Computational & Multiscale Mechanics of Materials

Incremental-secant mean-field-homogenization method for elasto-visco-plastic materials systems

Ling Wu (CM3), L. Adam, B. Bidaine, M. Melchior (e-Xstream), I. Doghri (UCL), Ludovic Noels. (CM3)

STOMMMAC The research has been funded by the Walloon Region under the agreement no 1410246-STOMMMAC (CT-INT 2013-03-28) in the context of M-ERA.NET Joint Call 2014.

CM₃

4 - 7 June 2017, San Diego, USA

Content

• Multi-scale modelling

- Two-scale modelling
- Mean-Field-Homogenization
- Incremental-secant mean-field-homogenization
 - New incremental-secant approach
 - Zero-incremental-secant method
 - Second-statistical moment estimation of the von Mises stress
 - Short fibre reinforced EP matrix

Visco-plasticity

- Incremental-secant mean-field-homogenization
- EVP short fibre reinforced EVP matrix

Non-local damage-enhanced MFH

- Incremental-secant mean-field-homogenization
- Continuous fibre reinforced plastic
- Experimental validation on laminate failure

- Two-scale modelling
 - One way: homogenization
 - 2 problems are solved (concurrently)
 - The macro-scale problem
 - The meso-scale problem (on a meso-scale Volume Element)

3

CM3

- Mean-Field-Homogenization: Key principles - Based on the averaging of the fields $\langle a \rangle = \frac{1}{V} \int_{V} a(X) dV$ - Meso-response • From the volume ratios $(v_0 + v_1 = 1)$ $\begin{cases} \overline{\sigma} = \langle \sigma \rangle = v_0 \langle \sigma \rangle_{\omega_0} + v_1 \langle \sigma \rangle_{\omega_1} = v_0 \sigma_0 + v_1 \sigma_1 \\ \overline{\varepsilon} = \langle \varepsilon \rangle = v_0 \langle \varepsilon \rangle_{\omega_0} + v_1 \langle \varepsilon \rangle_{\omega_1} = v_0 \varepsilon_0 + v_1 \varepsilon_1 \end{cases}$
 - One more equation required

$$\boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} : \boldsymbol{\varepsilon}_{\mathrm{O}}$$

Difficulty: find the adequate relations

$$\sigma_{I} = f(\boldsymbol{\varepsilon}_{I})$$

$$\sigma_{0} = f(\boldsymbol{\varepsilon}_{0})$$

$$\boldsymbol{\varepsilon}_{I} = \boldsymbol{B}^{\varepsilon} : \boldsymbol{\varepsilon}_{0}$$

$$\boldsymbol{\varepsilon}_{I} = \boldsymbol{\varepsilon}_{0}$$

- Mean-Field-Homogenization: Key principles (2)
 - Linear materials
 - Materials behaviours

$$\boldsymbol{\sigma}_{\mathrm{I}} = \overline{\boldsymbol{C}}_{\mathrm{I}} : \boldsymbol{\varepsilon}_{\mathrm{I}}$$
$$\boldsymbol{\sigma}_{0} = \overline{\boldsymbol{C}}_{0} : \boldsymbol{\varepsilon}_{0}$$

- Mori-Tanaka assumption $\boldsymbol{\varepsilon}^{\infty} = \boldsymbol{\varepsilon}_0$
- Use Eshelby tensor

$$\boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} \big(\mathrm{I}, \overline{\boldsymbol{C}}_{0}, \overline{\boldsymbol{C}}_{\mathrm{I}} \big) : \boldsymbol{\varepsilon}_{0}$$

with $\boldsymbol{B}^{\varepsilon} = [\boldsymbol{I} + \boldsymbol{S} : \overline{\boldsymbol{C}}_0^{-1} : (\overline{\boldsymbol{C}}_1 - \overline{\boldsymbol{C}}_0)]^{-1}$

CM3

- Mean-Field-Homogenization: Key principles (2)
 - Linear materials
 - Materials behaviours

$$\boldsymbol{\sigma}_{\mathrm{I}} = \overline{\boldsymbol{C}}_{\mathrm{I}} : \boldsymbol{\varepsilon}_{\mathrm{I}}$$
$$\boldsymbol{\sigma}_{0} = \overline{\boldsymbol{C}}_{0} : \boldsymbol{\varepsilon}_{0}$$

