A stochastic multiscale method applied to thermo-elasticity analyses of polycrystalline micro-structures

Wu Ling, Lucas Vincent, Nguyen Van-Dung, Paquay Stéphane, Golinval Jean-Claude, Noels Ludovic

3SMVIB: The research has been funded by the Walloon Region under the agreement no 1117477 (CT-INT 2011-11-14) in the context of the ERA-NET MNT framework. Experimental measurements provided by IMT Bucharest (Voicu Rodica, Baracu Angela, Muller Raluca)
The problem

- **MEMS structures**
 - Are not several orders larger than their micro-structure size
 - Parameters-dependent manufacturing process
 - Low Pressure Chemical Vapor Deposition (LPCVD)
 - Properties depend on the temperature, time process, and flow gas conditions
 - As a result, their macroscopic properties can exhibit a scatter
 - Due to the fabrication process (photolithography, wet and dry etching)
 - Due to uncertainties of the material
 - ...

 The objective of this work is to estimate this scatter
The problem

- **Application example**
 - Poly-silicon resonators
 - Quantities of interest
 - Eigen frequency
 - Quality factor due to thermo-elastic damping $Q \sim W/\Delta W$
 - Thermoelastic damping is a source of intrinsic material damping present in almost all materials

\[\tau \ll T \quad \text{isothermal process} \]
\[\tau \gg T \quad \text{adiabatic process} \]
\[\tau \sim T \quad Q \downarrow \]
The problem

- Material structure: grain size distribution

 SEM Measurements (Scanning Electron Microscope)
 - Grain size dependent on the LPCVD temperature process
 - 2 µm-thick poly-silicon films

<table>
<thead>
<tr>
<th>Deposition temperature [°C]</th>
<th>580</th>
<th>610</th>
<th>630</th>
<th>650</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average grain diameter [µm]</td>
<td>0.21</td>
<td>0.45</td>
<td>0.72</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Deposition temperature: 580 °C

Deposition temperature: 650 °C

SEM images provided by IMT Bucharest, Rodica Voicu, Angela Baracu, Raluca Muller
Monte-Carlo for a fully modelled beam

- The first mode frequency distribution can be obtained with
 - A 3D beam with each grain modelled
 - Grains distribution according to experimental measurements
 - Monte-Carlo simulations

- Considering each grain is expensive and time consuming

 Motivation for stochastic multi-scale methods
Motivations

- **Multi-scale modelling**
 - 2 problems are solved concurrently
 - The macro-scale problem
 - The meso-scale problem (on a meso-scale Volume Element)

- **Length-scales separation**

 \[L_{\text{macro}} \gg L_{\text{VE}} \gg L_{\text{micro}} \]

 - **For accuracy:** Size of the meso-scale volume element smaller than the characteristic length of the macro-scale loading
 - **To be statistically representative:** Size of the meso-scale volume element larger than the characteristic length of the micro-structure
Motivations

- For structures not several orders larger than the micro-structure size

\[L_{\text{macro}} \gg L_{\text{VE}} \sim L_{\text{micro}} \]

For accuracy: Size of the meso-scale volume element smaller than the characteristic length of the macro-scale loading

- Possibility to propagate the uncertainties from the micro-scale to the macro-scale

*M Ostoj-Starzewski, X Wang, 1999
P Trovalusci, M Ostoja-Starzewski, M L De Bellis, A Murrari, 2015
X. Yin, W. Chen, A. To, C. McVeigh, 2008
J. Guilleminot, A. Noshadravan, C. Soize, R. Ghanem, 2011
...
A 3-scale process

<table>
<thead>
<tr>
<th>Grain-scale or micro-scale</th>
<th>Meso-scale</th>
<th>Macro-scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Samples of the microstructure (volume elements) are generated</td>
<td>➢ Intermediate scale</td>
<td>➢ Uncertainty quantification of the macro-scale quantity</td>
</tr>
<tr>
<td>➢ Each grain has a random orientation</td>
<td>➢ The distribution of the material property $\mathbb{P}(C)$ is defined</td>
<td>➢ E.g. the first mode frequency $\mathbb{P}(f_1)$ /Quality factor $\mathbb{P}(Q)$</td>
</tr>
</tbody>
</table>

![Diagram showing the process]

- Stochastic Homogenization
- Mean value of material property
- Variance of material property
- SFEM
- Probability density
- Quantity of interest

Mean value of material property
Variance of material property
SVE size
Probability density
Quantity of interest
Content

- From the micro-scale to the meso-scale
 - Thermo-mechanical homogenization
 - Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization
 - Need for a meso-scale random field

