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Abstract. It has been shown that, from the prevalence point of view, el-
ements of the Sν spaces are almost surely multifractal, while the Hölder
exponent at almost every point is almost surely equal to the maximum
Hölder exponent. We show here that typical elements of Sν are very
irregular by proving that they almost surely satisfy a weak irregularity
property: there exists a local irregularity exponent which is constant for
almost every element of Sν and equal to the lowest Hölder exponent.
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1. Introduction

In this paper we are interested in generic results of regularity in some spaces of
irregular functions well suited for multifractal studies from both the practical
and the theoretical point of view: the Sν spaces. By generic, we mean preva-
lent: the notion of prevalence provides an infinite dimensional extension of
the notion of translation invariant “Lebesgue measure zero” (see section 2.2).
In these settings, a “negligible” set becomes a shy set, while its complement is
called a prevalent set. From this perspective, typical elements of some space
satisfy a property if the set of the elements for which this property is satisfied
is prevalent.

The Hölder regularity is a popular notion of regularity. It has been
introduced to study smoothness properties of functions such as the Weierstraß
function (see e.g. [16]). Indeed, many “historical” functions share the same
property [23]: there exist H ∈ (0, 1) and a constant C > 0 such that the
function f satisfies on some interval I,

∀x, y ∈ I, |f(x)− f(y)| ≤ C|x− y|H , (1)
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and

∀x, y ∈ I, sup
(u,v)∈[x,y]2

|f(u)− f(v)| ≥ 1

C
|x− y|H . (2)

The first inequality can be seen as a regularity condition, while the second is
related to the irregularity of the function. It has been shown in [8] that this
behavior is the typical behavior of functions belonging to the uniform Hölder
space ΛH(Rd) in the sense of prevalence, i.e. the set

{f ∈ ΛH(Rd) : f satisfies (1) and (2)}

is prevalent.
However, in many cases, functions do not satisfy such inequalities. It

is in particular true for the so-called multifractal functions, which we now
define. A bounded function f defined on Rd belongs to the pointwise Hölder
space Λα(x0) if the following inequality is satisfied for some constant C and
a polynomial P of degree at most α:

|f(x)− P (x)| ≤ C|x− x0|α, (3)

in a neighborhood of x0. These spaces are embedded and one introduces the
Hölder exponent of f at x0 as follows,

hf (x0) = sup{α ≥ 0 : f ∈ Λα(x0)}.

This exponent is a pointwise notion of regularity.
If the function f is very irregular, the computation of hf for every point

is an insuperable task. For such functions, one rather tries to determine the
associated spectrum of singularities, also called multifractal spectrum:

df : [0,∞]→ {−∞} ∪ [0, d] h 7→ dimH{x ∈ Rd : hf (x) = h},

where dimH denotes the Hausdorff dimension [12, 31]. If df (h) > 0 for at
least two different values h, the function f is said to be multifractal. It can
be shown that in several functional spaces, the set of multifractal functions is
prevalent [13, 3]. Computing the Hölder spectrum can also be very difficult,
since it involves intricate limits. However, there exist heuristic methods, called
multifractal formalisms that lead to an estimation of df . If the estimation is
the exact spectrum, one says that the multifractal formalism holds for the
function f . Such methods were originally introduced in the context of fully
developed turbulence [14] and are now used in many fields of science (see e.g.
[1, 2, 15, 22, 30, 26, 34]). There is no formalism that holds for any function;
some of them work for typical functions (e.g. self-similar functions [19, 33])
or lead to upper bounds for df [18, 21, 4]. Moreover, most of the multifractal
formalisms are based on the so-called box counting method and rely on a
Legendre transform, so that the estimation is at best the concave hull of the
spectrum of singularities [24] (see [28] for examples of formalisms that do not
require the convexity constraint).

To overcome this problem, Jaffard has introduced a multifractal for-
malism based on the Sν spaces [20]. The set of functions of Sν for which
the associated multifractal formalism holds is prevalent, so that the typical
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elements of Sν are multifractal [3]. However, one has the following regular-
ity result: the set of functions f for which the Hölder exponent hf (x) is
equal to the maximum exponent hmax almost everywhere (with respect to
the Lebesgue measure) is prevalent. To sum up the situation, contrary to the
case of Hölder spaces studied in [8], typical elements of Sν do not satisfy
inequalities (1) and (2), but a regularity condition is satisfied in a generic
sense.

