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Yesterday...

k -regular sequences are much more chaotic...
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Automatic sequences

Equivalence between

w = (wi )i≥0 is a k-automatic word

w = τ(ϕω(a)) with ϕ k-uniform, τ 1-uniform, a ∈ A

wi is the output of a DFAO when reading (i)k [Cobham 72]
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w = τ(ϕω(a)) with ϕ k-uniform, τ 1-uniform, a ∈ A

wi is the output of a DFAO when reading (i)k [Cobham 72]

the k-kernel of w

Kk(w) = {w(ken + r)n≥0 : e ≥ 0 and 0 ≤ r < ke}

is finite [Eilenberg 1974]

Example: 2-kernel of the Thue–Morse word

t = 01101001100101101001011001101001 · · ·

(t2n)(n≥0) =
(t2n+1)(n≥0) = 10010110011010010110100110010110 · · · = t

K2(t) = {t, t}
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Thue–Morse word t = 0110100110010110 · · ·

Factor complexity P(∞)
t [Brlek 1989, de Luca–Varricchio 1989]

P(∞)
t (n) =

{
4n − 2 · 2m − 4 if 2 · 2m < n ≤ 3 · 2m

2n + 4 · 2m − 2 if 3 · 2m < n ≤ 4 · 2m.
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t

P(1)
t (2n) = 3 and P(1)

t (2n + 1) = 2
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`-abelian complexity [Karhumäki–Saarela–Zamboni 2013]

Two words u, v are `-abelian equivalent if

|u|x = |v |x for any x of length at most `.

Example:

2-abelian equivalent but not 3-abelian equivalent

u |u|0 |u|1 |u|00 |u|01 |u|10 |u|11

|u|111

11010011 3 5 1 2 2 2

0

11101001 3 5 1 2 2 2

1

Number of factors of length n up to `-abelian equivalence: P(`)
w (n)

P(1)
w (n) ≤ · · · ≤ P(`)

w (n) ≤ P(`+1)
w (n) ≤ · · · ≤ P(∞)

w (n)

The `-abelian complexity of a word w is the sequence P(`)
w (n)n≥0.
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Two words u, v are `-abelian equivalent if

|u|x = |v |x for any x of length at most `.

Example: 2-abelian equivalent but not 3-abelian equivalent

u |u|0 |u|1 |u|00 |u|01 |u|10 |u|11 |u|111
11010011 3 5 1 2 2 2 0
11101001 3 5 1 2 2 2 1

Number of factors of length n up to `-abelian equivalence: P(`)
w (n)

P(1)
w (n) ≤ · · · ≤ P(`)

w (n) ≤ P(`+1)
w (n) ≤ · · · ≤ P(∞)

w (n)

The `-abelian complexity of a word w is the sequence P(`)
w (n)n≥0.

5



2-abelian complexity of the Thue–Morse word

50 100 150 200 250

5

10

15

Bounded? No [Berthé–Delecroix 2014, Karhumäki–Saarela–Zamboni 2014]

Behavior? In log(n) [Karhumäki–Saarela–Zamboni 2014]

Regular?
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A definition of regularity [Allouche–Shallit 1992]

A sequence s = s(n)n≥0 is k-regular if the Z-module generated by
its k-kernel

Kk(s) = {s(ken + r)n≥0 : e ≥ 0 and 0 ≤ r < ke}

is finitely generated.

Example: s(n) = sum of digits in the representation in base 2 of n

s(2n) = s(n) and s(2n + 1) = s(n) + 1

=⇒ s(2en + r)n≥0 = s(n)n≥0 + s(r) · 1n≥0
=⇒ s and 1 are generators

=⇒ s is 2-regular
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Complexity and regularity

The factor complexity of a k-automatic sequence is k-regular.
[Carpi–D’Alonzo 2010, Charlier–Rampersad–Shallit 2012]

The abelian complexity of
the Thue-Morse sequence
the paperfolding sequence [Madill–Rampersad 2013]

the period-doubling sequence [Karhumäki–Saarela–Zamboni 2014]

the 2-block coding of Thue-Morse sequence
[Parreau–Rigo–Rowland–V. 2015]

the 2-block coding of period-doubling sequence
[Parreau–Rigo–Rowland–V. 2015]

the Rudin-Shapiro sequence [Lü–Chen–Wen–Wu 2016]

are 2-regular.
The 2-abelian complexity of

the Thue-Morse sequence [Greinecker 2015, Parreau–Rigo–Rowland–V. 2015]

the period-doubling word [Parreau–Rigo–Rowland–V. 2015]

are 2-regular.

The `-abelian complexity of the Cantor sequence is 3-regular
for all ` ≥ 1 [Chen–Lü–Wu 2017]
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How to prove regularity?

One method: find and prove relations for the sequences of the
2-kernel

Find?

