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Multi-scale modelling

• Two-scale modelling

– One way: homogenization

– 2 problems are solved 

(concurrently)

• The macro-scale problem

• The meso-scale problem (on 

a meso-scale Volume 

Element)
BVP

Macro-scale

Material 

response

Extraction of a meso-

scale Volume Element

P, σ, q, … F, Ɛ, T, 𝛁T, …
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• Mean-Field-Homogenization: Key principles

– Based on the averaging of the fields 

– Meso-response

• From the volume ratios (                    )

• One more equation required

– Difficulty: find the adequate relations

Multi-scale modelling
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• Mean-Field-Homogenization: Key principles (2)

– Linear materials

• Materials behaviours

• Mori-Tanaka assumption

• Use Eshelby tensor

with

Multi-scale modelling

I

0

matrix

inclusions

composite ?

σ

ε

1

01

1

0 )](::[   CCCSIBe

  0I0I :,,I εCCBε e

0εε 

III : εCσ 

000 : εCσ 



CM3 EMI2017 - 4 - 7 June 2017, San Diego, USA - 10

• Mean-Field-Homogenization: Key principles (2)

– Linear materials

• Materials behaviours

• Mori-Tanaka assumption

• Use Eshelby tensor

with

– Non-linear materials

• Define a Linear Comparison Composite (LCC)

• Common approach: incremental tangent

Multi-scale modelling
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Incremental-secant mean-field-homogenization

• Material model

– Elasto-plastic material

• Stress tensor 

• Yield surface

• Plastic flow &

• Linearization

    0, eq  pRpf Ysσσ

)(: plel εεCσ 

Nε p pl

σ
N






f

σ

ε

elC
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• New incremental-secant approach

– Perform a virtual elastic unloading from 

previous solution

• Composite material unloaded to reach the 

stress-free state

• Residual stress in components

New Linear Comparison Composite (LCC)

Incremental-secant mean-field-homogenization
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• New incremental-secant approach

– Perform a virtual elastic unloading from 

previous solution

• Composite material unloaded to reach the 

stress-free state

• Residual stress in components

New Linear Comparison Composite (LCC)

– Apply MFH from unloaded state

• New strain increments (>0)

• Use of secant operators

Incremental-secant mean-field-homogenization
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• Zero-incremental-secant method

– Continuous fibres

• 55 % volume fraction

• Elastic

– Elasto-plastic matrix

– For inclusions with high hardening (elastic)

• Model is too stiff

Incremental-secant mean-field-homogenization
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• Zero-incremental-secant method (2)

– Continuous fibres

• 55 % volume fraction

• Elastic

– Elasto-plastic matrix

– Secant model in the matrix

• Modified if negative residual stress

Incremental-secant mean-field-homogenization
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• The secant operators

– Stress tensor (2 forms)

– Radial return direction toward 

residual stress

• First order approximation in the 

strain increment (and not in the 

total strain)

• Exact for the zero-incremental-

secant method

– The secant operators are naturally 

isotropic

Incremental-secant mean-field-homogenization
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• Verification of the method

– Spherical inclusions

• 17 % volume fraction

• Elastic

– Elastic-perfectly-plastic matrix

– Non-proportional loading

Incremental-secant mean-field-homogenization
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• Second-statistical moment estimation of the von Mises stress

– J2-plasticity involves quadratic terms

• First statistical moment (mean value) not fully representative

• Use second statistical moment estimations to define the yield surface

Incremental-secant mean-field-homogenization
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• Short fibre reinforced matrix

– Elastic short fibres

• Aspect ratio of 20

• 15.87 % volume fraction

• 15º- & 30º- orientation

– Elastic-plastic matrix

Incremental-secant mean-field-homogenization
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Visco-Plasticity

• Material models

– Elasto-plastic material

• Stress tensor 

• Yield surface

• Plastic flow &

• Linearization

– Elasto-visco-plastic material

• Plastic flow

• Yield surface

• Flow function

• Perzyna visco-plasticity model
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• Incremental-secant mean-field-

homogenization

– For soft matrix response

• Remove residual stress in matrix

• Or use second moment estimates

– Solve iteratively the system

– With the stress tensors

Visco-plasticity
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• Short fibre reinforced matrix (1)