In this paper, we aim at showing that the typical elements of Sν also
satisfy an irregularity condition. More precisely, we show that the set of
elements of Sν satisfying a weak local irregularity property is prevalent. To
this end, we introduce a concept of weak uniform irregularity and define the
irregularity exponentHf (x0) of a function at a given point x0, which is a local
notion. We prove that, in the sense of prevalence, there exists a minimum
Hölder exponent hmin (depending on Sν and in non–trivial cases lower than
hmax) such that almost every function of Sν satisfies Hf (x) = hmin for any x.
We thus have the following heuristic interpretation: for non-trivial spaces Sν ,
typical elements of Sν are very irregular, since, somehow, the lowest Hölder
exponent is met near any considered point, while the typical Hölder exponent
is the largest one.

The paper is organized as follows. In the next section, we recall some
definitions about multifractal analysis and the Sν spaces. Next, we define the
local irregularity exponent. To prove our main result, we will need wavelet
criteria for the irregularity; these are stated in Section 4. The prevalent result
is obtained in the last section.

2. The Sν-based multifractal formalism

The multifractal analysis aims to study the smoothness of very irregular func-
tions f . Instead of trying to characterize the regularity of f at a every point,
one rather tries to determine the associated spectrum of singularities. The
Sν spaces have been introduced in order to provide an efficient multifrac-
tal formalism, i.e. a method that allows the computation of the multifractal
spectrum in many practical cases. Although this technique does not always
lead to the right spectrum, it has been shown that the Sν-based multifractal
formalism holds for almost every element of Sν . Here the term “almost every”
has to be clearly defined, since one can not use the usual Lebesgue measure
in infinite dimensional settings.

2.1. Sν spaces

Let us briefly recall some definitions and notations (for more precisions, see
e.g. [32, 11, 29]). Under some general assumptions, there exist a function φ
and 2d − 1 functions (ψ(i))1≤i<2d called wavelets such that

{φ(x− k) : k ∈ Zd} ∪ {ψ(i)(2j − k) : 1 ≤ i < 2d, k ∈ Zd, j ∈ N}
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form a basis of L2(Rd). A (complex) function f ∈ L2(Rd) can be decomposed
as follows,

f =
∑
k∈Zd

Ckφ(· − k) +

∞∑
j=1

∑
k∈Zd

2d−1∑
i=1

c
(i)
j,kψ

(i)(2j · −k),

where

Ck =

∫
Rd

f(x)φ(x− k) dx

and

c
(i)
j,k = 2dj

∫
Rd

f(x)ψ(i)(2jx− k) dx. (4)

Let us remark that we do not choose the (usual) L2 normalization for the
wavelets, but rather an L∞ normalization, which is better fitted to the study
of the Hölder regularity. Expressions such as (4) can make sense in more
general settings (e.g. if f is a distribution). Hereafter, we will assume that the
wavelets belong to Cγ(Rd) with γ ≥ α+1, and that the functions {∂sφ}|s|≤γ ,
{∂sψ}|s|≤γ have fast decay. Moreover, for the sake of simplicity, when dealing
with the Sν spaces, we will suppose that the application f is defined on the
torus Td = Rd/Zd [20]. Let

Λ =
{

(i, j, k) : 1 ≤ i < 2d, j ∈ N, k ∈ {0, . . . , 2j − 1}d
}
.

If (i, j, k) ∈ Λ, the periodized wavelets

ψ(i)
p (2j · −k) =

∑
l∈Zd

ψ(i)
(
2j(· − l)− k

)
form a basis of the one-periodic functions of L2([0, 1]d) [9]. Such a setting is
by no mean a restriction since we are interested in local properties; moreover

“real-life” data are compactly supported. We will denote (c
(i)
j,k)(i,j,k)∈Λ or

(cλ)λ∈Λ the wavelet coefficients of a function belonging to L2([0, 1]d).

Let us now introduce the Sν spaces.

Definition 1. For a sequence c = (cλ)λ∈Λ, C > 0 and h ∈ R, let us set

Ej(C, h)[c] = {(i, k) : |c(i)j,k| ≥ C2−jh}.

The wavelet profile νc of c is defined as

νc(h) = lim
ε→0+

lim sup
j→∞

log2 #Ej(1, h+ ε)[c]

j
,

with h ∈ R.

