On a conjecture about regularity and ℓ-abelian complexity

Élise Vandomme
Postdoc at the LaCIM (UQAM)

Bridges between Automatic Sequences, Algebra and Number Theory
CRM, Montréal - April 2017

Yesterday...

k-regular sequences are much more chaotic...

Automatic sequences

Equivalence between

- $\mathbf{w}=\left(w_{i}\right)_{i \geq 0}$ is a k-automatic word
- $\mathbf{w}=\tau\left(\varphi^{\omega}(a)\right)$ with φ k-uniform, $\tau 1$-uniform, $a \in A$
- w_{i} is the output of a DFAO when reading $(i)_{k}$ [Cobham 72]

Automatic sequences

Equivalence between

- $\mathbf{w}=\left(w_{i}\right)_{i \geq 0}$ is a k-automatic word
- $\mathbf{w}=\tau\left(\varphi^{\omega}(a)\right)$ with φ-uniform, $\tau 1$-uniform, $a \in A$
- w_{i} is the output of a DFAO when reading $(i)_{k}$ [Cobham 72]
- the k-kernel of \mathbf{w}

$$
\mathcal{K}_{k}(\mathbf{w})=\left\{w\left(k^{e} n+r\right)_{n \geq 0}: e \geq 0 \text { and } 0 \leq r<k^{e}\right\}
$$

is finite [Eilenberg 1974]
Example: 2-kernel of the Thue-Morse word

$$
\mathbf{t}=01101001100101101001011001101001 \cdots
$$

Automatic sequences

Equivalence between

- $\mathbf{w}=\left(w_{i}\right)_{i \geq 0}$ is a k-automatic word
- $\mathbf{w}=\tau\left(\varphi^{\omega}(a)\right)$ with φ-uniform, $\tau 1$-uniform, $a \in A$
- w_{i} is the output of a DFAO when reading $(i)_{k}$ [Cobham 72]
- the k-kernel of \mathbf{w}

$$
\mathcal{K}_{k}(\mathbf{w})=\left\{w\left(k^{e} n+r\right)_{n \geq 0}: e \geq 0 \text { and } 0 \leq r<k^{e}\right\}
$$

is finite [Eilenberg 1974]
Example: 2-kernel of the Thue-Morse word

$$
\begin{aligned}
\mathbf{t} & =01101001100101101001011001101001 \cdots \\
\left(\mathbf{t}_{2 n}\right)_{(n \geq 0)} & =
\end{aligned}
$$

Automatic sequences

Equivalence between

- $\mathbf{w}=\left(w_{i}\right)_{i \geq 0}$ is a k-automatic word
- $\mathbf{w}=\tau\left(\varphi^{\omega}(a)\right)$ with φ-uniform, $\tau 1$-uniform, $a \in A$
- w_{i} is the output of a DFAO when reading $(i)_{k}$ [Cobham 72]
- the k-kernel of \mathbf{w}

$$
\mathcal{K}_{k}(\mathbf{w})=\left\{w\left(k^{e} n+r\right)_{n \geq 0}: e \geq 0 \text { and } 0 \leq r<k^{e}\right\}
$$

is finite [Eilenberg 1974]
Example: 2-kernel of the Thue-Morse word

$$
\begin{aligned}
\mathbf{t} & =01101001100101101001011001101001 \cdots \\
\left(\mathbf{t}_{2 n}\right)_{(n \geq 0)} & =01101001100101101001011001101001 \cdots=\mathbf{t}
\end{aligned}
$$

Automatic sequences

Equivalence between

- $\mathbf{w}=\left(w_{i}\right)_{i \geq 0}$ is a k-automatic word
- $\mathbf{w}=\tau\left(\varphi^{\omega}(a)\right)$ with φ-uniform, $\tau 1$-uniform, $a \in A$
- w_{i} is the output of a DFAO when reading $(i)_{k}$ [Cobham 72]
- the k-kernel of \mathbf{w}

$$
\mathcal{K}_{k}(\mathbf{w})=\left\{w\left(k^{e} n+r\right)_{n \geq 0}: e \geq 0 \text { and } 0 \leq r<k^{e}\right\}
$$

is finite [Eilenberg 1974]
Example: 2-kernel of the Thue-Morse word

$$
\begin{aligned}
\mathbf{t} & =01101001100101101001011001101001 \cdots \\
\left(\mathbf{t}_{2 n}\right)_{(n \geq 0)} & =01101001100101101001011001101001 \cdots=\mathbf{t} \\
\left(\mathbf{t}_{2 n+1}\right)_{(n \geq 0)} & =
\end{aligned}
$$

Automatic sequences

Equivalence between

- $\mathbf{w}=\left(w_{i}\right)_{i \geq 0}$ is a k-automatic word
- $\mathbf{w}=\tau\left(\varphi^{\omega}(a)\right)$ with φ-uniform, $\tau 1$-uniform, $a \in A$
- w_{i} is the output of a DFAO when reading $(i)_{k}$ [Cobham 72]
- the k-kernel of \mathbf{w}

$$
\mathcal{K}_{k}(\mathbf{w})=\left\{w\left(k^{e} n+r\right)_{n \geq 0}: e \geq 0 \text { and } 0 \leq r<k^{e}\right\}
$$

is finite [Eilenberg 1974]
Example: 2-kernel of the Thue-Morse word

$$
\begin{aligned}
\mathbf{t} & =01101001100101101001011001101001 \cdots \\
\left(\mathbf{t}_{2 n}\right)_{(n \geq 0)} & =01101001100101101001011001101001 \cdots=\mathbf{t} \\
\left(\mathbf{t}_{2 n+1}\right)_{(n \geq 0)} & =10010110011010010110100110010110 \cdots=\overline{\mathbf{t}}
\end{aligned}
$$

Automatic sequences

Equivalence between

- $\mathbf{w}=\left(w_{i}\right)_{i \geq 0}$ is a k-automatic word
- $\mathbf{w}=\tau\left(\varphi^{\omega}(a)\right)$ with φ-uniform, $\tau 1$-uniform, $a \in A$
- w_{i} is the output of a DFAO when reading $(i)_{k}$ [Cobham 72]
- the k-kernel of \mathbf{w}

$$
\mathcal{K}_{k}(\mathbf{w})=\left\{w\left(k^{e} n+r\right)_{n \geq 0}: e \geq 0 \text { and } 0 \leq r<k^{e}\right\}
$$

is finite [Eilenberg 1974]
Example: 2-kernel of the Thue-Morse word

$$
\begin{aligned}
\mathbf{t} & =01101001100101101001011001101001 \cdots \\
\left(\mathbf{t}_{2 n}\right)_{(n \geq 0)} & =01101001100101101001011001101001 \cdots=\mathbf{t} \\
\left(\mathbf{t}_{2 n+1}\right)_{(n \geq 0)} & =10010110011010010110100110010110 \cdots=\overline{\mathbf{t}}
\end{aligned}
$$

$$
\mathcal{K}_{2}(\mathbf{t})=\{\mathbf{t}, \overline{\mathbf{t}}\}
$$

Thue-Morse word $\mathbf{t}=0110100110010110 \cdots$

Factor complexity $\mathcal{P}_{\mathbf{t}}^{(\infty)}$ [Brlek 1989, de Luca-Varricchio 1989]

$$
\mathcal{P}_{\mathbf{t}}^{(\infty)}(n)= \begin{cases}4 n-2 \cdot 2^{m}-4 & \text { if } 2 \cdot 2^{m}<n \leq 3 \cdot 2^{m} \\ 2 n+4 \cdot 2^{m}-2 & \text { if } 3 \cdot 2^{m}<n \leq 4 \cdot 2^{m}\end{cases}
$$

