0.001) (Figure 12). 

However there was no significant differences in bacterial community composition based on 

ureC genes between urea treated and control animals (Bray-Curtis, R
2
 = 0.015, P = 0.906; 

Weighted UniFrac, R
2
 = 0.010, P = 0.791).  
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Figure 12 Principle Coordinate Analysis comparing changes in rumen ureC genes based on 

Bray–Curtis and weighted Unifrac distances. 

LAB, liquid-associated bacteria (red); SAB, solid-adherent bacteria (green); WAB, wall-

adherent bacteria (blue). Urea, urea group (triangle); Ctrl, control group (circle). 

 

Approximately 55 % of the total sequences could not be confidently classified to any 

known phylum, while the remaining sequences were assigned to seven bacterial phyla. The 

majority of sequences were assigned to Proteobacteria (22.4–31.9%, SEM=0.015), 

Firmicutes (11.1–20.2%, SEM=0.014) and Bacteroidetes (0.2–0.8%, SEM=0.001) from the 

different treatment groups and rumen fractions (Figure 13). At the family level, the dominant 

classified ureC genes in the rumen contents were from Methylococcaceae, Clostridiaceae, 

Paenibacillaceae, Helicobacteraceae, and Oxalobacteraceae while Methylophilaceae and 

Methylococcaceae were predominant in the WAB fraction (Figure 13). Interestingly, a very 

small number of ureC genes were affiliated with archaea from the Thaumarchaeota 

(0.0007%). 
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Figure 13 Heatmap of the top 20 ureC gene families from different rumen fractions. 

Taxonomic assignment shows the phylum and family level for each row. Numbers and colour 

scale in cells represent the relative abundance for a given family level. LAB, liquid-

associated bacteria; SAB, solid-adherent bacteria; WAB, wall-adherent bacteria. 

Approximately 85 % of the sequence data was attributed to the top 50 abundant ureC gene 

OTUs. A high degree of similarity was observed for the rank abundance of OTUs for LAB 

and SAB, which clustered together and were distinct from the WAB fraction (Figure 14). A 

cluster of OTUs (5, 6, 12, 15, 18, and 27) exhibited higher rank abundance in the WAB and 

were absent or of lower abundance in the other two fractions. All of these OTUs were found 

to be significantly more abundant in the WAB (adjusted p < 0.001) (Figure 15). Two of the 

most abundant WAB OTUs, 5 and 12 were unclassified. Both OTU 6 and 15 were affiliated 

with the Methylophilus genus, and OTU 18 was classified with Marinobacter. A moderately 

abundant OTU 72 was classified to the Veillonellaceae family and a low abundant 

Helicobacteraceae OTU was also significantly linked with the WAB. The cluster which 

contained OTU 0, 441, 711, 606, 1, 3, and 4 was more abundant in the LAB and SAB 

compared to the WAB, but was seen consistently across all samples and was not significantly 

different. Both OTU 1 and 4 were affiliated with Methylomonas genus of bacteria. The ureC 
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gene OTU 8, 30, 19, and 21 which affiliated with Helicobacter were most abundant in the 

rumen content (Figure 14), with OTUs 8 and 30 being significantly different from the WAB 

fraction (Figure 15).  

 

Figure 14 Rumen ureC gene community heat maps and clustering of the most abundant 50 

OTUs from different rumen fractions. 

Ward’s minimum variance method was used for hierarchical clustering of the computed 

distance matrix for samples based on the Jaccard dissimilarity indices of the OTU data in the 

vegan package. LAB, liquid-associated bacteria; SAB, solid-adherent bacteria; WAB, wall-

adherent bacteria. 
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Figure 15 OTUs significantly different (q < 0.05 FDR) between the rumen contents (liquid 

and solid fractions) and the rumen wall. 

Upper axis represents OTU’s with a log2 fold positive change for rumen contents relative to 

the rumen wall while the lower y axis is the negative fold change of the rumen wall relative 

to the rumen contents. Each point represents a single OTU colored by phylum and grouped 

on the x axis by taxonomic family level, size of point reflects the log2 mean abundance of the 

sequence data. 

5. Discussion 

Previous studies using culture-dependent methods have revealed limited information with 

regard to the rumen urea-degrading bacteria (Kakimoto et al., 1989; Lauková and Koniarová, 

1994). By using the ureC gene as a biomarker for phylogenetic analysis we have obtained a 

better estimate of the composition of the ureolytic bacteria found in the rumen. Importantly, 

only about 45% of the sequences obtained could be assigned to any known phylum, 

indicating that the rumen may contain newly undiscovered sources of urease genes. 

Furthermore, the reference dataset used for taxonomic assignment was predominated by 

sequences from the Firmicutes and Proteobacteria phyla and will produce higher likelihood 
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values for environmental sequences closely related to these species.  

Urease genes from Proteobacteria constituted the highest proportion of classified 

sequences in all rumen samples which is in accord with studies from other environments, 

where urea-degrading microorganisms in open-ocean and estuarine planktonic communities 

were mainly affiliated with this phylum (Collier et al., 2009). In our study, the ureC gene 

OTUs which belonged to rumen wall adherent bacteria were predominately from unclassified 

taxa, while some were affiliated with Methylophilus and Marinobacter bacteria. 

Methylotrophic species of bacteria from the genus Methylophilus (M. methylotrophus, M. 

quaylei sp. nov., and M. rhizosphaerae sp. nov.) with urease activity have been identified in 

studies from sludge and river water. These groups of bacteria can use methyl compounds 

such as methanol and methylamines for the assimilation of ammonia into cell protein 

(Greenwood et al., 1998; Doronina et al., 2005; Madhaiyan et al., 2009). An active-transport 

system for short-chain amides and urea has been identified in M. methylotrophus (Mills et al., 

1998). Marinobacter species from marine environments are efficient degraders of aliphatic 

and polycyclic aromatic hydrocarbons as well as acyclic isoprenoid compounds (Duran, 

2010). Genomic analysis of Marinobacter aquaeolei indicates this bacterium has the 

metabolic potential to utilize oxygen and nitrate as terminal electron acceptors, iron as an 

electron donor, and urea, phosphonate, and various hydrocarbons as alternative N, P, and C 

sources, respectively (Singer et al., 2011). 

Urease genes with closest affiliation to Helicobacter spp. and Methylomonas spp. were 

present in all rumen sample fractions but were in higher abundance in the rumen contents. 

Previously, Zhao et al. (2015) had attempted to examine ureC diversity in the rumen 

digesta, by cloning and sequencing ureC genes, and found that among the total 317 ureC 

sequences, 22% were affiliated with H. pylori (98-100% aa sequence identity). The data 

from this study indicate that greater diversity and other taxonomic groups of ureolytic 

bacteria are more abundant in the rumen than Helicobacter. Helicobacter spp. naturally 

colonize the lining of stomach and intestines in human and animals (Fox, 2002; Harper et 

al., 2003), and they produce urease to maintain a  neutral pH in their immediate 

environment. Some Helicobacter species isolated from the gastrointestinal tracts of sheep 

and dolphins have tested positive for urease activity (Harper et al., 2002; Coldham et al., 

2011). 

Among the predominant OTUs, both OTU 4 and 1, which were dominant in the rumen 

liquid fraction were affiliated with the Methylococcaceae family. Previous studies in aquatic 
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environments have demonstrated that some Methylomonas spp. (M. methanica, M. 

fodinarum and M. paludis) all possess urease activity (Dianou and Adachi, 1999; Boden et 

al., 2011). It is known that species of Methylomonas are able to obtain carbon and energy 

from oxidation of methane or methanol and use urea as a nitrogen source (Hoefman et al., 

2014; Soren et al., 2015). Our results indicate that the ureolytic bacteria from the 

Helicobacter and Methylomonas that inhabit the rumen likely play an important role in 

hydrolyzing endogenous or exogenous urea. 

Urea supplementation had no significant effect on the diversity and distribution of the 

ureC genes which was unexpected. The lack of response may be due to several factors. 

Firstly, the crude protein (CP) content (16.67 % of DM) in the basal diet may have provided 

adequate ammonia, amino acid, or peptide for the synthesis of microbial protein (Agle et al., 

2010;Recktenwald et al., 2014), and the bacteria may have used organic forms of nitrogen in 

preference to ammonia for the microbial protein synthesis (Milton et al., 1997; Lebzien, 

2006). The regulation of urease synthesis in ureolytic bacteria is complex (Mobley et al., 

1995), urease synthesis in some bacteria is regulated by environmental conditions, such as 

concentration of urea and nitrogen or pH (Collins and D'Orazio, 1993; Weeks and Sachs, 

2001). However, in some organisms, urease synthesis is constitutive (Zotta et al., 2008; 

Carter et al., 2009; Burbank et al., 2012). Though the NH3-N concentrations in the urea-

supplemented group were higher than those in the control group, no differences in the 

urease activity between the two groups were observed. The conversion of urea to ammonia 

is rapid and not rate limiting, so on a high protein diet sufficient endogenous urea may have 

induced  urease activity to an extent where differences did not occur between the two 

treatments even though urea and NH3-N concentrations might be higher in the urea 

supplemented group. Besides, Greenwood et al. (1998) also found that the urease was 

repressed by excess amounts of its reaction product, ammonia. Collectively all these factors 

may have contributed to the similar urease activity between the two treatments. Thus, the 

rumen harbors a large diversity of ureolytic bacteria but the mechanisms controlling urease 

synthesis and the impact of urea hydrolysis on the growth of these bacteria need further 

research. 