The wavelet profile gives, in some way, the asymptotic behavior of the
number of coefficients of c larger than a given order of magnitude. It can
be shown that if c represents the wavelet coefficients of a function f , νc
does not depend on the chosen wavelet basis [20]. Therefore one can set
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Ej(C, h)[f ] = Ej(C, h)[c] and νf = νc. Clearly, νf is non-decreasing, right-
continuous and there exists hmin > 0 such that

νf (h) ∈
{

[0, d] if h ≥ hmin

{−∞} if h < hmin
.

A function with such properties is called an admissible profile.

Definition 2. Let ν be an admissible profile; f belongs to Sν if one has νf (h) ≤
ν(h) for any h ∈ R.

There exists a distance dist on Sν such that (Sν ,dist) is a complete
separable metric space [4, 3].

Let us now introduce the multifractal formalism associated to the Sν

spaces. Let

hmax = inf
h≥hmin

h

νf (h)

and define the function dνf as

dνf (h) =

 h sup
h′∈(0,h]

νf (h′)

h′
if h ≤ hmax

1 otherwise

.

This formalism provides an upper bound for the singularity spectrum: for all
f ∈ Sν , one has df (h) ≤ dνf (h) for any h ≥ 0. Moreover, it allows to recover

the increasing part of many non-concave spectra [24].

2.2. Prevalence of multifractal functions in Sν

In infinite dimensional Banach spaces, there is no σ-finite translation in-
variant measure. In [5], Christensen turned a characterization of Lebesgue
measure zero Borel sets into a definition in the setting of complete metric
vector spaces (see also [17]).

Definition 3. Let E be a complete metric vector space. A Borel set B ⊂ E
is Haar-null if there exists a Borel probability measure µ, strictly positive on
some compact set K ⊂ E such that µ(B + x) = 0 for any x ∈ E.

A subset of E is Haar-null if it is included in a Haar-null Borel subset
of E. The complement of a Haar-null set is called a prevalent set.

In [3], it has been proved that, as soon as ν is non-trivial, typical ele-
ments of Sν are multifractal. More precisely, it can be shown that the set

{f ∈ Sν : d(h) = dνf (h) if h ≤ hmax and d(h) = −∞ otherwise}

is prevalent. Moreover, the following regularity result also holds: the set

{f ∈ Sν : the Hölder exponent is Lebesgue-almost everywhere hmax}

is prevalent.
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3. Local Hölder regularity and irregularity

We introduce here a notion of local irregularity, which will be used to state
that a generic weak irregularity condition holds for elements of Sν . To this
end, we first need to recall different concepts of global regularity, based on
the uniform Hölder spaces.

If Ω is an open subset of Rd, for any h ∈ Rd, we will denote by Ωh the
set

Ωh = {x ∈ Rd : [x, x+ ([α] + 1)h] ⊂ Ω},
where the value α > 0 will be implied by the context and [α] denotes the
greatest integer lower than α (with this definition, if α is integer, [α] = α−1).
We will need the classical notion of finite difference.

Definition 4. Let x, h ∈ Rd and f : Rd → C; the first order difference of f is
∆1
hf(x) = f(x+ h)− f(x). For n ≥ 2, the difference of order n is defined by

∆n
hf(x) = ∆n−1

h ∆1
hf(x).

3.1. Uniform Hölder and irregularity spaces

We can now introduce the uniform Hölder spaces Λα(Ω) and the irregularity
spaces Iα(Ω).

Definition 5. Let Ω be an open subset of Rd and α > 0; a bounded function
f defined on Rd belongs to Λα(Ω) if there exist C, r0 > 0 such that for any
r ≤ r0,

sup
|h|≤r

‖∆[α]+1
h f‖L∞(Ωh) ≤ Crα. (5)

A function f is said to be uniformly Hölderian on Ω if for some α > 0,
f belongs to Λα(Ω). In the above definition, we did not use the polynomial
characterization of the Hölder spaces as in (3), but rather the finite differences
characterization, which is equivalent (see e.g. [25]) but allows to introduce
the irregularity spaces in a more natural way, since the polynomial refers to
the regular part of the considered function.

Let us remark that the statement f 6∈ Λα(Ω) means that for any C > 0,
there exists a sequence (rn)n (depending on C) decreasing to zero for which

sup
|h|≤rn

‖∆[α]+1
h f‖L∞(Ωh) ≥ Crαn .

We need a stronger notion of irregularity.

