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The problem

• MEMS structures

– Are not several orders larger than their 

micro-structure size

– Parameters-dependent manufacturing process 

• Low Pressure Chemical Vapor Deposition (LPCVD)

• Properties depend on the temperature, time process, 

and flow gas conditions

– As a result, their macroscopic properties 

can exhibit a scatter

• Due to the fabrication process (photolithography, wet and dry etching)

• Due to uncertainties of the material 

• …

The objective of this work is to estimate this scatter
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The problem

• Application example

– Poly-silicon resonators

– Quantities of interest

• Eigen frequency

• Quality factor due to thermo-

elastic damping Q ~ 𝑊/∆𝑊

• Thermoelastic damping is a source of intrinsic 

material damping present in almost all materials

𝜏 ≪ 𝑇 isothermal process

𝜏 ≫ 𝑇 adiabatic process

𝜏 ~𝑇 𝑄 ↓
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The problem

• Material structure: grain size distribution 

SEM Measurements (Scanning Electron Microscope)

– Grain size dependent on the LPCVD temperature process

– 2 µm-thick poly-silicon films

1 𝝁m

Deposition temperature: 650 oCDeposition temperature: 580 oC

1 𝝁m

Deposition temperature [oC] 580 610 630 650

Average grain diameter [µm] 0.21 0.45 0.72 0.83

SEM images provided by IMT Bucharest, Rodica Voicu, Angela Baracu, Raluca Muller
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Monte-Carlo for a fully modelled beam

• The first mode frequency distribution can be obtained with

– A 3D beam with each grain modelled

– Grains distribution according to experimental measurements

– Monte-Carlo simulations

• Considering each grain is expensive and time consuming

Motivation for stochastic multi-scale methods
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Motivations

• Multi-scale modelling

– 2 problems are solved 

concurrently

• The macro-scale problem

• The meso-scale problem (on 

a meso-scale Volume 

Element)

• Length-scales separation

Lmacro>>LVE>>Lmicro

BVP

Macro-scale

Material 

response

Extraction of a meso-

scale Volume Element

For accuracy: Size of the meso-

scale volume element smaller than

the characteristic length of the

macro-scale loading

To be statistically representative:

Size of the meso-scale volume

element larger than the

characteristic length of the micro-

structure
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Motivations

• For structures not several orders larger than the micro-structure size

• Possibility to propagate the uncertainties from the micro-scale to the macro-scale

Lmacro>>LVE>~Lmicro

For accuracy: Size of the meso-

scale volume element smaller than

the characteristic length of the

macro-scale loading

Meso-scale volume element no

longer statistically representative:

Stochastic Volume Elements*

*M Ostoja-Starzewski, X Wang, 1999

P Trovalusci, M Ostoja-Starzewski, M L De Bellis, A Murrali, 2015

X. Yin, W. Chen, A. To, C. McVeigh, 2008

J. Guilleminot, A. Noshadravan, C. Soize, R. Ghanem, 2011

….
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A 3-scale process

Grain-scale or micro-scale Meso-scale Macro-scale

 Samples of the 

microstructure (volume 

elements) are generated

 Each grain has a random 

orientation

 Intermediate scale

 The distribution of the 

material property ℙ(𝐶) is

defined

 Uncertainty quantification 

of the macro-scale quantity

 E.g. the first mode 

frequency ℙ 𝑓1 /Quality 

factor ℙ 𝑄

SVE size

Mean value of 

material property

SVE size

Variance of 

material property

Quantity of 

interest

Probability density

Stochastic 

Homogenization SFEM
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• From the micro-scale to the meso-scale

– Thermo-mechanical homogenization 

– Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization

– Need for a meso-scale random field

• The meso-scale random field

– Definition of the thermo-mechanical meso-scale random field

– Stochastic model of the random field: Spectral generator & non-Gaussian mapping

• From the meso-scale to the macro-scale

– 3-Scale approach verification

– Application to extract the quality factor

• Accounting for roughness effect

– From the micro-scale to the meso-scale

– The meso-scale random field

– From the meso-scale to the macro-scale

Content
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• Definition of Stochastic Volume Elements (SVEs)

– Poisson Voronoï tessellation realizations

• SVE realization 𝜔𝑗

– Each grain 𝜔𝑖 is assigned material properties

• Elasticity tensor ℂm𝑖;

• Heat conductivity tensor 𝜅m𝑖 ;

• Thermal expansion tensors 𝛼m𝑖 .

