How to count leaves in the trees from Tetris?

ÉLISE VANDOMME
Postdoc at the LaCIM (UQAM)

Colloque panquébécois des étudiants de l’ISM
Trois-Rivières – May 2017
Trees in Tetris
Trees in Tetris
Trees in Tetris
A polyomino is a connected union of unit squares, called cells.
Solomon W. Golomb (1932 - 2016)
Combinatorial Problems

- Monomino: 🟢
Combinatorial Problems

- Monomino:

- Domino:
Combinatorial Problems

Monomino:

Domino:

Tromino:
Combinatorial Problems

- **Monomino:**
- **Domino:**
- **Tromino:**
- **Tetromino:**

Unknown for $n \geq 57$
How many polyominoes with n cells?
Combinatorial Problems

- **Monomino:**
- **Domino:**
- **Tromino:**
- **Tetromino:**

How many polyominoes with n cells?

Unknown for $n \geq 57$
Can we pave the plane with a finite set of polyominoes?

Examples:

- Polyominoes:
Can we pave the plane with a finite set of polyominoes?

Examples:
- Polyominoes: Yes, we can!
Can we pave the plane with a finite set of polyominoes?

Examples:

- Polyominoes:
 ![Polyomino Example](image)
 Yes, we can!

- Polyominoes:
 ![Polyomino Example](image)
Can we pave the plane with a finite set of polyominoes?

Examples:

- Polyominoes:
 ![Yes, we can!]
 Yes, we can!

- Polyominoes:
 ![No, we can’t!]
 No, we can’t!
Can we pave the plane with a finite set of polyominoes?

Examples:

- Polyominoes:
 ![Polyominoes](image)
 Yes, we can!

- Polyominoes:
 ![Polyominoes](image)
 No, we can’t!

In general, the problem is **undecidable**.
Can we pave a finite area with a finite set of polyominoes?
Example:
- Area: 45×36 rectangle
- Polyominoes: all pentominoes
Combinatorial Problems

Can we pave a finite area with a finite set of polyominoes?

http://www.knowltonmosaics.com
Combinatorial Problems

Can we pave a finite area with a finite set of polyominoes?
Example:

- **Area:** a checkerboard

- **Polyominoes:** a domino
Can we pave a finite area with a finite set of polyominoes?

Example:

- Area: a checkerboard
- Polyominoes: a domino

Yes, we can!
Can we pave a finite area with a finite set of polyominoes?
Example:

- Area: a checkerboard without two opposite corners
- Polyominoes: a domino
Can we pave a finite area with a finite set of polyominoes?

Example:

- **Area:** a checkerboard *without two opposite corners*

- **Polyominoes:** a domino

No, we can’t!
Can we pave a finite area with a finite set of polyominoes?
Example:

- Area: a checkerboard without two opposite corners

- Polyominoes: a domino

No, we can’t!

In general, the problem is **NP-complete**.
Behind each polyomino hides a graph

Vertices are the cells. Two vertices are adjacent if their corresponding cells have a common side. Such graph can contain cycles.
Behind each polyomino hides a graph

Vertices are the cells.
Behind each polyomino hides a graph

- Vertices are the cells.
- Two vertices are adjacent if their corresponding cells have a common side.
Behind each polyomino hides a graph

- Vertices are the cells.
- Two vertices are adjacent if their corresponding cells have a common side.
- Such graph can contain cycles.
If there are no cycles, we call it a tree-like polyomino.
If there are no cycles, we call it a *tree-like polyomino*.

This tree-like polyomino has 9 cells and 4 leaves.
Tree-like Polyominoes

- If there are no cycles, we call it a tree-like polyomino.
- This tree-like polyomino has 9 cells and 4 leaves.
- For a given n, what is the maximal number of leaves realized by a tree-like polyomino with n cells?
Maximal number of leaves?