- The meso-scale random field
 - Definition of the thermo-mechanical meso-scale random field
 - Stochastic model of the random field: Spectral generator & non-Gaussian mapping

- From the meso-scale to the macro-scale
 - 3-Scale approach verification
 - Application to extract the quality factor

- Accounting for roughness effect
 - From the micro-scale to the meso-scale
 - The meso-scale random field
 - From the meso-scale to the macro-scale
Content

• From the micro-scale to the meso-scale
 – Thermo-mechanical homogenization
 – Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization
 – Need for a meso-scale random field

• The meso-scale random field
 – Definition of the thermo-mechanical meso-scale random field
 – Stochastic model of the random field: Spectral generator & non-Gaussian mapping

• From the meso-scale to the macro-scale
 – 3-Scale approach verification
 – Application to extract the quality factor

• Accounting for roughness effect
 – From the micro-scale to the meso-scale
 – The meso-scale random field
 – From the meso-scale to the macro-scale
• Definition of Stochastic Volume Elements (SVEs)
 – Poisson Voronoï tessellation realizations
 • SVE realization \(\omega_j \)
 – Each grain \(\omega_i \) is assigned material properties
 • Elasticity tensor \(C_{m_i} \);
 • Heat conductivity tensor \(\kappa_{m_i} \);
 • Thermal expansion tensors \(\alpha_{m_i} \).
 • Defined from silicon crystal properties
 – Each set \(C_{m_i}, \kappa_{m_i}, \alpha_{m_i} \) is assigned a random orientation
 • Following XRD distributions

• Stochastic homogenization
 – Several SVE realizations
 – For each SVE \(\omega_j = \bigcup_i \omega_i \)
 \(C_{m_i}, \kappa_{m_i}, \alpha_{m_i} \quad \forall i \)

*“C. Huet, 1990

From the micro-scale to the meso-scale

- Homogenized material tensors not unique as statistical representativeness is lost*
From the micro-scale to the meso-scale

- **Thermo-mechanical homogenization**
 - Down-scaling

 \[
 \varepsilon_M = \frac{1}{V(\omega)} \int_{\omega} \varepsilon_m d\omega
 \]

 \[
 \nabla_M \vartheta_M = \frac{1}{V(\omega)} \int_{\omega} \nabla_m \vartheta_m d\omega
 \]

 \[
 \vartheta_M = \frac{1}{V(\omega)} \int_{\omega} \frac{\rho_m C_{vm}}{\rho_M C_{\nu M}} \vartheta_m d\omega
 \]

 - Up-scaling

 \[
 \sigma_M = \frac{1}{V(\omega)} \int_{\omega} \sigma_m d\omega
 \]

 \[
 q_M = \frac{1}{V(\omega)} \int_{\omega} q_m d\omega
 \]

 \[
 \rho_M C_{\nu M} = \frac{1}{V(\omega)} \int \rho_m C_{vm} dV
 \]

 - Consistency

 Satisfied by periodic boundary conditions
From the micro-scale to the meso-scale

- Distribution of the apparent meso-scale elasticity tensor \mathbb{C}_M

 - For large SVEs, the apparent tensor tends to the effective (and unique) one

 - The bounds do not depend on the SVE size but on the silicon elasticity tensor

 - However, the larger the SVE, the lower the probability to be close to the bounds

\[
COV = \frac{\sqrt{\text{Variance}}}{\text{mean}} \cdot 100\%
\]
From the micro-scale to the meso-scale

- Use of the meso-scale distribution with macro-scale finite elements
 - Beam macro-scale finite elements
 - Use of the meso-scale distribution as a random variable
 - Monte-Carlo simulations

\[
COV = \frac{\sqrt{\text{Variance}}}{\text{mean}} \cdot 100\%
\]

First bending mode of a 3.2 µm-long beam
From the micro-scale to the meso-scale

- Use of the meso-scale distribution with macro-scale finite elements
 - Beam macro-scale finite elements
 - Use of the meso-scale distribution as a random variable
 - Monte-Carlo simulations

\[\text{COV} = \frac{\sqrt{\text{Variance}}}{\text{mean}} \cdot 100\% \]

- No convergence: the macro-scale distribution (first resonance frequency) depends on SVE and mesh sizes