6. Conclusion 

There was a predominant ureolytic bacterial community in the rumen of dairy cows but more 

than 55% of the ureC sequences did not affiliate with any known urease genes. The bacterial 
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urease gene profile from the rumen wall was distinctly different from the rumen contents and 

ureC genes from Methylophilus and Marinobacter were identified predominantly in this 

fraction. The ureolytic bacterial populations were not changed in diversity or abundance by 

urea supplementation. This study contributes new data to existing urease gene information 

relating to the predominant ureolytic microbial community in ruminants. Understanding the 

rumen predominant urease genes may provide basis for acquiring valid regulation targets of 

ureolytic bacteria to mitigate urea hydrolysis and subsequently improve urea nitrogen 

utilization in ruminants. 
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CHAPTER V  

This study aimed to identify the changes in both rumen microbial and host plasma 

metabolites induced by exogenous urea supplementation in dairy cows using NMR 

metabolomics. Multivariate data analysis was used to evaluate the differentially expressed 

metabolites and changed metabolic pathways. 
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1. Abstract 

Urea has been used in diets of cattle as a non-protein nitrogen source. It is hydrolyzed to 

ammonia, which can be used for microbial protein synthesis. Use of metabolomics 

methodologies to study the rumen microbial and host blood metabolic profiles induced by 

urea nitrogen has not been previously characterized. The objective of this study was to 

identify changes in rumen microbial and plasma metabolite profiles in dairy cows after urea 

supplementation using a nuclear magnetic resonance (NMR)-based untargeted quantitative 

metabolomic approach. Six dairy cows with rumen fistulas were randomly assigned to two 

groups used in a two period cross-over trial and each experimental period lasted 21 days. All 

the cows were fed the same total mixed rations, but were intraruminally supplemented with 

180 g urea per cow daily or not during the experimental period. Rumen fluid and blood 

samples were collected and analyzed using nuclear magnetic resonance spectroscopy and 

multivariate analysis of variance. Differences in rumen and plasma metabolite concentrations 

in cows from the two groups were assessed using orthogonal partial least-squares 

discriminant analysis and identified by searching against related databases. Concentrations of 

valine, aspartate, glutamate, and uracil in the rumen, and urea and pyroglutamate in the 

plasma, were higher (1.36- to 3.17-fold, P < 0.05) in the urea-supplemented group than in the 

control group. Metabolic pathway analysis of the affected metabolites revealed that 

pantothenate and CoA biosynthesis, beta-alanine metabolism, valine, leucine, and isoleucine 

metabolism in the rumen, and urea and glutathione metabolism in the plasma were 

significantly increased by urea nitrogen. The levels of aspartate and glutamate in the rumen 

correlated strongly (r = 0.73 and r=0.74, respectively, P < 0.01) with the level of urea in 

plasma. These findings provided novel information to aid understanding of the metabolic 

pathways affected by urea nitrogen in dairy cows, and could potentially help to guide efforts 

directed at improving the efficiency of urea utilization in the rumen. 

 

Keywords: rumen, plasma, urea, metabolites, NMR metabolomics 
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2. Introduction 

Urea is used as a NPN in ruminant diets as a cost-efficient replacement for feed proteins 

(Kertz, 2010). Urea is hydrolyzed by rumen microbial urease to ammonia (NH3) which is 

utilized for the synthesis of microbial protein required for the animal growth (Owens et al., 

1980; Milton et al., 1997). In the rumen, hydrolysis of urea to NH3 occurs at a greater rate 

than NH3 can be utilized by rumen bacteria, therefore leading to the ruminal NH3 

accumulation and its subsequent entry into the circulation (Recavarren and Milano, 2014). 

Thus, the efficiency of urea nitrogen utilization in ruminants is normally low. Multiple 

studies were conducted for improving the efficiency of urea utilization in dairy cows 

(Sweeny et al., 2014; Giallongo et al., 2015). However, information on metabolic pathways 

involved in urea nitrogen utilization in dairy cows has not been fully characterized. 

Metabolomics can provide accurate information regarding the physiological state of the 

microbiome or the host organism (Lindon and Nicholson, 2008). In particular, proton nuclear 

magnetic resonance spectroscopy (1H-NMR) is a non-invasive technique that permits 

objective and reproducible sample analysis (Taylor et al., 2002). NMR-based metabolomics 

approaches have been widely used to analyze materials including blood, urine, and tissue 

extracts from humans and other mammals (Benahmed et al., 2014; Duarte et al., 2014; Pinto 

et al., 2015). Recently, metabolomics methods have also been used to evaluate rumen 

microbial metabolites (Mao et al., 2016; Zhao et al., 2014), plasma (Sun et al., 2014; Li and 

C., 2015), milk (Sundekilde et al., 2013; Sun et al., 2015) and urine (Tang et al., 2016) from 

dairy cows. 

In a previous study, Bertram et al. (2011) assessed the effect of dietary nitrogen content on 

the urine metabolite profile of dairy cows using a NMR approach and found that urea was 

one of the urinary metabolites that contributed to the prediction of nitrogen intake and 

efficiency. It is known that dietary nitrogen supplementation in the form of urea affects 

ruminal microbial protein synthesis and hepatic urea synthesis of dairy cows (Alves et al., 

2014; Recavarren and Milano, 2014). However, most studies investigating the effect of urea 

nitrogen in ruminants to date have employed targeted analyses, meaning that limited numbers 

of metabolites are known to be influenced by dietary nitrogen levels (Sweeny et al., 2014; 

Zhang et al., 2014; Holder et al., 2015). Thus, we hypothesized that an untargeted 

metabolomics approach could provide a more complete analysis of the metabolites involved 

in urea nitrogen metabolism of dairy cows. This study aimed to identify the changes in both 
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rumen microbial and host plasma metabolites induced by exogenous urea supplementation in 

dairy cows using NMR spectroscopy. Multivariate data analysis was used to evaluate the 

differentially expressed metabolites. Our data may provide novel information to aid 

understanding of the metabolic pathways affected by urea nitrogen in dairy cows. 

3. Materials and methods 

3.1. Animals, Diets, and Sampling 

Six Chinese Holstein dairy cows (550 ± 50 kg BW and 100 ± 21 days in milk) fitted with 

ruminal cannulas were used in a two period cross-over trial. All cows were fed the same total 

mixed ration (TMR) for 2 wk prior to the start of the study. Cows were divided into a Urea 

group (Urea) which received 180 g of urea daily, and a Control group (Ctrl) which was not 

urea-supplemented. Each experimental period lasted 21 d, and the first was followed by a 14 

d washout period, after which the other intervention was applied. Each day, the 180 g of urea 

was separated into three portions (70, 55, and 55 g for each feeding, respectively) and 

packaged with quantitative filter paper to prevent NH3 poisoning. Urea was added into the 

rumen through the fistula during each feeding period. All cows were kept in individual pens 

with free access to water and were fed TMR three times daily (at 0700, 1400, and 1900 h) ad 

libitum. The basic diet primarily consisted of alfalfa hay (28.4% DM), corn silage (26.7%), 

corn (22.6%), and soybean meal (11.8%) (Table 6). Experimental procedures involving the 

animal care and management, and sampling were approved by the Chinese Academy of 

Agricultural Sciences Animal Care and Use Committee (Beijing, China). 

For each animal, rumen fluid samples were obtained on day 21 of each experimental 

period shortly before morning feeding (0 h) and at 2, 4 and 6 h after morning feeding. 

Approximately 300 g of mixed rumen contents was taken from each cow through its ruminal 

fistula and filtered through four layers of cheesecloth to obtain the rumen liquid. Aliquots 

were dispensed into microtubes and frozen in liquid nitrogen. Rumen fluid samples collected 

were used for measurements of ammonia nitrogen (NH3-N) concentration, which was 

determined by using a method based on the Berthelot (phenol-hypochlorite) reaction 

(Broderick and Kang, 1980). The host blood samples were obtained at 2 h after the morning 

feeding. Blood samples (10 mL) were collected from the caudal vein into EDTA containing 

tubes, kept in a cooler, and transferred to the laboratory within 30 min. These samples were 

centrifuged at 2,000 ×g at 4 °C for 15 min, and the plasma was collected and stored at -80°C 

until analysis. 
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3.2. Sample Preparations, NMR Measurements, and Data Processing 

Rumen fluid samples obtained at 2 h after morning feeding were thawed at room 

temperature and centrifuged at 13,000 ×g at 4 °C for 15 min to remove particulate matter. 

Then, rumen fluid and blood plasma samples were sterilized by passing through a 0.22 μm 

ultrafiltration membrane (Millipore Corporation, Billerica, MA, USA). A 450 μL aliquot of 

the filtrate was transferred to a 1.5 mL Eppendorf tube, followed by the addition of 50 μL of 

dextran sulfate sodium (DSS, 4.088 mM) and mix for 10s. After centrifuging at 13,000 ×g at 

4 °C for 1 min, the samples supernatants (480 μL) were then transferred to a standard NMR 

tube for subsequent NMR spectral analysis. Both tubes and the Millipore 3-kDa ultrafiltration 

filter were washed with ddH2O five times before use to remove residual glycerol. 

