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Abstract Genetic diversity may decrease from the centre to the margin of a species

distribution range due to neutral stochastic processes. Selection may also alter genetic

diversity in non-neutral markers, such as genes associated with the immune system. Both

neutral processes and selection on the immune system are thus expected to affect the

spatial distribution of such markers, but the relative strength of each has been scarcely

studied. Here, we compared the diversity of a neutral marker (mitochondrial cytochrome b)

and a selected marker (DRB gene from the MHC-II), in eastern-North American popu-

lations of white-footed mice (Peromyscus leucopus), a species known for its role of main

reservoir of the Lyme disease. We observed distinct phylogeographic patterns with these

two markers, which may be the result of selection pressure acting upon the DRB gene. As

predicted by the central marginal hypothesis, we observed a loss of neutral genetic

diversity toward the margin of the species distribution. A decrease in diversity was also

observed for the DRB gene, likely due to genetic drift and positive selection operated by

helminth parasites. Such a loss in genetic diversity at the range margin may slow down the

ongoing expansion of P. leucopus, by counterbalancing the effect of global warming on the

mouse survival at higher latitude.

Electronic supplementary material The online version of this article (doi:10.1007/s10682-017-9898-z)
contains supplementary material, which is available to authorized users.

& A. André
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Introduction

Genetic diversity across populations of a species is generally not homogeneously dis-

tributed throughout the species range, and distinct processes drive such heterogeneity

(Johansson et al. 2006; Eckert et al. 2008; Excoffier et al. 2009; Adams and Hadly 2012;

Lau et al. 2014; Chen et al. 2015; Kohyama et al. 2015). The central marginal hypothesis

(Prakash et al. 1969; Brussard 1984) states that genetic diversity decreases from the core to

the margin of a species distribution range, with effective population size and gene flow

decreasing in populations towards the range margin. Peripheral populations also tend to

encounter more founder events (Hewitt 1999) and severe population bottlenecks (Nei et al.

1975), further reducing their genetic diversity (Hoffmann and Blows 1994). Climate

warming that followed the last glacial maximum also had an impact on the current pattern

of genetic diversity within a species range, and populations located today within their

former glacial refuges are generally characterised by higher levels of genetic diversity than

populations found in post glacial recolonised regions (refuge theory) (Michaux et al. 2003).

In their review representing 115 plant and animal species (Eckert et al. 2008) detected the

expected decline in diversity in peripheral populations for 64.2% of the studied species.

Another review, published more recently by Pironon et al. (2016), found conflicting results

as they observed that only 38% (43/114) of the studies conducted after 2008 provided

evidences for the expected decline in genetic diversity.

While such spatial variation in genetic diversity have been reported for neutral markers

such as mitochondrial DNA gene sequences (Adams and Hadly 2012) or nuclear

microsatellite genotyping (Gassert et al. 2013; Johansson et al. 2006), selection can further

alter genetic diversity in non-neutral markers. Of particular interest are genes associated

with the immune system, considering that evolutionary processes associated with pathogen

resistance can deeply shape the pattern of genetic diversity in such markers (Sommer 2005;

Oliver et al. 2009; Turner et al. 2011; Zhang and He 2013). Major histocompatibility

complex (MHC) genes play a key role in the immunity in mammals and are among the

most polymorphic loci in vertebrates (Klein 1987). Their diversity is maintained by

pathogen-driven balancing selection (Spurgin and Richardson 2010), mediated by two

main processes. First, under the heterozygous advantage hypothesis (Doherty and

Zinkernagel 1975; Hughes and Nei 1989; Hedrick 2012), individuals with a higher allelic

richness are able to recognize and fight a wider array of pathogens, which increases their

survival rate. Second, under the rare allele advantage hypothesis (Takahata and Nei 1990),

rare alleles confer to their host a selective advantage due to the coevolution between hosts

and parasites. The most resistant alleles are indeed supposed to be favoured and spread into

the population, while parasites tend to evolve to evade the recognition of these most

common alleles, favouring the hosts with rare alleles. Both neutral processes and pathogen-

driven selection are thus expected to affect the spatial distribution in MHC diversity in

mammal species, but the relative strength of each has been scarcely studied. Here, we

addressed this question by comparing the DRB gene (MHC-II) diversity in populations of

the white-footed mouse (Peromyscus leucopus) at its northern range margin in southern