We need to compute P(`)
t (n) for large n!

Naive idea

Construct the first N letters of t with N large enough

If the value of P(`)
t (n) is unchanged for several values of N,

then we can suppose that the detected value of P(`)
t (n) is

correct.

→ Impossible to compute P(`)
t (n) for large n
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Two words u, v (of length at least ` − 1) are `-abelian
equivalent if and only if

(a) |u|x = |v |x for any x of length `;

(b) pref`−1(u) = pref`−1(v).

Proposition

For ` = 2, we associate a vector in N10 to each word
u = u1u2 · · · un−1un,:

Ψ2(u) =



|u1|0
|u1|1
|u|00
|u|01
|u|10
|u|11

|un−1un|00
|un−1un|01
|un−1un|10
|un−1un|11



Ψ2(11101) =



0
1
0
1
1
2
0
1
0
0
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Two words u and v are 2-abelian equivalent if and only if

(a) [Ψ2(u)]2+i = [Ψ2(v)]2+i for i ∈ {1, . . . , 22},
(b) [Ψ2(u)]i = [Ψ2(v)]i for i ∈ {1, 2}.
In this case, we write Ψ2(u) ∼ Ψ2(v).

001 010 011 100 101 110

|u1|0 1 1 1 0 0 0
|u1|1 0 0 0 1 1 1
|u|00 1 0 0 1 0 0
|u|01 1 1 1 0 1 0
|u|10 0 1 0 1 1 1
|u|11 0 0 1 0 0 1

|un−1un|00 0 0 0 1 0 0
|un−1un|01 1 0 0 0 1 0
|un−1un|10 0 1 0 0 0 1
|un−1un|11 0 0 1 0 0 0
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Computation for odd length factors

From a factor of length n to a factor of length 2n − 1

t

n 2n
ϕ

j

v

v

2j

We know precisely what is happening
ϕ

. . . . . . . . . . . .011 01101000 0101
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t

n 2nϕj

v
v

2j

odd length factor at even position (p = 0, r = 1)

M(0,1) =


1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 0 1 0 1 1 −1 0 −1 0
0 1 1 1 0 1 0 −1 0 −1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0


odd length factor at odd position (p = 1, r = 1)

M(1,1) =


0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 1 0 1 1 0 0 0 0
0 0 1 1 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0
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Computation for even length factors

From a factor of length n to a factor of length 2n − 2

t

n 2n
ϕ

j 2j

v
v
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t

n 2nϕj 2j

v
v

even length factor at even position (p = 0, r = 0)

M(0,0) =


1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 −1 0
1 0 1 0 1 1 −1 0 −1 −1
0 1 1 1 0 1 −1 −1 0 −1
0 0 0 1 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0


even length factor at odd position (p = 1, r = 0)

M(1,0) =


0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 1 0 1 1 −1 0 −1 0
0 0 1 1 0 1 0 −1 0 −1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
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Generalization for ` ≥ 3

Ψ`(u) =(|pref`−1(u)|ai1 ...ai`−1
, ij ∈ {1, . . . , |A|}︸ ︷︷ ︸

size |A|`−1

,

|u|ai1 ...ai` , ij ∈ {1, . . . , |A|}︸ ︷︷ ︸
size |A|`

,

|suff`−1(u)|ai1 ...ai`−1
, ij ∈ {1, . . . , |A|}︸ ︷︷ ︸

size |A|`−1

)

Two words u, v (of length at least `− 1) are `-abelian equiv-
alent if and only if

(a) [Ψ`(u)]|A|`−1+i = [Ψ`(v)]|A|`−1+i for i ∈ {1, . . . , |A|`};
(b) [Ψ`(u)]i = [Ψ`(v)]i for i ∈ {1, . . . , |A|`−1}.
In this case, we note Ψ`(u) ∼ Ψ`(v).

Proposition

16



Idea

Let ϕ be a k-uniform morphism and w = ϕ(w).

w

ϕ

q

u

k · q

v

p k − r − p(q − 1)k + r

with q ≥ 1, p ∈ {0, . . . , k − 1} and r ∈ {2− k , . . . ,−1, 0, 1}.
Then

Ψ`(v) =

 B1 0 0

C B2 D

0 0 B3

Ψ`(u)
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From matrices to the 2-abelian complexity of t

S3 = {v ∈ N10 | ∃u ∈ A3 : v = Ψ2(u) and u is a factor of t}

S4 = {M(0,0)v, M(1,0)v | v ∈ S3}/∼
S5 = {M(0,1)v, M(1,1)v | v ∈ S3}/∼

S3

S5S4

S6 S7 S8 S9

M(0,0),M(1,0) M(0,1),M(1,1)

M(0,0),M(1,0) M(0,1),M(1,1)M(0,0),M(1,0) M(0,1),M(1,1)

P2
t (n) = #Sn

18



How to prove regularity?