- Mori-Tanaka assumption $\boldsymbol{\varepsilon}^{\infty} = \boldsymbol{\varepsilon}_0$
- Use Eshelby tensor

$$\boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} \left(\mathrm{I}, \overline{\boldsymbol{C}}_{0}, \overline{\boldsymbol{C}}_{\mathrm{I}} \right) : \boldsymbol{\varepsilon}_{0}$$

with
$$\boldsymbol{B}^{\varepsilon} = [\boldsymbol{I} + \boldsymbol{S} : \overline{\boldsymbol{C}}_0^{-1} : (\overline{\boldsymbol{C}}_1 - \overline{\boldsymbol{C}}_0)]^{-1}$$

- Non-linear materials
 - Define a Linear Comparison Composite (LCC)
 - Common approach: incremental tangent

$$\Delta \boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} \left(\mathrm{I}, \overline{\boldsymbol{C}}_{0}^{\mathrm{alg}}, \overline{\boldsymbol{C}}_{\mathrm{I}}^{\mathrm{alg}} \right) : \Delta \boldsymbol{\varepsilon}_{0}$$

- Material model
 - Elasto-plastic material
 - Stress tensor $\boldsymbol{\sigma} = \boldsymbol{C}^{\text{el}} : (\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\text{pl}})$
 - Yield surface $f(\boldsymbol{\sigma}, p) = \boldsymbol{\sigma}^{eq} \boldsymbol{\sigma}^{Y} \boldsymbol{R}(p) \leq 0$
 - Plastic flow $\Delta \varepsilon^{\rm pl} = \Delta p N$ & $N = \frac{\partial f}{\partial \sigma}$
 - Linearization $\delta \sigma = C^{\text{alg}} : \delta \varepsilon$

CM3

- New incremental-secant approach
 - Perform a virtual elastic unloading from previous solution
 - Composite material unloaded to reach the stress-free state
 - Residual stress in components

New Linear Comparison Composite (LCC)

- New incremental-secant approach
 - Perform a virtual elastic unloading from previous solution
 - Composite material unloaded to reach the stress-free state
 - Residual stress in components

New Linear Comparison Composite (LCC)

- Apply MFH from unloaded state
 - New strain increments (>0)

$$\Delta \boldsymbol{\varepsilon}_{\mathrm{I}/0}^{\mathrm{r}} = \Delta \boldsymbol{\varepsilon}_{\mathrm{I}/0} + \Delta \boldsymbol{\varepsilon}_{\mathrm{I}/0}^{\mathrm{unload}}$$

Use of secant operators

$$\Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{r}} = \boldsymbol{B}^{\varepsilon} \left(\mathrm{I}, \overline{\boldsymbol{C}}_{0}^{\mathrm{Sr}}, \overline{\boldsymbol{C}}_{\mathrm{I}}^{\mathrm{Sr}} \right) : \Delta \boldsymbol{\varepsilon}_{0}^{\mathrm{r}}$$

^{4 - 7} June 2017, San Diego, USA

- The secant operators
 - Stress tensor (2 forms)

$$\begin{cases} \boldsymbol{\sigma}_{\mathrm{I}/0} = \boldsymbol{\sigma}_{\mathrm{I}/0}^{\mathrm{res}} + \overline{\boldsymbol{C}}_{\mathrm{I}/0}^{\mathrm{Sr}} : \Delta \boldsymbol{\varepsilon}_{\mathrm{I}/0}^{\mathrm{r}} \\ \boldsymbol{\sigma}_{\mathrm{I}/0} = \overline{\boldsymbol{C}}_{\mathrm{I}/0}^{\mathrm{S0}} : \Delta \boldsymbol{\varepsilon}_{\mathrm{I}/0}^{\mathrm{r}} \end{cases}$$

- Radial return direction toward residual stress
 - First order approximation in the strain increment (and not in the total strain)
 - Exact for the zero-incrementalsecant method
- The secant operators are naturally isotropic

$$\begin{cases} \overline{C}^{\text{Sr}} = 3\kappa^{\text{el}}I^{\text{vol}} + 2\left(\mu^{\text{el}} - 3\frac{\mu^{\text{el}^2}\Delta p}{(\sigma_{n+1} - \sigma_n^{\text{res}})^{\text{eq}}}\right)I^{\text{dev}} \\ \overline{C}^{\text{So}} = 3\kappa^{\text{el}}I^{\text{vol}} + 2\left(\mu^{\text{el}} - 3\frac{\mu^{\text{el}^2}\Delta p}{\sigma_{n+1}^{\text{eq}}}\right)I^{\text{dev}} \end{cases}$$

