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Abstract: Properties of (N = Z) nuclear matter are investigated through a Brueckner method using the
Paris potential for two special configurations, one when all spins are pointing in the same direction,
the other when neutron spins are pointing upward and proton spins downward. The results of the
calculations are used to evaluate the energy of the isoscalar giant spin dipole vibrations and the
value of the spin-spin part of the nucleon-nucleus optical-model potential.

1. Intreduction

The properties of ordinary (spin and isospin) symmetric nuclear matter are fairly
well understood both in nonrelativistic *?) and in relativistic approaches ™),
although the physical picture of the underlying one-particle fields are quite different.
Nor are the fine details of the saturation mechanism the same in both cases. In the
nonrelativistic approaches the lack of saturation when only two-body forces are
introduced is corrected by the introduction of three-body forces. In the relativistic
approaches, the extra saturation is provided by the introduction of a negative-energy
component of the Dirac spinors. It is not yet clear whether these two effects are
completely disconnected or not. The isospin-asymmetric and isospin-saturated
(neutron) matter is equally well described in both approaches, as indicated by recent
works 7).

Here, we want to investigate the properties of spin-asymmetric matter. This is the
first approach to this system, except for a rather old work (see below). As in our
previous work ’), we will mainly concentrate on the spin saturated matter (all spins
pointing in the same direction), since the usual properties are expected to depend
linearly or quadratically on the spin asymmetry, as this seems to be the case for
isospin asymmetric matter °). Not very much attention has been paid to the spin
degrees of freedom because of the lack of experimental probes. The spin-asymmetry
energy is believed to be related to the spin giant resonances, in close analogy with
the connection which exists between the (isospin) asymmetry energy and the energy
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of the electric giant dipole resonances. So far, there are very scarce measurements,
if any, of the spin resonances (see below). Another quantity which can be related
to the spin degrees of freedom is the spin-spin part of the optical potential, which
has been determined, rather badly, in some cases. Another motivation for our work
is the possibility that this state of nucleon matter might be described quite differently
by relativistic and nonrelativistic approaches, as the Dirac equation is often opposed
to the Schrodinger equation when nuclear spin degrees of freedom are at work ®).
Let us notice that relativistic approaches to this topic do not exist up to now.

We thus here extend our previous works >’) by applying our Brueckner approach
to this state of nucleon matter. For completeness, we also investigate another
configuration in which all neutrons are pointing their spin upward whereas protons
are pointing in the opposite direction (with equal number of neutrons and protons).
The latter is depicted in fig. 1, which also establishes our vocabulary. (We will also
use “phase” instead of “matter”.) Systems very similar to our spin-isospin matter
have been discussed rather extensively, in connection with pion condensation.
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Fig. 1. Schematicrepresentations of nuclear matter (a), of neutron matter (b) and of the two configurations
calculated here (with equal nucleon density). See text for detail.

This paper is organized as follows. In sect. 2, we briefly establish our notation
and present our results. In sect. 3, we discuss the connection with available experi-
mental indications and the possible modification of the effective interactions when
going from one phase to the other. Sect. 4 contains our conclusion.



J. Cugnon et al. | Spin-polarized nuclear matter 273

2. Spin and spin-isospin saturated matter

2.1. THEORETICAL BACKGROUND

We are basically interested in a uniform medium of density p, with particles
occupying level of momentum k with probability n(k):
&’k

p:vJQ—an(k)’ (2.1)

where v is the degeneracy (4 for nuclear matter, 2 for the two phases studied below).
In the Brueckner approach, the central quantity is the g-matrix defined as

g=v+v§-g (2.2)

where v is the two-body potential [see ref.”) for details]. Here we used the Paris
potential. The binding energy per particle can then be expressed as a perturbation
series in terms of the g-matrix. As usual, we will limit ourselves to the first-order

expression
U &k Kk’
—= ——n(k +3U((k .
,4”j@ﬂ”(%2m 2<ﬁ, (23)
where U(k) is the one-particle mean field
K’ ~
U(k)=v | — n(k')(kk'|g|kk") . (2.4)
(2m)

The latter is a complex quantity above the Fermi level at zero temperature. In the
present work, we will restrict ourselves to this case, for which one has n(k)=1if
k < kg, the Fermi momentum and n(k)=0 otherwise.

2.2. RESULTS

The binding energy per particle of the spin and spin-isospin matter is shown in
fig. 2, in comparison with the one of two other (nuclear matter and neutron matter)
phases. For each of these phases, the conventional three-body forces of refs. 1011y
is included. As explained in ref. ?), this is not sufficient to ensure proper saturation
in nuclear matter. The latter requires a small phenomenological additional three-
body force, as in variational calculations '). Since here we are basically interested
in differences between various phases, this feature is rather unimportant for our
purpose.