Quebec (Canada) and in more central regions of its range in the USA.
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Over the last decades, P. leucopus has been shifting northward its northern range limit

into Southern Quebec at a rate of 10 km per year, in response to global warming (Roy-

Dufresne et al. 2013). A recent study of neutral markers in populations of P. leucopus from

Southern Quebec hypothesized the effect of post-glacial recolonization on the current

pattern of genetic diversity in the region (Fiset et al. 2015). A combination of five mito-

chondrial and nuclear sequences revealed two distinct lineages of P. leucopus in Southern

Quebec separated by the Saint-Lawrence River, that were assigned to clades identified in

the North-Eastern and Central USA (Fiset et al. 2015; Rowe et al. 2006). At a smaller

geographic scale, major landscape barriers such as rivers and roads are limiting gene flow

and modulating the pattern of ongoing range expansion in P. leucopus (Rogic et al. 2013;

Marrotte et al. 2014; Leo et al. submitted). The monitoring of P. leucopus dispersal is of

prime interest because this species is often considered as being the main reservoir for Lyme

disease in eastern-North America (Ostfeld 2011). It is indeed the species that has the better

success rate at transmitting the Borrelia to feeding ticks (Mather 1993). An improved

understanding of P. leucopus genetic structure and diversity would therefore allow a better

evaluation of the Lyme disease expansion risks in Quebec.

Here, we investigated the pattern of DRB and Cytb gene diversity at a larger spatial

scale than previous studies (Rogic et al. 2013; Fiset et al. 2015), and tested for a gradient of

decreasing genetic diversity from the core region (North USA) to recently colonized

regions in southern Quebec, as predicted by the central margin hypothesis. We also

investigated the effect of past climate change and post-glacial recolonization by per-

forming a phylogeographic analysis on the DRB and cytochrome B mitochondrial genes.

The comparison of the genetic structure in a neutral (Cytb) and a selected (DRB) marker

allowed to better estimate the relative effects of past climate change and ongoing selection

on the DRB gene in a species undergoing rapid range expansion. To assess the potential for

pathogen-driven selection in P. leucopus in the most northern part of its range, we

quantified helminth diversity and evaluated the relationship between infection rate and

DRB diversity pattern in Quebec.

Materials and methods

Field sampling and museum specimens

Field sampling included 18 sites during the summers 2011–2014 across the Monteregie and

Estrie regions in Southern Quebec, and located on the northern and southern shores of the

Saint-Lawrence river (Table 1). The Richelieu river is located south of the St Lawrence

river and runs in a north–south direction. At each site, 160 Sherman traps were placed

every 10 meters in 4 grids of 4 9 10 traps. Traps were baited with a mixture of oat and

peanut butter late afternoon and checked the following morning for three consecutive

nights. A total of 407 Peromyscus sp. individuals were collected and identified to the

species level using species-specific primers as described in Rogic et al. (2013). All samples

were dissected on site and gastrointestinal tracts were stored frozen for subsequent analyses

in the laboratory, few months later. All procedures were approved by the Ministère des

Ressources Naturelles et de la Faune du Québec (SEG Permit #2011-05-15-014-00-S-F,

#2012-07-16-1417-16-17-SF, #2013-07-04-14-16-17-SF and #2014-05-02-1638-05-16-SF)

and McGill University Animal Care Committee (AUP#5420). We also obtained tissue

samples (collected from 1980 to 2012) for 115 additional individuals from the Smithsonian
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Institution, National Museum of Natural History, and the Harvard Museum of Natural

History collections for 9 additional sites in the USA from the East Coast (Virginia,

Connecticut, Rhode Island, Massachusetts, New Hampshire) and the Great Lakes region

(Table 1). These samples were all collected using Sherman traps too.

DNA extraction and sequencing

Genomic DNA was extracted from tissue samples (liver, muscle or ear) using the

DNeasyTM Tissue Kit (Qiagen�, Hilden) following the manufacturer’s protocol from the

QIAcube (Qiagen�, Hilden).