Spectra were generated using a Bruker AV III 600 MHz spectrometer (Bruker Bio Spin 

Corporation, Billerica, MA, USA) equipped with an inverse cryoprobe. The first increment of 

a 2D-1H, 1H-nuclear Overhauser enhancement spectroscopy (NOESY) pulse sequence was 

utilized for the acquisition of 1H-NMR data and to suppress the solvent signal. For the rumen 

fluid samples, spectra were acquired with 28 K data points and 128 scans over a spectral 

width of 7,225.4 kHz. For the plasma samples, spectra were acquired with 32 K data points 

and 64 scans over a spectral width of 8,000 kHz. All 1H NMR spectra were referenced to 

DSS-d6 at 0.0 ppm and processed manually with Chenomx NMR suite (version 8.0, 

Chenomx, Inc., Edmonton, AB, Canada). Identification of metabolites was based on their 

chemical shifts and by reference to the Chenomx 600 MHz library. Quantification of 

metabolite concentrations was achieved with the described method using the Chenomx NMR 

suite (Weljie et al., 2006). The concentrations of the metabolites were exported in EXCEL 

format (Microsoft, Redmond, WA, USA) for further analysis. 

3.3. Multivariate Analysis 

Multivariate data analysis was performed using Simca-P software (version 14.0; Umetrics, 

Umea, Sweden). Data sets were scaled, using unit variance (UV) scaling to reduce noise in 

the models. Principal component analysis (PCA) was applied to data sets to visualize the 

distribution of origin data and reveal the presence of outliers beyond the 95% significance 

region. To reduce errors within the group and eliminate random errors, supervised orthogonal 

projections to latent structures-discriminant analysis (OPLS-DA) were applied (Sui et al., 

2012). OPLS-DA models were generated using the first principal component (t[1]P) and the 
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second orthogonal component (t[2]O)
 
(Yin et al., 2008). Scores plots combining the 

reliability and correlation from the OPLS-DA models were used to identify metabolites that 

were present at concentrations that differed between the groups. The quality of each model 

was evaluated using the predictive ability parameter (Q
2
), which is calculated using an 

internal cross-validation of the data and goodness-of-fit (R
2
). Based on the OPLS-DA, a 

loading plot was constructed that showed the contribution of variables to the differences 

between two groups. The variable importance in the projection (VIP) values for variables in 

the model calculated to indicate their contributions to the classification of the samples. 

Metabolites with a VIP value greater than 1.0 obtained from the OPLS-DA model were 

considered to be important in discriminating between groups. Further, the metabolites with a 

VIP value greater than 1.0 obtained from the OPLS-DA model. The rumen NH3-N 

concentration were analyzed using the SAS mixed procedure (SAS Institute Inc., Cary, NC, 

USA) to identify any difference between the two groups. Differences were declared 

significant at P < 0.05. 

3.4. Metabolic Pathway Analyses 

The rumen microbial and plasma metabolites that differed in concentration between the Ctrl 

and Urea groups were subjected to metabolic pathway analysis using MetaboAnalyst 3.0 

software (http://www.metaboanalyst.ca/MetaboAnalyst/faces/home.xhtml), which is based on 

databases including PubChem (http://pubchem.ncbi.nlm.nih.gov/), the Human Metabolome 

Database (HMDB; http://www.hmdb.ca) and the Kyoto Encyclopedia of Genes and Genomes 

(KEGG; http://www.kegg.com)
 
(Xia et al., 2015). 

3.5. Correlations between the Changed Metabolites from Rumen and Plasma 

To quantify correlations between the levels of altered rumen microbial and plasma 

metabolites, Pearson’s correlation coefficients were calculated using GraphPad Prism 6.0 

(GraphPad Software Inc., La Jolla, CA, USA) at two confidence levels (P < 0.05 and P < 

0.01). 
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4. Results 

4.1. Changes in Ruminal NH3-N Concentrations 

Compared to the Ctrl group, urea supplementation significantly increased (P < 0.05) rumen 

NH3-N concentration at 2 and 4 h after morning feeding. In the Urea group, the concentration 

of NH3-N reached a peak at 2 h after morning feeding (Figure 16). 

 

 

Figure 16 Changes of NH3-N concentrations induced by urea supplementation. 

Urea: Group with urea supplementation, Ctrl: group without urea supplementation. *Means 

values in Urea group was significantly different from that in Ctrl group (P < 0.05). 

4.2. Comparison of the Metabolic Profiles in Different Treatments 

Representative 
1
H NMR spectra for rumen fluid and plasma samples are shown in 

Supplementary Figure 17 and Figure 18. A total of 44 metabolites were identified in spectra 

from the former and 49 from the latter. PCA plots showed that both ruminal and plasma 

datasets had a cumulative proportion of variance of more than 50% (Figure 19), indicating 

that the overall composition of the fluids from the two dietary groups was different. 

Subsequently, the OPLS-DA model, which reduces the dimensionality of the original data, 

was applied to explore further the metabolic disturbances in the Urea group versus the Ctrl 

group. As illustrated in Figure 20 and Figure 21, both rumen and plasma samples from these 

two groups were separated. For the rumen samples, the values of R
2
 and Q

2
 were 0.909 and 

0.435, respectively. For the plasma samples, the values of R
2
 and Q

2
 were 0.93 and 0.074, 



 

 

94 

 

respectively. The loading plot is complex because of the many metabolites identified, but the 

most important are indicated by positions far from the origin (Figure 20B and 21B). 

 

Figure 17 Representative 1H NMR spectra of rumen fluid samples. 

(A) Spectra of chemical shifts from 0 to 10 ppm. (B) Spectra of chemical shifts from 3 to 5 

ppm. The compounds were identified as the following: 1, 1,3-Dihydroxyacetone; 2, 2-

Aminobutyrate; 3, 3-Hydroxyphenylacetate; 4, 3-Phenylpropionate; 5, 4-Aminobutyrate; 6, 

Acetate; 7, Adenine; 8, Alanine; 9, Aspartate; 10, Benzoate; 11, Butyrate; 12, Caprate; 13, 

Caprylate; 14, Dimethylamine; 15, Ethanol; 16, Ethylene glycol; 17, Glucose; 18, Glutamate; 

19, Glycine; 20, Hypoxanthine; 21, Inosine; 22, Isobutyrate; 23, Isovalerate; 24, Malonate; 

25, Maltose; 26, Methanol; 27, Methylamine; 28, N-Acetylglycine; 29, N-

Phenylacetylglycine; 30, Nicotinate; 31, Phenylacetate; 32, Proline; 33, Propionate; 34, 

Putrescine; 35, Ribose; 36, Succinate; 37, Succinylacetone; 38, Trimethylamine; 39, 

Tyramine; 40, Uracil; 41, Uridine; 42, Valerate; 43, Valine; 44, p-Cresol.  
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Figure 18 Representative 1H NMR spectra of plasma samples. 

(A) Spectra of chemical shifts from 0 to 10 ppm. (B) Spectra of chemical shifts from 3 to 5 

ppm. The compounds were identified as the following: 1, 1,3-Dimethylurate; 2, 2-

Hydroxybutyrate; 3, 2-Hydroxyisobutyrate; 4, 3-Hydroxybutyrate; 5, 4-

Hydroxyphenylacetate; 6, Acetate; 7, Acetone; 8, Alanine; 9, Arginine; 10, Betaine; 11, 

Carnitine; 12, Choline; 13, Citrate; 14, Creatine; 15, Creatine phosphate; 16, Creatinine; 17, 

Dimethyl sulfone; 18, Dimethylamine; 19, Ethylene glycol; 20, Formate; 21, Glucose; 22, 

Glutamate; 23, Glutamine; 24, Glycine; 25, Glycolate; 26, Guanidoacetate; 27, Hippurate; 28, 

Isobutyrate; 29, Isoleucine; 30, Lactate; 31, Lactose; 32, Leucine; 33, Malonate; 34, 

Mannose; 35, Methanol; 36, Methionine; 37, O-Phosphocholine; 38, Phenylalanine; 39, 

Proline; 40, Propionate; 41, Pyroglutamate; 42, Pyruvate; 43, Sarcosine; 44, Succinate; 45, 

Threonine; 46, Trimethylamine N-oxide; 47, Urea; 48, Valine; 49, τ-Methylhistidine.  
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Figure 19 Principal Components Analysis (PCA) plots for rumen fluid (A) and plasma (B) 

metabolite profiles from Control and Urea groups. 

 

 

Figure 20 Score plot (A) and corresponding loading plot (B) of orthogonal partial least-

squares discriminant analysis derived from NMR spectra of ruminal samples between Urea 

and Control groups. 

Urea: Group with urea supplementation, Ctrl: group without urea supplementation. 
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Figure 21 Score plot (A) and corresponding loading plot (B) of orthogonal partial least-

squares discriminant analysis derived from NMR spectra of plasma samples between Urea 

and Control groups. 

Urea: Group with urea supplementation, Ctrl: group without urea supplementation. 