Theorem (Blondin Massé, de Carufel, Goupil, Samson 2017)

For $n \geq 1$, the maximal number of leaves realized by a tree-like polyomino with n cells is given by

$$
\ell(n) = \begin{cases}
0 & \text{if } n = 1 \\
2 & \text{if } n = 2 \\
(n - 1) & \text{if } n = 3, 4, 5 \\
\ell(n - 4) + 2 & \text{if } n \geq 6
\end{cases}
$$
Trees in Minecraft

polyominoes \Rightarrow polycubes

The maximal number of leaves realized by a tree-like polycube satisfies a linear recurrence.

Theorem (Blondin Massèe, de Carufel, Goupil, Samson 2017)
Trees in Minecraft

tree-like polyominoes \Rightarrow tree-like polycubes

The maximal number of leaves realized by a tree-like polycube satisfies a linear recurrence.

Theorem (Blondin Massé, de Carufel, Goupil, Samson 2017)
The maximal number of leaves realized by a tree-like polycube satisfies a linear recurrence.

Theorem (Blondin Massé, de Carufel, Goupil, Samson 2017)
Tree-like polyominoes are induced subtrees of \mathbb{Z}^2.
- Tree-like polyominoes are induced subtrees of \mathbb{Z}^2.
- Tree-like polycubes are induced subtrees of \mathbb{Z}^3.
Tree-like polyominoes are induced subtrees of \mathbb{Z}^2.
Tree-like polycubes are induced subtrees of \mathbb{Z}^3.

Can we study this problem in other graphs?
Definition

For a graph $G = (V, E)$ and $n \geq 2$

- $T_n = \text{set of induced subtrees with } n \text{ vertices}$
- $L_G(n) = \max \{ \# \text{ leaves in } T | T \in T_n \}$
- Leafed sequence of G: $L_G(n)_{n \in \{2, \ldots, |V|\}}$

\[
\begin{array}{c|cccccccc}
 n & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
 L_G(n) & 2 & & & & & & \\
\end{array}
\]
Definition

For a graph $G = (V, E)$ and $n \geq 2$

- $\mathcal{T}_n = \text{set of induced subtrees with } n \text{ vertices}$
- $L_G(n) = \max\{\# \text{ leaves in } T | T \in \mathcal{T}_n\}$
- Leafed sequence of G: $L_G(n)_{n \in \{2, \ldots, |V|\}}$

\[
\begin{array}{cccccccc}
 n & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
 L_G(n) & 2 & 2 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]
Definition

For a graph $G = (V, E)$ and $n \geq 2$

- $T_n = \text{set of induced subtrees with } n \text{ vertices}$
- $L_G(n) = \max \{ \# \text{ leaves in } T | T \in T_n \}$
- Leafed sequence of G: $L_G(n)_{n \in \{2, \ldots, |V|\}}$

\[
\begin{array}{ccccccc}
\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8
\end{array}
& \begin{array}{c}
\quad \quad \quad \quad \\
\quad \quad \quad \quad
\end{array}
& \begin{array}{c}
\quad \quad \quad \quad \\
\quad \quad \quad \quad
\end{array}

\begin{array}{c|ccccccc}
\hline
n & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
L_G(n) & 2 & 2 & 3 & \hline
\end{array}
\end{array}
\]
For a graph $G = (V, E)$ and $n \geq 2$

- $\mathcal{T}_n =$ set of induced subtrees with n vertices
- $L_G(n) = \max \{ \# \text{ leaves in } T \mid T \in \mathcal{T}_n \}$
- Leafed sequence of $G : L_G(n)_{n \in \{2, \ldots, |V|\}}$

<table>
<thead>
<tr>
<th>n</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_G(n)$</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Definition

For a graph $G = (V, E)$ and $n \geq 2$

- $\mathcal{T}_n = \text{set of induced subtrees with } n \text{ vertices}$
- $L_G(n) = \max \{ \# \text{ leaves in } T \mid T \in \mathcal{T}_n \}$
- Leafed sequence of G : $L_G(n)_{n\in\{2,\ldots,|V|\}}$

<table>
<thead>
<tr>
<th>n</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_G(n)$</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For a graph $G = (V, E)$ and $n \geq 2$