- 18 🚺

- Verification of the method
 - Spherical inclusions
 - 17 % volume fraction
 - Elastic
 - Elastic-perfectly-plastic matrix
 - Non-proportional loading

CM3

EMI2017 -

19 🚺 🛄

- Second-statistical moment estimation of the von Mises stress •
 - J2-plasticity involves quadratic terms _
 - First statistical moment (mean value) not fully representative •

$$\overline{\sigma}_{\rm I/0}^{\rm eq} = \sqrt{\frac{3}{2}} \,\overline{\sigma}_{\rm I/0}^{\rm dev} : \overline{\sigma}_{\rm I/0}^{\rm dev}$$

Use second statistical moment estimations to define the yield surface •

$$\hat{\sigma}_{\mathrm{I}/0}^{\mathrm{eq}} = \sqrt{\frac{3}{2}} \mathbf{I}^{\mathrm{dev}} ::: \left\langle \boldsymbol{\sigma}_{\mathrm{I}/0} \otimes \boldsymbol{\sigma}_{\mathrm{I}/0} \right\rangle_{\omega_{\mathrm{I}/0}} \geq \overline{\boldsymbol{\sigma}}_{\mathrm{I}/0}^{\mathrm{eq}}$$

- Short fibre reinforced matrix
 - Elastic short fibres
 - Aspect ratio of 20
 - 15.87 % volume fraction
 - 15°- & 30°- orientation
 - Elastic-plastic matrix

4 - 7 June 2017, San Diego, USA

Visco-Plasticity

• Material models

- Elasto-plastic material
 - Stress tensor $\boldsymbol{\sigma} = \boldsymbol{C}^{\text{el}} : (\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\text{pl}})$
 - Yield surface $f(\boldsymbol{\sigma}, p) = \boldsymbol{\sigma}^{eq} \boldsymbol{\sigma}^{Y} R(p) \le 0$
 - Plastic flow $\Delta \varepsilon^{\rm pl} = \Delta p N$ & $N = \frac{\partial f}{\partial \sigma}$
 - Linearization $\delta \sigma = C^{\text{alg}} : \delta \varepsilon$
- Elasto-visco-plastic material
 - Plastic flow $\dot{\boldsymbol{\epsilon}}^{\mathrm{pl}} = \dot{p} \mathbf{N}$
 - Yield surface $f(\boldsymbol{\sigma},p) = \boldsymbol{\sigma}^{eq} \boldsymbol{\sigma}^{Y} R(p)$
 - Flow function $\dot{p} = g_v(\mathbf{\sigma}^{eq}, p)$
 - Perzyna visco-plasticity model

$$g_{v}(\sigma^{eq}, p) = \kappa \left(\frac{f(\sigma^{eq}, p)}{\sigma^{Y} + R(p)}\right)^{m}$$

22

4 - 7 June 2017, San Diego, USA

Visco-plasticity

- Incremental-secant mean-fieldhomogenization
 - For soft matrix response
 - Remove residual stress in matrix
 - Or use second moment estimates
 - Solve iteratively the system

$$\begin{cases} \Delta \overline{\boldsymbol{\varepsilon}}^{\mathrm{r}} = v_0 \Delta \boldsymbol{\varepsilon}_0^{\mathrm{r}} + v_{\mathrm{I}} \Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{r}} \\ \Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{r}} = \Delta \boldsymbol{\varepsilon}_{\mathrm{I}} + \Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{unload}} \\ \Delta \boldsymbol{\varepsilon}_0^{\mathrm{r}} = \Delta \boldsymbol{\varepsilon}_0 + \Delta \boldsymbol{\varepsilon}_0^{\mathrm{unload}} \\ \Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{r}} = \mathbf{B}^{\varepsilon} \left(\mathbf{I}, \overline{\mathbf{C}}_0^{\mathrm{Sr}}, \overline{\mathbf{C}}_{\mathrm{I}}^{\mathrm{Sr}} \right) : \Delta \boldsymbol{\varepsilon}_0^{\mathrm{r}} \text{ or } \\ \mathbf{B}^{\varepsilon} \left(\mathbf{I}, \overline{\mathbf{C}}_0^{\mathrm{So}}, \overline{\mathbf{C}}_{\mathrm{I}}^{\mathrm{Sr}} \right) : \Delta \boldsymbol{\varepsilon}_0^{\mathrm{r}} \end{cases}$$