Thue-Morse word $\mathbf{t}=0110100110010110 \cdots$

Factor complexity $\mathcal{P}_{\mathbf{t}}^{(\infty)}$ [Brlek 1989, de Luca-Varricchio 1989]

$$
\mathcal{P}_{\mathbf{t}}^{(\infty)}(n)= \begin{cases}4 n-2 \cdot 2^{m}-4 & \text { if } 2 \cdot 2^{m}<n \leq 3 \cdot 2^{m} \\ 2 n+4 \cdot 2^{m}-2 & \text { if } 3 \cdot 2^{m}<n \leq 4 \cdot 2^{m}\end{cases}
$$

Abelian complexity $\mathcal{P}_{\mathbf{t}}^{(1)}$

$$
\mathcal{P}_{\mathbf{t}}^{(1)}(2 n)=3 \text { and } \mathcal{P}_{\mathbf{t}}^{(1)}(2 n+1)=2
$$

亿-abelian complexity [Karhumäki-Saarela-Zamboni 2013]

Two words u, v are ℓ-abelian equivalent if

$$
|u|_{x}=|v|_{x} \quad \text { for any } x \text { of length at most } \ell .
$$

Example:

u	$\|u\|_{0}$	$\|u\|_{1}$	$\|u\|_{00}$	$\|u\|_{01}$	$\|u\|_{10}$	$\|u\|_{11}$
11010011	3	5	1	2	2	2
11101001	3	5	1	2	2	2

亿-abelian complexity [Karhumäki-Saarela-Zamboni 2013]

Two words u, v are ℓ-abelian equivalent if

$$
|u|_{x}=|v|_{x} \quad \text { for any } x \text { of length at most } \ell .
$$

Example: 2-abelian equivalent

u	$\|u\|_{0}$	$\|u\|_{1}$	$\|u\|_{00}$	$\|u\|_{01}$	$\|u\|_{10}$	$\|u\|_{11}$
11010011	3	5	1	2	2	2
11101001	3	5	1	2	2	2

ℓ-abelian complexity [Karhumäki-Saarela-Zamboni 2013]

Two words u, v are ℓ-abelian equivalent if

$$
|u|_{x}=|v|_{x} \quad \text { for any } x \text { of length at most } \ell .
$$

Example: 2-abelian equivalent but not 3-abelian equivalent

u	$\|u\|_{0}$	$\|u\|_{1}$	$\|u\|_{00}$	$\|u\|_{01}$	$\|u\|_{10}$	$\|u\|_{11}$	$\|u\|_{111}$
11010011	3	5	1	2	2	2	0
11101001	3	5	1	2	2	2	1

亿-abelian complexity [Karhumäki-Saarela-Zamboni 2013]

Two words u, v are ℓ-abelian equivalent if

$$
|u|_{x}=|v|_{x} \quad \text { for any } x \text { of length at most } \ell .
$$

Example: 2-abelian equivalent but not 3-abelian equivalent

u	$\|u\|_{0}$	$\|u\|_{1}$	$\|u\|_{00}$	$\|u\|_{01}$	$\|u\|_{10}$	$\|u\|_{11}$	$\|u\|_{111}$
11010011	3	5	1	2	2	2	0
11101001	3	5	1	2	2	2	1

Number of factors of length n up to ℓ-abelian equivalence: $\mathcal{P}_{w}^{(\ell)}(n)$

$$
\mathcal{P}_{\mathbf{w}}^{(1)}(n) \leq \cdots \leq \mathcal{P}_{\mathbf{w}}^{(\ell)}(n) \leq \mathcal{P}_{\mathbf{w}}^{(\ell+1)}(n) \leq \cdots \leq \mathcal{P}_{\mathbf{w}}^{(\infty)}(n)
$$

The ℓ-abelian complexity of a word \mathbf{w} is the sequence $\mathcal{P}_{\mathbf{w}}^{(\ell)}(n)_{n \geq 0}$.

2-abelian complexity of the Thue-Morse word

2-abelian complexity of the Thue-Morse word

- Bounded? No [Berthé-Delecroix 2014, Karhumäki-Saarela-Zamboni 2014]

2-abelian complexity of the Thue-Morse word

- Bounded? No [Berthé-Delecroix 2014, Karhumäki-Saarela-Zamboni 2014]
- Behavior? In $\log (n)$ [Karhumäki-Saarela-Zamboni 2014]

2-abelian complexity of the Thue-Morse word

- Bounded? No [Berthé-Delecroix 2014, Karhumäki-Saarela-Zamboni 2014]
- Behavior? In $\log (n)$ [Karhumäki-Saarela-Zamboni 2014]
- Regular?

A definition of regularity [Allouche-Shallit 1992]

A sequence $\mathbf{s}=s(n)_{n \geq 0}$ is k-regular if the \mathbb{Z}-module generated by its k-kernel

$$
\mathcal{K}_{k}(\mathbf{s})=\left\{s\left(k^{e} n+r\right)_{n \geq 0}: e \geq 0 \text { and } 0 \leq r<k^{e}\right\}
$$

is finitely generated.

A definition of regularity [Allouche-Shallit 1992]

A sequence $\mathbf{s}=s(n)_{n \geq 0}$ is k-regular if the \mathbb{Z}-module generated by its k-kernel

$$
\mathcal{K}_{k}(\mathbf{s})=\left\{s\left(k^{e} n+r\right)_{n \geq 0}: e \geq 0 \text { and } 0 \leq r<k^{e}\right\}
$$

is finitely generated.
Example: $s(n)=$ sum of digits in the representation in base 2 of n

$$
\begin{aligned}
& s(2 n)=s(n) \text { and } s(2 n+1)=s(n)+1 \\
& \Longrightarrow s\left(2^{e} n+r\right)_{n \geq 0}=s(n)_{n \geq 0}+s(r) \cdot 1_{n \geq 0} \\
& \Longrightarrow \mathbf{s} \text { and } \mathbf{1} \text { are generators } \\
& \Longrightarrow \mathbf{s} \text { is 2-regular }
\end{aligned}
$$

Complexity and regularity

- The factor complexity of a k-automatic sequence is k-regular.
[Carpi-D'Alonzo 2010, Charlier-Rampersad-Shallit 2012]
- The abelian complexity of
- the Thue-Morse sequence
- the paperfolding sequence [Madill-Rampersad 2013]
- the period-doubling sequence [Karhumäki-Saarela-Zamboni 2014]
- the 2-block coding of Thue-Morse sequence
[Parreau-Rigo-Rowland-V. 2015]
- the 2-block coding of period-doubling sequence
[Parreau-Rigo-Rowland-V. 2015]
- the Rudin-Shapiro sequence [Lü-Chen-Wen-Wu 2016]
are 2-regular.
- The 2-abelian complexity of
- the Thue-Morse sequence [Greinecker 2015, Parreau-Rigo-Rowland-V. 2015]
- the period-doubling word [Parreau-Rigo-Rowland-V. 2015]
are 2-regular.
- The ℓ-abelian complexity of the Cantor sequence is 3 -regular for all $\ell \geq 1$ [Chen-Lü-Wu 2017]

How to prove regularity?