First bending mode of a 3.2 μm-long beam
From the micro-scale to the meso-scale

- Need for a meso-scale random field
 - Introduction of the (meso-scale) spatial correlation
 - Define large tessellations
 - SVEs extracted at different distances in each tessellation
 - Evaluate the spatial correlation between the components of the meso-scale material operators
 - For example, in 1D-elasticity
 - Young’s modulus correlation

\[
R_{E_x}(\tau) = \frac{\mathbb{E}[(E_x(x) - \mathbb{E}(E_x))(E_x(x + \tau) - \mathbb{E}(E_x))]}{\mathbb{E}[(E_x - \mathbb{E}(E_x))^2]}
\]

- Correlation length

\[
L_{E_x} = \frac{\int_{-\infty}^{\infty} R_{E_x}(\tau) d\tau}{R_{E_x}(0)}
\]
From the micro-scale to the meso-scale

- Need for a meso-scale random field (2)
 - The meso-scale random field is characterized by the correlation length L_{Ex}
 - The correlation length L_{Ex} depends on the SVE size

Random field with different SVEs sizes

$l_{SVE} = 0.1 \mu m$

$l_{SVE} = 0.4 \mu m$

- Young's modulus [GPa]
- x position [\mu m]
- $\mathbb{E}[E_x]$
- $\mathbb{E}[E_x] \pm \sigma_{E_x}$
- Samples of the random field
Content

• From the micro-scale to the meso-scale
 – Thermo-mechanical homogenization
 – Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization
 – Need for a meso-scale random field

• The meso-scale random field
 – Definition of the thermo-mechanical meso-scale random field
 – Stochastic model of the random field: Spectral generator & non-Gaussian mapping

• From the meso-scale to the macro-scale
 – 3-Scale approach verification
 – Application to extract the quality factor

• Accounting for roughness effect
 – From the micro-scale to the meso-scale
 – The meso-scale random field
 – From the meso-scale to the macro-scale
The meso-scale random field

- Use of the meso-scale distribution with stochastic (macro-scale) finite elements
 - Use of the meso-scale random field
 - Monte-Carlo simulations at the macro-scale
 - BUT we do not want to evaluate the random field from the stochastic homogenization for each simulation
 - Meso-scale random field from a generator

Stochastic model of meso-scale elasticity tensors

\[\mathbb{C}_M(x + \tau, \theta) \]

\[\mathbb{C}_M(x, \theta) \]

\[\mathbb{C}_M(x + 2\tau, \theta) \]
The meso-scale random field

- Definition of the thermo-mechanical meso-scale random field
 - Elasticity tensor $C_M(x, \theta)$ (matrix form C_M) & thermal conductivity κ_M are bounded

 - Ensure existence of their inverse
 - Define lower bounds C_L and κ_L such that

 $\begin{align*}
 &\varepsilon: (C_M - C_L): \varepsilon > 0 \quad \forall \varepsilon \\
 &\nabla \vartheta \cdot (\kappa_M - \kappa_L) \cdot \nabla \vartheta > 0 \quad \forall \nabla \vartheta
 \end{align*}$

 - Use a Cholesky decomposition when semi-positive definite matrices are required

 $\begin{align*}
 C_M(x, \theta) &= C_L + (\overline{A} + A'(x, \theta))^T (\overline{A} + A'(x, \theta)) \\
 \kappa_M(x, \theta) &= \kappa_L + (\overline{B} + B'(x, \theta))^T (\overline{B} + B'(x, \theta)) \\
 \alpha_{Mij}(x, \theta) &= \overline{V}^{(t)} + V'(t)(x, \theta)
 \end{align*}$

 - We define the homogenous zero-mean random field $V'(x, \theta)$, with as entries

 - Elasticity tensor $A'(x, \theta) \Rightarrow V'(1) ... V'(21)$
 - Heat conductivity tensor $B'(x, \theta) \Rightarrow V'(22) ... V'(27)$
 - Thermal expansion tensors $V'(t) \Rightarrow V'(28) ... V'(33)$
The meso-scale random field

- Characterization of the meso-scale random field
 - Generate large tessellation realizations
 - For each tessellation realization
 - Extract SVEs centered on $x + \tau$
 - For each SVE evaluate $C_M(x + \tau), \kappa_M(x + \tau), \alpha_M(x + \tau)$
 - From the set of realizations $C_M(x, \theta), \kappa_M(x, \theta), \alpha_M(x, \theta)$
 - Evaluate the bounds C_L and κ_L
 - Apply the Cholesky decomposition $\Rightarrow A'(x, \theta), B'(x, \theta)$
 - Fill the 33 entries of the zero-mean homogenous field $V'(x, \theta)$
 - Compute the auto-/cross-correlation matrix

$$R_{V_i}^{(rs)}(\tau) = \frac{\mathbb{E} \left[(V^{(r)}(x) - \mathbb{E}(V^{(r)})) (V^{(s)}(x + \tau) - \mathbb{E}(V^{(s)})) \right]}{\sqrt{\mathbb{E} \left[(V^{(r)} - \mathbb{E}(V^{(r)}))^2 \right] \mathbb{E} \left[(V^{(s)} - \mathbb{E}(V^{(s)}))^2 \right]}}$$