Definition 6. Let Ω be an open subset of Rd and α > 0; a bounded function
f defined on Rd belongs to Λαw(Ω) if there exist C > 0 and a sequence (rn)n
decreasing to zero such that

sup
|h|≤rn

‖∆[α]+1
h f‖L∞(Ωh) ≤ Crαn . (6)

for any n.
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A function f is said to be weakly uniformly Hölder on Ω with exponent α
if f belongs to Λαw(Ω). Of course, since the sequence is decreasing to zero, the
constant C is of no importance in (6). We are naturally led to the following
notion of irregularity.

Definition 7. Let Ω be an open subset of Rd and α > 0; a bounded function
f defined on Rd belongs to Iα(Ω) if and only if f 6∈ Λαw(Ω).

It is easy to check that f ∈ Iα(Ω) means that there exist C, r0 > 0 such
that for any r ≤ r0, we have

sup
|h|≤r

‖∆[α]+1
h f‖L∞(Ωh) ≥ Crα,

which has to be compared with (5). The utility of these spaces is shown in
[7, 8, 6].

3.2. Local irregularity exponents

As for the (pointwise) Hölder exponent hf , one can define the uniform Hölder
exponent of a bounded f on an open set Ω as follows:

Hf (Ω) = sup{α > 0 : f ∈ Λα(Ω)}.

In the same order of idea, let us introduce a similar exponent, corresponding
to the irregular counterpart of the uniform Hölder spaces.

Definition 8. The upper uniform Hölder exponent of a bounded function f on
an open set Ω is defined as

Hf (Ω) = inf{α > 0 : f ∈ Iα(Ω)} = sup{α > 0 : f ∈ Λαw(Ω)}.

We obviously have Hf (Ω) ≤ Hf (Ω). The equality is satisfied for func-
tions such as the Weierstraß function [16] and many space-filling functions
[23]. Moreover, the set of elements of ΛH(Rd) for which this equality is sat-
isfied, i.e. the set ΛH(Rd) ∩ IH(Rd), is prevalent [7]. Typical elements of
ΛH(Rd) are thus monofractal in a strong sense.

To define the local irregularity exponent, we use the same approach as
in [27].

Definition 9. A sequence (Ωn)n of open subsets of Rd is decreasing to x0 ∈ Rd

if

• m < n implies Ωn ⊂ Ωm,
• |Ωn| → 0 as n→∞,
• ∩nΩn = {x0}.

The following lemma is needed.

Lemma 1. If (Ωn)n and (Ω′n)n are two sequences of open sets that decrease
to x0, then

sup
n∈N
Hf (Ωn) = sup

n∈N
Hf (Ω′n).
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Proof. Let us first remark that if U and V are two open sets satisfying U ⊂ V ,
then Hf (V ) ≤ Hf (U). Let us now suppose that

sup
n∈N
Hf (Ωn) > sup

n∈N
Hf (Ω′n).

There exists an index n1 such thatHf (Ωn1
) > supn∈NHf (Ω′n). Now let r > 0

be such that B(x0, r) ⊂ Ωn1
; since (Ω′n)n is decreasing to x0, there exists an

index n2 such that Ω′n2
⊂ B(x0, r). One thus have

Hf (Ω′n2
) ≥ Hf (Ωn1) > sup

n∈N
Hf (Ω′n),

which leads to a contradiction. �

Definition 10. If f is a bounded function, the local irregularity exponent of f
at x0 is

Hf (x0) = sup
n
Hf (Ωn),

where (Ωn)n is a sequence of open sets decreasing to x0.

In the same way, the local regularity exponent of a bounded function f
at x0 is defined as Hf (x0) = supnHf (Ωn), where (Ω)n is a sequence of open
sets decreasing to x0. We still have Hf (x0) ≤ Hf (x0).

4. Wavelets, irregularity spaces and irregularity exponents

In this section, we establish some technical results that will be needed in the
last section. We first give necessary and sufficient conditions for a function to
belong to Iα(Ω). Next, we “characterize” the local irregularity exponent in
terms of wavelet coefficients, under a strong uniform regularity hypothesis.

In what follows, we will assume that the multiresolution analysis is
compactly supported (see [10]). The following result is shown in [21]: in R,
if the wavelet basis belongs to CM (R), there exists a fast decaying function
ΨM such that ψ = ∆M

1/2ΨM . In Rd, we will use the tensor product wavelet

basis (see [32, 11]),

ψ(i)(x) = Ψ(1)(x1) · · ·Ψ(d)(xd),

where Ψ(i) (i ∈ {1, . . . , d}) are either ψ or φ, but at least one of them must
equal ψ. We will always suppose that Ψ(1) = ψ. We will also use the following

notations: given j ∈ N, Ω an open subset of Rd and a family of wavelets ψ
(i)
j,k,

we set

Γj(Ω) = {(i, k) : supp(ψ
(i)
j,k) ⊂ Ω}

and

‖cλ‖Ωj = sup
Γj(Ω)

|c(i)j,k|.