One method: find and prove relations for the sequences of the 2-kernel

- Find?

How to prove regularity?

One method: find and prove relations for the sequences of the 2-kernel

- Find?

$$
\text { We need to compute } \mathcal{P}_{\mathbf{t}}^{(\ell)}(n) \text { for large } n!
$$

Naive idea

- Construct the first N letters of \mathbf{t} with N large enough
- If the value of $\mathcal{P}_{\mathbf{t}}^{(\ell)}(n)$ is unchanged for several values of N, then we can suppose that the detected value of $\mathcal{P}_{\mathbf{t}}^{(\ell)}(n)$ is correct.

How to prove regularity?

One method: find and prove relations for the sequences of the 2-kernel

- Find?

$$
\text { We need to compute } \mathcal{P}_{\mathbf{t}}^{(\ell)}(n) \text { for large } n!
$$

Naive idea

- Construct the first N letters of \mathbf{t} with N large enough
- If the value of $\mathcal{P}_{\mathbf{t}}^{(\ell)}(n)$ is unchanged for several values of N, then we can suppose that the detected value of $\mathcal{P}_{\mathbf{t}}^{(\ell)}(n)$ is correct.
\rightarrow Impossible to compute $\mathcal{P}_{\mathbf{t}}^{(\ell)}(n)$ for large n

Proposition

Two words u, v (of length at least $\ell-1$) are ℓ-abelian equivalent if and only if
(a) $|u|_{x}=|v|_{x}$ for any x of length ℓ;
(b) $\operatorname{pref}_{\ell-1}(u)=\operatorname{pref}_{\ell-1}(v)$.

Proposition

Two words u, v (of length at least $\ell-1$) are ℓ-abelian equivalent if and only if
(a) $|u|_{x}=|v|_{x}$ for any x of length ℓ;
(b) $\operatorname{pref}_{\ell-1}(u)=\operatorname{pref}_{\ell-1}(v)$.

For $\ell=2$, we associate a vector in \mathbb{N}^{10} to each word
$u=u_{1} u_{2} \cdots u_{n-1} u_{n}$:

$$
\Psi_{2}(u)=\left(\begin{array}{c}
\left|u_{1}\right|_{0} \\
\left|u_{1}\right|_{1} \\
|u|_{00} \\
|u|_{01} \\
|u|_{10} \\
|u|_{11} \\
\left|u_{n-1} u_{n}\right|_{00} \\
\left|u_{n-1} u_{n}\right|_{01} \\
\left|u_{n-1} u_{n}\right|_{10} \\
\left|u_{n-1} u_{n}\right|_{11}
\end{array}\right) \quad \Psi_{2}(11101)=\left(\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
1 \\
2 \\
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

Two words u and v are 2-abelian equivalent if and only if
(a) $\left[\Psi_{2}(u)\right]_{2+i}=\left[\Psi_{2}(v)\right]_{2+i}$ for $i \in\left\{1, \ldots, 2^{2}\right\}$,
(b) $\left[\Psi_{2}(u)\right]_{i}=\left[\Psi_{2}(v)\right]_{i}$ for $i \in\{1,2\}$.

In this case, we write $\Psi_{2}(u) \sim \Psi_{2}(v)$.

	001	010	011	100	101	110
$\left\|u_{1}\right\|_{0}$	1	1	1	0	0	0
$\left\|u_{1}\right\|_{1}$	0	0	0	1	1	1
$\|u\|_{00}$	1	0	0	1	0	0
$\|u\|_{01}$	1	1	1	0	1	0
$\|u\|_{10}$	0	1	0	1	1	1
$\|u\|_{11}$	0	0	1	0	0	1
$\left\|u_{n-1} u_{n}\right\|_{00}$	0	0	0	1	0	0
$\left\|u_{n-1} u_{n}\right\|_{01}$	1	0	0	0	1	0
$\left\|u_{n-1} u_{n}\right\|_{10}$	0	1	0	0	0	1
$\left\|u_{n-1} u_{n}\right\|_{11}$	0	0	1	0	0	0

Computation for odd length factors

From a factor of length n to a factor of length $2 n-1$

Computation for odd length factors

From a factor of length n to a factor of length $2 n-1$

Computation for odd length factors

From a factor of length n to a factor of length $2 n-1$

Computation for odd length factors

From a factor of length n to a factor of length $2 n-1$

Computation for odd length factors

From a factor of length n to a factor of length $2 n-1$

Computation for odd length factors

From a factor of length n to a factor of length $2 n-1$

We know precisely what is happening

odd length factor at even position ($p=0, r=1$)

$$
M^{(0,1)}=\left(\begin{array}{cc|cccc|cccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 & -1 & 0 & -1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

odd length factor at odd position ($p=1, r=1$)

$$
M^{(1,1)}=\left(\begin{array}{cc|cccc|cccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Computation for even length factors

From a factor of length n to a factor of length $2 n-2$

even length factor at even position $(p=0, r=0)$

$$
M^{(0,0)}=\left(\begin{array}{cc|cccc|cccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\
1 & 0 & 1 & 0 & 1 & 1 & -1 & 0 & -1 & -1 \\
0 & 1 & 1 & 0 & 1 & 1 & -1 & 0 & -1 & -1 \\
0 & 0 & 0 & 1 & 0 & 1 & -1 & -1 & 0 & -1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

even length factor at odd position ($p=1, r=0$)

$$
M^{(1,0)}=\left(\begin{array}{cc|cccc|cccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & -1 & 0 & -1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Generalization for $\ell \geq 3$

$$
\begin{aligned}
\Psi_{\ell}(u)= & \underbrace{\left|\operatorname{pref}_{\ell-1}(u)\right|_{a_{i_{1}} \ldots a_{i_{\ell-1}}}, i_{j} \in\{1, \ldots,|A|\}}_{\text {size }|A|^{\ell-1}}, \\
& \underbrace{|u|_{a_{i_{1}} \ldots a_{a_{\ell}}}, i_{j} \in\{1, \ldots,|A|\}}_{\text {size }|A|^{\ell}}, \\
& \underbrace{\left|\operatorname{suff}_{\ell-1}(u)\right|_{a_{i_{1} \ldots a_{i-1}}}, i_{j} \in\{1, \ldots,|A|\}}_{\text {size }|A|^{\ell-1}})
\end{aligned}
$$

Proposition

Two words u, v (of length at least $\ell-1$) are ℓ-abelian equivalent if and only if
(a) $\left[\Psi_{\ell}(u)\right]_{|A|^{\ell-1}+i}=\left[\Psi_{\ell}(v)\right]_{|A|^{\ell-1}+i}$ for $i \in\left\{1, \ldots,|A|^{\ell}\right\}$;
(b) $\left[\Psi_{\ell}(u)\right]_{i}=\left[\Psi_{\ell}(v)\right]_{i}$ for $i \in\left\{1, \ldots,|A|^{\ell-1}\right\}$.

In this case, we note $\Psi_{\ell}(u) \sim \Psi_{\ell}(v)$.

Idea

Let φ be a k-uniform morphism and $\mathbf{w}=\varphi(\mathbf{w})$.

Idea

Let φ be a k-uniform morphism and $\mathbf{w}=\varphi(\mathbf{w})$.

Idea

Let φ be a k-uniform morphism and $\mathbf{w}=\varphi(\mathbf{w})$.

with $q \geq 1, p \in\{0, \ldots, k-1\}$ and $r \in\{2-k, \ldots,-1,0,1\}$.