4.3. Metabolic Alterations in the Rumen and Plasma Samples 

Metabolites with VIP values greater than 1.0 in OPLS-DA models (Figure 22), being the 

main rumen microbial and host metabolites contributing to the separation of the two groups, 

are shown in Table 9 and 10. In the rumen, except for the concentration of p-cresol, which 

was 0.87-fold lower in the Urea group than in the Ctrl group, the metabolites were all more 

concentrated in the Urea group than in the Ctrl group. Of these, the amino acid 

concentrations, including valine, aspartate, glutamate, and 2-aminobutyrate, were 1.48- to 

1.69-fold higher (P < 0.05) in the Urea group, and the nucleic acid components, including 

uracil and hypoxanthine, were also more concentrated (P < 0.05) in the Urea group. In the 

plasma, the concentrations of five metabolites were increased, while those of seven 

metabolites were decreased, in the Urea group. Of note, the concentrations of urea and 

pyroglutamate were 2.62- and 3.17-fold higher (P < 0.05), respectively, in the Urea group 

than in the Ctrl group. 
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Figure 22 Variable Importance in the Projection (VIP) plots of orthogonal partial least-

squared discriminant analysis of Control and Urea groups. 

(A) Rumen fluid metabolites; (B) Plasma metabolites. 
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Table 9 Rumen microbial metabolites present in differing concentrations in cows fed a 

control diet (Ctrl) versus those that were urea-supplemented (Urea) (N=6) 

Metabolite Classification of metabolites VIP
1
 Direction

2
 FD

3
 

Valine Amino acids and derivatives 2.13 ↑* 1.69 

Aspartate Amino acids and derivatives 1.88 ↑* 1.65 

Glutamate Amino acids and derivatives 1.71 ↑* 1.57 

2-Aminobutyrate Amino acids and derivatives 1.62 ↑* 1.48 

Alanine Amino acids and derivatives 1.36 ↑ 1.98 

4-Aminobutyrate Amino acids and derivatives 1.16 ↑ 1.63 

Proline Amino acids and derivatives 1.13 ↑ 1.25 

Tyramine Amino acids and derivatives 1.09 ↑ 1.59 

Uracil Nucleic acid components 1.97 ↑* 1.36 

Hypoxanthine Nucleic acid components 1.86 ↑* 1.72 

Inosine Nucleic acid components 1.16 ↑ 1.93 

1,3-Dihydroxyacetone Sugars 1.39 ↑ 1.15 

Ribose Sugars 1.34 ↑ 1.32 

p-Cresol Organic acids 1.06 ↓ 0.87 

N-Phenylacetylglycine Others 1.61 ↑ 1.18 

Nicotinate Others 1.27 ↑ 1.50 

1
VIP, variable importance in the projection. 

2
↑ indicates a higher concentration in the Urea group. ↓ indicates a lower concentration in the 

Urea group. * P < 0.05 versus Control. 

3
Fold difference in metabolite concentration (Urea/Ctrl). 
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Table 10 Host plasma metabolites present in different concentrations in cows fed a control 

diet (Ctrl) versus those that were urea-supplemented (Urea) (N=6) 

Metabolite Classification of metabolites VIP
1
 Direction

2
 FD

3
 

Urea Amino acids and derivatives 1.75 ↑* 2.62 

Phenylalanine Amino acids and derivatives 1.68 ↓ 0.91 

Leucine Amino acids and derivatives 1.67 ↓ 0.76 

Glutamate Amino acids and derivatives 1.30 ↓ 0.88 

Sarcosine Amino acids and derivatives 1.02 ↑ 1.28 

Pyroglutamate Amino acids and derivatives 2.57 ↑* 3.17 

Lactose Sugars 1.95 ↓ 0.63 

Succinate Organic acids 2.31 ↑ 0.73 

Glycolate Organic acids 1.57 ↓ 0.95 

Trimethylamine N-oxide Others 1.45 ↑ 2.29 

1,3-Dimethylurate Others 1.36 ↓ 0.86 

Dimethyl sulfone Others 1.57 ↓ 0.83 

1
VIP, variable importance in the projection. 

2
↑ indicates a higher concentration in the Urea group. ↓ indicates a lower concentration in the 

Urea group. * P < 0.05 versus Control. 

3 
Fold difference in metabolite concentration (Urea/Ctrl). 

4.4. Metabolic Pathway Analysis 

Metabolites that were present in different concentrations in ruminal fluid and plasma between 

the Ctrl and Urea groups were subjected to analysis using MetaboAnalyst 3.0 software. The 

varied rumen microbial metabolites between the two groups were identified to be involved in 

several metabolic pathways (Table 11 and 12). These pathways were filtered out by P value 

less than 0.05 and considered as potential target pathways. The varied rumen microbial 

metabolites between the two groups were identified to be involved in pantothenate and CoA 

biosynthesis, beta-alanine metabolism, valine, leucine, and isoleucine degradation and 

biosynthesis, aminoacyl-tRNA biosynthesis, histidine metabolism, and purine metabolism 

pathways (Figure 23). The varied plasma metabolites were identified as components involved 

in the glutathione metabolism pathway (Figure 24). 
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Table 11 Association of differentially detected rumen metabolites in Control and Urea groups with metabolic pathways identified by 

MetaboAnalyst 3.0 software. 

Pathway name Total Hits p -log(p) Holm p FDR Impact 

Pantothenate and CoA biosynthesis 15 2 0.00141 6.56 0.0225 0.0225 0.00 

beta-Alanine metabolism 17 2 0.00908 4.70 0.136 0.0519 0.00 

Valine, leucine, and isoleucine biosynthesis 11 1 0.0130 4.34 0.182 0.0519 0.33 

Valine, leucine, and isoleucine degradation 38 1 0.0130 4.34 0.182 0.0519 0.00 

Aminoacyl-tRNA biosynthesis 64 3 0.0258 3.66 0.310 0.0684 0.00 

Histidine metabolism 14 1 0.0269 3.62 0.310 0.0684 0.00 

Purine metabolism 68 2 0.0299 3.51 0.310 0.0684 0.01 

Pyrimidine metabolism 37 1 0.0536 2.93 0.482 0.107 0.09 

D-Glutamine and D-glutamate metabolism 5 1 0.0953 2.35 0.763 0.169 0.00 

Alanine, aspartate, and glutamate metabolism 23 2 0.146 1.93 1 0.233 0.27 

Arginine and proline metabolism 44 3 0.16 1.83 1 0.233 0.09 

Nicotinate and nicotinamide metabolism 13 1 0.202 1.60 1 0.261 0.00 

Tyrosine metabolism 42 1 0.216 1.53 1 0.261 0.03 

Butanoate metabolism 20 1 0.228 1.48 1 0.261 0.03 

Pentose phosphate pathway 19 1 0.299 1.21 1 0.319 0.00 

Glycerolipid metabolism 18 1 0.376 0.977 1 0.376 0.00 
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Table 12 Association of differentially detected plasma metabolites in Control and Urea groups with metabolic pathways identified by 

MetaboAnalyst 3.0 software. 

Pathway name Total Hits p -log(p) Holm p FDR Impact 

Glutathione metabolism 26 1 0.00134 6.61 0.0215 0.0215 0.01 

Purine metabolism 68 1 0.115 2.16 1 0.25 0.00 

Arginine and proline metabolism 44 1 0.115 2.16 1 0.25 0.00 

Citrate cycle (TCA cycle) 20 1 0.141 1.96 1 0.25 0.03 

Alanine, aspartate, and glutamate metabolism 23 1 0.141 1.96 1 0.25 0.00 

Propanoate metabolism 20 1 0.141 1.96 1 0.25 0.00 

Butanoate metabolism 20 1 0.141 1.96 1 0.25 0.00 

Valine, leucine, and isoleucine biosynthesis 11 1 0.141 1.96 1 0.25 0.33 

Valine, leucine, and isoleucine degradation 38 1 0.141 1.96 1 0.25 0.00 

Aminoacyl-tRNA biosynthesis 64 2 0.168 1.78 1 0.269 0.00 

Glycine, serine, and threonine metabolism 32 1 0.352 1.05 1 0.511 0.06 

Galactose metabolism 26 1 0.459 0.779 1 0.534 0.02 

Phenylalanine, tyrosine, and tryptophan biosynthesis 4 1 0.467 0.761 1 0.534 0.50 

Phenylalanine metabolism 9 1 0.467 0.761 1 0.534 0.41 

D-Glutamine and D-glutamate metabolism 5 1 0.504 0.686 1 0.537 0.00 

Glyoxylate and dicarboxylate metabolism 16 1 0.875 0.133 1 0.875 0.04 
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Figure 23 Pathway analysis of ruminal metabolites those were present in differing 

concentrations between the Urea and Control groups. 

This analysis was undertaken using MetaboAnalyst. (A) Pantothenate and CoA biosynthesis; 

(B) beta-Alanine metabolism; (C) Valine, leucine, and isoleucine degradation; (D) Valine, 

leucine, and isoleucine biosynthesis; (E) Aminoacyl-tRNA biosynthesis; (F) Histidine 

metabolism; (G) Purine metabolism. 
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Figure 24 Pathway analysis of plasma metabolites those were present in differing 

concentrations between the Urea and Control groups. 