Table 1 Sample sizes for the analyses of the DRB and Cytb genes, as well as parasite screening at each of
the 27 study sites

Site Origin Latitude N Longitude W Sample size

DRB Cytb Parasitology

GL1 USA 44.337508 89.382786 11 16 –

EC1 USA 36.915910 76.190741 18 1 –

EC2 USA 41.470692 71.698295 9 7 –

EC3 USA 41.473861 71.575224 18 6 –

EC4 USA 41.838283 71.539904 9 – –

EC5 USA 41.892183 71.746949 13 9 –

EC6 USA 41.952682 72.123793 13 – –

EC7 USA 42.647981 71.185085 15 – –

EC8 USA 44.049466 71.273830 9 1 –

N1 Quebec 45.330541 74.394675 28 6 19

N2 Quebec 45.811591 73.463493 4 3 –

N3 Quebec 46.299909 73.093551 32 10 21

OR1 Quebec 45.036707 74.458869 30 3 21

OR2 Quebec 45.219070 73.928670 39 – 18

OR3 Quebec 45.241740 73.471424 19 1 19

OR4 Quebec 45.554397 73.336828 21 10 18

OR5 Quebec 45.878411 73.180910 4 5 –

ER1 Quebec 45.062074 73.284884 37 10 20

ER2 Quebec 45.117930 73.212812 15 6 10

ER3 Quebec 45.478300 73.171917 30 – –

ER4 Quebec 45.521833 73.203283 30 1 –

ER5 Quebec 45.389050 73.203167 16 – –

ER6 Quebec 45.423350 73.064050 26 – –

ER7 Quebec 45.448116 72.907767 20 2 –

ER8 Quebec 45.655675 72.748593 14 – –

ER9 Quebec 45.782053 73.016718 6 – –

ER10 Quebec 45.864644 72.563806 36 1 19

Northern (N1–N3) and southern (OR 1–5 and ER 1–10) shores of the St Lawrence river, southern Quebec,
Canada. GL1: Great Lakes, EC 1–8: East Coast, USA
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Major histocompatibility complex DRB gene

Amplification of the DRB exon 2 gene was performed on 522 P. leucopus individuals

(Table 1). Two batches of samples were sequenced at two different times using a 454 GS-

FLX pyrosequencer (Roche) and an Illumina MiSeq sequencer. To check for congruency

of the results, eight samples were processed using both sequencing methods.

454 GS-FLX sequencing

The second exon of the Mhc-Drb class II encoding the ligand-binding domain of the

protein was amplified and sequenced in 213 individuals from 16 localities. We used a

modified version of the primers JS1 (50-GAGTGTCATTTCTACAACGGGAC-30) and JS2

(50-GATCCCGTAGTTGTGTYTGCA-30), which amplify a 172-bp fragment (excluding

primers) of exon 2 from the DRB gene in several mammal species, with the addition of

individual-specific MIDS (multiplex identifiers) and adaptors required for emPCR and 454

sequencing (Galan et al. 2010). PCRs were performed following the procedure detailed in

Galan et al. (2010). The SESAME software (Sequence Sorter and AMplicon Explorer)

(Meglecz et al. 2011) was used to sort sequences, identify and discard artefactual variants,

and generate the haplotypes and individual genotypes. Gene duplication is common in

MHC genes, and, in theory, an individual can have more than two alleles. However, this

was ruled out for several rodent species using the same PCR primers (Galan et al. 2010).

Furthermore, Peromyscus individuals used here had a maximum of two alleles amplified

by these PCR primers.

Illumina MiSeq sequencing

For the second batch of samples (317 individuals from 21 localities), the same gene

specific primers JS1 and JS2 were used but with the Illumina specific adapters in 50

position (Forward: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG; Reverse

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG). All PCRs were performed in a

reaction volume of 25 ll, each containing 5 ll of fidelity buffer, 0.75 ll of dNTP, 0.75 ll

of each primer, 0.25 ll of KAPA HiFi Hotstart Dna polymerase (KAPA Biosystems),

12.5 ll of pure grade water (GE Healthcare—Hyclone) and 5 ll of DNA. Thermocycling

was carried out on a Mastercycler Gradient (Eppendorf) with an initial denaturation step of

5 min à 95� followed by 30 cycles of 30 s denaturation at 98 �C, 30 s annealing at 60� and

30 s elongation at 72� finished with a 10-min elongation at 72� and stopped by cooling

down at 4 �C. Twenty-five ll of PCR products were purified using 20 ll of Agencourt

AMPure XP beads and following the manufacturer protocol with the following change:

purified products were eluted in a final volume of 25 ll of 10 nM Tris pH 8.5 instead of

50 ll. A second PCR was conducted using Nextera Index Kit to attach the dual indices and

the Illumina sequencing adapters. Twenty-four indices were distributed horizontally and 16

indices were distributed vertically in order to individually tag 384 samples. These PCR

reactions were performed in a reaction volume of 50 ll, containing 5 ll of each index

primer, 10 ll of Fidelity buffer, 1.5 ll of dNTP, 23 ll of pure water (GE Healthcare—