Idea

Let φ be a k-uniform morphism and $\mathbf{w}=\varphi(\mathbf{w})$.

with $q \geq 1, p \in\{0, \ldots, k-1\}$ and $r \in\{2-k, \ldots,-1,0,1\}$.
Then

$$
\Psi_{\ell}(v)=\left(\begin{array}{c|c|c}
B_{1} & 0 & 0 \\
\hline C & B_{2} & D \\
\hline 0 & 0 & B_{3}
\end{array}\right) \Psi_{\ell}(u)
$$

From matrices to the 2-abelian complexity of \mathbf{t}

$$
S_{3}=\left\{\mathbf{v} \in \mathbb{N}^{10} \mid \exists u \in A^{3}: \mathbf{v}=\Psi_{2}(u) \text { and } u \text { is a factor of } \mathbf{t}\right\}
$$

$$
\begin{aligned}
& S_{4}=\left\{M^{(0,0)} \mathbf{v}, M^{(1,0)} \mathbf{v} \mid \mathbf{v} \in S_{3}\right\} / \sim \\
& S_{5}=\left\{M^{(0,1)} \mathbf{v}, M^{(1,1)} \mathbf{v} \mid \mathbf{v} \in S_{3}\right\} / \sim
\end{aligned}
$$

$$
\mathcal{P}_{\mathbf{t}}^{2}(n)=\# S_{n}
$$

How to prove regularity?

Find and prove relations for the sequences of the 2-kernel - Find?

How to prove regularity?

Find and prove relations for the sequences of the 2-kernel

- Find? Mathematica experiments $\quad x_{2^{e}+r}=\mathcal{P}_{\mathbf{t}}^{(2)}\left(2^{e} n+r\right)$

\mathbf{x}_{5}	$=\mathbf{x}_{3}$
\mathbf{x}_{9}	$=\mathbf{x}_{3}$
\mathbf{x}_{12}	$=-\mathbf{x}_{6}+\mathbf{x}_{7}+\mathbf{x}_{11}$
\mathbf{x}_{13}	$=\mathbf{x}_{7}$
\mathbf{x}_{16}	$=\mathbf{x}_{8}$
\mathbf{x}_{17}	$=\mathbf{x}_{3}$
\mathbf{x}_{18}	$=\mathbf{x}_{10}$
\mathbf{x}_{20}	$=-\mathbf{x}_{10}+\mathbf{x}_{11}+\mathbf{x}_{19}$
\mathbf{x}_{21}	$=\mathbf{x}_{11}$
\mathbf{x}_{22}	$=-\mathbf{x}_{3}-2 \mathbf{x}_{6}+\mathbf{x}_{7}+3 \mathbf{x}_{10}+\mathbf{x}_{11}-\mathbf{x}_{19}$
\mathbf{x}_{23}	$=-\mathbf{x}_{3}-3 \mathbf{x}_{6}+2 \mathbf{x}_{7}+3 \mathbf{x}_{10}+\mathbf{x}_{11}-\mathbf{x}_{19}$
\mathbf{x}_{24}	$=-\mathbf{x}_{3}+\mathbf{x}_{7}+\mathbf{x}_{10}$
\mathbf{x}_{25}	$=\mathbf{x}_{7}$
\mathbf{x}_{26}	$=-\mathbf{x}_{3}+\mathbf{x}_{7}+\mathbf{x}_{10}$
\mathbf{x}_{27}	$=-2 \mathbf{x}_{3}+\mathbf{x}_{7}+3 \mathbf{x}_{10}-\mathbf{x}_{19}$
\mathbf{x}_{28}	$=-2 \mathbf{x}_{3}+\mathbf{x}_{7}+3 \mathbf{x}_{10}-\mathbf{x}_{14}+\mathbf{x}_{15}-\mathbf{x}_{19}$
\mathbf{x}_{29}	$=\mathbf{x}_{15}$
\mathbf{x}_{30}	$=-\mathbf{x}_{3}+3 \mathbf{x}_{6}-\mathbf{x}_{7}-\mathbf{x}_{10}-\mathbf{x}_{11}+\mathbf{x}_{15}+\mathbf{x}_{19}$
\mathbf{x}_{31}	$=-3 \mathbf{x}_{3}+6 \mathbf{x}_{6}-2 \mathbf{x}_{11}-3 \mathbf{x}_{14}+2 \mathbf{x}_{15}+\mathbf{x}_{19}$
\mathbf{x}_{32}	$=\mathbf{x}_{8}$
\mathbf{x}_{33}	$=\mathbf{x}_{3}$
\mathbf{x}_{34}	$=\mathbf{x}_{10}$
\mathbf{x}_{35}	$=\mathbf{x}_{11}$
\mathbf{x}_{36}	$=-\mathbf{x}_{10}+\mathbf{x}_{11}+\mathbf{x}_{19}$
\mathbf{x}_{37}	$=\mathbf{x}_{19}$
\mathbf{x}_{38}	$=-\mathbf{x}_{3}+\mathbf{x}_{10}+\mathbf{x}_{19}$

$x_{39}=-x_{3}+x_{11}+x_{19}$
$x_{40}=-x_{3}+x_{10}+x_{11}$
$\mathrm{x}_{41}=\mathrm{x}_{11}$
$\mathrm{x}_{42}=-\mathrm{x}_{3}+\mathrm{x}_{10}+\mathrm{x}_{11}$
$x_{43}=-2 x_{3}+3 x_{10}$
$x_{44}=-2 x_{3}-x_{6}+x_{7}+3 x_{10}$
$x_{45}=-x_{3}-3 x_{6}+2 x_{7}+3 x_{10}+x_{11}-x_{19}$
$x_{46}=-2 x_{3}-3 x_{6}+2 x_{7}+5 x_{10}+x_{11}-2 x_{19}$
$x_{47}=-2 x_{3}+x_{7}+3 x_{10}-x_{19}$
$\mathrm{x}_{48}=-\mathrm{x}_{3}+\mathrm{x}_{7}+\mathrm{x}_{10}$
$\mathrm{x}_{49}=\mathrm{x}_{7}$
$x_{50}=-x_{3}+x_{7}+x_{10}$
$x_{51}=-x_{3}-3 x_{6}+2 x_{7}+3 x_{10}+x_{11}-x_{19}$
$x_{52}=-2 x_{3}-3 x_{6}+2 x_{7}+5 x_{10}+x_{11}-2 x_{19}$
$x_{53}=-2 x_{3}+x_{7}+3 x_{10}-x_{19}$
$x_{54}=-4 x_{3}+3 x_{6}+x_{7}+3 x_{10}-x_{11}-2 x_{14}+x_{15}$
$x_{55}=-4 x_{3}+3 x_{6}+x_{7}+3 x_{10}-x_{11}-3 x_{14}+2 x_{15}$
$x_{56}=-x_{3}+x_{10}+x_{15}$
$x_{57}=x_{15}$
$x_{58}=-x_{3}+x_{10}+x_{15}$
$x_{59}=-2 x_{3}+3 x_{6}-x_{7}-x_{11}+x_{15}+x_{19}$
$x_{60}=-4 x_{3}+6 x_{6}+x_{10}-2 x_{11}-3 x_{14}+2 x_{15}+x_{19}$
$x_{61}=-3 x_{3}+6 x_{6}-2 x_{11}-3 x_{14}+2 x_{15}+x_{19}$
$\mathrm{x}_{62}=-\mathrm{x}_{3}+3 \mathrm{x}_{6}-\mathrm{x}_{7}-\mathrm{x}_{10}-\mathrm{x}_{11}+\mathrm{x}_{15}+\mathrm{x}_{19}$
$\mathrm{x}_{63}=\mathrm{x}_{15}$

How to prove regularity?