Find and prove relations for the sequences of the 2-kernel

Find?

Mathematica experiments x2e+r = P(2)
t (2en + r)

x5 = x3
x9 = x3
x12 = −x6 + x7 + x11
x13 = x7
x16 = x8
x17 = x3
x18 = x10
x20 = −x10 + x11 + x19
x21 = x11
x22 = −x3 − 2x6 + x7 + 3x10 + x11 − x19
x23 = −x3 − 3x6 + 2x7 + 3x10 + x11 − x19
x24 = −x3 + x7 + x10
x25 = x7
x26 = −x3 + x7 + x10
x27 = −2x3 + x7 + 3x10 − x19
x28 = −2x3 + x7 + 3x10 − x14 + x15 − x19
x29 = x15
x30 = −x3 + 3x6 − x7 − x10 − x11 + x15 + x19
x31 = −3x3 + 6x6 − 2x11 − 3x14 + 2x15 + x19
x32 = x8
x33 = x3
x34 = x10
x35 = x11
x36 = −x10 + x11 + x19
x37 = x19
x38 = −x3 + x10 + x19

x39 = −x3 + x11 + x19
x40 = −x3 + x10 + x11
x41 = x11
x42 = −x3 + x10 + x11
x43 = −2x3 + 3x10
x44 = −2x3 − x6 + x7 + 3x10
x45 = −x3 − 3x6 + 2x7 + 3x10 + x11 − x19
x46 = −2x3 − 3x6 + 2x7 + 5x10 + x11 − 2x19
x47 = −2x3 + x7 + 3x10 − x19
x48 = −x3 + x7 + x10
x49 = x7
x50 = −x3 + x7 + x10
x51 = −x3 − 3x6 + 2x7 + 3x10 + x11 − x19
x52 = −2x3 − 3x6 + 2x7 + 5x10 + x11 − 2x19
x53 = −2x3 + x7 + 3x10 − x19
x54 = −4x3 + 3x6 + x7 + 3x10 − x11 − 2x14 + x15
x55 = −4x3 + 3x6 + x7 + 3x10 − x11 − 3x14 + 2x15
x56 = −x3 + x10 + x15
x57 = x15
x58 = −x3 + x10 + x15
x59 = −2x3 + 3x6 − x7 − x11 + x15 + x19
x60 = −4x3 + 6x6 + x10 − 2x11 − 3x14 + 2x15 + x19
x61 = −3x3 + 6x6 − 2x11 − 3x14 + 2x15 + x19
x62 = −x3 + 3x6 − x7 − x10 − x11 + x15 + x19
x63 = x15

https://people.hofstra.edu/Eric_Rowland/packages/IntegerSequences.m
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Regularity via relations

If the relations hold, then any sequence xn for n ≥ 32 is a linear
combination of x1, . . . , x19.

Example: x154 = P(2)
t (128n + 26)n≥0

Using x58 = −x3 + x10 + x15,

P(2)
t (128n + 26) = P(2)

t (32(4n) + 26)

= −P(2)
t (2(4n) + 1) + P(2)

t (8(4n) + 2) + P(2)
t (8(4n) + 7)

= −P(2)
t (8n + 1) + P(2)

t (32n + 2) + P(2)
t (32n + 7).

So
x154 = −x9 + x34 + x39 = −2x3 + x10 + x11 + x19.

The relations hold and the 2-abelian complexity of t is 2-regular.

Theorem (Greinecker 2015)
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A more general approach
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2` + r 2`+1 − r

r

Symmetry of the form P(2)
t (2`+1 − r) = P(2)

t (2` + r)

Some relation between P(2)
t (2` + r) and P(2)

t (r)
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It is the case for lots of 2-abelian complexity functions

20 40 60 80 100 120

5

10

15

20 40 60 80 100 120

5

10

15

20

25

20 40 60 80 100 120

5

10

15

0 7→ 01, 1 7→ 02, 2 7→ 01 0 7→ 01, 1 7→ 12, 2 7→ 01 0 7→ 01, 1 7→ 12, 2 7→ 11

20 40 60 80 100 120

5

10

15

20 40 60 80 100 120

5

10

15

20

25

20 40 60 80 100 120

5

10

15

20

25

0 7→ 01, 1 7→ 12, 2 7→ 21 0 7→ 01, 1 7→ 20, 2 7→ 01 0 7→ 01, 1 7→ 20, 2 7→ 10

22



On a simpler function

Abelian complexity of the fixed point of 0 7→ 12, 1 7→ 12, 2 7→ 00
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0

2
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6
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Recurrence: P(1)
x (2` + r) = P(1)

x (r) + 3

Symmetry: P(1)
x (2`+1 − r) = P(1)

x (2` + r)
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Symmetry and recurrence relations

Do these nice symmetry and recurrence relations imply regularity?