This analysis was undertaken using MetaboAnalyst. (A) Glutathione metabolism; (B) Purine 

metabolism; (C) Arginine and proline metabolism; (D) Citrate cycle (TCA cycle); (E) 

Alanine, aspartate, and glutamate metabolism; (F) Propanoate metabolism; (G) Butanoate 

metabolism; (H) Valine, leucine, and isoleucine biosynthesis. 

4.5. Correlations between Concentrations of Ruminal and Plasma Metabolites 

The correlation coefficients for varied metabolites in ruminal and plasma were calculated and 

those with significant correlations are listed in Table 13. We found that the concentrations of 

aspartate and glutamate in the rumen and sarcosine in the plasma were positively correlated, 

while the concentrations of ruminal p-cresol and plasma sarcosine were negatively correlated 

(P < 0.05). Moreover, significant correlations were detected between aspartate and glutamate 

in the rumen and plasma urea (P < 0.01). 
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Table 13 Partial pearson’s correlations between ruminal and plasma metabolites with 

significant difference. 

 Blood sarcosine Blood succinate Blood trimethylamine  

N-oxide 

Blood urea 

Rumen 

aspartate 

0.6615* NS
1
 0.7562** 0.7344** 

Rumen 

glutamate 

0.7160** NS 0.6181* 0.7437** 

Rumen 

Valine 

NS -0.5844* NS NS 

Rumen  

p-Cresol 

-0.6419* NS NS NS 

1
NS, no significant correlation. 

*P < 0.05, **P < 0.01 versus Control. 

5. Discussion 

In the present study, urea was added to the rumen of cows as a source of NPN and 

metabolomics was used to assess the effect of this urea nitrogen on rumen microbial and host 

plasma metabolites. The effect of dietary nitrogen content on urine metabolites of dairy cows 

has been previously assessed by NMR spectrometry, and Partial least-squares (PLS) 

regressions confirmed a correlation between the NMR metabolite profile and both nitrogen 

intake and efficiency, which indicating that several metabolites may contribute to the 

prediction of nitrogen intake and efficiency in dairy cows, but a wide-ranging urinary 

metabolite profile is needed to evaluate nitrogen efficiency in ruminants (Bertram et al., 

2011). In this study, metabolites in other two important biofluids, the rumen fluid and plasma, 

were assessed using NMR spectroscopy, and metabolites and metabolic pathways that 

regulated by urea nitrogen were identified. 

In the rumen, NH3 assimilation is an important process for microbial protein synthesis 

(Firkins et al., 2007); NH3 release resulting from urea supplementation may affect key 

components of this process. In the present study, the ruminal concentrations of glutamate and 

aspartate were higher in the Urea group than in the Ctrl group, and the results are consisted 

with previous research which found that the metabolism of glutamate and aspartate is closely 

related to the process of NH3 assimilation in the rumen (Wang and Tan, 2013). The NH3 
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released by the hydrolysis of urea is utilized for the synthesis of the amino acids by most 

bacteria for growth (Patra, 2015). The glutamate dehydrogenase (GDH) and glutamine 

synthetase–glutamate synthase (GS–GOGAT) pathways are two classic routes for NH3 

assimilation in bacteria, leading to NH3 molecules being incorporated into the amide group of 

glutamine (Purich, 1998). In some rumen bacteria, asparagine synthetase (AS) also 

participates in NH3 assimilation (Ciustea et al., 2005). The rumen ammonia levels controls 

the pathway for ammonia uptake by lumen microorganisms (Srinivas and Gupta, 1997). In 

the present study, urea nitrogen provided additional substrate for NH3 assimilation, and the 

higher aspartate and glutamate concentrations may be due to upregulation of these pathways. 

In addition, rumen bacteria may also possess effective mechanisms for alanine synthesis from 

NH3 (Morrison and Mackie, 1996; Oba et al., 2005), and the enhanced beta-alanine 

metabolism that was observed in the Urea group is consistent with this possibility. 

The rumen valine concentration was also higher in the Urea group in the present study, 

which could result in enhanced valine, leucine, and isoleucine metabolism of rumen 

microbiota. Valine, leucine, and isoleucine are all branched-chain amino acids (BCAAs). 

Previous studies revealed that glutamate synthesis from a-ketoglutarate could utilize BCAA-

derived amino groups (Scaglia et al., 2004), and hyper-ammonia increased the activity of 

BCAA aminotransferase (Dam et al., 2011). These BCAAs stimulated synthesis of glutamine 

from glutamate and NH3 (Holecek, 2013). Therefore, we suggest that the process of NH3 

assimilation is enhanced by urea supplementation, and that the metabolism of the related 

BCAAs, especially valine, may partly contribute to glutamine synthesis in the rumen. 

Meanwhile, Valine provides the ox-ketoisovalerate for pantothenate synthesis, and 

pantothenate is a constituent of CoA.(Sahm and Eggeling, 1999; Genschel, 2004) So valine 

also participates in the process of pantothenate and CoA biosynthesis. Thus, in the present 

study, the higher concentration of valine could have been responsible for enhancing 

pantothenate and CoA biosynthesis in the rumen. 

The levels of nucleic acid components (uracil and hypoxanthine) in the rumen fluid were 

also higher in the Urea group than in the Ctrl group. Increases in concentrations of these 

bases or base derivatives (uracil and hypoxanthine) in the rumen have also been observed 

when feeding cows with a high-grain diet (Saleem et al., 2012). Uracil is one of the key 

pyrimidine metabolites, and changes in uracil can reflect perturbations in flux through the 

urea cycle and the formation of alternative nitrogen-carrying metabolites (Wendler et al., 
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1983). Urea is an intermediate in one pathway for uracil degradation, which ultimately results 

in the assimilation of ammonia; (Andersen et al., 2008; Kandasamy, 2012), this process is 

widely distributed in fungi and in a variety of bacteria. In the present study, the pathway 

whereby uracil is degraded to urea may have been inhibited in the Urea group, resulting in 

the higher uracil concentration observed. 

The level of urea was significantly increased in the plasma when the cows were 

supplemented with urea. Previous studies revealed that ruminants fed on diets with high NPN 

had higher portal blood flow, greater hepatic uptake of NH3 and increased rates of urea 

synthesis (Symonds et al., 1981; De Visser et al., 1997; Holder et al., 2015). Redundant NH3 

that is transported to the liver is likely to enter the ornithine cycle (Zhou et al., 2015). The 

large amount of urea produced was therefore likely the result of NH3 detoxification in the 

liver (Lobley and Milano, 2007). Rumen NH3 levels generally peak 1 to 4 h after feeding in 

meal-fed animals (Gustafsson and Palmquist, 1993). Consistent with this, we observed peak 

NH3 at 2 h after the morning feeding in the Urea group. This very rapid accumulation of NH3 

exceeds the capacity of the rumen microbes to use it, resulting in NH3 diffusing through the 

rumen wall into the blood (Highstreet et al., 2010). Thus, our results indicate that the 

redundant NH3 released from the supplemented urea passed into the host circulation, and its 

subsequent conversion to urea in the liver was the likely cause of the higher plasma urea 

concentration observed in the Urea group. 

The plasma pyroglutamate concentration in cows supplemented with urea was also higher 

than in the Ctrl group. Altered plasma pyroglutamate concentration is indicative of altered 

glutathione metabolism, because pyroglutamate is the basic form of pyroglutamic acid, which 

is an intermediate in the hepatic glutathione cycle (Eckstein et al., 2008; Reed et al., 2008).
 

Glutathione metabolism contributes to oxidative stress, which plays a key role in the 

pathogenesis of many diseases, including liver disease; thus appropriate regulation of 

glutathione metabolism is critical for human and animal health (Wu et al., 2004). In the 

present study, rapid NH3 release from urea in the rumen resulted in increased diffusion of 

NH3 into the blood. The main fates of blood NH3 are to be used in the synthesis of urea, and 

also, to a lesser extent, glutamine (Lobley et al., 1995). Glutamine is synthesized by 

glutamine synthetase from glutamate and ammonia. Metabolites involved within glutathione 

metabolism were present in higher plasma concentrations in the Urea group, which may 
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contribute to protection against the negative effects of toxic NH3 transferred from rumen to 

blood. 

There was a strong correlation between aspartate and glutamate concentrations in the 

rumen and plasma urea in this study. These three metabolites are all involved in urea nitrogen 

metabolism in the ruminant (Wang and Tan, 2013), indicating that nitrogen metabolism in the 

rumen and blood is co-regulated. In the present study, rapid release of NH3 from urea likely 

altered the process of ammonia assimilation, and therefore the concentrations of aspartate and 

glutamate, which participate in this process (Ataşoğlu and Wallace, 2002; Harper et al., 

2010). Thus, the levels of rumen aspartate and glutamate and plasma urea may help predict 

nitrogen efficiency in ruminants. 

In summary, the rumen microbial and host metabolite profiles of dairy cows supplemented 

or not with urea were investigated by NMR spectroscopy. Metabolites that were present in 

differing concentrations were selected by multivariate statistical analysis and identified as 

valine, aspartate, glutamate, and uracil in the rumen, and urea and pyroglutamate in plasma. 