Hyclone), 0.5 ll of KAPA HiFi Hotstart Dna polymerase (KAPA Biosystems) and 5 ll of

purified DNA product. Thermocycling was carried out on the same thermocycler with an

initial denaturation step of 3 min à 95� followed by 8 cycles of 30 s denaturation at 95 �C,

30 s annealing at 55 �C and 30 s elongation at 72 �C finished with a 5-min elongation at
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72 �C and stopped by cooling down at 4 �C. A second purification was conducted using

45 ll of PCR2 product and 50 ll of Agencourt AMPure XP beads following the manu-

facturer protocol. Purified products were quantified using Quant-iTTM PicoGreen� dsDNA

Assay Kit according to the manufacturer protocol and a fluorimeter (FilterMax F3,

Molecular Devices). Following this step quantified product have been pooled in equimo-

larity before being sent to the GIGA Genomics platform (ULg) for sequencing using an

Illumina MiSeq V2 benchtop sequencer. Raw sequences were cleaned using a script

consisting in a mix of Fastx-toolkit (http://hannonlab.cshl.edu/fastx_toolkit) and

USEARCH (Edgar 2010) functions. Briefly, the paired-end reads presenting an overlap of

at least 10 bases long with a maximum difference of 8% were joined. Primers were

removed, each sequence were filtered so that only the sequences with at least 95% of the

bases presenting a quality superior to Q30 were kept. We used once again the SESAME

software to generate the individual genotypes.

Mitochondrial cytochrome b gene

In order to compare the genetic structure obtained with the selected MHC genes with those

based on neutral markers, we selected a subset of 98 P. leucopus individuals distributed

throughout the studied area and corresponding to putative refuge areas as well as to newly

colonised regions. Indeed, such sampling size corresponds to those generally used for

phylogeographic studies performed at this geographic scale (Michaux et al. 2005; Mouton

et al. 2016). We sequenced the mitochondrial cytochrome b for all these samples (Table 1).

Indeed, this gene is generally considered as a neutral marker, upon which selection should

be weak or absent. Polymerase Chain Reaction (PCR) was performed using universal

primers H6/L7 described by Kocher et al. (1989) in a reaction volume of 25 ll, each

containing 10 ll of Multiplex PCR kit (Qiagen Inc., Hilden, Germany), 2.5 ll of each

primer (initial concentration: 10 lM), 8 ll of pure grade water (GE Healthcare—Hyclone)

and 2 ll of DNA. Thermocycling was carried out on a Mastercycler Gradient (Eppendorf)

with the following cycling conditions: one activation step at 94 �C for 4 min followed by

40 cycles of denaturation at 94 �C for 30 s, annealing at 50 �C for 30 s, elongation at

72 �C for 1 min 30 s, and a final extension at 72 �C for 10 min. PCR products were then

sent to the MACROGEN society for Sanger sequencing.

Parasite screening

Guts from a subset of 165 mice belonging to populations sampled on the northern and

southern shores of the St Lawrence river in southern Quebec were screened for helminth

parasites using a binocular microscope. These samples are representative of the entire

range in Québec and sampling size corresponds to those generally used in parasitology

studies (Froeschke and Sommer 2005; Harf and Sommer 2005; Schad et al. 2005).

Unfortunately, guts were not available for the American samples. All helminths were

identified by their morphology and morphometry according to the literature. Parasites from

the same species were grouped together and counted. The infection rate was computed as

the percentage of hosts infected by at least one parasite.
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Genetic analyses

Mitochondrial Cytb sequences were aligned using the Sequence Scanner software (V1.0;

Applied-BiosystemsTM). Ambiguous base pairs were removed at the beginning and the end

of the sequences. Mega6 version 6.06 (Tamura et al. 2013) was used to align the resulting

sequences and find the best nucleotide substitution model. We used Mega6 and Mr Bayes

to draw phylogenetic trees based on maximum likelihood (1000 bootstrap resampling) and

Bayesian inferences. Two cytochrome b sequences of P. maniculatus sequences from

NCBI (accession numbers DQ385642 and DQ385706) were used as outgroups.