- $\mathcal{T}_n =$ set of induced subtrees with n vertices
- $L_G(n) = \max \{ \# \text{ leaves in } T \mid T \in \mathcal{T}_n \}$
- Leafed sequence of $G : L_G(n)_{n \in \{2, \ldots, |V|\}}$

<table>
<thead>
<tr>
<th>n</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_G(n)$</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Definition

For a graph $G = (V, E)$ and $n \geq 2$

- $T_n =$ set of induced subtrees with n vertices
- $L_G(n) = \max \{ \# \text{ leaves in } T | T \in T_n \}$
- Leafed sequence of $G : L_G(n)_{n \in \{2, \ldots, |V| \}}$

```
 1 2 3
/  \
4 5 6
|  |
8 7
```

<table>
<thead>
<tr>
<th>n</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_G(n)$</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
```
Definition

For a graph $G = (V, E)$ and $n \geq 2$

- $\mathcal{T}_n = \text{set of induced subtrees with } n \text{ vertices}$
- $L_G(n) = \max \{ \# \text{ leaves in } T | T \in \mathcal{T}_n \}$
- Leafed sequence of $G : L_G(n)_{n \in \{2,\ldots,|V|\}}$

\begin{center}
\begin{tabular}{c|cccccccc}
$n$ & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
$\quad L_G(n)$ & 2 & 2 & 3 & 4 & 4 & 5 & -\infty
\end{tabular}
\end{center}
Particular cases

\[ L_{K_p}(n) = \begin{cases} 
2 & \text{if } n = 2 \text{ et } p \geq 2 \\
-\infty & \text{if } 3 \leq n \leq p
\end{cases} \]
Particular cases

\[ L_{K_p}(n) = \begin{cases} 2 & \text{if } n = 2 \text{ et } p \geq 2 \\ -\infty & \text{if } 3 \leq n \leq p \end{cases} \]

\[ L_{C_p}(n) = \begin{cases} 2 & \text{if } 2 \leq n < p \\ -\infty & \text{if } n = p \end{cases} \]
Particular cases

\[ L_{K_p}(n) = \begin{cases} 
2 & \text{if } n = 2 \text{ et } p \geq 2 \\
-\infty & \text{if } 3 \leq n \leq p
\end{cases} \]

\[ L_{C_p}(n) = \begin{cases} 
2 & \text{if } 2 \leq n < p \\
-\infty & \text{if } n = p
\end{cases} \]

\[ L_{R_p}(n) = \begin{cases} 
2 & \text{if } 2 = n \text{ ou } \left\lfloor \frac{p}{2} \right\rfloor + 1 < n < p \\
 n - 1 & \text{if } 3 \leq n \leq \left\lfloor \frac{p}{2} \right\rfloor + 1 \\
-\infty & \text{if } p \leq n \leq p + 1
\end{cases} \]
Particular cases

\[ \begin{align*}
L_{K_p}(n) &= \begin{cases} 
2 & \text{if } n = 2 \text{ et } p \geq 2 \\
-\infty & \text{if } 3 \leq n \leq p
\end{cases} \\
L_{C_p}(n) &= \begin{cases} 
2 & \text{if } 2 \leq n < p \\
-\infty & \text{if } n = p
\end{cases} \\
L_{R_p}(n) &= \begin{cases} 
2 & \text{if } 2 = n \text{ ou } \left\lfloor \frac{p}{2} \right\rfloor + 1 < n < p \\
\text{ord} & \text{if } 3 \leq n \leq \left\lfloor \frac{p}{2} \right\rfloor + 1 \\
-\infty & \text{if } p \leq n \leq p + 1
\end{cases} \\
L_{K_{p,q}}(n) &= \begin{cases} 
2 & \text{if } n = 2 \\
\text{ord} & \text{if } 3 \leq n \leq \max(p, q) + 1 \\
-\infty & \text{if } \max(p, q) + 1 < n \leq p + q
\end{cases}
\end{align*} \]
Particular cases: hypercubes

Only partial results:

\[ L_{H_3}(n) = \begin{cases} 
2 & \text{if } 2 \leq n \leq 3 \\
3 & \text{if } n = 4 \\
-\infty & \text{if } 5 \leq n \leq 8 
\end{cases} \]

\[ L_{H_4}(n) = \begin{cases} 
2 & \text{if } n \in \{2, 3\} \\
3 & \text{if } n \in \{4, 6, 8\} \\