Associations of these metabolites and their metabolic pathways further revealed changes in 

complex nutrient utilization pathways induced by the urea nitrogen supplementation. The 

levels of ruminal aspartate and glutamate and the level of plasma urea were closely correlated 

and may help predict nitrogen efficiency in ruminants. The current results should be useful to 

improve understanding of urea nitrogen utilization mechanisms in dairy cows. 
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Appendix data not included in the paper 

Milk production and milk composition analysis 

Milk production was recorded and milk samples were collected on d 17, 18, and 19 of each 

experimental period. Two 50-mL aliquots of milk were collected during each milking, and 

these were pooled in a proportion of 4:3:3 (Zhu et al., 2013). To one subsample, Bronopol 

(milk preservative, D&F Control Systems, San Ramon, CA) was added as a preservative, and 

this subsample was then stored at 4°C for future analysis of milk composition by infrared 

analysis (Laporte and Paquin, 1999) with a Foss-Milkoscan Minor (MilkoScan FT120, Foss 

Electric A/S, Hillerød, Denmark). 

The milk production and composition of dairy cows were analyzed using the SAS mixed 

procedure (SAS Institute, Inc, Cary, NC, USA) as shown in the following equation: Yijkl =μ + 

ti + bk + c(b)jk + pl + eijkl, where Yijkl is the observation on cow j with treatment i, order of 

treatment k and period l; μ is the overall mean; ti is the fixed effect of treatment i; bk is the 

effect of order k of applying treatments; c(b)jk is the random effect of cow j within order k; pl 

is the effect of period l; and eijkl is the random error. Differences were declared significant at 

P < 0.05. 

Table 14 Milk production and composition of cows fed Ctrl or Urea diet. 

Item 
Treatments 

SEM 
P 

Ctrl Urea Trt Period Trt*Period 

Milk yield 

(kg/day) 
33.84 31.78 2.877  0.6171 0.9516 0.1671 

Composition, % 
      

Protein  3.06 3.17 0.047 0.14 0.69 0.02 

Fat  3.73 4.02 0.209 0.35 0.29 0.59 

Lactose 4.87 4.87 0.020 0.73 0.49 <0.01 

Solids  11.57 11.93 0.203 0.23 0.42  0.23 

NFS 8.17 8.20 0.043 0.54 0.30 <0.01 

Urea nitrogen  

(mg/dl) 
14.84 

b
 18.80

a
 0.367 <0.01 0.29 0.72 

a,b 
Different letters in the same row indicate statistically significant differences for treatment 

effect at P < 0.05.  
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CHAPTER VI GENERAL DISCUSSION, CONCLUSIONS 

AND PERSPECTIVES  
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1. General discussion 

1.1. Summary of the thesis 

The research undertaken in this thesis investigated the rumen urea-degrading bacterial 

communities and urea metabolism in dairy cows. Firstly, research progresses in ruminal 

ureolytic bacterial community, urea utilization and regulation in ruminants have been 

summarized. Secondly, we found out the rumen abundant ureolytic bacterial community by 

using an in vitro cultivating method. Thirdly, we discovered the diversity and distribution of 

the ureolytic bacteria in rumen and got information about the rumen predominant ureC genes. 

Then, we also revealed the rumen and plasma metabolite profiles changes induced by urea 

nitrogen. Finally, main conclusions obtained from previous chapters as well as future 

perspectives of research are summarized. The findings of this current research provide 

foundations for proposing further new strategies to improve efficiency of urea utilization in 

ruminants.  

1.2. Investigation of the rumen ureolytic bacterial communities 

The rumen is a complex ecosystem, where microorganisms convert feedstuffs into 

microbial biomass and fermentation end products that can be utilized by host animals. Three 

taxonomic groups of microorganisms, bacteria, protozoa, and fungi, carry out this digestion 

process in the rumen. An improved understanding of rumen microbial ecology can give 

insights into the fermentation processes in the rumen and provide knowledge to increase 

animal feed efficiency. In the early days, culture-dependent microbiological methods have 

been used to isolate and characterize the functional rumen microbes. More than 200 bacterial 

species have been isolated and characterized physiologically from the rumen (Russell and 

Hespell, 1981). However, due to the difficulty in cultivating the rumen bacteria, only very 

limited information were known about these bacteria. In recent years, the molecular 

techniques and the newly available “omic” technologies, based on DNA and RNA sequence 

analysis, which allow for new insights into the structure and functions of these complex 

microbial communities (Chaucheyras-Durand and Ossa, 2014). In this research, we applied 

DNA sequencing methods to discover what kind of ureolytic bacteria are there in the rumen. 

Indeed, in order to see what kind of ureolytic bacteria were active there, we also extracted the 

rumen bacteria RNA and did the reverse transcription. However, we failed to amplify the 

ureC of the rumen bacteria. Previously, Dai et al. (2015) successfully used the 

metatranscriptomic to analyses plant cell wall polysaccharide degradation by microorganisms 
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in the cow rumen. The difference of their study from ours is that they did sequencing of the 

whole rumen bacterial community, and we just focused on the bacterial ureC genes. We think 

the main reason for our fail is that the rumen habitats millions of bacteria, in our study, we 

just want to amplify the ureC genes which only take a very small proportion of the rumen 

microorganism,  

1.3. Analysis of ureolytic bacterial based on 16S rRNA gene sequencing 

The bacterial 16S rRNA gene sequencing has been widely used to evaluate the genetic 

diversity and phylogenetic relationships of microorganisms in different ecosystems. In 

chapter III, we used the rumen fermentation system to study the rumen bacterial composition. 

A lot of previous studies have also investigated the rumen microbial diversity by using the 

DGGE or sequencing in vitro (Mamuad et al., 2014; Soriano et al., 2014; Kim et al., 2016; 

Saminathan et al., 2016), which indicating that it was an effective method to study the rumen 

microorganism using in vitro system. In our study, we first tracked the ammonia production 

and urea hydrolysis in the fermenters. When doing the statistical analysis, the measurements 

obtained from the same cow at different sampling days were treated as a repeated measure. 

We found the sampling days had no significant effect on any of the variables in this study, 

and finally removed it from the model. We found that when urea was put into the fermenters, 

the ammonia production increased especially in the first two hours; on the other hand, the 

urea hydrolysis slowed down when AHA was put into the fermenters, we think this is a good 

model for us to study the rumen ureolytic bacteria community.  

The 16S rRNA gene sequencing was used to explore the abundant ureolytic bacteria. At 

the family level, the bacterial community from our in vitro simulation system was found to be 

similar to the communities observed from previous in vivo studies. The composition of 

bacterial community in urea treated groups showed a trend of difference from those in non-

urea treated groups. In this study, we have four replicates for each group, and more samples 

would be very helpful to getter a better pattern of this tendency. While, the abundance of 

certain bacterial communities was affected by urea and AHA supplementation, and we paid 

more attention to analysis these changed bacteria communities. The potential ureolytic 

bacteria were selected using the criterion that their abundance increased with urea treatment 

and decreased with AHA treatment. Furthermore, we tested the changed bacteria induced by 

urea whether they had urease genes and activities according to the publication or database. 

We kept the bacteria with urease genes and activity as the abundant ureolytic bacteria. So the 
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bacteria from the selected genera not only contain the urease genes, but also the urease 

activity. 

1.4. Analysis of ureolytic bacterial based on ureC gene classification  

The functional gene analysis has been used for the taxonomic classification of the 

functional bacteria (Xu et al., 2011; Tourna et al., 2014; Wilkins et al., 2015). Ureases 

synthesized by ureolytic bacteria are commonly composed of two or three subunits (ureA, 

ureB, and ureC) and the ureC subunit is the largest of the genes encoding urease functional 

subunits (Mobley et al., 1995). Primers for ureC gene have been designed and applied for 

analysis of the urea-degrading microorganisms in various environments, including the open 

ocean (Collier et al., 2009), sponges (Su et al., 2013), and soil (Singh et al., 2009). These 

studies were all taken using the clone libraries and only provided relatively limited 

information. For the rumen, we have also previously studied rumen ureolytic bacteria using a 

urease gene clone library (Zhao et al., 2015). In chapter IV, we also used the ureC gene for 

amplification, but some primers do exist for ureA and ureB, although most of these are 

designed for detecting the presence of H. pylori (Lopez et al., 1993). So new primers would 

need to be designed and tested for their specificity/broadness. Most environmental studies 

published to date have all used the ureC gene as a biomarker for detecting ureolytic species. 

It is likely that you would see some change in diversity if you used another marker gene, but 

the same is also likely if a different region of the ureC gene was used too, just like with the 

16S rRNA gene. Although PCR methods suffer from this limitation the comparison and 

changes in diversity between sample sites is still valid as long as one remembers that they 

may have missed speices. 

In this in vivo study, for each cow, a total of 180 g urea/daily was used. Based on the 

previous studies, a more reasonable recommendation for feeding urea to dairy cows is 135 

g/animal daily that without ration intake reduction. Some studies also tried with urea 

supplementation exceeded by far the 135-g level, though urea couldn’t be efficiently used or 

(Bartley et al., 1976; Huber and Kung, 1981). Helmer et al. (1970) have investigated feeding 

cows with urea versus the Starea (an intimate mixture of gelatinized starch and urea) and 

soybean meal diets on production of dairy cows. The urea content was 2.1% in the Starea-

containing diet and was 2.8% in the urea-containing diet, resulting in 269 and 213 g of daily 

urea intake, respectively. Although cows consumed more urea with Starea, there were 

numerical declines in both intake and milk production for Starea compared with soybean 



 

 

119 

 

meal. For our study, we pained more attention on the ureolytic bacteria, and urea is an 

important substrate for the growth of these bacteria. The reason for choose this large amount 

of urea is that we want to see the obvious effect of urea on the rumen bacterial community 

and urea metabolism, and thus build a rumen effective model for study the rumen ureolytic 

bacteria and urea utilization. We used 180 g urea daily per cow, the total urea was separated 

into three parts (70, 55, and 55 g for morning, afternoon, and evening feeding, respectively) 

to let the cows adapt to the urea supplementation gradually and avoid poisoning. 