DRB sequences were aligned using Mega version 6.06 (Tamura et al. 2013). The

STRUCTURE software version 2.3.4 (Pritchard et al. 2000) was used to identify the

number of putative genetic clusters (K) within our 27 sampling sites. A range of K = 1 to

K = 10 with 10 replicates for each K was assessed with a length of burnin period of

100,000 and a number of MCMC reps after burnin of 1,000,000. The number of genetic

clusters was inferred using delta K (Evanno et al. 2005) in STRUCTURE HARVESTER

(Earl and vonHoldt 2012), and individuals were assigned to a cluster if their probability

of membership was higher than 0.6. This analysis was performed again separately on the

two subgroups identified by the first Structure analysis to putatively detect some sub-

structures. Rates of nonsynonymous (dN) and synonymous base pair substitutions (dS)

were calculated with Mega version 6.06, using the model originally described by Nei and

Gojobori (1986) with the Jukes and Cantor (1969) correction for multiple substitutions

(Musolf et al. 2004; Froeschke and Sommer 2005). These rates were computed separately

for the antigen binding sites (ABS) and for the non-antigen binding sites (non-ABS) as

defined by Brown et al. (1993). The difference between dN and dS was assessed using a

z-test calculated following the formula: Z = (dN - dS)/SQRT(Var(dS) ? Var(dN))

(Tamura et al. 2013). To determine whether there is a relationship between heterozy-

gosity and infection, we performed Chi square tests on individuals representing the entire

range in Quebec.

Genetic diversity was computed separately for the Cytb and DRB genes for four groups

of populations corresponding to the range centre and to the range margin from the two

lineages detected in the Cytb phylogeny: GL (great lakes region population), NSSLR

(populations from the North Shore of the Saint-Lawrence River), EC (populations from the

American East Coast) and SSSLR (populations from the South Shore of the Saint-Lawr-

ence River). For this analysis, the EC group was limited to populations EC2 to EC5.

Indeed, mice from populations EC1 to EC8 have been captured over a 32 years period

throughout a geographical range of 900 km. By limiting this group to EC2 to EC5, we

decreased the time period to 2 years and the geographical gradient to 50 km (4 years and

175 km for SSSLR). By doing so, we avoid comparing diversity data that would have been

artificially increased owing to large sampling differences. DRB and Cytb genetic diver-

sities were measured using the haplotype (h) diversity, computed using the DNASP

software (Librado and Rozas 2009). Differences in diversity between core and marginal

populations were assessed separately for the two lineages defined by Structure and for the

two genes using unpaired Student t-tests.
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Results

Cytochrome b genetic structure

The Cytb gene from a subset of 98 specimens from 18 localities distributed throughout the

studied area was successfully sequenced and 37 different haplotypes were detected in our

samples (Table S1). Both the Bayesian Information and the corrected Akaike Information

Criterions, selected the Hasegawa-Kishino-Yano plus Gamma model as the best model for

nucleotide substitution. We obtained the same global structure using Maximum-likelihood

and Bayesian inference methods, with two distinct genetic lineages, with a high level of

robustness (ML posterior probability/BI bootstrap value for the two clades: 63/0.75 and

90/1) (Fig. 1). The first lineage grouped populations from the NSSLR regions with the

Great lakes population; the second one grouped the SSSLR and the EC populations

together (Fig. 2). No further structure was detected within each of these two lineages.

DRB genetic structure

The eight samples processed using both Illumina and 454 based protocols returned the

exact same results, confirming the congruency between the two methods. The DRB gene

exon 2 was successfully sequenced for 522 specimens in which we detected a total of 81

different alleles labelled following the nomenclature of Klein et al. (1990) from Pele-

DRB*001 to Pele-DRB*081 (Table S1). No more than two alleles were found in any

individual, suggesting that no duplication event occurred. The most common allele was

found at a frequency of 9.5%.

STRUCTURE analysis identified two main clusters among our 27 populations. The first

cluster was formed by the NSSLR, GL and EC populations (hereafter DRB-1 cluster),

while the second one grouped all 15 SSSLR populations together (DRB-2 cluster) (Fig. 3).

Sub-structuring was present within the DRB-1 cluster with the presence of two sub-

clusters. The first one (DRB-1a) aggregated the GL and EC populations, while the second

cluster (DRB-1b) grouped the three NSSLR populations. Likewise, Structure identified

three sub-clusters within the DRB-2 cluster. The first one (DRB-2a) aggregated all pop-

ulations west of the Richelieu River while both the second and the third clusters (DRB-2b

and 2c) comprised populations from the Eastern side of this river (Fig. 3).