4 & \text{if } n \in \{5, 7, 9\} \\
-\infty & \text{if } 10 \leq n \leq 16 
\end{cases} \]
Particular cases: hypercubes

Only partial results:

\[
L_{H3}(n) = \begin{cases} 
2 & \text{if } 2 \leq n \leq 3 \\
3 & \text{if } n = 4 \\
-\infty & \text{if } 5 \leq n \leq 8 
\end{cases}
\]

\[
L_{H4}(n) = \begin{cases} 
2 & \text{if } n \in \{2, 3\} \\
3 & \text{if } n \in \{4, 6, 8\} \\
4 & \text{if } n \in \{5, 7, 9\} \\
-\infty & \text{if } 10 \leq n \leq 16 
\end{cases}
\]

Observations:

- The leafed sequence can increase by at most 1 each step.
- The leafed sequence is not always non-decreasing.
- The leafed sequence \(L_G(n)_{n\in\{2,\ldots,|V|\}}\) is non-decreasing iff \(G\) is a tree.
Complexity

**Problem LIS**

- **Instance:** a graph $G$ and two integers $n, k \geq 1$
- **Question:** Is there an induced subtree of $G$ with $n$ vertices and $k$ leaves?
Complexity

**Problem LIS**
- Instance: a graph $G$ and two integers $n, k \geq 1$
- Question: Is there an induced subtree of $G$ with $n$ vertices and $k$ leaves?

**Theorem** (Blondin Massé, de Carufel, Goupil, V. 2017)

The LIS problem is NP-complete.
Complexity

**Problem LIS**

- Instance: a graph $G$ and two integers $n, k \geq 1$
- Question: Is there an induced subtree of $G$ with $n$ vertices and $k$ leaves?

**Theorem** (Blondin Massé, de Carufel, Goupil, V. 2017)

The LIS problem is NP-complete.

Reduction to the problem:

- Instance: a graph $G$ and an integer $n \geq 1$
- Question: Is there an induced subtree of $G$ with more than $n$ vertices?

which is NP-complete.  [Erdös, Saks, Sós 1986]
LIS is NP-complete

- Polynomial transformation $f : (G, n) \mapsto (H, 2(n + 1), n + 1)$
LIS is NP-complete

- Polynomial transformation $f : (G, n) \mapsto (H, 2(n + 1), n + 1)$

If $G$ has an induced subtree with $> n$ vertices
LIS is NP-complete

- Polynomial transformation $f : (G, n) \mapsto (H, 2(n + 1), n + 1)$

If $G$ has an induced subtree with $> n$ vertices

$\Rightarrow \exists T$ induced subtree with $n + 1$ vertices \{v_1, \ldots, v_{n+1}\}
LIS is NP-complete

- Polynomial transformation $f : (G, n) \mapsto (H, 2(n + 1), n + 1)$

- If $G$ has an induced subtree with $> n$ vertices
  $\Rightarrow \exists T$ induced subtree with $n + 1$ vertices $\{v_1, \ldots, v_{n+1}\}$
  $\Rightarrow H$ has a subtree induced by $\{v_1, \ldots, v_{n+1}\} \cup \{v'_1, \ldots, v'_{n+1}\}$
LIS is NP-complete

- Polynomial transformation $f : (G, n) \mapsto (H, 2(n + 1), n + 1)$

- If $G$ has an induced subtree with $> n$ vertices
  \[
  \Rightarrow \exists T \text{ induced subtree with } n + 1 \text{ vertices } \{v_1, \ldots, v_{n+1}\}
  \]
  \[
  \Rightarrow H \text{ has a subtree induced by } \{v_1, \ldots, v_{n+1}\} \cup \{v'_1, \ldots, v'_{n+1}\}
  \]
  with $2(n + 1)$ vertices and $n + 1$ leaves
LIS is NP-complete

- Polynomial transformation \( f : (G, n) \mapsto (H, 2(n + 1), n + 1) \)

- If \( H \) has an induced subtree \( T \) with \( 2(n + 1) \) vertices and \( n + 1 \) leaves
LIS is NP-complete

- Polynomial transformation $f : (G, n) \mapsto (H, 2(n + 1), n + 1)$

