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A renewed interest in spallation reactions in the GeV range has arisen, due to
the recent advent of ADS projects for transmutation of nuclear waste. Most of
investigations have dealt with proton-induced reactions on stable nuclei. Here, an
exploratory theoretical investigation of spallation reactions on unstable nuclei is
presented. The main issue is the dependence of the measurable quantities with the
isospin of the target.

1. Introduction

Spallation reactions are very important for the development of radioactive
beams !, in astrophysics 2 and in cosmic-ray physics 3.
there has been a renewed interest in proton-induced spallation reactions in
the GeV incident energy range, due to the advent of projects of accelerator-
driven systems (ADS) for transmutation of nuclear wastes (see e.g. Ref.?),
leading to more systematic and more precise measurements. In parallel, a
real improvement of the theoretical tools has taken place, especially in the
frame of the EU HINDAS project °. These efforts have contributed to a
more complete understanding of the spallation processes, strengthening the
intranuclear-cascade (INC) plus evaporation approach. The process can be
divided into two stages. In the first one the incident particle expells a few
energetic particles by successive hadron-hadron collisions. In the second one

In recent years,
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the remaining, randomized, excitation energy is released by an evaporation-
like process. In particular, it appeared that one of the best theoretical tools
is provided by the Liege intranuclear cascade model INCL4 coupled to the
K.-H. Schmidt ABLA evaporation-fission model. This approach, which is
basically parameter-free, owing to a “self-consistent” determination of the
stopping time, was shown recently to yield particularly good results for
a large set of data for incident energies ranging from 200 MeV to a few
GeV 5. These data include total reaction cross-sections, inclusive light
particle production cross-sections, multiplicity distributions, residue pro-
duction cross-sections and recoil distributions. Later on, this approach was
shown to be largely successful in the description of spallation reactions at
lower incident energy, down to a few tens of MeV, after small changes in
the treatment of the Pauli principle’.

The HINDAS project has considerably improved the measurements of
the isotopic cross-sections. Usually, the latter are performed in proton-
induced reactions by activity (basically y-ray) measurements. In the HIN-
DAS project, reverse kinematics experiments have been performed: stable
nuclei bombard an hydrogen target and forward-flying residues are ana-
lyzed by a magnetic isotopic spectrometer. Individual isotope production
cross-section can be determined, in constrast to the activity method which
can only access to cumulated cross-sections.

This method could in principle be extended to accelerated non-stable
nuclei, provided the intensity of the beam is sufficiently large. Here, we
present an exploratory theoretical investigation of spallation reactions on
neutron-rich and neutron-poor nuclei. We will use the same approach as in
Ref %, except for an improved treatment of the nuclear mean field. The main
issue is to know whether there are qualitative differences with spallation
reactions on ordinary nuclei. In particular, the following questions will be
studied: (i) What is the evolution of the neutron multiplicities with the
target neutron (or proton) excess? (7) Is the shape of the residue mass
spectra qualitatively modified?

2. The theoretical approach

Our INC+evaporation model combines the INCL4 version of the Liege
intranuclear-cascade model 6 and the ABLA evaporation-fission code of
K.-H. Schmidt 89. It is described in Ref. 5. We briefly recall the main
features. The collision mechanism is assumed to proceed from a succes-
sion of binary collisions (and decays) well separated in space and time.
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The fate of all particles is followed as time evolves. Particles travel along
straight-line trajectories until two of them reach their minimum distance
of approach, in which case they can be scattered provided the value of this
distance is small enough, or until they hit the border of the potential well,
supposed to describe the nuclear target mean field. Additional features are:
(1) initial positions of target nucleons are taken at random in the spherical
nuclear target volume with a smooth surface; (2) an improved treatment
of the Pauli blocking is introduced; (3) inelasticity is introduced through
reactions involving pion’s and delta’s (4) isospin degrees of freedom are in-
troduced for all types of particles; (5) the cascade code is stopped at a time
determined by the code itself, when the emission pattern becomes evapora-
tive; (6) the ABLA code has a sophisticated evaporation-fission competition
with viscosity effects.

In the standard INCL4 version, although neutron and protons are dis-
tinguished, they experience the same nuclear average potential, except, of
course, for the Coulomb external potential. Here, we introduced isospin
and energy-dependent potentials, following the optical-model phenomenol-
ogy (details can be found in Ref.!?).