Find and prove relations for the sequences of the 2-kernel

- Find? Mathematica experiments $\quad x_{2^{e}+r}=\mathcal{P}_{\mathbf{t}}^{(2)}\left(2^{e} n+r\right)$

\mathbf{x}_{5}	$=\mathbf{x}_{3}$
\mathbf{x}_{9}	$=\mathbf{x}_{3}$
\mathbf{x}_{12}	$=-\mathbf{x}_{6}+\mathbf{x}_{7}+\mathbf{x}_{11}$
\mathbf{x}_{13}	$=\mathbf{x}_{7}$
\mathbf{x}_{16}	$=\mathbf{x}_{8}$
\mathbf{x}_{17}	$=\mathbf{x}_{3}$
\mathbf{x}_{18}	$=\mathbf{x}_{10}$
\mathbf{x}_{20}	$=-\mathbf{x}_{10}+\mathbf{x}_{11}+\mathbf{x}_{19}$
\mathbf{x}_{21}	$=\mathbf{x}_{11}$
\mathbf{x}_{22}	$=-\mathbf{x}_{3}-2 \mathbf{x}_{6}+\mathbf{x}_{7}+3 \mathbf{x}_{10}+\mathbf{x}_{11}-\mathbf{x}_{19}$
\mathbf{x}_{23}	$=-\mathbf{x}_{3}-3 \mathbf{x}_{6}+2 \mathbf{x}_{7}+3 \mathbf{x}_{10}+\mathbf{x}_{11}-\mathbf{x}_{19}$
\mathbf{x}_{24}	$=-\mathbf{x}_{3}+\mathbf{x}_{7}+\mathbf{x}_{10}$
\mathbf{x}_{25}	$=\mathbf{x}_{7}$
\mathbf{x}_{26}	$=-\mathbf{x}_{3}+\mathbf{x}_{7}+\mathbf{x}_{10}$
\mathbf{x}_{27}	$=-2 \mathbf{x}_{3}+\mathbf{x}_{7}+3 \mathbf{x}_{10}-\mathbf{x}_{19}$
\mathbf{x}_{28}	$=-2 \mathbf{x}_{3}+\mathbf{x}_{7}+3 \mathbf{x}_{10}-\mathbf{x}_{14}+\mathbf{x}_{15}-\mathbf{x}_{19}$
\mathbf{x}_{29}	$=\mathbf{x}_{15}$
\mathbf{x}_{30}	$=-\mathbf{x}_{3}+3 \mathbf{x}_{6}-\mathbf{x}_{7}-\mathbf{x}_{10}-\mathbf{x}_{11}+\mathbf{x}_{15}+\mathbf{x}_{19}$
\mathbf{x}_{31}	$=-3 \mathbf{x}_{3}+6 \mathbf{x}_{6}-2 \mathbf{x}_{11}-3 \mathbf{x}_{14}+2 \mathbf{x}_{15}+\mathbf{x}_{19}$
\mathbf{x}_{32}	$=\mathbf{x}_{8}$
\mathbf{x}_{33}	$=\mathbf{x}_{3}$
\mathbf{x}_{34}	$=\mathbf{x}_{10}$
\mathbf{x}_{35}	$=\mathbf{x}_{11}$
\mathbf{x}_{36}	$=-\mathbf{x}_{10}+\mathbf{x}_{11}+\mathbf{x}_{19}$
\mathbf{x}_{37}	$=\mathbf{x}_{19}$
\mathbf{x}_{38}	$=-\mathbf{x}_{3}+\mathbf{x}_{10}+\mathbf{x}_{19}$

$$
\begin{aligned}
& \mathbf{x}_{39}=-\mathbf{x}_{3}+\mathbf{x}_{11}+\mathbf{x}_{19} \\
& \mathbf{x}_{40}=-\mathbf{x}_{3}+\mathbf{x}_{10}+\mathbf{x}_{11} \\
& \mathbf{x}_{41}=\mathbf{x}_{11} \\
& \mathbf{x}_{42}=-\mathbf{x}_{3}+\mathbf{x}_{10}+\mathbf{x}_{11} \\
& \mathbf{x}_{43}=-2 \mathbf{x}_{3}+3 \mathbf{x}_{10} \\
& \mathbf{x}_{44}=-2 \mathbf{x}_{3}-\mathbf{x}_{6}+\mathbf{x}_{7}+3 \mathbf{x}_{10} \\
& \mathbf{x}_{45}=-\mathbf{x}_{3}-3 \mathbf{x}_{6}+2 \mathbf{x}_{7}+3 \mathbf{x}_{10}+\mathbf{x}_{11}-\mathbf{x}_{19} \\
& \mathbf{x}_{46}=-2 \mathbf{x}_{3}-3 \mathbf{x}_{6}+2 \mathbf{x}_{7}+5 \mathbf{x}_{10}+\mathbf{x}_{11}-2 \mathbf{x}_{19} \\
& \mathbf{x}_{47}=-2 \mathbf{x}_{3}+\mathbf{x}_{7}+3 \mathbf{x}_{10}-\mathbf{x}_{19} \\
& \mathbf{x}_{48}=-\mathbf{x}_{3}+\mathbf{x}_{7}+\mathbf{x}_{10} \\
& \mathbf{x}_{49}=\mathbf{x}_{7} \\
& \mathbf{x}_{50}=-\mathbf{x}_{3}+\mathbf{x}_{7}+\mathbf{x}_{10} \\
& \mathbf{x}_{51}=-\mathbf{x}_{3}-3 \mathbf{x}_{6}+2 \mathbf{x}_{7}+3 \mathbf{x}_{10}+\mathbf{x}_{11}-\mathbf{x}_{19} \\
& \mathbf{x}_{52}=-2 \mathbf{x}_{3}-3 \mathbf{x}_{6}+2 \mathbf{x}_{7}+5 \mathbf{x}_{10}+\mathbf{x}_{11}-2 \mathbf{x}_{19} \\
& \mathbf{x}_{53}=-2 \mathbf{x}_{3}+\mathbf{x}_{7}+3 \mathbf{x}_{10}-\mathbf{x}_{19} \\
& \mathbf{x}_{54}=-4 \mathbf{x}_{3}+3 \mathbf{x}_{6}+\mathbf{x}_{7}+3 \mathbf{x}_{10}-\mathbf{x}_{11}-2 \mathbf{x}_{14}+\mathbf{x}_{15} \\
& \mathbf{x}_{55}=-4 \mathbf{x}_{3}+3 \mathbf{x}_{6}+\mathbf{x}_{7}+3 \mathbf{x}_{10}-\mathbf{x}_{11}-3 \mathbf{x}_{14}+2 \mathbf{x}_{15} \\
& \mathbf{x}_{56}=-\mathbf{x}_{3}+\mathbf{x}_{10}+\mathbf{x}_{15} \\
& \mathbf{x}_{57}=\mathbf{x}_{15} \\
& \mathbf{x}_{58}=-\mathbf{x}_{3}+\mathbf{x}_{10}+\mathbf{x}_{15} \\
& \mathbf{x}_{59}=-2 \mathbf{x}_{3}+3 \mathbf{x}_{6}-\mathbf{x}_{7}-\mathbf{x}_{11}+\mathbf{x}_{15}+\mathbf{x}_{19} \\
& \mathbf{x}_{60}=-4 \mathbf{x}_{3}+6 \mathbf{x}_{6}+\mathbf{x}_{10}-2 \mathbf{x}_{11}-3 \mathbf{x}_{14}+2 \mathbf{x}_{15}+\mathbf{x}_{19} \\
& \mathbf{x}_{61} \\
& \mathbf{x}_{62} \\
& \mathbf{x}_{63} \\
& \mathbf{x}_{63}
\end{aligned}=-3 \mathbf{x}_{3}+6 \mathbf{x}_{6}-2 \mathbf{x}_{11}-3 \mathbf{x}_{14}+2 \mathbf{x}_{15}+3 \mathbf{x}_{6}-\mathbf{x}_{7}-\mathbf{x}_{10}-\mathbf{x}_{11}+\mathbf{x}_{15}+\mathbf{x}_{19},
$$