• Defined from silicon crystal properties

– Each set ℂ𝑚𝑖 , 𝜅m𝑖 , 𝛼m𝑖 is assigned a 

random orientation

• Following XRD  distributions

• Stochastic homogenization

– Several SVE realizations

– For each SVE 𝜔𝑗 =∪𝑖 𝜔𝑖

– Homogenized material tensors not unique as statistical representativeness is lost*

From the micro-scale to the meso-scale

*“C. Huet, 1990

Computational 

homogenization

ℂm𝑖, 𝜅m𝑖 , 𝛼m𝑖 ∀𝑖

Samples of the meso-

scale homogenized

elasticity tensors

ℂM𝑗, 𝜅M𝑗 , 𝛼M𝑗

ℂm𝑖, 𝜅m𝑖 , 𝛼m𝑖 ℂm𝑖, 𝜅m𝑖 , 𝛼m𝑖

ℂm𝑖, 𝜅m𝑖 , 𝛼m𝑖

ℂm𝑖, 𝜅m𝑖 , 𝛼m𝑖ℂm𝑖, 𝜅m𝑖 , 𝛼m𝑖

𝜔𝑗 =∪𝑖 𝜔𝑖
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• Thermo-mechanical homogenization

– Down-scaling

– Up-scaling

– Consistency Satisfied by periodic boundary conditions

From the micro-scale to the meso-scale

x

xMeso-scale BVP 

resolution

𝜔 =∪𝑖 𝜔𝑖

x

𝜺M,

𝛻M𝜗M, 

𝜗M

𝝈M, 𝒒M, 𝜌M𝐶𝑣M
ℂM, 𝜅M,𝜶MℂM,

….
𝜺M =

1

𝑉 𝜔
 
𝜔

𝜺m𝑑𝜔

𝛻M𝜗M =
1

𝑉 𝜔
 
𝜔

𝛻m𝜗m𝑑𝜔

𝜗M =
1

𝑉 𝜔
 
𝜔

𝜌m𝐶𝑣m
𝜌M𝐶𝑣M

𝜗m𝑑𝜔

𝝈M =
1

𝑉 𝜔
 
𝜔

𝝈m𝑑𝜔

𝒒M =
1

𝑉 𝜔
 
𝜔

𝒒m𝑑𝜔

𝜌M𝐶𝑣M =
1

𝑉 𝜔
∫ 𝜌m𝐶𝑣m𝑑𝑉

ℂM =
𝜕𝝈M

𝜕𝒖M ⊗𝛁M

𝜿M = −
𝜕𝒒M
𝜕𝛻M𝜗M

𝜶M: ℂM = −
𝜕𝝈M
𝜕𝜗M

&
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From the micro-scale to the meso-scale

𝐶𝑂𝑉 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑚𝑒𝑎𝑛
∙ 100%

• Distribution of the apparent meso-

scale elasticity tensor ℂ𝑀

 For large SVEs, the apparent

tensor tends to the effective (and

unique) one

 The bounds do not depend on

the SVE size but on the silicon

elasticity tensor

 However, the larger the SVE,

the lower the probability to be

close to the bounds
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𝐶𝑂𝑉 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑚𝑒𝑎𝑛
∙ 100%

• Use of the meso-scale distribution with macro-scale finite elements 

– Beam macro-scale finite elements

– Use of the meso-scale distribution as a random variable

– Monte-Carlo simulations 

From the micro-scale to the meso-scale

Coarse macro-mesh Fine macro- mesh

First bending mode of 

a 3.2 𝜇m-long beam

ℂM1 ℂM2 ℂM3
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𝐶𝑂𝑉 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑚𝑒𝑎𝑛
∙ 100%

• Use of the meso-scale distribution with macro-scale finite elements 

– Beam macro-scale finite elements

– Use of the meso-scale distribution as a random variable

– Monte-Carlo simulations 

• No convergence: the macro-scale distribution (first resonance frequency) depends 

on SVE and mesh sizes

From the micro-scale to the meso-scale

Convergence

Coarse macro-mesh Fine macro-mesh

First bending mode of 

a 3.2 𝜇m-long beam

ℂM1 ℂM2 ℂM3
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• Need for a meso-scale random field