– Elasto-visco-plastic short fibres

• Spherical

• 30 % volume fraction

– Elasto-visco-plastic matrix

Visco-plasticity
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• Short fibre reinforced matrix (2)

– Elasto-visco-plastic short fibres

• Spherical

• 10 % volume fraction

– Elasto-visco-plastic matrix

Visco-plasticity
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Non-local damage-enhanced MFH

• Material models

– Elasto-plastic material

• Stress tensor 

• Yield surface

• Plastic flow &

• Linearization
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Non-local damage-enhanced MFH

• Material models

– Elasto-plastic material

• Stress tensor 

• Yield surface

• Plastic flow &

• Linearization

– Local damage model

• Apparent-effective stress tensors

• Plastic flow in the effective stress space

• Damage evolution
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Non-local damage-enhanced MFH

• Finite element solutions with strain softening suffer from:

– The loss of the solution uniqueness and strain localization

– Mesh dependency 

• Solution: Implicit non-local approach [Peerlings et al 96, Geers et al 97, …]

– A state variable is replaced by a non-local value reflecting the  interaction between 

neighboring material points 

– Use Green functions as weight w(y; x)

New degrees of freedom

The numerical results change with the size of 

mesh and direction of mesh
Homogenous unique solution

Loss of uniqueness

Strain localized

The numerical results change without 

convergence
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Non-local damage-enhanced MFH

• Material models

– Elasto-plastic material

• Stress tensor 

• Yield surface

• Plastic flow &

• Linearization

– Local damage model

• Apparent-effective stress tensors

• Plastic flow in the effective stress space

• Damage evolution

– Non-Local damage model

• Damage evolution

• Anisotropic governing equation

• Linearization
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Mean-Field-Homogenization

• Problem for materials with strain softening

– Strain increments in the same direction

– Because of the damaging process, the fiber 

phase is elastically unloaded during matrix 

softening

• Solution: new incremental-secant method

– We need to define the LCC from another stress 

state
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• New results for damage

– Fictitious composite

• 50%-UD fibres

– Elasto-plastic matrix with damage

Non-local damage-enhanced MFH
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• Mesh-size effect

– Fictitious composite

• 30%-UD fibres

• Elasto-plastic matrix with damage

– Notched ply

Non-local damage-enhanced MFH
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• [45o
4 / -45o

4]S- open hole laminate

– Tensile test on several coupons

– Propagation of the damaged zones in agreement with the fibre direction

Non-local damage-enhanced MFH
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• [45o
4 / -45o

4]S- open hole laminate (2)

– Predicted delamination zones in agreement with experiments

– Tensile stress within 15 %

Non-local damage-enhanced MFH
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• [90o / 45o / -45o / 90o / 0o]S- open hole laminate

– Tensile test on several coupons

– Predicted response (stress & maximum damage in each ply)

Non-local damage-enhanced MFH
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• [90o / 45o / -45o / 90o / 0o]S- open hole laminate (2)

– Propagation of the damaged zones in agreement with the fibre direction

Non-local damage-enhanced MFH

90o-ply (out) 45o-ply -45o-ply 90o-ply (in) 0o-ply
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• [90o / 45o / -45o / 90o / 0o]S- open hole laminate (3)

– Predicted delamination zones in agreement with experiments

Non-local damage-enhanced MFH

90o (out) / 45o 45o / -45o -45o / 90o (in) 90o (in) / 0o
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• New incremental secant Mean-Field-Homogenization

– EP & EVP phases

– Non-local damage EP phases

– First and second statistical moment estimates

• Multi-scale methods

– Computationally efficient

– Verified with direct numerical simulations

– Experimentally validated

• Papers 

– On www.ltas-cm3.ulg.ac.be

Conclusions

http://www.ltas-cm3.ulg.ac.be/