Finally, the natural number M will always refers to the quantity M = [α]+1.
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4.1. Wavelet and uniform irregularity

The uniform regularity of a function is related to the decay rate of its wavelet
coefficients (see [32]). Let f be a bounded function and α ∈ (0, 1); f belongs

to Λ̇α(Ω), where Λ̇α(Ω) denotes the homogeneous version of the Hölder space
Λα(Ω) (roughly speaking, one has to work on the homogeneous version be-
cause wavelets have vanishing moments [32]) if and only if there exists C > 0
such that for any j ≥ 0,

‖cλ‖Ωj ≤ C2−αj . (7)

The following result gives a sufficient and a necessary condition for a
function of Λα(Ω) to belong to Iα(Ω).

Theorem 1. Let α > 0, f ∈ Λα(Ω). If there exists C > 0 and γ > 1 such that

max{ sup
j≤l≤j+log2 j

‖cλ‖Ωl , 2−jM sup
j−log2 j≤l≤j

(2lM‖cλ‖Ωl )} ≥ C2−jαjγ , (8)

for any j ≥ 0, then f ∈ Iα(Ω).
Now, if f belongs to Iα(Ω), there exist C > 0 and β ∈ (0, 1) such that

for any integer j ≥ 0,

max{ sup
j≤l≤j+log2 j

‖cλ‖Ωl , 2−jM jβ sup
j−log2 j≤l≤j

(2lM‖cλ‖Ωl )} ≥ C2−jα. (9)

Proof. To prove the first part of the theorem, let us suppose that f ∈ Λαw(Rd)
and let C > 0. As shown in [8], there exists some increasing sequence of
integers (jn)n such that for any n ∈ N and any j ≥ jn,

sup
|h|≤2−j

‖∆M
h f‖L∞(Ωh) ≤ C2−jnα. (10)

Let us show that this inequality leads to a contradiction.
By definition of the wavelet coefficients, we have for any j ≥ 0 and any

(i, k) ∈ Γj(Ω),

c
(i)
j,k = 2jd

∫
Rd

f(x)Ψ(1)(2jx1 − k1) · · ·Ψ(d)(2jxd − kd) dx

= 2jd
∫
Rd

f(x)∆M
1/2ΨM (2jx1 − k1) · · ·Ψ(d)(2jxd − kd) dx

= 2jd
∫
Rd

∆M
1/2j+1e1

f(x)ΨM (2jx1 − k1) · · ·Ψ(d)(2jxd − kd) dx,

where e1 = (1, 0, . . . , 0). By definition of Γj(Ω), the properties of ΨM allow
to write, for any n ∈ N, any j ≥ jn and any (i, k) ∈ Γj(Ω),

|c(i)j,k| ≤ 2jd
∫

Ω

|∆M
1/2j+1e1

f(x)||ΨM (2jx1 − k1) · · ·Ψ(d)(2jxd − kd)| dx

≤ C2jd2−jnα
∫
Rd

|ΨM (2jx1 − k1) · · ·Ψ(d)(2jxd − kd)| dx

= C2−jnα‖ΨM ⊗ · · · ⊗Ψ(d)‖L1(Rd),

thanks to inequality (10).
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For n ∈ N, let ln = jn + γ[log2 jn]; for n sufficiently large, one has
ln − log2 ln ≥ jn. Therefore, the following relations hold for n sufficiently
large (and any (i, k) ∈ Γj(Ω)):

sup
ln≤j≤ln+log2 ln

|c(i)j,k| ≤ C2−jnα ≤ C2−lnαlγ
′

n

and

sup
ln−log2 ln≤j≤ln

2jM |c(i)j,k| ≤ C2lnM2−jnα ≤ C2lnM2−lnαlγ
′

n ,

for some γ′ < γ, which is in contradiction with inequality (8).