First, we detected some parameters related to urea metabolism in the rumen. The 

measurements obtained from the same cow at different sampling days were treated as a 

repeated measure. We found the sampling days had no significant effect on any of the 

variables in this study. We also analyzed the animal effect on the variables and found that it’s 

not significant. The ammonia production increased with urea supplementation at 2 and 4 

hours after morning feeding. Urea concentration and urease activities showed no obvious 

difference between urea treated or non-urea treated groups, but both group showed the 

highest urease activities at 2 hours after morning feeding. The samples collected at 2 h after 

morning feeding were chosen for DNA extraction, because the urea hydrolysis rate is 

observed to be the highest at this time and is therefore likely to capture the majority of 

ureolytic bacteria. For our study, the peak NH3 was observed at 2 h after morning feeding in 

the Urea group. Because we didn’t detected NH3-N between 0h and 2h after morning feeding, 

maybe the real peak NH3 concentration occurred before 2 h after morning feeding. While in 

the Ctrl group, we didn’t see the increase in NH3-N after the morning feeding, one reason 

might be that after feeding 2h, the feed nutrients were digested by the rumen bacteria and the 

rumen bacteria fermentation produced adequate available nitrogen and fermentable 

carbohydrates for microbial protein synthesis. So, in our study, maybe the synchronization of 

available N and fermentable organic matter make it more efficiency for NH3-N utilization 

(Henning et al., 1993). 

Another important work we have done was the urease gene database generated from 

bacterial and archaeal ureC gene sequences with taxonomic assignment data which were 

downloaded from NCBI. The genes were aligned and manually edited using ARB software. 

This newly constructed urease gene database make the alignment of the acquired rumen 

bacterial urease gene sequences possible. But in our experiment, about 55% of the total 

sequences could not be confidently classified to any known phylum, one important reason is 

that the urease sequence information we use to construct the urease gene database are still 
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very limited. As more genomes from classified microbial isolates are sequenced and placed in 

the database, more taxonomic classification of environmental sequences will be acquired. As 

we have already known much more information about the 16S rRNA genes of the rumen 

bacteria, we may also try to do the metagenomics analysis of the whole rumen bacteria. By 

assembling the sequences from one single bacterial species, we may link the ureC genes with 

the 16S rRNA genes that already have the taxonomic information, and get more information 

about the rumen ureolytic bacteria. 

1.5. Distinct ureolytic bacterial community in different rumen niches 

Recent studies of the rumen epithelial microbiome using next generation sequencing have 

demonstrated in different ruminant species that the predominant populations (Firmicutes, 

Proteobacteria, Bacteroidetes, Actinobacteria) of bacteria adhered to the wall are different 

from the luminal microorganisms (Chen et al., 2011; Petri et al., 2013; Jiao et al., 2015; Liu 

et al., 2016). Similar to 16S rDNA based studies, in this study, the composition of ureC genes 

from the rumen wall was distinct from the solid and liquid fractions, and the predominant 

classified ureC genes associated with the wall-adherent bacteria belonged to the 

Proteobacteria phylum. The distinct ureolytic bacterial community composition on the 

rumen wall may be related to its habitat and function of the rumen epithelium. Several 

mechanisms have been proposed that influence the movement of urea across the rumen wall 

and it is thought that ureolytic bacteria attached to the rumen epithelium facilitate this process 

(Wallace, 1979; Cheng and Costerton, 1980). Ruminal urease activity is likely a major 

modulator of urea transfer by producing a urea gradient into the rumen (Abdoun et al., 2006). 

Urea transporters also appear to facilitate movement of urea across the ruminant 

gastrointestinal tract (Stewart and Smith, 2005). Some bacteria attached to the rumen wall 

have distinctive metabolic activities such as urea metabolism, tissue recycling, and oxygen 

consumption (McCowan et al., 1978; Mead and Jones, 1981; Cheng and McAllister, 1997). It 

is likely that the tissue-adherent bacteria are more intimately associated with the metabolic 

activity of the host while the luminal bacteria are involved directly in fermentation of plant 

material (McCowan et al., 1980). The rumen epithelium adherent bacteria could have a 

significant impact on host health and should be included as members of core rumen 

microbiome.  

So from our results, we could also hypothesize that ureolytic bacteria adherent with the 

wall of the rumen may specialized for breakdown recycled urea, and other populations 
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associated with the liquid and solid contents of the rumen are specialized for breakdown feed 

urea. In our current study, we used the diets containing 16% CP and this maybe one of the 

reason why urea supplementation had no significant effect on the diversity and distribution of 

the ureC genes. The rumen harbors a large diversity of ureolytic bacteria but mechanisms 

controlling urease synthesis and the impact of urea hydrolysis on the growth of these bacteria 

need further research. 

1.6. Urea supplementation induced changes in rumen and host metabolic profiles 

Metabolomics is the now well-established scientific field concerned with the study of 

naturally-occurring, low molecular weight organic metabolites within a cell, tissue or  

biofluid, and it may provide more accurate information regarding the physiological state of 

the microbiome or the host organism (Bundy et al., 2008; Lindon and Nicholson, 2008). As 

one of metabolomics techniques, 1H-NMR is a non-invasive technology that allows sample 

testing with good objectivity and reproducibility (Taylor et al., 2002). In addition, 1H NMR 

is also considered as a faster method than GC-MS and LC-MS (Tikunov et al., 2010). NMR-

based metabolomic approach has been widely used to analyze various samples including 

blood, urine and tissue extracts from humans or other mammals (Benahmed et al., 2014; 

Duarte et al., 2014; Pinto et al., 2015). Recently, metabolomics methods are used to 

investigate the metabolites of rumen fluids (Mao et al., 2016; Zhao et al., 2014), plasma (Sun 

et al., 2014; Li and C., 2015), and milk (Sundekilde et al., 2013; Sun et al., 2015) in dairy 

cows. 

In chapter V of this study, metabolites in the rumen fluid and plasma, were assessed using 

NMR spectroscopy, and metabolites and metabolic pathways changes that induced by urea 

nitrogen were identified. In the rumen, NH3 assimilation is an important process for microbial 

protein synthesis (Firkins et al., 2007); Urea supplementation increased the ruminal 

concentrations of glutamate and aspartate which are important metabolites in the process of 

NH3 assimilation in the rumen (Wang and Tan, 2013). The NH3 released by the hydrolysis of 

urea is utilized for the synthesis of the amino acids by most bacteria for growth (Patra, 2015). 

In the present study, urea nitrogen provided additional substrate for NH3 assimilation, and the 

higher aspartate and glutamate concentrations may be due to upregulation of the ammonia 

assimilation pathways. Besides, urea supplementation also increased the concentration of 

nucleic acid components (uracil and hypoxanthine) in the rumen fluid. Uracil is one of the 

key pyrimidine metabolites, and changes in uracil can reflect perturbations in flux through the 
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urea cycle and the formation of alternative nitrogen-carrying metabolites (Wendler et al., 

1983). Related to these changed metabolites, metabolic pathways including pantothenate and 

CoA biosynthesis, beta-alanine metabolism, valine, leucine, and isoleucine metabolism in the 

rumen. So, urea supplementation increased the concentration of several amino acids and 

derivatives, and nucleic acid components in the rumen. This also may be explained by urea 

supplementation provided adequate nitrogen for rumen bacterial fermentation, the 

synchronization of available N and fermentable organic matter make it more efficiency for 

bacterial utilization of the nutrients and thus biomass accumulation. The enhancement of 

these metabolic pathways is a consequence of the rumen microbial metabolism changes 

induced by urea nitrogen. 

We used blood metabolites to reflect the host metabolism. Blood profiles have frequently 

been used to assess nutrient status of cows (Puppel and Kuczynska, 2016). Blood is 

commonly either sampled as plasma or as serum. Advantages of plasma over serum are quick 

processing, higher yield, lower risk of haemolysis and thrombocytolysis, and virtually no 

interference from post centrifugal coagulation that can occur in serum. The blood plasma has 

been used for metabolomics analysis in the description of pathological diseases, discovery of 

novel biomarkers, and elucidation of metabolic regulatory pathways (Li and C., 2015; Pinto 

et al., 2015). In our study, we detected the blood plasma to see the host metabolite profiles 

changes induced by urea supplementation to dairy cows. We found that the glutathione 

metabolism was enhanced. Liver is the major source of glutathione synthesis and then 

glutathione is exported to the bloodstream for supply of other tissues, Acute and chronic 

hyperammonemia may lead to oxidative stress (Bionaz and Loor, 2007). Several previous 

studies proved that glutathione concentration was decreased under hyperammonemia 

situations (Bonnet et al., 2013; Connor et al., 2013). Abdoun et al. (2005) found that blood 

glutathione concentrations were depleted in the acute ammonium poisoned lambs, which 

indicating enhanced glutathione metabolism. One of the important functions for glutathione is 

to protect the cell against toxic compounds of endogenous and exogenous origin. So in our 

study, increased glutathione metabolism in the urea group may contribute to protection 

against the negative effects of toxic NH3 transferred from rumen to blood. 