The remarkable result is that spin matter behaves very much like neutron matter.
Similarly to the latter case, we may define a spin-asymmetry energy E,(p). Let y be
the spin asymmetry for a general (otherwise isospin symmetric, N = Z) matter:

_N-NWA)

PENDENG 23
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Fig. 2. Binding energy of the four phases of nucleon matter discussed in this work. For nuclear matter,

the full curve represents the result of a calculation, using two-body force and usual microscopically

calculated three-body forces. The dashed double dotted curve is obtained by adding a purely phenomeno-
fogical additional three-body force [see ref.?) for discussion].

For such a system the energy per particle is expected to follow a quadratic law (as
for the isospin-asymmetric matter ')

U U
— =—{(p,0)+ E 2. 2.6
2 () =" (0, )+ E(p)y (2.6)
Of course, in this case,
U U
E == 1)——(p,0 2.7
(p)==(p,1) A(p, ) (2.7)

where y =1 corresponds to the spin-saturated matter. The value of E(p) is given
in fig. 3, as well as the contribution which comes from the kinetic energy alone. The
ordinary (isospin) asymmetry energy Er calculated in the same conditions’) is
shown for comparison.

The binding energy of the spin-isospin matter is given in fig. 2. We recall that
this phase is composed by half of neutrons with spin up and by half of protons
with spin down. Its behaviour is strikingly different from that of the spin- and
neutron matter. We predict that nuclear matter is globally unstable when p=2.5p,,
when the spin-isospin phase has a lower energy. However, if one calculates the
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Fig. 3. Spin-symmetry energy Es(p) (eq. (2.6), full curve) of nuclear matter and its kinetic-energy
contribution (short dashes). The isospin-symmetry energy E-(p) (long dashes) is shown for comparison.

sound velocity in the latter phase, one observes that it becomes imaginary when
p=0.25fm™. For these densities, the spin-isospin matter could nevertheless exist
with a non-uniform density pattern (liquid crystal), owing to anharmonicities, with
a lower energy.

2.3. SINGLE-PARTICLE POTENTIAL

For spin-asymmetric ( N = Z) matter, the single-particle potential U(k) felt by a
travelling nucleon (of momentum k) should depend upon the projection s, (=3%0.)
of its spin along a given direction and upon the polarisation degree y (eq. (2.5))
of the matter. In close analogy with the isospin case ’) and with the Lane model 7°),
we write

Uk, v) = Us(k) +30yU, (k) . (2.8)

For the spin-isospin asymmetry, we may define the following polarisation degree
as

_ N(nl+pl)- N(nl+p})
N(nt+pl)+N(nl+p)

(2.9)

This quantity is equal to zero for nuclear matter and to one for the spin-isospin
phase. Let { be equal to +1 if the nucleon is either (n?) or (p}) and —1if it is (nl)
or {p?). In matter with an equal number of neutrons and protons and an equal
number of spins pointing upward or downward, the single-particle potential felt by
a nucleon can be written as

Uk, 8)= Uy(k)+128U,.(k) . (2.10)
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In expressions (2.8) and (2.10), U, is the single-particle potential corresponding to
nuclear matter. The latter and the single-particle potentials for spin matter U{k, v =
1) and for spin-isospin matter U(k, § =1) are given in fig. 4. Inside the Fermi sea,
one has roughly (for p=p,) U, =160 MeV and U,, =80 MeV. Our value for U,
(and U,) qualitatively agrees with the prediction of refs.'>'¥), but we obtain a
somehow smaller value for U,,. This may be due to the better description of the
tensor force in the Paris potential.

3. Discussion

3.1. SPIN-SYMMETRY ENERGY

In a hydrodynamical model for collective motion '>'®), the energy Esgg of the
spin giant resonance (A4S =1, T=0) in nuclei, which is then viewed as oscillations
of nucleons with spin up against nucleons with spin down, can be related to the
spin-symmetry energy E.(p,). Using our prediction for the latter, one has

Esgr=T4A > MeV , (3.1)

which, of course, is very close to the giant electric dipole (A8 =0, AT = 1) resonance.
The giant spin vibration seems to have been seen in some pion-induced reactions '),
but will be studied much better with polarized beams and polarimeter detectors '%).
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Fig. 4. Single-particle potential U(k) (eq. (2.3)) for three different phases.
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3.2. EFFECTIVE INTERACTIONS IN VARIOUS PHASES

The asymmetry energy E, (as well as E) is the sum of two contributions, one
coming from the kinetic energy, E{™, and the other coming from the interaction
energy, E{™. Evidently, if the interaction was both spin- and isospin-independent,
one would have E r=E{™. As shown by fig. 3, EX™ is quite smaller than E..
Therefore, the interactions play an important role in the spin-asymmetry energy.
The approximate equality E.=~ Er, is thus fortuitous and depends from the detail
of the nucleon-nucleon interaction.