To prove the second part of the theorem we will use the following result
(see [32]): Let f ∈ Λγ(Ω); since Λγ(Ω) ⊂ B0

∞,∞(Ω) ∩ Λ̇γ(Ω), the wavelet
characterizations of these two functional spaces lead to the existence of a
constant C > 0 that does not depend on the function such that for any
h ∈ Rd and any x ∈ Ωh, one has

|∆[γ]+1
h f(x)| ≤ C sup

j∈N
‖cλ‖Ωj , (11)

and

|∆[γ]+1
h f(x)| ≤ C|h|γ sup

j∈N
{2jγ‖cλ‖Ωj }. (12)

Let us assume f ∈ Iα(Ω) and suppose that property (9) is not satisfied.
In this case, for any C > 0 and any β ∈ (0, 1), there exists an increasing
sequence of integers (jn)n such that, for any n ∈ N,

max{ sup
jn≤l≤jn+log2 jn

‖cλ‖Ωl ,

2−jnM jβ sup
jn−log2 jn≤l≤jn

(2lM‖cλ‖Ωl )} ≤ C2−jnα. (13)

Let us fix C > 0, x ∈ Ωh and let n0 ∈ N, h ∈ Rd be such that |h| ≤ 2−jn0 .
We just have to show that f ∈ Λαw(Ω). We will use the following notations:

f−1 =
∑
k∈Zd

Ckφ(· − k), fj =

2d−1∑
i=1

∑
k∈Zd

c
(i)
j,kψ(2j · −k),

with j ≥ 0. Since f is uniformly Hölder, fj and
∑
j≥−1 fj converge uniformly

on any compact set and

∆M
h f =

∑
j≥−1

∆M
h fj .

We first consider the function g1 =
∑jn0
j=−1 fj . Let us fix γ ∈ ([α] +

1 − β, [α] + 1). The regularity of the wavelets and property (12) imply the
existence of a constant C > 0 independent of n0, x and h such that

|∆M
h g1(x)| ≤ C|h|γ sup

l≤jn0

(
2lγ‖cλ‖Ωl

)
. (14)
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Since f ∈ Λα(Ω), there exists a constant such that, for any n ∈ N,

sup
l≤jn0−log2 jn0

(2lγ‖cλ‖Ωl ) ≤ C2(jn0−log2 jn0 )(γ−α) = C ′
2jn0

(γ−α)

jγ−αn0

.

On the other hand, we have, using relation (13),

sup
jn0−log2 jn0≤l≤jn0

(2lγ‖cλ‖Ωl )

= sup
jn0
−log2 jn0

≤l≤jn0

(2l(γ−M)2lM‖cλ‖Ωl )

≤ C2(jn0−log2 jn0 )(γ−M)2jn0 (M−α)/jβn0

= C ′jM−γn0
2jn0 (γ−α)/jβn0

≤ C ′2jn0 (γ−α).

This implies that for n0 sufficiently large (since 0 < M − γ ≤ β),

sup
l≤jn0

(2lγ‖cλ‖Ωl ) ≤ C2jn0 (γ−α),

and hence, using inequality (14),

|∆M
h g1(x)| ≤ C2−jn0

α, (15)

since h has been chosen adequately.
Let us now consider g2 =

∑
j>jn0

fj . Property (11) applied to g2 directly

gives the following relation:

|∆M
h g2| ≤ C sup

l>jn0

(‖cλ‖Ωl ). (16)

Once again, since f ∈ Λα(Ω), we have

sup
l≥jn0

+log2 jn0

‖cλ‖Ωl ≤ C2−(jn0
+log2 jn0

)α = C ′
2−jn0

α

jαn0

.

Now, relation (13) implies

sup
jn0
≤l≤jn0

+log2 jn0

‖cλ‖Ωl ≤ C2−jn0
α.

These last inequalities lead to the following relation for n0 sufficiently large,

|∆M
h g2(x)| ≤ C2−jn0

α, (17)

thanks to relation (16).
Putting relations (15) and (17) together, we obtain

|∆M
h f(x)| = |∆M

h (g1 + g2)(x)| ≤ C2−jn0
α,

for n0 sufficiently large, that is f ∈ Λαw(Ω), which is impossible, since f
belongs to Iα(Ω). �

Let us remark that this result is far from being a characterization of
the space Iα(Ω), since the hypothesis f ∈ Λα(Ω) is essential to prove the
sufficiency of the condition.
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4.2. Wavelets and local irregularity exponents

The preceding result leads to the following corollary about the irregularity
exponent.

Corollary 1. Let α > 0; if f ∈ Λα(Ω), then the irregularity exponent of f on
Ω equals α if and only if

lim
j→∞

−j−1 log2 max{ sup
j≤l≤j+log2 j

‖cλ‖Ωl ,

2−jM sup
j−log2 j≤l≤j

(2lM‖cλ‖Ωl )} = α.