If $H$ has an induced subtree $T$ with $2(n + 1)$ vertices and $n + 1$ leaves

$\Rightarrow T$ has $\geq n + 1$ vertices in $V$
LIS is NP-complete

- Polynomial transformation $f : (G, n) \mapsto (H, 2(n + 1), n + 1)$

If $H$ has an induced subtree $T$ with $2(n + 1)$ vertices and $n + 1$ leaves

$\Rightarrow T$ has $\geq n + 1$ vertices in $V$

$\Rightarrow G$ has an induced subtree with $\geq n$ vertices
What about trees?

**Theorem** (Blondin Massé, de Carufel, Goupil, V. 2017)

For a tree $T$ with $m$ vertices, the leafed sequence $L_T(n)$ is computed in polynomial time and space.

Algorithm based on the dynamic programming paradigm
Idea of the algorithm

\[ \hat{T}_u = ? \]
Idea of the algorithm

For a directed tree $\hat{T}_u$ rooted in $u$

- $f(\hat{T}_u) = \# \{ x \in \hat{T}_u \mid \deg^+(x) = 0 \}$
- $L_{\hat{T}_u}(n) = \max \{ f(\hat{T}_u') : \hat{T}_u' \subseteq \hat{T}_u, |\hat{T}_u'| = n \}$

Generalization to a directed forest $\hat{F}$ with $k$ connected components $\hat{F}_i$:

$$L_{\hat{F}}(n) = \max \left\{ \sum_{i=1}^{k} L_{\hat{F}_i}(\lambda(i)) \mid \lambda \in C(n, k) \right\}$$

- If $\hat{F}$ is the forest of the subtrees rooted in the children of $u$,

$$L_{\hat{T}_u}(n) = \begin{cases} n & \text{if } n = 0, 1 \\ L_{\hat{F}}(n - 1) & \text{otherwise} \end{cases}$$
Idea of the algorithm

$L_{\widehat{T_u}} = ?$
Idea of the algorithm

Assuming $L_{\hat{F}_i}$ are known,

- Naive computation of $L_{\hat{F}}$ via

$$L_{\hat{F}}(n) = \max \left\{ \sum_{i=1}^{k} L_{\hat{F}_i}(\lambda(i)) \mid \lambda \in C(n, k) \right\}$$

is not polynomial
Idea of the algorithm

Assuming $L_{\hat{F}_i}$ are known,

- Naive computation of $L_{\hat{F}}$ via

$$L_{\hat{F}}(n) = \max \left\{ \sum_{i=1}^{k} L_{\hat{F}_i}(\lambda(i)) \left| \begin{array}{c} \lambda \in C(n, k) \end{array} \right. \right\}$$

is not polynomial

- Computation of $L_{\hat{F}}$ via

$$L_{\hat{F}}(n) = \max\{L_{F_{-F_1}}(i) + L_{F_1}(n-i) \mid 0 \leq i \leq n\}$$

in time $\Theta(k|F|^2)$
Idea of the algorithm
Idea of the algorithm

012 01 01 01

01123

011234556

0112

01

01123

0112

01 01

01 01

u v
Idea of the algorithm
Idea of the algorithm
Idea of the algorithm
Idea of the algorithm

- Maximal number of leaves in the subtrees with $n$ vertices, containing the edge $\{u, v\}$:

$$L_{\{u, v\}}(n) = \max \left\{ L_{\tilde{T}_u}(i) + L_{\tilde{T}_v}(n - i) \middle| 1 \leq i \leq n - 1 \right\}$$

$$L_{\{u, v\}} = 012234456677889$$
Idea of the algorithm

- Maximal number of leaves in the subtrees with $n$ vertices, containing the edge $\{u, v\}$ : 

$$L_{\{u,v\}}(n) = \max \left\{ L_{\hat{T}_u}(i) + L_{\hat{T}_v}(n - i) \mid 1 \leq i \leq n - 1 \right\}$$

$$L_{\{u,v\}} = 012234456677889$$

- $L_{T}(n) = \max \{ L_{\{u,v\}}(n) \mid \{u, v\} \in E \}$
Could we improve the time and space complexity?

- We can not hope to obtain a procedure computing $L_T(n)$ which deletes leaves successively.
- Counter-example:

\[ L_T(7) = 5 \quad \text{et} \quad L_T(9) = 6 \]
Each tree has a non-decreasing leaf sequence $L = (L_i)_{i \geq 2}$.

For any graph, $L_{i+1} - L_i \leq 1$.