Helminth diversity

We detected 9 different helminth species in the 165 P. leucopus samples from the 9

analysed localities in southern Quebec (four species of trematode, one nematode cyst, one

cestode, one Acantocephala, one Syphacia sp., and one Aspiculuris sp.). The most common

parasite was the nematode Syphacia sp., which was present in nearly 20% of the screened

mice. The remaining species were present in 1–10% of the individuals. In total, 37% of the

screened mice were positive for at least one species and 10% of the sampled individuals

presented a co-infection with more than one species. The infection rate in each population

ranged from 15.8% in ER 10 to 63.2% in N1.
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Southern 
shore of the 
St Lawrence 
River

Northern 
shore of the 
St Lawrence 
River

Fig. 1 Phylogenetic relationships based on Maximum likelihood (ML) and Bayesian inference (BI) among
mitochondrial gene cytochrome b sequences. Values at branch nodes correspond to bootstrap support (%,
1000 pseudoreplicates) obtained with the ML analyses and to posterior probabilities obtained with the BI
analyses. Haplotypes are named by a number followed by the site where they are present. Abbreviations for
sites are as in Table 1
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Signature of selection acting on DRB

The 13 amino acids in the ABS (antigen binding sites) region were all polymorphic,

whereas only 13 amino-acids out of 42 (31%) were variable in the non-ABS region. The

rate of non-synonymous substitutions (dN) was 2.82 times higher than the rate of syn-

onymous substitutions (dS) in the ABS region (z = 5.307; p\ 0.001). In the non-ABS

region, the rate of non-synonymous substitutions (dN) did not differ from the rate of

synonymous substitutions (dS) (z = 1.33; p = 0.186; Table 2).

The proportion of individuals infected with helminths did not differ between individuals

with a DRB homozygote genotype and individuals with a DRB heterozygote genotype

(36.6%; N = 41 and 35.5%; N = 124, respectively; v2 = 0.0163; p = 0.90). The 104

individuals carrying one or two of the five most common alleles had a mean infection rate

of 26.9%. This is significantly lower than the infection rate from the 100 individuals

carrying one or two of the 23 rarest alleles (mean infection rate of 44%; v2 = 6.5,

p = 0.01).

Within the northern lineage, haplotype diversity for the Cytb and DRB was larger in the

core population GL than in the marginal populations NSSLR (t = 6.43; p\ 0.0001 and

t = 14.54; p\ 0.0001, respectively; Table 3). A similar pattern was apparent for the

southern lineage when comparing haplotype diversity between the core populations EC and

the marginal populations SSSLR (t = 13.77; p\ 0.0001 and t = 29.14; p\ 0.0001 for

the Cytb and DRB, respectively; Table 3).

Discussion

Here, we investigated the genetic structure of north-eastern American populations of P.

leucopus using two genetic markers: one considered as neutral, the mitochondrial cyto-

chrome b; the other considered as under selection, the Major Histocompatibility Complex

Fig. 2 Pattern of genetic diversity in the Cytb sequence, characterized by two distinct lineages separating
sites on the northern shore of the St Lawrence river (triangles) from sites on the southern shore (circles). The
Saint-Lawrence river is represented by the dashed line. Abbreviations for sites are as in Table 1
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DRB exon2 genes. We found that the spatial genetic structure was not congruent in these

two genes, which may be the result of parasite-driven selection acting upon the DRB gene.

In both genes, however, we detected a decrease in genetic diversity from the most central

populations towards the species distribution margin.

Fig. 3 Patterns of genetic diversity in the DRB sequences. a1 Structure analysis on all populations showing
two distinct clusters; light gray: populations from the NSSLR, GL and EC regions, dark grey: populations
from the SSSLR region. a2 Further sub-structure is observed within these two intial clusters. b Geographical
distribution of the 5 genetic sub-clusters. The Saint-Lawrence and Richelieu rivers are represented by the
dashed and dotted lines, respectively

Table 2 Estimated Rate (±SE) of non-synonymous (dN) and synonymous (dS) substitutions for Antigen-
Binding Sites (ABS) and Non–Antigen-Binding-Sites (non-ABS) for the DRB gene; N: number of codons,
p: probability that dN and dS are different using a z-test, where z = (dN - dS)/SQRT(Var(dS) ? Var(dN))

Position N dN dS dN/dS p

ABS 13 0.482 ± 0.089 0.171 ± 0.088 2.82 0.001

Non-ABS 43 0.1 ± 0.027 0.087 ± 0.026 1.15 0.186

ALL 56 0.173 ± 0.032 0.105 ± 0.027 1.65 0.001
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Population genetic structure

The mitochondrial cytochrome b sequences revealed two distinct genetic lineages of P.

leucopus in our study area. The first lineage grouped all individuals from the northern shore

of the St Lawrence river in Quebec with the population from the Great Lakes region. The

second lineage comprised all populations from the southern shore of the St Lawrence river

in Quebec and populations from the East Coast region.