https://people.hofstra.edu/Eric_Rowland/packages/IntegerSequences.m

Regularity via relations

If the relations hold, then any sequence \mathbf{x}_{n} for $n \geq 32$ is a linear combination of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{19}$.

Regularity via relations

If the relations hold, then any sequence \mathbf{x}_{n} for $n \geq 32$ is a linear combination of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{19}$.
Example: $\mathbf{x}_{154}=\mathcal{P}_{\mathbf{t}}^{(2)}(128 n+26)_{n \geq 0}$
Using $\mathbf{x}_{58}=-\mathbf{x}_{3}+\mathbf{x}_{10}+\mathbf{x}_{15}$,

$$
\begin{aligned}
\mathcal{P}_{\mathbf{t}}^{(2)}(128 n & +26)=\mathcal{P}_{\mathbf{t}}^{(2)}(32(4 n)+26) \\
& =-\mathcal{P}_{\mathbf{t}}^{(2)}(2(4 n)+1)+\mathcal{P}_{\mathbf{t}}^{(2)}(8(4 n)+2)+\mathcal{P}_{\mathbf{t}}^{(2)}(8(4 n)+7) \\
& =-\mathcal{P}_{\mathbf{t}}^{(2)}(8 n+1)+\mathcal{P}_{\mathbf{t}}^{(2)}(32 n+2)+\mathcal{P}_{\mathbf{t}}^{(2)}(32 n+7)
\end{aligned}
$$

So

$$
\mathbf{x}_{154}=-\mathbf{x}_{9}+\mathbf{x}_{34}+\mathbf{x}_{39}=-2 \mathbf{x}_{3}+\mathbf{x}_{10}+\mathbf{x}_{11}+\mathbf{x}_{19} .
$$

Regularity via relations

If the relations hold, then any sequence \mathbf{x}_{n} for $n \geq 32$ is a linear combination of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{19}$.

Example: $\mathbf{x}_{154}=\mathcal{P}_{\mathbf{t}}^{(2)}(128 n+26)_{n \geq 0}$
Using $\mathbf{x}_{58}=-\mathbf{x}_{3}+\mathbf{x}_{10}+\mathbf{x}_{15}$,

$$
\begin{aligned}
\mathcal{P}_{\mathbf{t}}^{(2)}(128 n & +26)=\mathcal{P}_{\mathbf{t}}^{(2)}(32(4 n)+26) \\
& =-\mathcal{P}_{\mathbf{t}}^{(2)}(2(4 n)+1)+\mathcal{P}_{\mathbf{t}}^{(2)}(8(4 n)+2)+\mathcal{P}_{\mathbf{t}}^{(2)}(8(4 n)+7) \\
& =-\mathcal{P}_{\mathbf{t}}^{(2)}(8 n+1)+\mathcal{P}_{\mathbf{t}}^{(2)}(32 n+2)+\mathcal{P}_{\mathbf{t}}^{(2)}(32 n+7)
\end{aligned}
$$

So

$$
\mathbf{x}_{154}=-\mathbf{x}_{9}+\mathbf{x}_{34}+\mathbf{x}_{39}=-2 \mathbf{x}_{3}+\mathbf{x}_{10}+\mathbf{x}_{11}+\mathbf{x}_{19}
$$

Theorem (Greinecker 2015)
The relations hold and the 2-abelian complexity of \mathbf{t} is 2 -regular.

A more general approach

- Symmetry of the form $\mathcal{P}_{\mathbf{t}}^{(2)}\left(2^{\ell+1}-r\right)=\mathcal{P}_{\mathbf{t}}^{(2)}\left(2^{\ell}+r\right)$
- Some relation between $\mathcal{P}_{\mathbf{t}}^{(2)}\left(2^{\ell}+r\right)$ and $\mathcal{P}_{\mathbf{t}}^{(2)}(r)$

It is the case for lots of 2-abelian complexity functions

On a simpler function

Abelian complexity of the fixed point of $0 \mapsto 12,1 \mapsto 12,2 \mapsto 00$

- Recurrence: $\mathcal{P}_{\mathrm{x}}^{(1)}\left(2^{\ell}+r\right)=\mathcal{P}_{\mathrm{x}}^{(1)}(r)+3$
- Symmetry: $\mathcal{P}_{\mathrm{x}}^{(1)}\left(2^{\ell+1}-r\right)=\mathcal{P}_{\mathrm{x}}^{(1)}\left(2^{\ell}+r\right)$

On a simpler function

Abelian complexity of the fixed point of $0 \mapsto 12,1 \mapsto 12,2 \mapsto 00$

- Recurrence: $\mathcal{P}_{\mathrm{x}}^{(1)}\left(2^{\ell}+r\right)=\mathcal{P}_{\mathrm{x}}^{(1)}(r)+3$
- Symmetry: $\mathcal{P}_{\mathrm{x}}^{(1)}\left(2^{\ell+1}-r\right)=\mathcal{P}_{\mathrm{x}}^{(1)}\left(2^{\ell}+r\right)$

On a simpler function

Abelian complexity of the fixed point of $0 \mapsto 12,1 \mapsto 12,2 \mapsto 00$

- Recurrence: $\mathcal{P}_{x}^{(1)}\left(2^{\ell}+r\right)=\mathcal{P}_{x}^{(1)}(r)+3$
- Symmetry: $\mathcal{P}_{\mathrm{x}}^{(1)}\left(2^{\ell+1}-r\right)=\mathcal{P}_{\mathrm{x}}^{(1)}\left(2^{\ell}+r\right)$

On a simpler function

Abelian complexity of the fixed point of $0 \mapsto 12,1 \mapsto 12,2 \mapsto 00$

- Recurrence: $\mathcal{P}_{\mathrm{x}}^{(1)}\left(2^{\ell}+r\right)=\mathcal{P}_{\mathrm{x}}^{(1)}(r)+3$
- Symmetry: $\mathcal{P}_{x}^{(1)}\left(2^{\ell+1}-r\right)=\mathcal{P}_{x}^{(1)}\left(2^{\ell}+r\right)$

On a simpler function

Abelian complexity of the fixed point of $0 \mapsto 12,1 \mapsto 12,2 \mapsto 00$

- Recurrence: $\mathcal{P}_{x}^{(1)}\left(2^{\ell}+r\right)=\mathcal{P}_{x}^{(1)}(r)+3$
- Symmetry: $\mathcal{P}_{\mathrm{x}}^{(1)}\left(2^{\ell+1}-r\right)=\mathcal{P}_{\mathrm{x}}^{(1)}\left(2^{\ell}+r\right)$

On a simpler function

Abelian complexity of the fixed point of $0 \mapsto 12,1 \mapsto 12,2 \mapsto 00$

- Recurrence: $\mathcal{P}_{\mathrm{x}}^{(1)}\left(2^{\ell}+r\right)=\mathcal{P}_{\mathrm{x}}^{(1)}(r)+3$
- Symmetry: $\mathcal{P}_{\mathrm{x}}^{(1)}\left(2^{\ell+1}-r\right)=\mathcal{P}_{\mathrm{x}}^{(1)}\left(2^{\ell}+r\right)$

Symmetry and recurrence relations

Do these nice symmetry and recurrence relations imply regularity?