The difference word $\Delta L := (L_{i+1} - L_i)_{i \geq 3}$ is a binary word.
From graph theory to combinatorics on words

- Each tree has a non-decreasing leaf sequence $L = (L_i)_{i \geq 2}$.
- For any graph, $L_{i+1} - L_i \leq 1$.

The difference word $ΔL := (L_{i+1} - L_i)_{i \geq 3}$ is a binary word.

Leafed sequence: $L = 223445567789$
Difference word: $ΔL = 011010110111$
From graph theory to combinatorics on words

- Each tree has a non-decreasing leaf sequence $L = (L_i)_{i \geq 2}$.
- For any graph, $L_{i+1} - L_i \leq 1$.

The difference word $\Delta L := (L_{i+1} - L_i)_{i \geq 3}$ is a binary word.

Leafed sequence: $L = 223445567789$
Difference word: $\Delta L = 1101011011$
From graph theory to combinatorics on words

- Each tree has a non-decreasing leaf sequence $L = (L_i)_{i \geq 2}$.
- For any graph, $L_{i+1} - L_i \leq 1$.

The difference word $\Delta L := (L_{i+1} - L_i)_{i \geq 3}$ is a binary word.

Leafed sequence: $L = 223445567789$

Difference word: $\Delta L = 1101011011$

The language of a class of graphs is the set of all their difference words.
Each tree has a non-decreasing leaf sequence $L = (L_i)_{i \geq 2}$.

For any graph, $L_{i+1} - L_i \leq 1$.

The **difference word** $\Delta L := (L_{i+1} - L_i)_{i \geq 3}$ is a binary word.

Leafed sequence: $L = 223445567789$

Difference word: $\Delta L = 1101011011$

The **language** of a class of graphs is the set of all their difference words.

Language of Trees =???
Caterpillars

\[ L = 223455667778 \text{ and } \Delta L = 1110101001 \]

What is the language of caterpillars?

Language of caterpillars $\subseteq$ Language of trees

Enumerate caterpillars
Get their associated difference words $\epsilon, 0, 1, 00, 10, 11, 0000, 1000, 1001, 1010, 1100, 1101, \ldots$

Count them by length

<table>
<thead>
<tr>
<th>$n$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>14</td>
<td>23</td>
<td>41</td>
<td>70</td>
<td>125</td>
</tr>
</tbody>
</table>

Check OEIS
It is A194850!
Caterpillars

$L = 223455667778$ and $\Delta L = 1110101001$

What is the language of caterpillars?
Caterpillars

$L = 223455667778$ and $\Delta L = 1110101001$

What is the language of caterpillars?

Language of caterpillars $\subsetneq$ Language of trees
Caterpillars

$L = 223455667778$ and $\Delta L = 1110101001$

What is the language of caterpillars?

Language of caterpillars $\subsetneq$ Language of trees

- Enumerate caterpillars

29/31
Caterpillars

$L = 223455667778$ and $ΔL = 1110101001$

What is the language of caterpillars?

Language of caterpillars $\subset\not\subset$ Language of trees

- Enumerate caterpillars
- Get their associated difference words
Caterpillars

$L = 223455667778$ and $\Delta L = 1110101001$

What is the language of caterpillars?

Language of caterpillars $\subsetneq$ Language of trees

- Enumerate caterpillars
- Get their associated difference words
  - $\varepsilon, 0, 1, 00, 10, 11, 0000, 1000, 1001, 1010, 1100, 1101, \ldots$
Caterpillars

$L = 223455667778$ and $\Delta L = 1110101001$

What is the language of caterpillars?