3. Observable quantities
3.1. Introduction

We present calculations for particle and residue cross-sections. Altough
spallations reactions with unstable nuclei will probably be realized in re-
verse kinematics, we present results as in direct kinematics, for the sake of
comparison. We will consider two types of targets: Pb and Sn isotopes.

3.2. Particle production cross-section

Average proton and neutron multiplicities are given in Table 1 for p-induced
reactions on Sn and Pb reactions at 1 GeV. In each case, a neutron-poor
and a neutron-rich targets are compared with a stable isotope.

The most remarkable, but rather expected, result is the enhancement
(reduction) of the neutron multiplicity for the neutron-rich (-poor) iso-
topes. Less obviously, this enhancement (reduction) is less marked, even
proportionally, for the emission during the cascade stage (mainly E, <20
MeV). The large part of the effect is coming from the evaporation stage.
The cascade emission leaves a remnant which is not far from the target
in the (N,Z) plane: as a result a neutron-rich remnant evaporates first
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a few neutrons before reaching the so-called “evaporation corridor” on the
proton-rich side of the valley of stability, parallel to the stability line, where
a balance between proton emission (favoured by smaller separation ener-
gies) and neutron emission (favoured by the absence of Coulomb barrier)
settles.

Table 1. Particle multiplicities in proton-induced reactions at
1 GeV. The quantities S, and Sp are the neutron and proton
separation energies, respectively.

p+Sn
T00g,~ 12g,  I3g,
<n>, En <2MeV 0.34 1.87 2.92
<n>,2MeV < Ep < 20MeV 1.41 5.19 8.01
<n>, En>20MeV 1.71 2.25 2.64
<n> 3.42 9.30  13.57
<p> 7.40 3.30 2.50
Sn (MeV) 17.65 9.10 3.90
Sp (MeV) 2.80 10.70 16.2

p+Pb
82py 208pp,  212pp
<n>, En <2MeV 1.39 3.50 3.80
<n>,2MeV < Ep <20MeV 3.44 7.87 8.50
<n>, En>20MeV 2.20 2.61 2.73
<n> 710 13.98  15.03
<p> 5.90 3.10 2.90
Sn (MeV) 11.75 7.40 5.10
Sp (MeV) 1.30 8.00 8.80

There is, of course, a symmetric effect on the proton multiplicities. It
is less dramatic in absolute values, but more dramatic in proportion.

3.3. Residue production cross-section

The residue mass spectra for p-induced reactions on Sn targets are given in
Fig. 1. The abscissa x is equal to 120 minus the mass loss. It is appropriate
to compare the so-called fragmentation peaks, corresponding to the residues
which are created by evaporation (z 2 70). As expected, the fragmentation
peak is broader for '3#Sn, mainly because starting from the neutron-rich
side of the valley of stability, the system can evaporate more nucleons before
reaching the evaporation corridor. The fission contribution is very small in
this case. It corresponds to the z < 70 part of the spectrum. It is only
significant for 1%°Sn, which has the largest fissility parameter.
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Figure 1. Residue mass spectra for proton-induced reactions on three Sn targets at 1
GeV. Note that the horizontal scale has been chosen such that the isobars corresponding
to the same mass loss appear at the same place for the three systems.
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Figure 2. Same as Fig. 1 for three Pb targets.

The residue mass spectra for three isotopes of Pb are given in Fig. 2. In
this case, the fragmentation peaks have roughly the same width. In fact,
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they are practically identical for 2°® Pb and 2!2Pb. The shape is different
for 182 Pb, but this is mainly linked with the most striking result of Fig. 2,
namely the large fission cross-section for this target. This, of course, is
due to the large fissility parameter of the remnants and leads to a large
depopulation of the mass spectrum around mass loss =~ 5-6. As for the
other targets, a peak exists for mass loss of one mass unit. This peak arises
because peripheral collisions lead to small excitation energy; for smaller
impact parameters, more excitation energy is left in the target remnant

and leads, either to important evaporation or, as in this particular case of
182 Pp, to fission.

4. Conclusion

We have presented here exploratory calculations for spallation reactions
on neutron-rich and neutron-poor nuclei.Neutron and proton multiplicities
can be substantially changed. The shape of the residue mass spectra is not
drastically different from the ordinary target case, except for fission.
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