- These relations use the most significant digits
- The kernel is made with the least significant digits

Symmetry and recurrence relations

Do these nice symmetry and recurrence relations imply regularity?

- These relations use the most significant digits
- The kernel is made with the least significant digits

Theorem (Parreau-Rigo-Rowland-V. 2015)
If $s(n)_{n \geq 0}$ satisfies

$$
s\left(2^{\ell}+r\right)= \begin{cases}s(r)+c & \text { if } r \leq 2^{\ell-1} \\ s\left(2^{\ell+1}-r\right) & \text { if } r>2^{\ell-1}\end{cases}
$$

then $s(n)_{n \geq 0}$ is 2-regular.

Consequences of the relations and the regularity

Using the recurrence and reflection relations, we immediately have that:

- it is not bounded,
- it is equal to $c \ell / 2$ in $2^{\ell}+2^{\ell-2}+2^{\ell-4}+\ldots+2^{2}+1$,
- it is constant and minimal in 2^{ℓ}.

$$
s\left(2^{\ell}+r\right)= \begin{cases}s(r)+c & \text { if } r \leq 2^{\ell-1} \\ s\left(2^{\ell+1}-r\right) & \text { if } r>2^{\ell-1}\end{cases}
$$

But how to prove the recurrence and reflection relations?

For abelian complexity of the fixed point of $0 \rightarrow 12,1 \rightarrow 12,2 \rightarrow 00$

$$
x=120012121200120012001212120012121200 \cdots
$$

- Consider

$$
\Delta_{0}(n)=\max _{|u|=n}|u|_{0}-\min _{|u|=n}|u|_{0}
$$

- It is closely related to the abelian complexity since 1 and 2 alternate.
- Prove the recurrence and reflection relations for Δ_{0}

$$
\Delta_{0}\left(2^{\ell}+r\right)= \begin{cases}\Delta_{0}(r)+2 & \text { if } r \leq 2^{\ell-1} \\ \Delta_{0}\left(2^{\ell+1}-r\right) & \text { if } r>2^{\ell-1}\end{cases}
$$

But how to prove the recurrence and reflection relations?

For abelian complexity of the fixed point of $0 \rightarrow 12,1 \rightarrow 12,2 \rightarrow 00$

$$
x=120012121200120012001212120012121200 \cdots
$$

- Consider

$$
\Delta_{0}(n)=\max _{|u|=n}|u|_{0}-\min _{|u|=n}|u|_{0}
$$

- It is closely related to the abelian complexity since 1 and 2 alternate.
- Prove the recurrence and reflection relations for Δ_{0}

$$
\Delta_{0}\left(2^{\ell}+r\right)= \begin{cases}\Delta_{0}(r)+2 & \text { if } r \leq 2^{\ell-1} \\ \Delta_{0}\left(2^{\ell+1}-r\right) & \text { if } r>2^{\ell-1}\end{cases}
$$

- Deduce the recurrence and reflection relations for $\mathcal{P}_{\mathbf{x}}^{(1)}$

$$
\mathcal{P}_{\mathrm{x}}^{(1)}\left(2^{\ell}+r\right)= \begin{cases}\mathcal{P}_{\mathrm{x}}^{(1)}(r)+3 & \text { if } r \leq 2^{\ell-1} \\ \mathcal{P}_{\mathrm{x}}^{(1)}\left(2^{\ell+1}-r\right) & \text { if } r>2^{\ell-1}\end{cases}
$$

Consequence

The abelian complexity of the fixed point of $0 \rightarrow 12,1 \rightarrow 12,2 \rightarrow 00$

$$
x=120012121200120012001212120012121200 \cdots
$$

is 2 -regular.

Consequence

The abelian complexity of the fixed point of $0 \rightarrow 12,1 \rightarrow 12,2 \rightarrow 00$

$$
x=120012121200120012001212120012121200 \cdots
$$

is 2 -regular.

- It is the 2-block coding of the period-doubling word

$$
\mathbf{p}=01000101010001000100 \cdots
$$

- The abelian complexity of \mathbf{x} is closely related to the 2 -abelian complexity of \mathbf{p}

$$
\mathcal{P}_{\mathbf{p}}^{(2)}(n+1)=\mathcal{P}_{\mathbf{x}}^{(1)}(n) \quad \text { if } n \text { is odd }
$$

Consequence

The abelian complexity of the fixed point of $0 \rightarrow 12,1 \rightarrow 12,2 \rightarrow 00$

$$
x=120012121200120012001212120012121200 \cdots
$$

is 2 -regular.

- It is the 2-block coding of the period-doubling word

$$
\mathbf{p}=01000101010001000100 \cdots
$$

- The abelian complexity of \mathbf{x} is closely related to the 2-abelian complexity of \mathbf{p}

$$
\mathcal{P}_{\mathbf{p}}^{(2)}(n+1)=\mathcal{P}_{\mathbf{x}}^{(1)}(n) \quad \text { if } n \text { is odd }
$$

Theorem (Parreau-Rigo-Rowland-V. 2015)
The 2-abelian complexity of the period-doubling word is regular.

Back to the 2-abelian complexity of Thue-Morse

- Consider the 2-block coding of Thue-Morse

$$
132120132012132120121320 \ldots
$$

fixed point of $0 \rightarrow 12,1 \rightarrow 13,2 \rightarrow 20,3 \rightarrow 21$.

- Its abelian complexity is closely related to the 2-abelian complexity of the Thue-Morse sequence.

Back to the 2-abelian complexity of Thue-Morse

- Consider the 2-block coding of Thue-Morse

$$
132120132012132120121320 \ldots
$$

fixed point of $0 \rightarrow 12,1 \rightarrow 13,2 \rightarrow 20,3 \rightarrow 21$.

- Its abelian complexity is closely related to the 2-abelian complexity of the Thue-Morse sequence.
- Consider the function $\Delta_{1,2}(n)$.
- It is closely related to the abelian complexity since 1,2 alternate and 0,3 alternate.

Back to the 2-abelian complexity of Thue-Morse

- Consider the 2-block coding of Thue-Morse

$$
132120132012132120121320 \ldots
$$ fixed point of $0 \rightarrow 12,1 \rightarrow 13,2 \rightarrow 20,3 \rightarrow 21$.

- Its abelian complexity is closely related to the 2-abelian complexity of the Thue-Morse sequence.
- Consider the function $\Delta_{1,2}(n)$.
- It is closely related to the abelian complexity since 1,2 alternate and 0,3 alternate.
- Prove the recurrence and reflection relations for $\Delta_{1,2}(n)$.

