

Computational & Multiscale Mechanics of Materials (CM3), University of Liège, Belgium

A multiscale computational homogenization method based on a hybrid discontinuous Galerkin formulation/ extrinsic cohesive zone model

Van Dung Nguyen^{*}, Ludovic Noels LTAS-CM3, University of Liège, Belgium

(*) vandung.nguyen@ulg.ac.be

CFRAC 2017

Introduction

- Computational homogenization (so-called FE²) for micro-structured materials
 - Representative volume elements (RVE) are extracted from material microstructure
 - Two boundary value problems (BVP) are concurrently solved
 - Macroscale BVP
 - Microscale BVP defined on RVE with an appropriate boundary condition
 - Separation of length scales $L_{\rm macro} \gg L_{\rm RVE} \gg L_{\rm micro}$

Introduction

- FE² for microstructured materials with strain localization at the microscale
 - Homogenized stress/strain behavior involves softening part
 - Scale separation assumption can not be satisfied
 - Homogenized properties are not objective with respect to micro-sample sizes

Introduction

- FE² for microstructured materials with strain localization at the microscale
 - Homogenized stress/strain behavior involves softening part
 - Scale separation assumption can not be satisfied
 - Homogenized properties are not objective with respect to micro-sample sizes

\rightarrow Solution: FE² with enhanced discontinuity

 Macroscale cohesive crack is inserted after onset of microscopic strain localization

(Nguyen V.-P. et al. CMAME 2010, Coenen E. et al. JMPS 2012)

- FE² with enhanced discontinuity based on a hybrid Discontinuous-Galerkin/ Extrinsic cohesive zone model (DG/CZM) formulation
 - Prior to the microscopic strain localization:
 - FE² based on DG formulation (Nguyen V.-D. et al. CMAME 2013)
 - After the onset of microscopic strain localization:
 - FE² based on DG/CZM formulation
 - Cohesive crack is inserted after onset of microscopic localization

Multiscale statement

• DG formulation

• Hybrid DG/CZM formulation

• Numerical examples

Multiscale problem

- Macroscopic boundary value problem
 - Bulk part

$$\begin{cases} \mathbf{P}_M \cdot \boldsymbol{\nabla}_0 + \mathbf{B} = \mathbf{0} \text{ on } B_0 \\ \mathbf{u}_M = \mathbf{u}_M^0 \text{ on } \partial_D B_0 \\ \mathbf{P}_M \cdot \mathbf{N}_M = \mathbf{T}_M^0 \text{ on } \partial_N B_0 \end{cases}$$

– Discontinuity

$$\begin{cases} \llbracket \mathbf{P}_M \rrbracket \cdot \mathbf{N}_M = \mathbf{0} \\ \langle \mathbf{P}_M \rangle \cdot \mathbf{N}_M = \mathbf{T}_M \end{cases} \quad \text{on } \Gamma_0^D \end{cases}$$

Jump operator $\llbracket \bullet \rrbracket = \bullet^+ - \bullet^-$ Mean operator $\langle \bullet \rangle = \frac{1}{2} \left(\bullet^+ + \bullet^- \right)$

 \mathbf{T}_M : cohesive traction

Multiscale problem

- Microscopic boundary value problem
 - Implicit gradient enhanced nonlocal model

$$\begin{cases} \mathbf{P}_m \cdot \boldsymbol{\nabla}_0 = \mathbf{0} \\ \bar{\varphi} - c\Delta \bar{\varphi} = \varphi \end{cases} \quad \text{on } V_0 \end{cases}$$

Microscopic constitutive laws are known

$$\begin{cases} \mathbf{P}_m &= (1-D)\hat{\mathbf{P}}_m \\ D &= D\left(\bar{\varphi}, \mathbf{F}_m, \mathbf{Q}\right) \\ \hat{\mathbf{P}}_m &= \hat{\mathbf{P}}_m\left(\mathbf{F}_m, \mathbf{Q}\right) \end{cases}$$

- c : square of nonlocal length scale
- ${\bf Q}$: internal variable

• Weak form of the macroscopic BVP is obtained by applying integration by parts on each element Ω_0^e

$$\sum_{e} \int_{\Omega_0^e} \left(\mathbf{P}_M \cdot \boldsymbol{\nabla}_0 + \mathbf{B}_0 \right) \cdot \delta \mathbf{u}_M \, dV = 0$$

(Noels L. & Radovitzky R. IJNME 2006)