Proof. Theorem 1 directly yields that if f ∈ Λα(Ω), the irregularity exponent
of f on Ω equals α if and only if

lim sup
j→∞

log2 max{ sup
j≤l≤j+log2 j

‖cλ‖Ωl , 2−jM sup
j−log2 j≤l≤j

(2lM‖cλ‖Ωl )}

−j
= α.

We have to prove that the upper limit can be replaced with a limit. Since
f ∈ Λα(Ω), relation (7) implies that

lim inf
j→∞

log2 max{ sup
j≤l≤j+log2 j

‖cλ‖Ωl , 2−jM sup
j−log2 j≤l≤j

(2lM‖cλ‖Ωl )}

−j
is always larger than

lim inf
j→∞

log2 max{supj≤l≤j+log2 j
2−lα, 2−jM supj−log2 j≤l≤j 2l(M−α)}
−j

= α,

which is sufficient to conclude. �

We can now state the local version of the previous result.

Theorem 2. Let α > 0; if f ∈ Λα(Ω) and x0 ∈ Rd, then

H(x0) = α

if and only if

lim
r→0

lim
j→∞

−j−1 log2 max{ sup
j≤l≤j+log2 j

‖cλ‖B(x0,r)
l ,

2−jM sup
j−log2 j≤l≤j

(2lM‖cλ‖B(x0,r)
l )} = α.

The usefulness of the previous result may not seem obvious at first
glance, but the prevalent result obtained in the next section relies on this
theorem.

5. A prevalent result on the Sν spaces

We prove here a prevalent result that gives more insight into the regularity
of the elements of Sν . To obtain it, we first need to introduce the method we
will use; we will also need some properties obtained in [3].
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5.1. The stochastic process technique

Our result concerning the prevalence relies on the stochastic process tech-
nique. Let us recall that a random element X on a complete metric space
E is a measurable mapping X defined on a probability space (Ω,A, P ) with
values in E. Given a random element X on E, one can define a probability
measure on E by the formula

PX(A) = P{X ∈ A}.

Replacing measure µ in definition 3 of a Haar-null set with PX , we see that
in order to prove that a set is Haar-null, it is sufficient to check that for any
f ∈ E,

PX(A+ f) = 0.

We will define a stochastic process with a random wavelet series asso-
ciated in a proper way to ν. To this end, for each j ≥ 0, let us define as in
[3],

Fj(h) =

{
0 if h < hmin

2−jd sup{j2, 2jν(h)} if h ≥ hmin
, (18)

with

hmin = inf{h : ν(h) ≥ 0}.

Since Fj is non-decreasing and piecewise continuous, it is the repartition
function of some probability distribution associated to a probability law ρj
supported on [hmin,∞].

The following remark is made in [3]: If ρj is the probability distribution
whose repartition function Fj is defined by (18), then there exists some se-
quence of random numbers (cλ)λ∈Λ with independent phase and moduli such

that for any j, ρj is the common law of − log2 |c
(i)
j,k|/j and satisfies the two

following conditions:

lim
j→∞

2jdρj((−∞, h])

j
= ν(h), (19)

for any h ∈ R and h ≥ hmin implies

2jdρj((−∞, h]) ≥ j2. (20)

Starting from these results, we will use the following random wavelet series
associated to ν:

Xν =
∑
λ∈Λ

cλψλ. (21)

It is shown in [4] that the metric topology d on Sν makes it a Polish space,
which is a very good framework for prevalence. Moreover, as proved in [3],
the measure PX is a Borel measure (relatively to this topology). In other
words, we can use the stochastic process technique with Xν .
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5.2. Prevalent irregularity properties in Sν

We are now ready to prove the following result.

Theorem 3. The following set is prevalent in Sν ,

{f : ∀x ∈ Td, the local irregularity exponent of f at x is Hf (x) = hmin},

where

hmin = inf{h : ν(h) ≥ 0}.

From what precedes, it is sufficient to show the following result.

Proposition 1. Let Xν be the random wavelet series defined by (21). Then,
for any f ∈ Sν , the local irregularity exponent Hf+Xν (x) of f + Xν at x is
equal to hmin almost surely.