We also analyzed the milk production and milk composition during the experimental 

period. We found that there is no obvious difference in milk yield or milk protein content 

between the urea and non-urea groups. But the milk urea-nitrogen concentration was 

significantly higher in the urea group than the non-urea group. The concentrations of urea in 
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milk and blood are closely associated in lactating cows (Broderick and Clayton, 1997). In our 

study, we have observed a higher urea nitrogen concentration in the urea treated group, which 

lead to increased urea transfer to the milk. Milk urea nitrogen has proven to be more closely 

associated with changes in dietary CP content and could serve as a biomarker of protein 

intake relative to requirements in lactating dairy cows (Nousiainen et al., 2004). In our study, 

the crude protein content in the basal diet is 16.67% (DM based), which may have provided 

adequate ammonia, amino acid, or peptide for the synthesis of microbial protein  (Agle et al., 

2010; Recktenwald et al., 2014). So, adding the extra non-protein nitrogen lead to redundant 

ammonia transfer to the blood and subsequent urea excretion to the milk. 

1.7. Opportunities for regulating urea hydrolysis targeting the bacterial urease 

For ruminants, reducing the rate of rumen urea hydrolysis is of great importance for 

improving urea utilization and minimizing ammonia wastage. Some strategys such as urea 

inhibitors and some new forms of urea have been developed to slow ammonia release in the 

rumen (Upadhyay, 2012; Cherdthong and Wanapat, 2013; Giallongo et al., 2015). However, 

the rumen microbe maybe adapt to chronic chemical inhibitors utilization have some 

potential  unhealthy effects to the ruminants. Host immunization commonly offers a diverse 

and ecofriendly solution to the problems especially associated with animal health. Therefore, 

developing vaccines against bacterial urease appears to be an alternative and attractive 

approach to reduce urea hydrolysis. Researchers have tried immunization strategies to reduce 

the methane emissions, urease activities, lactic acidosis, and rumen protozoal numbers in 

ruminants (Glimp and Tillman, 1965; Shu et al., 1999; Wright et al., 2004; Williams et al., 

2008). Immunization against urease has been postulated to reduce urease activity in the 

gastrointestinal tract and is associated with decreased production and re-absorption of 

ammonia from the gut. In the early days, Jackbean urease is the most widely used member of 

the urease family in biotechnology. A reduction in urease activity has been reported in the 

rumen and in the ileum and colon of jackbean urease immunized sheep (Sidhu et al., 1968; 

Sidhu et al., 1969). A reduced rumen ammonia concentration has also been reported in 

buffalo calves immunized against Jackbean urease and fed a diet containing urea (Sahota and 

Jethi, 1981). Marini et al. (2003) had tried to determine if nitrogen metabolism could be 

manipulated by jackbean urease immunization, but they were unable to detect any effect on 

urease activity of the gastrointestinal tract or nitrogen utilization using either conventional 

nitrogen balance or double-labeled urea infusion. Therefore, in ruminants, the effect of 

jackbean urease immunization for reducing urease activities is not efficient. This could be 
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due to a lack of homology between jackbean urease and bacterial urease. It will be more 

effective to reduce the rumen urease activity if we could immunize bacterial ureases which 

have higher identity of homology.  

Previously, our team have tried to reveal the bacterial urease profiles using a ureC gene 

clong library, and found that most of the alpha subunit of urease proteins were with higher 

similarity to that of Helicobacter pylori. We further developed the vaccine based on ureC of 

H. pylori and immuned the cows, it proved to be a useful approach to reduce the urea 

hydrolysis in the rumen (Zhao et al., 2015). But using clone library, we also only got very 

limited information. In this study, by using high-through put sequencing, we have acquired 

large amount of information about the bacterial ureC gene which is the largest subunit of the 

urease functional genes. The rumen bacterial ureC gene OTUs with top 50 highest abundance 

from different rumen fractions were identified, and this is very useful for us to know more 

information about the bacterial urease genes and is an important step to obtain the regulatory 

targets to mitigate urea hydrolysis.  

Genome walking is a method for determining the DNA sequence of unknown genomic 

regions flanking a region of known DNA sequence (Guo and Xiong, 2006). This is 

traditionally a PCR-based protocol. The power of genome walking is that it enables PCR 

amplification, and hence sequencing, of regions of DNA where only the sense or the 

antisense primer sequence is known. Genome Walking has been successfully utilized in a 

wide range of plants, animals, fungi, bacteria, and viral strains for both genomic and 

organellar/plastid genome analysis (Shapter and Waters, 2014). A number of PCR-based 

methods have been developed to define flanking sequences from known genomic loci. 

Thermal asymmetric interlaced (TAIL)-PCR is an effective method for isolation of unknown 

DNA sequences flanked by known sequences. With the advantages of simplicity and high 

efficiency, TAIL-PCR and its modified procedures have been widely used in a variety of 

biological research in various organisms (Liu and Chen, 2007). In a previous research of 

Yuan et al. (2012), they had identified lots of unique fragments of polygalacturonase and 

pectate lyase genes from microbial DNA in the rumen of a Small Tail Han sheep, and 66% of 

the sequences of these fragments had low identities (65%) with known sequences. Two full-

length newly discovered pectate lyase genes were cloned from the microbial genomic DNA 

by degenerate PCR and TAIL-PCR with twelve nested insertion-specific primers and the 

reagents of a Genome Walking kit. Therefore, according to the rumen predominant ureC 
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genes acquired in this study, we also want to clone the full-length urease functional gene 

information by employing the TAIL-PCR and Genome Walking.  

After we got the information about the full-length urease structure genes, we want to clone 

them into special vectors and we also need to do some work for expression of the urease. 

After that, specific and effective urease subunit DNA vaccine could be constructed based on 

these target rumen urease genes, and the ruminal urease activity could be reduced by 

immunization with these vaccines. This study provided a basis for acquiring the probable 

vaccine targets of urease in the rumen for regulating rumen bacterial urease activities. 

2. Conclusions 

The main conclusions drawn from this thesis are: 

Urea and acetohydroxamic acid (AHA) were used as the stimulator or inhibitor for 

ureolytic bacteria respectively. Based on bacterial 16S rRNA genes sequencing and analysis, 

the rumen ureolytic bacteria were abundant in the genera including Pseudomonas, 

Streptococcus, Haemophilus, Bacillus, Neisseria, Actinomyces and unclassified 

Succinivibrionaceae. 

The diversity and distribution of the rumen ureolytic bacteria were analyzed by urease 

gene classification. More than 55% of the rumen bacterial ureC sequences did not affiliate 

with any known urease genes and the rumen may contain newly undiscovered sources of 

urease genes. The bacterial urease gene profile from the rumen wall was distinctly different 

from the rumen contents and ureC genes from Methylophilus and Marinobacter were 

identified predominantly in the rumen wall fraction.  

Urea supplementation increased concentrations of valine, aspartate, glutamate, and uracil 

in the rumen, and urea and pyroglutamate in the plasma. Metabolic pathways including 

pantothenate and CoA biosynthesis, beta-alanine metabolism, valine, leucine, and isoleucine 

metabolism in the rumen, and urea and glutathione metabolism in the plasma were 

significantly increased by urea nitrogen. 

This study identified significant populations of ureolytic bacterial community that have not 

been recognized or studied previously in the rumen, and provides a basis for obtaining 

vaccine targets of urease in the rumen for regulating rumen bacterial urease activities, and 

then moderate urea hydrolysis and utilization. The findings also provided novel information 

to aid understanding of the metabolic pathways affected by urea nitrogen in dairy cows, and 



 

 

126 

 

could potentially help to guide efforts directed at improving the efficiency of urea utilization 

in the rumen. 

3. Perspective 

Our research achieved some new information about the rumen ureolytic bacterial community 

and urea metabolism in cattle, and this is a good exploration for the rumen bacterial 

community and its metabolism in ruminants. Though, previous research, especially the 

research conducted in the past two decades, has greatly advanced our knowledge of rumen 

microbiome and its functions and allowed some success of manipulation. Such as strategies 

for methane mitigation from ruminants, our increased knowledge about the methanogenic 

community has permitted the development of mitigation strategies to target the dominant 

methanogenic species successfully. However, due to the vast diversity, extreme complexity, 

functional redundancy of this complex system, the majority of the rumen microbes remain to 

be understood and their metabolism as well as functions to be elucidated. Before the rumen 

system is adequately understood, it will be challenging to rational and effective manipulate 

urea hydrolysis by targeting the ureolytic bacteria. The rapid advancement of “~omics” 

technologies, including metagenomics, metatranscriptomics, metaproteomics, metabolomics, 

and bioinformatics will provide the unprecedented opportunities to disentangle the complex 

relationships between feed and rumen microbiome, rumen microbiome and its function, 

rumen function and host metabolism. Therefore, a holistic approach incorporating nutrition, 

rumen microbiome, and host metabolism is needed in future research. 
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