- Weak form of the macroscopic BVP is obtained by applying integration by parts on each element $\ \Omega_0^e$

$$\sum_{e} \int_{\Omega_{0}^{e}} (\mathbf{P}_{M} \cdot \nabla_{0} + \mathbf{B}_{0}) \cdot \delta \mathbf{u}_{M} \, dV = 0$$

$$\sum_{e} \int_{\Omega_{0}^{e}} -\mathbf{P}_{M} : (\delta \mathbf{u}_{M} \otimes \nabla_{0}) \, dV +$$

$$\sum_{e} \int_{\Omega_{0}^{e}} -\mathbf{P}_{M} : (\delta \mathbf{u}_{M} \otimes \nabla_{0}) \, dV +$$

$$\sum_{e} \int_{\partial\Omega_{0}^{e}} \delta \mathbf{u}_{M} \cdot \mathbf{P}_{M} \cdot \mathbf{N}_{M} \, dA +$$

$$\sum_{e} \int_{\Omega_{0}^{e}} \mathbf{B}_{0} \cdot \delta \mathbf{u}_{M} \, dV = 0$$

$$\begin{cases} \text{Jump operator } \llbracket \bullet \rrbracket = \bullet^{+} - \bullet^{-} \\ \text{Mean operator } \langle \bullet \rangle = \frac{1}{2} (\bullet^{+} + \bullet^{-}) \\ \mathbf{N}_{M} = \mathbf{N}_{M}^{-} \end{cases}$$

$$\partial_{I} B_{0} = \bigcup_{e} \partial\Omega_{0}^{e}$$

(Noels L. & Radovitzky R. IJNME 2006)

- Weak form of the macroscopic BVP is obtained by applying integration by parts on each element $\ \Omega_0^e$

$$\sum_{e} \int_{\Omega_{0}^{e}} (\mathbf{P}_{M} \cdot \nabla_{0} + \mathbf{B}_{0}) \cdot \delta \mathbf{u}_{M} \, dV = 0$$

$$\sum_{e} \int_{\Omega_{0}^{e}} -\mathbf{P}_{M} : (\delta \mathbf{u}_{M} \otimes \nabla_{0}) \, dV +$$

$$\sum_{e} \int_{\partial \Omega_{0}^{e}} -\mathbf{P}_{M} : (\delta \mathbf{u}_{M} \otimes \nabla_{0}) \, dV +$$

$$\sum_{e} \int_{\partial \Omega_{0}^{e}} \delta \mathbf{u}_{M} \cdot \mathbf{P}_{M} \cdot \mathbf{N}_{M} \, dA +$$

$$\sum_{e} \int_{\partial \Omega_{0}^{e}} \delta \mathbf{u}_{M} \cdot \mathbf{P}_{M} \cdot \mathbf{N}_{M} \, dA +$$

$$\sum_{e} \int_{\Omega_{0}^{e}} \mathbf{B}_{0} \cdot \delta \mathbf{u}_{M} \, dV = 0$$

$$\int_{B_{0}} \mathbf{B}_{0} \cdot \delta \mathbf{u}_{M} \, dV = 0$$

$$\int_{B_{0}} \mathbf{P}_{M} : (\delta \mathbf{u}_{M} \otimes \nabla_{0}) \, dV +$$

$$\int_{\partial_{I}B_{0}} \mathbf{B}_{0} \cdot \delta \mathbf{u}_{M} \, dV = 0$$

$$\int_{B_{0}} \mathbf{P}_{M} : (\delta \mathbf{u}_{M} \otimes \nabla_{0}) \, dV +$$

$$\int_{\partial_{I}B_{0}} [\delta \mathbf{u}_{M}] \cdot \langle \mathbf{P}_{M} \rangle \cdot \mathbf{N}_{M} \, dA =$$

$$\partial_{I}B_{0} = \bigcup_{e} \partial \Omega_{0}^{e}$$

$$\int_{B_{0}} \mathbf{B}_{0} \cdot \delta \mathbf{u}_{M} \, dV + \int_{\partial_{N}B_{0}} \mathbf{T}_{M}^{0} \cdot \delta \mathbf{u}_{M} \, dV$$

(Noels L. & Radovitzky R. IJNME 2006)

• Displacement continuity is weakly enforced by DG interface terms

$$\int_{B_0} \mathbf{P}_M : (\delta \mathbf{u}_M \otimes \boldsymbol{\nabla}_0) \ dV + \\ \int_{\partial_I B_0} \left[\!\!\left[\delta \mathbf{u}_M \right]\!\!\right] \cdot \langle \mathbf{P}_M \rangle \cdot \mathbf{N}_M \ dA = \\ \int_{B_0} \mathbf{B}_0 \cdot \delta \mathbf{u}_M \ dV + \int_{\partial_N B_0} \mathbf{T}_M^0 \cdot \delta \mathbf{u}_M \ dV$$