– Introduction of the (meso-scale) spatial correlation

• Define large tessellations

• SVEs extracted at different distances in each 

tessellation

– Evaluate the spatial correlation between the 

components of the meso-scale material operators

– For example, in 1D-elasticity

• Young’s modulus correlation

• Correlation length

From the micro-scale to the meso-scale

𝑅𝑬𝒙 𝝉 =
𝔼 𝑬𝒙 𝒙 − 𝔼 𝑬𝒙 𝑬𝒙 𝒙 + 𝝉 − 𝔼 𝑬𝒙

𝔼 𝑬𝒙 − 𝔼 𝑬𝒙
2

Young’s modulus correlation

𝐿𝑬𝒙 =
∫−∞
∞
𝑅𝑬𝒙 𝜏 𝑑𝜏

𝑅𝑬𝒙 0

Ex

Ey

t

SVE (x’, y’)

SVE (x, y) SVE (x+l, y)

SVE (x, y+l) SVE (x+l, y+l)
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• Need for a meso-scale random field (2)

– The meso-scale random field is characterized by the correlation length 𝐿𝐸𝑥
– The correlation length 𝐿𝐸𝑥 depends on the SVE size

From the micro-scale to the meso-scale

𝒍𝐒𝐕𝐄 = 𝟎. 𝟏 𝝁𝒎 𝒍𝐒𝐕𝐄 = 𝟎. 𝟒 𝝁𝒎

Random field with different SVEs sizes
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• From the micro-scale to the meso-scale

– Thermo-mechanical homogenization 

– Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization
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– Definition of the thermo-mechanical meso-scale random field

– Stochastic model of the random field: Spectral generator & non-Gaussian mapping

• From the meso-scale to the macro-scale

– 3-Scale approach verification

– Application to extract the quality factor

• Accounting for roughness effect
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– The meso-scale random field

– From the meso-scale to the macro-scale

Content
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• Use of the meso-scale distribution with stochastic (macro-scale) finite elements 

– Use of the meso-scale random field

Monte-Carlo simulations at the macro-scale

– BUT we do not want to evaluate the random field from the stochastic homogenization 

for each simulation Meso-scale random field from a generator

The meso-scale random field

Stochastic model of meso-scale 

elasticity tensors

Stochastic model

ℂM(𝑥, 𝜃)

ℂM(𝑥 + 𝜏, 𝜃)

ℂM(𝑥 + 2𝜏, 𝜃)
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• Definition of the thermo-mechanical meso-scale random field

– Elasticity tensor ℂM(𝑥, 𝜃) (matrix form 𝑪𝑀) & thermal conductivity 𝜿M are bounded

• Ensure existence of their inverse

• Define lower bounds ℂL and 𝜿L such that 

– Use a Cholesky decomposition when semi-positive definite matrices are required

– We define the homogenous zero-mean random field 𝓥′ 𝒙, 𝜽 , with as entries

• Elasticity tensor 𝒜′ 𝒙, 𝜽 ⇒ 𝓥′(1)…𝓥′(21), 

• Heat conductivity tensor ℬ′ 𝒙, 𝜽 ⇒ 𝓥′(22)…𝓥′(27)

• Thermal expansion tensors   𝓥′(𝒕) ⇒ 𝓥′(28)…𝓥′(33)

The meso-scale random field

𝜺: ℂM − ℂL : 𝜺 > 0 ∀𝜺

𝛻𝜗 ⋅ 𝜿M − 𝜿L ⋅ 𝛻𝜗 > 0 ∀𝛻𝜗

𝑪M 𝒙, 𝜽 = 𝑪L +  𝓐+𝓐′ 𝒙, 𝜽
𝑇  𝓐+𝓐′ 𝒙, 𝜽

𝜿M 𝒙, 𝜽 = 𝜿L +  𝓑 + 𝓑′ 𝒙, 𝜽
𝑇  𝓑 + 𝓑′ 𝒙, 𝜽

𝜶M𝒊𝒋
𝒙, 𝜽 =  𝓥(𝒕) + 𝓥′(𝒕) 𝒙, 𝜽
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• Characterization of the meso-scale random field