This result confirms at a highly larger geographic scale, the pattern previously found

using a combination of five mitochondrial and nuclear sequences, including the Cytb from

populations from southern Quebec, where the St-Lawrence River acted as a barrier

between two distinct genetic lineages (Fiset et al. 2015). Three major clusters for P.

leucopus were also evidenced across the United States based on mitochondrial DNA

markers (Rowe et al. 2006): A North-Eastern, a Central Western and a Western lineage.

Our larger sampling of cytochrome b sequences, including now populations from south of

Quebec, provides new evidence for the existence of two distinct glacial refugia in the

Northern USA probably associated with two distinct post-glacial recolonization routes into

Southern Quebec, as hypothesized in Fiset et al. (2015). Under this scenario, P. leucopus

populations currently occurring on the northern shore of the St Lawrence river would be

the result of a West-East recolonization originating from refuge populations in the Great

Lakes region, while populations occurring in southern Quebec, south of the St Lawrence

river would have originated from the East Coast region of the United States.

Our results obtained with the DRB marker differ markedly from those obtained with the

Cytb. With the DRB gene, we still detected two distinct clusters, but surprisingly popu-

lations from the East Coast appeared closer to populations from the northern shore of the St

Lawrence river and the population from the Great Lakes region, than to populations from

the southern shore of the St Lawrence river. Further sub-structure was detected among the

populations south of the St Lawrence river, with an effect of the Richelieu river, as

previously shown using neutral microsatellite markers (Rogic et al. 2013; Marrotte et al.

2014) and based on the morphological variation in skull shape (Ledevin and Millien 2013).

The discrepancy between the two genetic markers we studied may be due to differing

selection processes acting upon the two genes. The mitochondrial cytochrome b gene is

generally considered as a neutral marker, upon which selection should be weak or absent.

This gene is thus expected to reflect the phylogeographical structure of the species, rather

than local adaptation. By contrast, the DRB gene is generally considered to be under

selection, particularly for functions related to the immune system and resistance to

pathogens and parasites. The geographic structure obtained with this last marker may

Table 3 Haplotype (h) diversity (±SD) within the two lineages for the Cytb and the DRB genes; N: sample
size; N(h): haplotype number

Lineage Population Cyt B DRB

N N(h) h N N(h) h

Northern GL 16 12 0.942 ± 0.048 11 15 0.961 ± 0.024

NSSLR 19 9 0.848 ± 0.059 64 20 0.9 ± 0.01

Southern EC 24 15 0.891 ± 0.057 49 38 0.957 ± 0.01

SSSLR 35 6 0.637 ± 0.077 343 37 0.937 ± 0.003
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therefore reflect different selection pressures operated by pathogens, and in the case of the

DRB gene, particularly by macroparasites such as helminths.

Selection process on the DRB gene

At the sequence level, the rate of nonsynonymous substitutions (dN) was 2.82 times higher

than the rate of synonymous substitutions (dS) in the ABS regions, while these substitution

rates did not differ in the non-ABS region. This result provides evidence for a general

positive selection having acted on the DRB gene over historical scales and at a large

geographic scale. This would partly explain the discrepancy observed between Cytb and

DRB phylogenies. However, other processes would also have happened at a more con-

temporary scale and would have increased selection pressures on the DRB marker. For

example, many studies evidenced, signatures of contemporary selection acting on immune

system genes. The high degree of diversity in MHC genes has often been explained by

balancing selection processes acted by parasites and pathogens (Quinnell et al. 2003; Harf

and Sommer 2005; Schad et al. 2005; Zhang and He 2013). This mode of selection usually

results from two main mechanisms, the heterozygous advantage and the rare allele

advantage (or negative frequency dependent selection). Under the heterozygous advantage

hypothesis, heterozygous animals should be able to recognize a broader range of pathogens,

presenting thereby lower infection rates. Our data however did not support this hypothesis

with respect to helminth resistance, as infection rate was identical between homozygous and

heterozygous individuals. Although this hypothesis has received empirical support for MHC

genes (Penn et al. 2002; Froeschke and Sommer 2005; Worley et al. 2010) and for other

genes such as the cystic fibrosis transmembrane regulator (CFTR) (Schroeder et al. 1995;