- Generate zero-mean random field $V'(x, \theta)$
 - Spectral generator & non-Gaussian mapping
The meso-scale random field

- Polysilicon film deposited at 610 °C
 - SVE size of 0.5 x 0.5 μm²
 - Comparison between micro-samples and generated field PDFs
The meso-scale random field

- Polysilicon film deposited at 610 °C (3)
 - Comparison between micro-samples and generated random field realizations

![Graphs comparing micro-samples and generator results.](image-url)
Content

• From the micro-scale to the meso-scale
 – Thermo-mechanical homogenization
 – Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization
 – Need for a meso-scale random field

• The meso-scale random field
 – Definition of the thermo-mechanical meso-scale random field
 – Stochastic model of the random field: Spectral generator & non-Gaussian mapping

• From the meso-scale to the macro-scale
 – 3-Scale approach verification
 – Application to extract the quality factor

• Accounting for roughness effect
 – From the micro-scale to the meso-scale
 – The meso-scale random field
 – From the meso-scale to the macro-scale
From the meso-scale to the macro-scale

- **3-Scale approach verification with direct Monte-Carlo simulations**
 - Use of the meso-scale random field
 - Monte-Carlo simulations at the macro-scale
 - Macro-scale beam elements of size l_{mesh}
 - Convergence in terms of $\alpha = \frac{l_{E_x}}{l_{\text{mesh}}}$

$$\text{COV} = \sqrt{\text{Variance}} \cdot \frac{\text{mean}}{100\%}$$

![Graph showing coefficient of variation (COV) against ratio α.](image)

First bending mode of a 3.2 μm-long beam
• 3-Scale approach verification ($\alpha \sim 2$) with direct Monte-Carlo simulations

 – First bending mode

 ![First bending mode of a 3.2 μm-long beam](image1)

 – Second bending mode

 ![Second bending mode of a 3.2 μm-long beam](image2)
From the meso-scale to the macro-scale

- **Quality factor**
 - Micro-resonators
 - Temperature changes with compression/traction
 - Energy dissipation
 - Eigen values problem
 - Governing equations
 \[
 \begin{bmatrix}
 M & 0 \\
 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 \ddot{u} \\
 \ddot{\varphi}
 \end{bmatrix}
 +
 \begin{bmatrix}
 0 & 0 \\
 D_{u\varphi}(\theta) & D_{\varphi\varphi}
 \end{bmatrix}
 \begin{bmatrix}
 \dot{u} \\
 \dot{\varphi}
 \end{bmatrix}
 +
 \begin{bmatrix}
 K_{uu}(\theta) & 0 \\
 0 & K_{\varphi\varphi}(\theta)
 \end{bmatrix}
 \begin{bmatrix}
 u \\
 \varphi
 \end{bmatrix}
 =
 \begin{bmatrix}
 F_u \\
 F_\varphi
 \end{bmatrix}
 \]
 - Free vibrating problem
 \[
 \begin{bmatrix}
 u(t) \\
 \varphi(t)
 \end{bmatrix}
 =
 \begin{bmatrix}
 u_0 \\
 \varphi_0
 \end{bmatrix}
 e^{i\omega t}
 \]
 \[
 \begin{bmatrix}
 -K_{uu}(\theta) & -K_{u\varphi}(\theta) & 0 \\
 0 & -K_{\varphi\varphi}(\theta) & 0 \\
 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 u \\
 \varphi
 \end{bmatrix}
 =
 i\omega
 \begin{bmatrix}
 0 & 0 & M \\
 D_{\varphi u}(\theta) & D_{\varphi\varphi} & 0 \\
 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 u \\
 \varphi
 \end{bmatrix}
 \]
 - Quality factor
 - From the dissipated energy per cycle
 \[
 Q^{-1} = \frac{2|\Im\omega|}{\sqrt{(\Im\omega)^2 + (\Re\omega)^2}}
 \]
From the meso-scale to the macro-scale

- Application of the 3-Scale method to extract the quality factor distribution
 - 3D models readily available
 - The effect of the anchor can be studied