Back to the 2-abelian complexity of Thue-Morse

- Consider the 2-block coding of Thue-Morse

$$
132120132012132120121320 \ldots
$$ fixed point of $0 \rightarrow 12,1 \rightarrow 13,2 \rightarrow 20,3 \rightarrow 21$.

- Its abelian complexity is closely related to the 2-abelian complexity of the Thue-Morse sequence.
- Consider the function $\Delta_{1,2}(n)$.
- It is closely related to the abelian complexity since 1,2 alternate and 0,3 alternate.
- Prove the recurrence and reflection relations for $\Delta_{1,2}(n)$.
- Deduce the abelian complexity of the 2-block coding is 2-regular.

Theorem (Parreau-Rigo-Rowland-V. 2015)

The 2-abelian complexity of the Thue-Morse word satisfies a "slightly more complicated" recurrence and symmetry relation. It is 2-regular.

Summary

- The factor complexity of a k-automatic sequence is k-regular.
[Carpi-D'Alonzo 2010, Charlier-Rampersad-Shallit 2012]
- The abelian complexity of
- the Thue-Morse sequence
- the paperfolding sequence [Madill-Rampersad 2013]
- the period-doubling sequence [Karhumäki-Saarela-Zamboni 2014]
- the 2-block coding of Thue-Morse sequence [P.-R.-R.-V. 2015]
- the 2-block coding of period-doubling sequence [P.-R.-R.-V. 2015]
- the Rudin-Shapiro sequence [Lü-Chen-Wen-Wu 2016]
are 2-regular.
- The 2-abelian complexity of
- the Thue-Morse sequence [Greinecker 2015, P.-R.-R.-V. 2015]
- the period-doubling word [P.-R.-R.-V. 2015]
are 2-regular.
- The ℓ-abelian complexity of the Cantor sequence is 3-regular for all $\ell \geq 1$. [Chen-Lü-Wu 2017]

Summary

- The factor complexity of a k-automatic sequence is k-regular.
[Carpi-D'Alonzo 2010, Charlier-Rampersad-Shallit 2012]
- The abelian complexity of
- the Thue-Morse sequence
- the paperfolding sequence [Madill-Rampersad 2013]
- the period-doubling sequence [Karhumäki-Saarela-Zamboni 2014]

Conjecture ark rading of Thue_Marce cenuence [D_D_D_V 0 nitl
The ℓ-abelian complexity of a k-automatic sequence is always k-regular.

- the Thue-Morse sequence [Greinecker 2015, P.-R.-R.-V. 2015]
- the period-doubling word [P.-R.-R.-V. 2015]
are 2-regular.
- The ℓ-abelian complexity of the Cantor sequence is 3-regular for all $\ell \geq 1$. [Chen-Lü-Wu 2017]

Perspectives

It seems that lots of $(\ell-)$ abelian complexity functions satisfy similar recurrence.

For the 3 -abelian complexity of period-doubling word \mathbf{p}, the abelian complexity of the 3-block coding \mathbf{z} of \mathbf{p} seems to satisfy:

$$
\mathcal{P}_{\mathbf{z}}^{(1)}\left(2^{\ell}+r\right)= \begin{cases}\mathcal{P}_{\mathbf{z}}^{(1)}(r)+5 & \text { if } r \leq 2^{\ell-1} \text { and } r \text { even } \\ \mathcal{P}_{\mathbf{z}}^{(1)}(r)+7 & \text { if } r \leq 2^{\ell-1} \text { and } r \text { odd } \\ \mathcal{P}_{\mathbf{z}}^{(1)}\left(2^{\ell+1}-r\right) & \text { if } r>2^{\ell-1}\end{cases}
$$

Reflection symmetry

- 2-abelian complexity of \mathbf{t} satisfies a reflection symmetry

Reflection symmetry

- 2-abelian complexity of \mathbf{t} satisfies a reflection symmetry
- \mathbf{t} is palindromic

$$
u=u_{1} \cdots u_{n} \text { factor } \Rightarrow u^{R}=u_{n} \cdots u_{1} \text { factor }
$$

Reflection symmetry

- 2-abelian complexity of \mathbf{t} satisfies a reflection symmetry
- \mathbf{t} is palindromic

$$
u=u_{1} \cdots u_{n} \text { factor } \Rightarrow u^{R}=u_{n} \cdots u_{1} \text { factor }
$$

- abelian complexity of 2-block coding of \mathbf{t} $1321201320121321201 \cdots$ satisfies a reflection symmetry

Reflection symmetry

- 2-abelian complexity of \mathbf{t} satisfies a reflection symmetry
- \mathbf{t} is palindromic

$$
u=u_{1} \cdots u_{n} \text { factor } \Rightarrow u^{R}=u_{n} \cdots u_{1} \text { factor }
$$

- abelian complexity of 2-block coding of \mathbf{t} $1321201320121321201 \cdots$ satisfies a reflection symmetry
- 2-block coding of \mathbf{t} is not palindromic

01 factor, but 10 not a factor

Reflection symmetry

- 2-abelian complexity of \mathbf{t} satisfies a reflection symmetry
- \mathbf{t} is palindromic

$$
u=u_{1} \cdots u_{n} \text { factor } \Rightarrow u^{R}=u_{n} \cdots u_{1} \text { factor }
$$

- abelian complexity of 2-block coding of \mathbf{t} $1321201320121321201 \cdots$ satisfies a reflection symmetry
- 2-block coding of \mathbf{t} is not palindromic

01 factor, but 10 not a factor

- But its set of factors is closed under "reversal and coding"

$$
u \text { factor } \Rightarrow \tau(u)^{R} \text { factor with } \tau: 1 \leftrightarrow 2
$$

Reflection symmetry

- 2-abelian complexity of \mathbf{t} satisfies a reflection symmetry
- \mathbf{t} is palindromic

$$
u=u_{1} \cdots u_{n} \text { factor } \Rightarrow u^{R}=u_{n} \cdots u_{1} \text { factor }
$$

- abelian complexity of 2-block coding of \mathbf{t} $1321201320121321201 \cdots$ satisfies a reflection symmetry
- 2-block coding of \mathbf{t} is not palindromic

01 factor, but 10 not a factor

- But its set of factors is closed under "reversal and coding"

$$
u \text { factor } \Rightarrow \tau(u)^{R} \text { factor with } \tau: 1 \leftrightarrow 2
$$

- Same thing holds for the period-doubling word \mathbf{p}

Reflection symmetry

- 2-abelian complexity of \mathbf{t} satisfies a reflection symmetry
- \mathbf{t} is palindromic

$$
u=u_{1} \cdots u_{n} \text { factor } \Rightarrow u^{R}=u_{n} \cdots u_{1} \text { factor }
$$

- abelian complexity of 2-block coding of \mathbf{t} $1321201320121321201 \cdots$ satisfies a reflection symmetry
- 2-block coding of \mathbf{t} is not palindromic

$$
01 \text { factor, but } 10 \text { not a factor }
$$

- But its set of factors is closed under "reversal and coding"

$$
u \text { factor } \Rightarrow \tau(u)^{R} \text { factor with } \tau: 1 \leftrightarrow 2
$$

- Same thing holds for the period-doubling word \mathbf{p}
- Link between reflection symmetry and closed under "reversal and coding"?

www.words2017.lacim.uqam.ca

Submission deadline

May 5