One may wonder whether the effective interaction is changing with the spin-
asymmetry parameter y or with the isospin counter part 8 = (N — Z)/A. The answer
to this question is contained in fig. 5, which shows the contribution to the binding
energy of various channels. Clearly when going from nuclear matter to spin matter,
the effective interaction is drastically changed in two particular channels, namely
the S, and the °D, channels, at least for p= p,. Up to this value, the effective
interaction does not change importantly when going from nuclear matter (y =0) to
spin matter {y=1).
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Fig. 5. Contributions to the binding energy (second term in eq. {2.3)) of various channels for three
different phases. See text for detail.

When going from nuclear matter to spin-isospin matter, the effective interaction
is changing in channels 'Sy, °S;, °D; and 'P,. We stress here that the modification
of the effective interaction is solely due to Brueckner-type renormalization, which
changes because of the composition of the phases and the modification of the Fermi
spheres.

The spin-isospin phase we studied here is a kind of pion-condensed phase. It
may be considered as a spin-isospin ordered liquid crystal with an infinitely large
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wavelength. The problem of pion condensation has given rise to a huge amount of
work [see refs. 1%%%) for a review]. In most of the cases, it is studied through the
pion self-energy inside nuclear matter. The general consensus is that pion condensa-
tion should occur at large density (3-5p,), especially due to the reduction of the
one-pion contribution induced by short-range correlations and due to a modification
of the particle-hole interaction as a result of the change of the pion propagator
itself ?'). On the other side, the problem has not received very much attention when
attacked from the point of view of the liquid crystal configurations of nuclear matter.
It is not yet clear whether the two approaches are equivalent. Rather old works **7*%)
have looked to possible spin-isospin orderings. Recently, Bliimel and Dietrich
have looked to spin-isospin ordering in single-particle level occupation in finite
nuclei. They observed that “pion-condensed” states may occur at not very high
energy. Their calculation in infinite matter using effective forces except for pion
exchange can be compared to our calculation (for x =0 in their vocabulary). We
find that for p=p,, the excitation of the spin-isospin phase requires
~3.5MeV - fm >, whereas they found ~1.6 MeV - fm™. This presumably comes
from the readjusted pion exchange in their cases and more importantly from the
lack of medium corrections of the nucleon-nucleon effective forces especially of its
short-range part.

We stress that our calculation, as well as the work of ref. >°), neglects the medium
correction of the effective interaction in the pion-exchange channel, due to the
modification of the pion propagator itself (only changes due to Brueckner renor-
malization are taken into account here). OQur predictions for the onset of instabilities
should then be understood as lower bounds. For p < p,, this medium correction is
however not important, and our results are nevertheless valuable to study the
spin-spin part of the nucleon-nucleus average potential (see next section). They
may also be compared with the recent work of ref. **), which also neglects these
medium corrections interacting spin-isospin ordering at normal nuclear density.

25)

3.3. COMPARISON OF U, WITH EXPERIMENT
In the local-density approximation, the mean field experienced by a nucleon

inside a nucleus can be written as

U=vpr 0. Ty, 82
0 T A lea A
where ¥ is the expectation value of the target spin operator in the ground state.
The quantity D can be written as

=i<§0-0,«7-7i>, (3.3)

where i runs over the nucleons inside the target and where the brackets mean an
average over the ground state. This quantity cannot be written simply in terms of

+U,.D, (3.2)
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separable quantities as the first three terms. In the spin-isospin matter it simply
reduces to 378. It obviously vanishes in isospin-symmetric or spin-symmetric nuclei.
As underlined in ref. '*), the analysis of U, is complicated by the fact that a spin
unsaturated nucleus has also an isospin different from zero. As long as the spin is
concerned, only a valence nucleon in a subshell j is playing a role. Therefore, usual
angular momentum algebra ) tells that if the spin I = j of the nucleus is not changed,
the operator s+ s; can be replaced as

s-s;~>as- I, (3.4)
with
1/2j ifj-_—l-l-%,
a= 1
——  ifj=1-3. 3.5
2+1) iy 2 (3.5)