With the stress tensors

$$\overline{\boldsymbol{\sigma}} = v_0 \boldsymbol{\sigma}_0 + v_{\mathrm{I}} \boldsymbol{\sigma}_{\mathrm{I}}$$
$$\boldsymbol{\sigma}_{\mathrm{I}} = \boldsymbol{\sigma}_{\mathrm{I}}^{\mathrm{res}} + \overline{\mathbf{C}}_{\mathrm{I}}^{\mathrm{Sr}} : \Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{r}}$$
$$\boldsymbol{\sigma}_0 = \boldsymbol{\sigma}_0^{\mathrm{res}} + \overline{\mathbf{C}}_0^{\mathrm{Sr}} : \Delta \boldsymbol{\varepsilon}_0^{\mathrm{r}} \text{ or } \overline{\mathbf{C}}_0^{\mathrm{S0}} : \Delta \boldsymbol{\varepsilon}_0^{\mathrm{r}}$$

Same as for elasto-plasticity

Visco-plasticity

- Short fibre reinforced matrix (1)
 - Elasto-visco-plastic short fibres
 - Spherical
 - 30 % volume fraction
 - Elasto-visco-plastic matrix

Visco-plasticity

- Short fibre reinforced matrix (2)
 - Elasto-visco-plastic short fibres
 - Spherical
 - 10 % volume fraction
 - Elasto-visco-plastic matrix

CM3

Non-local damage-enhanced MFH

• Material models

- Elasto-plastic material
 - Stress tensor $\boldsymbol{\sigma} = \boldsymbol{C}^{\text{el}} : (\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\text{pl}})$
 - Yield surface $f(\boldsymbol{\sigma}, p) = \boldsymbol{\sigma}^{eq} \boldsymbol{\sigma}^{Y} \boldsymbol{R}(p) \leq 0$
 - Plastic flow $\Delta \varepsilon^{\rm pl} = \Delta p N$ & $N = \frac{\partial f}{\partial \sigma}$
 - Linearization $\delta \sigma = C^{\text{alg}} : \delta \varepsilon$

Non-local damage-enhanced MFH

• Material models

- Elasto-plastic material
 - Stress tensor $\boldsymbol{\sigma} = \boldsymbol{C}^{\text{el}} : (\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\text{pl}})$
 - Yield surface $f(\boldsymbol{\sigma}, p) = \boldsymbol{\sigma}^{eq} \boldsymbol{\sigma}^{Y} R(p) \le 0$
 - Plastic flow $\Delta \varepsilon^{\rm pl} = \Delta p N$ & $N = \frac{\partial f}{\partial \sigma}$
 - Linearization $\delta \sigma = C^{\text{alg}} : \delta \varepsilon$
- Local damage model
 - Apparent-effective stress tensors $\boldsymbol{\sigma} = (1 D)\hat{\boldsymbol{\sigma}}$
 - Plastic flow in the effective stress space
 - Damage evolution $\Delta D = F_D(\varepsilon, \Delta p)$

CM3

4 - 7 June 2017, San Diego, USA

- Finite element solutions with strain softening suffer from:
 - The loss of the solution uniqueness and strain localization
 - Mesh dependency

The numerical results change with the size of mesh and direction of mesh

The numerical results change without convergence

- Solution: Implicit non-local approach [Peerlings et al 96, Geers et al 97, ...]
 - A state variable is replaced by a non-local value reflecting the interaction between neighboring material points

$$\widetilde{a}(\mathbf{x}) = \frac{1}{V_{\rm C}} \int_{V_{\rm C}} a(\mathbf{y}) w(\mathbf{y}; \mathbf{x}) \mathrm{d}V$$

Use Green functions as weight w(y; x)

 $\overrightarrow{a} - c\nabla^2 \widetilde{a} = a$ \overrightarrow{a} New degrees of freedom