• Displacement continuity is weakly enforced by DG interface terms

$$\int_{B_0} \mathbf{P}_M : (\delta \mathbf{u}_M \otimes \nabla_0) \, dV + \qquad \beta : \text{stability parameter} \\ \int_{\partial_I B_0} \llbracket \delta \mathbf{u}_M \rrbracket \cdot \langle \mathbf{P}_M \rangle \cdot \mathbf{N}_M \, dA = \qquad \mathbf{L}_M^0 : \text{tangent operator at zero deformation} \\ \int_{B_0} \mathbf{B}_0 \cdot \delta \mathbf{u}_M \, dV + \int_{\partial_N B_0} \mathbf{T}_M^0 \cdot \delta \mathbf{u}_M \, dV \qquad \int_{B_0} \mathbf{P}_M : (\delta \mathbf{u}_M \otimes \nabla_0) \, dV + \\ \int_{\partial_I B_0} \llbracket \delta \mathbf{u}_M \rrbracket \cdot \langle \mathbf{P}_M \rangle \cdot \mathbf{N}_M \, dA + \\ \int_{\partial_I B_0} \llbracket \delta \mathbf{u}_M \rrbracket \cdot \langle \mathbf{P}_M \rangle \cdot \mathbf{N}_M \, dA + \\ \int_{\partial_I B_0} \llbracket \mathbf{u}_M \rrbracket \cdot \langle \mathbf{L}_M^0 : (\delta \mathbf{u}_M \otimes \nabla_0) \rangle \cdot \mathbf{N}_M \, dA + \\ \int_{\partial_I B_0} \llbracket \mathbf{u}_M \rrbracket \cdot \langle \mathbf{L}_M^0 : (\delta \mathbf{u}_M \otimes \nabla_0) \rangle \cdot \mathbf{N}_M \, dA + \\ \int_{\partial_I B_0} \llbracket \mathbf{u}_M \rrbracket \cdot \langle \mathbf{L}_M^0 : (\delta \mathbf{u}_M \otimes \nabla_0) \rangle \cdot \mathbf{N}_M \, dA + \\ \int_{\partial_I B_0} \llbracket \mathbf{u}_M \rrbracket \otimes \mathbf{N}_M : \langle \frac{\beta}{h_s} \mathbf{L}_M^0 \rangle : \llbracket \delta \mathbf{u}_M \rrbracket \otimes \mathbf{N}_M \, dA = \\ \int_{B_0} \mathbf{B}_0 \cdot \delta \mathbf{u}_M \, dV + \int_{\partial_N B_0} \mathbf{T}_M^0 \cdot \delta \mathbf{u}_M \, dV$$

• Displacement continuity is weakly enforced by DG interface terms

$$\int_{B_0} \mathbf{P}_M : (\delta \mathbf{u}_M \otimes \nabla_0) \, dV + \qquad \beta : \text{stability parameter} \\ \int_{\partial_I B_0} \llbracket \delta \mathbf{u}_M \rrbracket \cdot \langle \mathbf{P}_M \rangle \cdot \mathbf{N}_M \, dA = \qquad \mathbf{L}_M^0 : \text{tangent operator at zero deformation} \\ \int_{B_0} \mathbf{B}_0 \cdot \delta \mathbf{u}_M \, dV + \int_{\partial_N B_0} \mathbf{T}_M^0 \cdot \delta \mathbf{u}_M \, dV \qquad \int_{B_0} \mathbf{P}_M : (\delta \mathbf{u}_M \otimes \nabla_0) \, dV + \\ \int_{\partial_I B_0} \llbracket \delta \mathbf{u}_M \rrbracket \cdot \langle \mathbf{P}_M \rangle \cdot \mathbf{N}_M \, dA + \\ \int_{\partial_I B_0} \llbracket \delta \mathbf{u}_M \rrbracket \cdot \langle \mathbf{L}_M^0 : (\delta \mathbf{u}_M \otimes \nabla_0) \rangle \cdot \mathbf{N}_M \, dA + \\ \int_{\partial_I B_0} \llbracket \mathbf{u}_M \rrbracket \cdot \langle \mathbf{L}_M^0 : (\delta \mathbf{u}_M \otimes \nabla_0) \rangle \cdot \mathbf{N}_M \, dA + \\ \int_{\partial_I B_0} \llbracket \mathbf{u}_M \rrbracket \cdot \langle \mathbf{L}_M^0 : (\delta \mathbf{u}_M \otimes \nabla_0) \rangle \cdot \mathbf{N}_M \, dA + \\ \int_{\partial_I B_0} \llbracket \mathbf{u}_M \rrbracket \cdot \langle \mathbf{L}_M^0 : (\delta \mathbf{u}_M \otimes \nabla_0) \rangle \cdot \mathbf{N}_M \, dA + \\ \int_{\partial_I B_0} \llbracket \mathbf{u}_M \rrbracket \otimes \mathbf{N}_M : \langle \frac{\beta}{h_s} \mathbf{L}_M^0 \rangle : \llbracket \delta \mathbf{u}_M \rrbracket \otimes \mathbf{N}_M \, dA = \\ \int_{B_0} \mathbf{B}_0 \cdot \delta \mathbf{u}_M \, dV + \int_{\partial_N B_0} \mathbf{T}_M^0 \cdot \delta \mathbf{u}_M \, dV$$