– Generate large tessellation realizations

– For each tessellation realization

• Extract SVEs centered on 𝒙 + 𝝉

• For each SVE evaluate ℂM(𝒙 + 𝝉), 𝜅M(𝒙 + 𝝉), 𝛼M 𝒙 + 𝝉

– From the set of realizations ℂM 𝒙, 𝜽 , 𝜅M 𝒙, 𝜽 , 𝛼M 𝒙, 𝜽

• Evaluate the bounds ℂL and 𝜿L

• Apply the Cholesky decomposition ⇒ 𝓐′ 𝒙, 𝜽 , 𝓑′ 𝒙, 𝜽

• Fill the 33 entries of the zero-mean homogenous field 𝓥′ 𝒙, 𝜽

– Compute the auto-/cross-correlation matrix

– Generate zero-mean random field 𝓥′ 𝒙, 𝜽

• Spectral generator & non-Gaussian mapping

The meso-scale random field

𝑅𝓥′
𝑟𝑠

𝝉 =
𝔼 𝓥′ 𝑟 𝒙 − 𝔼 𝓥′ 𝑟 𝓥′ 𝑠 𝒙 + 𝝉 − 𝔼 𝓥′ 𝑠

𝔼 𝓥′ 𝑟 − 𝔼 𝓥′ 𝑟
2
𝔼 𝓥′ 𝑠 − 𝔼 𝓥′ 𝑠

2

Ex

Ey

t

SVE (x’, y’)

SVE (x, y) SVE (x+l, y)

SVE (x, y+l) SVE (x+l, y+l)
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• Polysilicon film deposited at 610 ºC 

– SVE size of 0.5 x 0.5 𝜇m2

– Comparison between micro-samples and generated field PDFs

The meso-scale random field

𝑪M11
[GPa] 𝜅M33

[W/(m ⋅ 𝐾)]
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• Polysilicon film deposited at 610 ºC (3)

– Comparison between micro-samples and generated random field realizations

The meso-scale random field

Micro-Samples Generator
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• From the micro-scale to the meso-scale

– Thermo-mechanical homogenization 

– Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization
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• Accounting for roughness effect

– From the micro-scale to the meso-scale

– The meso-scale random field

– From the meso-scale to the macro-scale

Content



CM3 EMI2017 - 4 - 7 June 2017, San Diego, USA - 37

• 3-Scale approach verification with direct Monte-Carlo simulations

– Use of the meso-scale random field

Monte-Carlo simulations at the macro-scale

– Macro-scale beam elements of size 𝑙mesh

– Convergence in terms of 𝛼 =
𝑙𝐸𝑥
𝑙mesh

𝐶𝑂𝑉 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑚𝑒𝑎𝑛
∙ 100%

From the meso-scale to the macro-scale

Coarse macro-mesh Fine macro-mesh

ℂM1(𝑥) ℂM1(𝑥 + 𝜏)

First bending mode of 

a 3.2 𝜇m-long beam
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• 3-Scale approach verification (𝛼~2) with direct Monte-Carlo simulations

– First bending mode

– Second bending mode

From the meso-scale to the macro-scale

Eigen frequency

Eigen frequency

First bending mode of 

a 3.2 𝜇m-long beam

Second bending mode of 

a 3.2 𝜇m-long beam
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• Quality factor

– Micro-resonators

• Temperature changes with compression/traction

• Energy dissipation

– Eigen values problem

• Governing equations

• Free vibrating problem

– Quality factor

• From the dissipated energy per cycle

•

From the meso-scale to the macro-scale

𝐌 𝟎
𝟎 𝟎

 𝐮
 𝝑
+

𝟎 𝟎
𝐃uϑ(𝛉) 𝐃ϑϑ

 𝐮
 𝝑
+

𝐊uu(𝛉) 𝐊uϑ(𝛉)
𝟎 𝐊ϑϑ(𝛉)

𝐮
𝝑

=
𝑭u
𝑭ϑ

−𝐊uu(𝛉) −𝐊u𝝑(𝛉) 𝟎

𝟎 −𝐊ϑϑ(𝛉) 𝟎
𝟎 𝟎 𝐈

𝐮
𝝑
 𝐮
= 𝑖𝜔

𝟎 𝟎 𝐌
𝐃ϑu(𝛉) 𝐃ϑϑ 𝟎

𝐈 𝟎 𝟎

𝐮
𝝑
 𝐮

𝐮(𝑡)
𝝑(𝑡)

=
𝐮𝟎
𝝑𝟎

𝑒𝑖𝜔𝑡

𝑄−1 =
2 ℑ𝜔

ℑ𝜔 2 + ℜ𝜔 2
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• Application of the 3-Scale method to extract the quality factor distribution 