15 x 3 x 2 μm³-beam, deposited at 610 ºC

15 x 3 x 2 μm³-beam & anchor, deposited at 610 ºC
Content

• From the micro-scale to the meso-scale
 – Thermo-mechanical homogenization
 – Definition of Stochastic Volume Elements (SVEs) & Stochastic homogenization
 – Need for a meso-scale random field

• The meso-scale random field
 – Definition of the thermo-mechanical meso-scale random field
 – Stochastic model of the random field: Spectral generator & non-Gaussian mapping

• From the meso-scale to the macro-scale
 – 3-Scale approach verification
 – Application to extract the quality factor

• Accounting for roughness effect
 – From the micro-scale to the meso-scale
 – The meso-scale random field
 – From the meso-scale to the macro-scale
Accounting for roughness effect

- Surface topology: asperity distribution
 - Upper surface topology by AFM (Atomic Force Microscope) measurements on 2 µm-thick poly-silicon films

<table>
<thead>
<tr>
<th>Deposition temperature [°C]</th>
<th>580</th>
<th>610</th>
<th>630</th>
<th>650</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std deviation [nm]</td>
<td>35.6</td>
<td>60.3</td>
<td>90.7</td>
<td>88.3</td>
</tr>
</tbody>
</table>

AFM data provided by IMT Bucharest, Rodica Voicu, Angela Baracu, Raluca Muller
Accounting for roughness effect

- From the micro-scale to the meso-scale
 - Second-order homogenization
 \[
 \mathbf{\tilde{\eta}}_M = \mathbf{C}_{M1} : \mathbf{\varepsilon}_M + \mathbf{C}_{M2} : \mathbf{\kappa}_M \\
 \mathbf{\tilde{m}}_M = \mathbf{C}_{M3} : \mathbf{\varepsilon}_M + \mathbf{C}_{M4} : \mathbf{\kappa}_M
 \]
 - Stochastic homogenization
 - Several SVE realizations
 - For each SVE \(\omega_j = \cup_i \omega_i \)
 - The density per unit area is now non-constant

- Computational homogenization
 - Samples of the meso-scale homogenized elasticity matrix \(\mathbf{U}_M \) & density \(\bar{\rho}_M \)

\(\omega = \cup_i \omega_i \)
Accounting for roughness effect

- **The meso-scale random field**
 - Generate large tessellation realizations
 - For each tessellation realization
 - Extract SVEs centred at \(x + \tau \)
 - For each SVE evaluate \(U_M(x + \tau), \bar{\rho}_M(x + \tau) \)
 - From the set of realizations \(U_M(x, \theta), \bar{\rho}_M(x, \theta) \).
 - Evaluate the bounds \(U_L \) and \(\bar{\rho}_L \)
 - Apply the Cholesky decomposition \(\Rightarrow A'(x, \theta) \)
 - Fill the 22 entries of the zero-mean homogenous field \(\mathcal{V}'(x, \theta) \)
 - Compute the auto-/cross-correlation matrix

\[
R_{\mathcal{V}'}^{(rs)}(\tau) = \frac{\mathbb{E} \left[(\mathcal{V}'^{(r)}(x) - \mathbb{E}(\mathcal{V}'^{(r)})) \left(\mathcal{V}'^{(s)}(x + \tau) - \mathbb{E}(\mathcal{V}'^{(s)}) \right) \right]}{\sqrt{\mathbb{E} \left[(\mathcal{V}'^{(r)} - \mathbb{E}(\mathcal{V}'^{(r)}))^2 \right]} \mathbb{E} \left[(\mathcal{V}'^{(s)} - \mathbb{E}(\mathcal{V}'^{(s)}))^2 \right]}
\]
Accounting for roughness effect

- From the meso-scale to the macro-scale
 - Cantilever of $8 \times 3 \times t \mu m^3$ deposited at 610 °C

Flat SVEs (no roughness) - F
Rough SVEs (Polysilicon film deposited at 610 °C) - R
Grain orientation following XRD measurements – Si_{pref}
Grain orientation uniformly distributed – Si_{uni}
Reference isotropic material – Iso

Roughness effect is the most important for $8 \times 3 \times 0.5 \mu m^3$ cantilevers
Roughness effect is of same importance as orientation for $8 \times 3 \times 2 \mu m^3$ cantilevers
Conclusions & Perspectives

- **Efficient stochastic multi-scale method**
 - Micro-structure based on experimental measurements
 - Computational efficiency relies on the meso-scale random field generator
 - Used to study probabilistic behaviors

- **Perspectives**
 - Other material systems
 - Non-linear behaviors
 - Non-homogenous random fields
Thank you for your attention!