• Material constitutive relations must be provided

$$\mathbf{P}_M = \mathbf{P}_M (\mathbf{F}_M; \mathbf{Q}_M) \longrightarrow$$
 from microscopic analyses

- Material constitutive relations are obtained from microscopic analyses
 - At integration points of both bulk and interface elements
 - First-order FE² scheme

- Microscopic localization
 - Loss of ellipticity of the homogenized tangent operator

$$\min \operatorname{eig}\left(\mathbf{N}_{M} \cdot^{2} \mathbf{L}_{M} \cdot \mathbf{N}_{M}\right) \leq 0$$

- Microscopic localization
 - Loss of ellipticity of the homogenized tangent operator

$$\min \operatorname{eig}\left(\mathbf{N}_{M} \cdot^{2} \mathbf{L}_{M} \cdot \mathbf{N}_{M}\right) \leq 0$$

• Macroscale cohesive cracks need to be followed after the onset of microscopic strain localization

Discontinuous Galerkin formulation (DG) Hybrid discontinuous Galerkin formulation / cohesive zone model (Hybrid DG/CZM) • Discontinuity $\Gamma_0^D \subset \partial_I B_0$ is developed due to the microscopic localization

Cohesive cracks are meshed with interface elements

$$\begin{array}{l} \mathsf{DG} & \mathsf{Hybrid} \ \mathsf{DG/CZM} \\
\int_{B_0} \mathbf{P}_M : (\delta \mathbf{u}_M \otimes \nabla_0) \, dV + \\
\int_{\partial_I B_0} \llbracket \delta \mathbf{u}_M \rrbracket \cdot \langle \mathbf{P}_M \rangle \cdot \mathbf{N}_M \, dA + \\
\int_{\partial_I B_0} \llbracket \mathbf{u}_M \rrbracket \cdot \langle \mathbf{L}_M^0 : (\delta \mathbf{u}_M \otimes \nabla_0) \rangle \cdot \mathbf{N}_M \, dA + \\
\int_{\partial_I B_0} \llbracket \mathbf{u}_M \rrbracket \otimes \mathbf{N}_M : \left\langle \frac{\beta}{h_s} \mathbf{L}_M^0 \right\rangle : \llbracket \delta \mathbf{u}_M \rrbracket \otimes \mathbf{N}_M \, dA + \\
\int_{\partial_I B_0} \llbracket \mathbf{u}_M \rrbracket \otimes \mathbf{N}_M : \left\langle \frac{\beta}{h_s} \mathbf{L}_M^0 \right\rangle : \llbracket \delta \mathbf{u}_M \rrbracket \otimes \mathbf{N}_M \, dA + \\
\int_{\partial_I B_0} [\mathbf{u}_M \rrbracket \otimes \mathbf{N}_M : \left\langle \frac{\beta}{h_s} \mathbf{L}_M^0 \right\rangle : \llbracket \delta \mathbf{u}_M \rrbracket \otimes \mathbf{N}_M \, dA + \\
\int_{\partial_I B_0 \setminus \Gamma_0^D} \llbracket \mathbf{u}_M \rrbracket \otimes \mathbf{N}_M : \left\langle \frac{\beta}{h_s} \mathbf{L}_M^0 \right\rangle : \llbracket \delta \mathbf{u}_M \rrbracket \otimes \mathbf{N}_M \, dA + \\
\int_{\partial_I B_0 \setminus \Gamma_0^D} \llbracket \mathbf{u}_M \rrbracket \otimes \mathbf{N}_M : \left\langle \frac{\beta}{h_s} \mathbf{L}_M^0 \right\rangle : \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \setminus \Gamma_0^D} \llbracket \mathbf{u}_M \rrbracket \otimes \mathbf{N}_M : \left\langle \frac{\beta}{h_s} \mathbf{L}_M^0 \right\rangle : \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \setminus \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\
\int_{\partial_I B_0 \otimes \Gamma_0^D} \llbracket \delta \mathbf{u}_M \, dV + \\$$