These relations use the most significant digits

The kernel is made with the least significant digits

If s(n)n≥0 satisfies

s(2` + r) =

{
s(r) + c if r ≤ 2`−1

s(2`+1 − r) if r > 2`−1

then s(n)n≥0 is 2-regular.

Theorem (Parreau–Rigo–Rowland–V. 2015)
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Consequences of the relations and the regularity

Using the recurrence and reflection relations, we immediately have
that:

it is not bounded,

it is equal to c`/2 in 2` + 2`−2 + 2`−4 + ...+ 22 + 1,

it is constant and minimal in 2`.
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But how to prove the recurrence and reflection relations?

For abelian complexity of the fixed point of 0→ 12, 1→ 12, 2→ 00

x = 120012121200120012001212120012121200 · · ·

Consider
∆0(n) = max

|u|=n
|u|0 − min

|u|=n
|u|0

It is closely related to the abelian complexity since 1 and 2 alternate.

Prove the recurrence and reflection relations for ∆0

∆0(2` + r) =

{
∆0(r) + 2 if r ≤ 2`−1

∆0(2`+1 − r) if r > 2`−1

Deduce the recurrence and reflection relations for P(1)
x

P(1)
x (2` + r) =

{
P(1)
x (r) + 3 if r ≤ 2`−1

P(1)
x (2`+1 − r) if r > 2`−1
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Consequence

The abelian complexity of the fixed point of 0→ 12, 1→ 12, 2→ 00

x = 120012121200120012001212120012121200 · · ·

is 2-regular.

It is the 2-block coding of the period-doubling word

p = 01000101010001000100 · · ·

The abelian complexity of x is closely related to the 2-abelian
complexity of p

P(2)
p (n + 1) = P(1)

x (n) if n is odd

The 2-abelian complexity of the period-doubling word is regular.

Theorem (Parreau–Rigo–Rowland–V. 2015)
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Back to the 2-abelian complexity of Thue-Morse

Consider the 2-block coding of Thue-Morse

132120132012132120121320 · · ·

fixed point of 0→ 12, 1→ 13, 2→ 20, 3→ 21.

Its abelian complexity is closely related to the 2-abelian
complexity of the Thue-Morse sequence.

Consider the function ∆1,2(n).

It is closely related to the abelian complexity since 1,2
alternate and 0,3 alternate.

Prove the recurrence and reflection relations for ∆1,2(n).

Deduce the abelian complexity of the 2-block coding is
2-regular.
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The 2-abelian complexity of the Thue–Morse word satisfies
a “slightly more complicated” recurrence and symmetry rela-
tion. It is 2-regular.

Theorem (Parreau–Rigo–Rowland–V. 2015)
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Summary

The factor complexity of a k-automatic sequence is k-regular.
[Carpi–D’Alonzo 2010, Charlier–Rampersad–Shallit 2012]

The abelian complexity of

the Thue-Morse sequence
the paperfolding sequence [Madill–Rampersad 2013]

the period-doubling sequence [Karhumäki–Saarela–Zamboni 2014]

the 2-block coding of Thue-Morse sequence [P.–R.–R.–V. 2015]

the 2-block coding of period-doubling sequence [P.–R.–R.–V. 2015]

the Rudin-Shapiro sequence [Lü–Chen–Wen–Wu 2016]

are 2-regular.

The 2-abelian complexity of

the Thue-Morse sequence [Greinecker 2015, P.–R.–R.–V. 2015]

the period-doubling word [P.–R.–R.–V. 2015]

are 2-regular.

The `-abelian complexity of the Cantor sequence is 3-regular
for all ` ≥ 1. [Chen–Lü–Wu 2017]

The `-abelian complexity of a k-automatic sequence is always
k-regular.

Conjecture
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Perspectives

It seems that lots of (`-)abelian complexity functions satisfy similar
recurrence.
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For the 3-abelian complexity of period-doubling word p, the
abelian complexity of the 3-block coding z of p seems to satisfy:

P(1)
z (2` + r) =


P(1)
z (r) + 5 if r ≤ 2`−1 and r even

P(1)
z (r) + 7 if r ≤ 2`−1 and r odd

P(1)
z (2`+1 − r) if r > 2`−1.
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Reflection symmetry

2-abelian complexity of t satisfies a reflection symmetry

t is palindromic

u = u1 · · · un factor ⇒ uR = un · · · u1 factor

abelian complexity of 2-block coding of t
1321201320121321201 · · · satisfies a reflection symmetry

2-block coding of t is not palindromic

01 factor, but 10 not a factor

But its set of factors is closed under “reversal and coding”

u factor ⇒ τ(u)R factor with τ : 1↔ 2

Same thing holds for the period-doubling word p

Link between reflection symmetry and closed under “reversal
and coding”?
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