Usually the phenomenological analyses are done with a restricted form

t- T s I
U=U+U,—+U,—. .
0 TA s A (36)

Therefore, the quantity U, should be identified to
Us=(U, = U,.)a, (3.7)

where the plus sign stands when the incoming nucleon and the valence nucleon are
both protons or both neutrons and the minus sign otherwise. The experimental
determinations of U, are rather scarce >'*?). It seems that no effort has been made
in the last decade. Therefore, we have only at our disposal rather old and uncertain
values of U,,. The uncertainty does not come from the difficulty of the measurements
only. The analysis is blurred by the presence of a possible spin tensor term *%) and
by the compound-nucleus contribution *>**). The data are summarized in table 1,
where we compare with our predictions. The most studied case concerns n+>Co,
for which one has a minus sign in eq. {3.7). The determination of U, appeared to
be quite imprecise and its value (and even its sign) seems to depend very much on
the energy. Using mean values of U, and U,, (over the Fermi sea) we obtain a
positive and rather large U,,. If we take into account the k-dependence of the
potentials U, and if we relate the appropriate value of k to the incoming energy by
standard methods **), we obtain a smaller value, which results from the variation
above the Fermi sea. It seems that in **Co the additional spin effects (coupling with
the surface collective states, compound nucleus contribution, core polarization as
studied in ref. **)) are roughly sufficient to counterbalance the bulk spin-spin effects.
In the other cases in table 1, the comparison is more meaningful, since U, and U,
add to each other. We obtain reasonable agreement in proton scattering on Al
and *°Co. The last case in table 1 is not very clear. In ref. **), the same experimental
value is quoted for Yt and Rb. Since the orbits correspond to j= 1—% and I+3,
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TABLE 1

Value of the quantity Uy, as extracted from experiment for various systems and as predicted in our work*

Energy State
System (MeV) (proton) Us {exp) Uy {th) (MeV)
n+%Co 0.3-1.0 » 47-84
1.0-8.0 (1f7/2) (34-90) [27-29] 103
8-31 11.8[30] 6.3-4.5%
0.39-2.88 2.7 (ref. %))
p+77Al 18 (1ds,,) 7" 24[31] 46
28.8%
p+>°Co 475 (1f,,)7" 4231} 33
20.5%
N { 8yt 5 (2py/2) 124[32] {F77
P Ro (2p/2)”" {¥s2*

* The figures without an asterisk are obtained by using average values on the Fermi seas, while the
asterisk indicates when the k-dependence has been taken into account. The prediction of ref. *¢) is shown
for comparison. The third column gives the state of the valence nucleon.

respectively, one would expect a change of sign. Information at our disposal does
not allow us to judge the fitting procedure of ref. **).

4. Conclusion

We have studied spin and spin-isospin saturated phases of nuclear matter and
compared with our previous calculations of normal and isospin-saturated (neutron)
matter. We stress that, for spin matter, there is only one calculation *) prior to ours,
but ours uses a more modern nucleon-nucleon potential, namely the Paris potential,
and ensures a better self-consistency of the mean field [“continuous” choice, see
ref. ®) for detail]. For the spin-isospin matter, our calculation constitutes a detailed
microscopic approach, with the same features as above, of a possible spin-isospin
ordering of nuclear matiter. However, it neglects the modification of the effective
interaction in the pion-exchange contribution, and thus its validity is probably
limited to nuclear and subnuclear densities.

We found that spin-polarizing nuclear matter requires at least as much energy as
isospin-polarizing it. As a consequence, one expects the AS =1 giant resonances to
lie more or less at the same energy as the AT =1 ones. On the contrary the
spin-isospin phase lies not so high in energy. It is globally unstable at density =2p,,
but it is unstable under density oscillations at densities slightly larger than p,. We
also calculated the spin and spin-isospin parts of the mean field. We compared
with the phenomenological spin-spin interactions in nucleon-nucleus scattering.
Our results agree satisfactorily with experimental data, since the latter are rather
poorly determined.
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Let us finally conclude with a remark. A great debate in nuclear physics is the
necessity of using a relativistic dynamical scheme. It is not yet clear whether the
latter is established. Since spin is intimately related to the Dirac equation, it would
be interesting to know whether Dirac-Brueckner theory gives different results from
ours for spin-saturated matter. The comparison is not yet possible, since the relativis-
tic counterpart of our calculation is still to come.

We would like to thank Dr. J. Treiner for stimulating discussions. We are also
grateful to Dr. B. Bonin for bringing ref. ") to our attention and for an enlightening
discussion.
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