• Discontinuity $\Gamma_0^D \subset \partial_I B_0$ is developed due to the microscopic localization

Cohesive cracks are meshed with interface elements

• Cohesive constitutive relations on Γ_0^D must be provided

 $\mathbf{T}_M = \mathbf{T}_M (\mathbf{F}_M, \llbracket \mathbf{u}_M \rrbracket; \mathbf{Q}_M) \rightarrow \text{from microscopic analyses}$

- Homogenized cohesive law
 - Deformation of microscopic BVP is driven by an interface deformation gradient

$$\boldsymbol{\mathcal{F}}_{M} = \begin{cases} \mathbf{F}_{M} & \text{at onset of failure} \\ \boldsymbol{\mathcal{F}}_{M}\left(\mathbf{F}_{M}, \llbracket \mathbf{u}_{M} \rrbracket\right) & \text{after onset of failure} \end{cases}$$

Hybrid DG/CZM

- Homogenized cohesive law
 - Deformation of microscopic BVP is driven by an interface deformation gradient

$$\boldsymbol{\mathcal{F}}_{M} = \begin{cases} \mathbf{F}_{M} & \text{at onset of failure} \\ \boldsymbol{\mathcal{F}}_{M} \left(\mathbf{F}_{M}, \llbracket \mathbf{u}_{M} \rrbracket \right) & \text{after onset of failure} \end{cases}$$

Cohesive traction is obtained from the first-order FE² scheme

Hybrid DG/CZM

- Homogenized cohesive law
 - Deformation of microscopic BVP is driven by an interface deformation gradient

$$\boldsymbol{\mathcal{F}}_{M} = \begin{cases} \mathbf{F}_{M} & \text{at onset of failure} \\ \boldsymbol{\mathcal{F}}_{M} \left(\mathbf{F}_{M}, \llbracket \mathbf{u}_{M} \rrbracket \right) & \text{after onset of failure} \end{cases}$$

- Active damage zone (Nguyen V.-P. et al. CMAME 2010)
 - Does not magnify with the microscopic volume element size
 - Has a constant width related to the nonlocal length scale

$$V_0^D = \{ \mathbf{X} \in V_0 \mid \dot{D} > 0 \} \qquad V_0^E = V_0 \setminus V_0^D \qquad \delta \mathbf{F}_M^{E,D} = \frac{1}{V_0^{E,D}} \int_{V_0^{E,D}} \delta \mathbf{F}_m \, dV$$

Cohesive jump is homogenized from the microscopic localization strain inside the active damage zone

l

Hybrid DG/CZM

- Homogenized cohesive law
 - Deformation of microscopic BVP is driven by an interface deformation gradient

$$\boldsymbol{\mathcal{F}}_{M} = \begin{cases} \mathbf{F}_{M} & \text{at onset of failure} \\ \boldsymbol{\mathcal{F}}_{M}\left(\mathbf{F}_{M}, \llbracket \mathbf{u}_{M} \rrbracket\right) & \text{after onset of failure} \end{cases}$$

- Strain averaging principle

Macro-crack

• Uniaxial test

- Non-local elastoplastic-damage material law

Prescribed displacement

Numerical examples

Uniaxial test

Numerical examples

Uniaxial test

• Notched sample

- Non-local elastoplastic-damage material law

Prescribed vertical displacement

• Notched sample

Non-local elastoplastic-damage material law

Macro-mesh 1

Macro-mesh 2

- This proposed FE² scheme is based on the DG/CZM framework
 - Extrinsic cohesive zone model
 - Cohesive normal is known

• Both bulk and interface constitutive relations are obtained from microscopic analyses at finite strains

• The triaxiality effect during the failure process is automatically accounted for since both the macroscopic deformation gradient and macroscopic displacement jump are used to formulation the microscopic BVP

Thank you for your attention !