– 3D models readily available

– The effect of the anchor can be studied

From the meso-scale to the macro-scale

L w

t

L w

t

Lsupport

wsupport

g

15 x 3 x 2 μm3-beam & anchor, 

deposited at 610 ºC

15 x 3 x 2 μm3-beam, 

deposited at 610 ºC
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• From the micro-scale to the meso-scale

– Thermo-mechanical homogenization 

– Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization

– Need for a meso-scale random field
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• Accounting for roughness effect

– From the micro-scale to the meso-scale

– The meso-scale random field
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Content
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Accounting for roughness effect

• Surface topology: asperity distribution 

– Upper surface topology by AFM (Atomic Force Microscope) measurements on 2 µm-

thick poly-silicon films

AFM data provided by IMT Bucharest, Rodica Voicu, Angela Baracu, Raluca Muller

Deposition temperature [oC] 580 610 630 650

Std deviation [nm] 35.6 60.3 90.7 88.3
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• From the micro-scale to the meso-scale 

– Second-order homogenization

– Stochastic homogenization

• Several SVE realizations

• For each SVE 𝜔𝑗 =∪𝑖 𝜔𝑖

• The density per unit area is now non-constant

Accounting for roughness effect

Computational 

homogenization

ℂm𝑖 ∀𝑖

Samples of the meso-

scale homogenized

elasticity matrix UM &

density  𝝆M

ℂ
M1
𝑗 ,ℂ

M2
𝑗 , ℂ

M3
𝑗 , ℂ

M4
𝑗 U

M𝑗

ℂm𝑖
ℂm𝑖

ℂm𝑖

𝜔𝑗 =∪𝑖 𝜔𝑖

 𝒏M = ℂM𝟏
: 𝜺M + ℂM𝟐

: 𝜿M

 𝒎M = ℂM𝟑
: 𝜺M + ℂM4

: 𝜿M

A
 ℎ/2

𝑥

𝜺M, 𝜿M
 𝒏M, ℂM1

, ℂM2

 𝒎M, ℂM3
, ℂM4

𝝎 =∪𝒊 𝝎𝒊

Meso-scale BVP 

resolution

 𝝆
M𝑗
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• The meso-scale random field

– Generate large tessellation realizations

– For each tessellation realization

• Extract SVEs centred at 𝒙 + 𝝉

• For each SVE evaluate UM(𝒙 + 𝝉),  𝝆M(𝒙 + 𝝉)

– From the set of realizations UM 𝒙, 𝜽 , 𝝆M 𝒙, 𝜽 ,

• Evaluate the bounds 𝐔L and  𝝆𝐿

• Apply the Cholesky decomposition ⇒ 𝓐′ 𝒙, 𝜽

• Fill the 22 entries of the zero-mean homogenous 

field 𝓥′ 𝒙, 𝜽

– Compute the auto-/cross-correlation matrix

Accounting for roughness effect

𝑅𝓥′
𝑟𝑠

𝝉 =
𝔼 𝓥′ 𝑟 𝒙 − 𝔼 𝓥′ 𝑟 𝓥′ 𝑠 𝒙 + 𝝉 − 𝔼 𝓥′ 𝑠

𝔼 𝓥′ 𝑟 − 𝔼 𝓥′ 𝑟
2
𝔼 𝓥′ 𝑠 − 𝔼 𝓥′ 𝑠

2

ℂm𝑖
ℂm𝑖

ℂm𝑖

𝜔𝑗 =∪𝑖 𝜔𝑖
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• From the meso-scale to the macro-scale 

– Cantilever of 8 x 3 x t 𝜇m3deposited at 610 ºC 

Accounting for roughness effect

L w

t

Flat SVEs (no roughness)  - F

Rough SVEs ( Polysilicon film deposited at 610 ºC ) - R

Grain orientation following XRD measurements – Sipref

Grain orientation uniformly distributed – Siuni

Reference isotropic material – Iso

Roughness effect is the most important 

for 8 x 3 x 0.5 𝜇m3 cantilevers
Roughness effect is of same importance as 

orientation for 8 x 3 x 2 𝜇m3 cantilevers
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Conclusions & Perspectives

• Efficient stochastic multi-scale method

– Micro-structure based on experimental measurements

– Computational efficiency relies on the meso-scale random field generator

– Used to study probabilistic behaviors

• Perspectives

– Other material systems

– Non-linear behaviors

– Non-homogenous random fields
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Thank you for your attention ! 