- 28 🚺

Non-local damage-enhanced MFH

Material models

- Elasto-plastic material
 - Stress tensor $\boldsymbol{\sigma} = \boldsymbol{C}^{\text{el}} : (\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\text{pl}})$
 - Yield surface $f(\boldsymbol{\sigma}, p) = \boldsymbol{\sigma}^{eq} \boldsymbol{\sigma}^{Y} R(p) \le 0$
 - Plastic flow $\Delta \varepsilon^{\rm pl} = \Delta p N$ & $N = \frac{\partial f}{\partial \sigma}$
 - Linearization $\delta \sigma = C^{\text{alg}} : \delta \varepsilon$
- Local damage model
 - Apparent-effective stress tensors $\boldsymbol{\sigma} = (1 D)\hat{\boldsymbol{\sigma}}$
 - Plastic flow in the effective stress space
 - Damage evolution $\Delta D = F_D(\boldsymbol{\varepsilon}, \Delta p)$
- Non-Local damage model
 - Damage evolution $\Delta D = F_D(\varepsilon, \Delta \widetilde{p})$
 - Anisotropic governing equation $\widetilde{p} \nabla \cdot (c_{g} \cdot \nabla \widetilde{p}) = p$
 - Linearization

$$\delta \boldsymbol{\sigma} = \left[(1 - D) \boldsymbol{C}^{\text{alg}} - \hat{\boldsymbol{\sigma}} \otimes \frac{\partial F_D}{\partial \boldsymbol{\varepsilon}} \right] : \delta \boldsymbol{\varepsilon} - \hat{\boldsymbol{\sigma}} \frac{\partial F_D}{\partial \tilde{\boldsymbol{p}}} \delta \tilde{\boldsymbol{p}}$$

EMI2017 -

4 - 7 June 2017, San Diego, USA

CM3

Mean-Field-Homogenization

• Problem for materials with strain softening

- Strain increments in the same direction

 $\Delta \boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} \left(\mathrm{I}, \overline{\boldsymbol{C}}_{0}^{\mathrm{alg}}, \overline{\boldsymbol{C}}_{\mathrm{I}}^{\mathrm{alg}} \right) : \Delta \boldsymbol{\varepsilon}_{0}$

 Because of the damaging process, the fiber phase is elastically unloaded during matrix softening

$$\sigma$$
inclusions
$$composite$$

$$\sigma$$

$$\Delta \varepsilon_{1}$$

$$\Delta \overline{\varepsilon}$$

$$\Delta \varepsilon_{0}$$

$$\delta \varepsilon_{1}$$

$$\Delta \varepsilon_{1}$$

$$\Delta \varepsilon_{0}$$

$$\Delta \varepsilon_{0}$$

$$\delta \varepsilon_{0}$$

$$\delta \varepsilon_{0}$$

$$\delta \varepsilon_{0}$$

- Solution: new incremental-secant method
 - We need to define the LCC from another stress state

CM3

Non-local damage-enhanced MFH

New results for damage

Fictitious composite

CM3

4 - 7 June 2017, San Diego, USA

Non-local damage-enhanced MFH

• Mesh-size effect

Displacement [mm]

39

- $[45^{\circ}_4 / -45^{\circ}_4]_{\rm S}$ open hole laminate
 - Tensile test on several coupons

Propagation of the damaged zones in agreement with the fibre direction

iversité

- $[45^{\circ}_4 / -45^{\circ}_4]_{s}$ open hole laminate (2)
 - Predicted delamination zones in agreement with experiments
 - Tensile stress within 15 %

- [90°/45°/-45°/90°/0°]_S- open hole laminate
 - Tensile test on several coupons

- Predicted response (stress & maximum damage in each ply)

CM3

47 🚺

• [90°/45°/-45°/90°/0°]_S- open hole laminate (2)

- Propagation of the damaged zones in agreement with the fibre direction

Non-local damage-enhanced MFH

Conclusions

- New incremental secant Mean-Field-Homogenization
 - EP & EVP phases
 - Non-local damage EP phases
 - First and second statistical moment estimates

• Multi-scale methods

- Computationally efficient
- Verified with direct numerical simulations
- Experimentally validated
- Papers
 - On www.ltas-cm3.ulg.ac.be