Proof. Since Sν ⊂ Λhmin(Td), for any f ∈ Sν , f + Xν ∈ Λhmin(Td) almost
surely. Let us now fix m ∈ N and define, for any r ∈ Zd,

Tr,m =

d∏
n=1

(
rn
2m

,
rn + 1

2m
),

so that Td = ∪rTr,m. We aim at showing that the equality

Hf+Xν (Tr,m) = hmin

holds almost surely for any r,m; in this case, Theorem 2 directly yields the
required result.

For λ ∈ Λ, we will denote cλ the wavelet coefficients associated to Xν

and dλ the wavelet coefficients associated to f ∈ Sν . Let us first remark that
if, for some fixed λ ∈ Λ, <(cλdλ) ≤ 0 (where we denote <(cλdλ) the real part
of the complex number cλdλ) i.e. cλ is in the complex half-plane opposite to
dλ, then

|cλ − dλ| ≥ |cλ|.
Therefore, for any λ ∈ Λ,

P (f : |cλ − dλ| ≥ |cλ|) ≥ P (f : <(cλdλ) ≤ 0) ≥ 1/2. (22)

If we define for any N ∈ N and λ = (i, j, k) ∈ Λ,

AN,λ = {f : ∃k′ ∈ k + [0, N ]d : |c(i)j,k′ − d
(i)
j,k′ | ≥ |c

(i)
j,k′ |},

then, thanks to the independence of the wavelet coefficients of Xν and in-
equality (22), we have

P (AN,λ) ≥ 1− 2−N
d

for any N and λ.

Now, for n ∈ N, let us set

Br,m,n = {f : ‖cλ‖
Tr,m
j ≥ 2−j(hmin+1/n)}.
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If for any i, we have supp(ψ(i)) ⊂ [0,M ]d, then supp(ψλ) ⊂ Tr,m if and only
if, for any l ∈ {1, . . . , d}, we have rl2

j−m ≤ kl ≤ (rl+1)2j−m−M . Therefore,
for any fixed j ≥ m,

P (Br,m,n) = 1− (1− 2j(ν(hmin+1/n)−d))2d(j−m)

≥ 1− exp(−2−md2jν(hmin+1/n)).

Let us choose N = 2j−m; for any m,n and any j ≥ m, we have

P (f :
⋂
r

‖cλ − dλ‖
Tr,m
j ≥ 2−j(hmin+1/n))

≥
(
P (f : (

⋃
(i,k)∈Γj(Ω)

A2j−m,λ) ∩B2r,m+1,n)
)2m

≥
(
1− 2−2d(j−m)

− exp(−2−md2jν(hmin+1/n))
)2md

.

Moreover, for any n,∑
m

∑
j≥m

(1−
(
1− 2−2d(j−m)

− exp(−2−md2jν(hmin+1/n))
)2md

) <∞.

Therefore, the Borel-Cantelli lemma implies that for any n, there exists m0 ∈
N such that, for any m ≥ m0, any r and any j ≥ m, the inequality

‖cλ − dλ‖
Tr,m
j ≥ 2−j(hmin+1/n) (23)

holds almost surely. Using inequality (23), we see that for any n ∈ N,

max{ sup
j≤l≤j+log2 j

‖cλ − dλ‖
Tr,m
l ,

2−j([hmin]+1) sup
j−log2 j≤l≤j

(2l([hmin]+1)‖cλ − dλ‖
Tr,m
l }

is larger than 2−j(hmin+1/n) for any r,m almost surely. Moreover, since Xν +
f ∈ Λhmin(Td) almost surely, we also almost surely have that, for any j and
any r,m,

max{ sup
j≤l≤j+log2 j

‖cλ − dλ‖
Tr,m
l ,

2−j([hmin]+1) sup
j−log2 j≤l≤j

(2l([hmin]+1)‖cλ − dλ‖
Tr,m
l }

is lower than 2−jhmin . These two bounds allows us to say that for any n ∈ N,
the quantity

lim
j→∞

−j−1 log2 max{ sup
j≤l≤j+log2 j

‖cλ − dλ‖
Tr,m
l ,

2−j([hmin]+1) sup
j−log2 j≤l≤j

(2l([hmin]+1)‖cλ − dλ‖
Tr,m
l }

almost surely belongs to [hmin, hmin + 1/n], for any r,m. Since this relation
is valid for any n, corollary 1 allows to conclude. �

We can sum-up the regularity results of the Sν spaces as follows:
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Corollary 2. If the admissible profile ν is not reduced to a single point, the
set

{f ∈ Sν : hf (x) = hmax and Hf (x) = hmin

with hmax 6= hmin for Lebesgue-almost every x}

is prevalent.
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