Common et al. 2004), our results are similar to those obtained by Meyer-Lucht and Sommer

(2005) and by Schad et al. (2005) who did not detect any heterozygous advantage in their

study on yellow-necked mice (Apodemus flavicollis) and Malagasy mouse lemurs (Micro-

cebus murinus) and their respective nematodes. Another mechanism for balancing selection

is the rare allele advantage hypothesis. It assumes that the evolution of new parasite and

pathogen phenotypes reduces the fitness of common host genotypes, providing a selective

advantage to rare genotypes. In other words, alleles that provide better immunity against

parasites increase in frequency within a population (Parham and Ohta 1996), until parasites

get adapted to those specific alleles, which may become a disadvantage for the host. Our data

did not support this hypothesis either, as we found that common alleles were associated with

lower infection rates than rare alleles, suggesting a positive selection. Again, this result is

quite unusual, as most similar studies found evidence of negative frequency dependent

selection (Quinnell et al. 2003; Harf and Sommer 2005; Schad et al. 2005; Zhang and He

2013). This difference may be due to the source of data we used, considering that the

populations we sampled for parasites were all from the northern edge of the distribution

range of P. leucopus, which is known to have only recently colonized this region (Roy-

Dufresne et al. 2013). While parasites move along during range shift of their hosts, a time lag

may be observed between parasites and their hosts (Phillips et al. 2010). Thus, even though

parasites were detected in our sampled populations, they may not have adapted yet to the

most common alleles, a process expected to occur locally with a delay, following the

establishment of populations of hosts in newly colonized areas.

In summary, while we found a clear signal for historical positive selection on the DRB

gene using the rates of nonsynonymous and synonymous substitutions, a more contem-

porary process, the positive selection, may also explain the discrepancy between the results

we obtained with the Cytb and the DRB.
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Genetic diversity and range expansion

The central-marginal hypothesis states that for a given species, population genetic diversity

decreases from the centre to the edge of their distribution range. Even though this hypothesis

does not constitute a general rule, as suggested by Eckert et al. (2008) and by Pironon et al.

(2016), this pattern was detected in several species including Podarcis muralis (Gassert et al.

2013), Rana temporaria (Johansson et al. 2006) or Gypsophila fastigiata (Lönn and Prentice

2002). In line with these results, the genetic diversity in both the Cytb and DRB sequences

for P. leucopus showed the expected decrease within both genetic lineages: from the Great

Lakes to the northern shore of the St Lawrence, and from the US East Coast to the southern

Quebec region south of the St Lawrence river. In eastern-North America, the species is

known to expand its range at a rate of 10–15 km per year (Roy-Dufresne et al. 2013; Myers

et al. 2009). Our data confirms that this expansion is associated with a loss of neutral as well

as selected genetic diversity and may be explained by neutral processes such as genetic drift

as observed in (Zeisset and Beebee 2014). The detected loss of DRB genetic diversity may

furthermore be explained by an additional process, the positive selection that we observed

on the margin of the species distribution. Indeed, in our data, common alleles were corre-

lated to lower infection rate when compared to rare alleles, which may grant to their host a

selective advantage, favouring the dominance of these common alleles in the next gener-

ations, hence decreasing the DRB genetic diversity.

Such a loss in genetic diversity at the range margin may potentially slow down the

ongoing expansion of P. leucopus, by counterbalancing the positive effect of global

warming on the mouse survival at higher latitude. However, field observations over the last

decade, recording the presence of white footed mice at higher latitude year after year (Roy-

Dufresne et al. 2013), tend to prove that global warming remain the major factor driving

the expansion of the species. This warrants further research, as the rate and pattern of

emergence of Lyme disease in Southern Quebec is dependent on the expansion rate of P.

leucopus in the region (Simon et al. 2014).

Data accessibility

The Cytb sequences have been deposited in Genbank under the Accession Numbers

KX784130 to KX784166. Both Cytb and DRB sequences can be found in the supple-

mentary table (Table S1).
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