Language of caterpillars $\subsetneq$ Language of trees

- Enumerate caterpillars
- Get their associated difference words
- $\varepsilon$, 0, 1, 00, 10, 11, 0000, 1000, 1001, 1010, 1100, 1101, ...
- Count them by length

<table>
<thead>
<tr>
<th>$n$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>14</td>
<td>23</td>
<td>41</td>
<td>70</td>
<td>125</td>
</tr>
</tbody>
</table>
Caterpillars

$L = 223455667778$ and $\Delta L = 1110101001$

What is the language of caterpillars?

Language of caterpillars $\subsetneq$ Language of trees

- Enumerate caterpillars
- Get their associated difference words
  - $\varepsilon, 0, 1, 00, 10, 11, 0000, 1000, 1001, 1010, 1100, 1101, \ldots$
- Count them by length

<table>
<thead>
<tr>
<th>$n$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>14</td>
<td>23</td>
<td>41</td>
<td>70</td>
<td>125</td>
</tr>
</tbody>
</table>

- Check OEIS
Caterpillars

$L = 223455667778$ and $\Delta L = 1110101001$

What is the language of caterpillars?

Language of caterpillars $\subseteq$ Language of trees

- Enumerate caterpillars
- Get their associated difference words
- $\varepsilon, 0, 1, 00, 10, 11, 0000, 1000, 1001, 1010, 1100, 1101, \ldots$
- Count them by length

<table>
<thead>
<tr>
<th>$n$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>14</td>
<td>23</td>
<td>41</td>
<td>70</td>
<td>125</td>
</tr>
</tbody>
</table>

- Check OEIS  
  It is A194850!
Prefix normal word

A prefix normal word $w_1 \cdots w_n$ is a binary word such that
\[ \forall \ell \leq n, i \leq n - \ell, \]
\[ |w_1 \cdots w_\ell|_1 \geq |w_i \cdots w_{i+\ell}|_1. \]

$L = 223455667778$ and $\Delta L = 1110101001$
A prefix normal word $w_1 \cdots w_n$ is a binary word such that
$\forall \ell \leq n, i \leq n - \ell,$

$$|w_1 \cdots w_\ell|_1 \geq |w_i \cdots w_{i+\ell}|_1.$$

$L = 223455667778$ and $\Delta L = 1110101001$

Conjecture:

Language of Caterpillars $= \{\text{prefix normal words}\}$
A prefix normal word $w_1 \cdots w_n$ is a binary word such that 
$\forall \ell \leq n, i \leq n - \ell,$

$$|w_1 \cdots w_\ell|_1 \geq |w_i \cdots w_{i+\ell}|_1.$$ 

$L = 223455667778$ and $\Delta L = 1110101001$

Conjecture:

Language of Caterpillars $= \{\text{prefix normal words}\}$

**Proposition** (Blondin Massé, de Carufel, Goupil, Lapointe, V.)

Language of Caterpillars $\supseteq \{\text{prefix normal words}\}$
Determine when an integer sequence corresponds to a tree or a graph.

Find an application in Chemistry or Biology.

Extend the results obtained in $\mathbb{Z}_2$ to the infinite triangular grid (polyiamonds) and to the infinite hexagonal grid (polyhexes).
Perspectives

- Determine when an integer sequence corresponds to a tree or to a graph
Perspectives

- Determine when an integer sequence corresponds to a tree or to a graph
- Find an application in Chemistry or Biology
Perspectives

- Determine when an integer sequence corresponds to a tree or to a graph
- Find an application in Chemistry or Biology
- Extend the results obtained in $\mathbb{Z}^2$ to the infinite triangular grid (polyiamonds) and to the infinite hexagonal grid (polyhexes)