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Polyomino

A polyomino is a connected union of unit squares, called cells.

4/31



Polyominoes

Solomon W. Golomb (1932 - 2016)
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Combinatorial Problems

@ Monomino: I:l
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Combinatorial Problems

@ Monomino: D

Domino:

Tromino: @

- |
@ Tetromino: E ‘ L L

How many polyominoes with n cells?
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Combinatorial Problems

@ Monomino: D

Domino:

Tromino: @

- |
@ Tetromino: E ‘ L L

How many polyominoes with n cells?
Unknown for n > 57
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Combinatorial Problems

Can we pave the plane with a finite set of polyominoes?

Examples:

@ Polyominoes:
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Combinatorial Problems

Can we pave the plane with a finite set of polyominoes?

Examples:

@ Polyominoes:

Yes, we can!

@ Polyominoes:

No, we can't!

In general, the problem is undecidable.

31



Combinatorial Problems

Can we pave a finite area with a finite set of polyominoes?
Example:

@ Area: 45 x 36 rectangle

@ Polyominoes: all pentominoes




Can we pave a finite area with a finite set of polyominoes?

< previous
home
next >

Solomon Golomb (Polyomino author). Portrait using the 12 pentominoes 27 times each. Computer print. © Ken Knowlton 2002,

http://www.knowltonmosaics.com



Can we pave a finite area with a finite set of polyominoes?
Example:

@ Area: a checkerboard

@ Polyominoes: a domino \_‘_‘
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@ Polyominoes: a domino \_IJ

Yes, we can!



Can we pave a finite area with a finite set of polyominoes?
Example:

@ Area: a checkerboard without two opposite corners

@ Polyominoes: a domino \_‘_‘



Combinatorial Problems

Can we pave a finite area with a finite set of polyominoes?
Example:

@ Area: a checkerboard without two opposite corners

@ Polyominoes: a domino I:I:‘

No, we can’t!
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Combinatorial Problems

Can we pave a finite area with a finite set of polyominoes?
Example:

@ Area: a checkerboard without two opposite corners

@ Polyominoes: a domino I:I:‘

No, we can’t!

In general, the problem is NP-complete.



Behind each polyomino hides a graph
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Behind each polyomino hides a graph

@ Vertices are the cells.
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Behind each polyomino hides a graph

1
.

@ Vertices are the cells.

@ Two vertices are adjacent if their corresponding cells have a
common side.
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Behind each polyomino hides a graph

—T
.

-
+
i

@ Vertices are the cells.

@ Two vertices are adjacent if their corresponding cells have a

common side.

@ Such graph can contain cycles.
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Tree-like Polyominoes

@ If there are no cycles, we call it a tree-like polyomino.
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Tree-like Polyominoes

o | o

@ If there are no cycles, we call it a tree-like polyomino.

@ This tree-like polyomino has 9 cells and 4 leaves.
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Tree-like Polyominoes

ST

A I )

@ If there are no cycles, we call it a tree-like polyomino.
@ This tree-like polyomino has 9 cells and 4 leaves.

@ For a given n, what is the maximal number of leaves realized
by a tree-like polyomino with n cells?
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Theorem (Blondin Massé, de Carufel, Goupil, Samson 2017)

For n > 1, the maximal number of leaves realized by a tree-
like polyomino with n cells is given by

0 ifn=1

2 if n=2
Un) = o

n—1 if n=3,4,5

l(n—4)4+2 ifn>6



Trees in Minecraft

polyominoes = polycubes
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Trees in Minecraft

tree-like polyominoes = tree-like polycubes

Theorem (Blondin Massé, de Carufel, Goupil, Samson 2017)

The maximal number of leaves realized by a tree-like polycube
satisfies a linear recurrence.
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o Tree-like polyominoes are induced subtrees of Z2.
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o Tree-like polyominoes are induced subtrees of Z2.

o Tree-like polycubes are induced subtrees of Z3.

PR i
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o Tree-like polyominoes are induced subtrees of Z2.

o Tree-like polycubes are induced subtrees of Z3.

S S s © S e A O s

jﬁ o Al clie ®l e Cliwe Sliwe i
—c 27
qzﬁ Q
— 27
qzﬁ Q
— 27
s O e O R~ O s O s A s ) ﬁ:
AT AT AT AT

Can we study this problem in other graphs?
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For a graph G = (V,E) and n > 2
@ 7, = set of induced subtrees with n vertices
o Lg(n) = max{# leavesin T|T € Tp}
o Leafed sequence of G : Lg(n)pcqa,... v}

O—2—0B
@—5—©
@’0

n |2 3 45 6 7

Le(n) | 2
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For a graph G = (V,E) and n > 2
@ 7, = set of induced subtrees with n vertices
o Lg(n) = max{# leavesin T|T € Tp}
o Leafed sequence of G : Lg(n)pcqa,... v}
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For a graph G = (V,E) and n > 2
@ 7, = set of induced subtrees with n vertices
o Lg(n) = max{# leavesin T|T € Tp}
o Leafed sequence of G : Lg(n)pcqa,... v}

O—2—B
@'66
® @
n |2 3 456 7 8
Lg(n) |2 2 3 4 4 5 -



Particular cases

2 ifn=2etp>2
KG LKp(n): oo if3< n<p
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Particular cases

ifn=2etp>2
if3<n<p

if2<n<p
ifn=p
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Ks

Cs

LRp(n)

2
n—1

—0o0

ifn=2etp>2
if3<n<p

if2<n<p
ifn=p

if2=nou[B|+1<n<p
if3<n<|B]+1
ifp<n<p+1
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2 ifn=2etp>2
—o0 f3<n<p

2 if2<n<p
LCp(n):{_oo Ifn:p

2 if2=nou[B|+1<n<p
Lr,(n)=qn—1 if3<n<[§]+1
-0 ifp<n<p+1

2 ifn=2
Lk, ,(n)=4n—1 if3<n<max(p,q)+1
—oo if max(p,q)+1<n<p+gq



Particular cases: hypercubes

Only partial results:

LH3(”) =

2
3

—00

if2<n<3
ifn=4
if5<n<8

LH4(”) =

if n e {2,3}

if n€ {4,6,8}
if ne {5,7,9)
if 10<n<16
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Only partial results:

2 if ne{2,3}

3 ifne{4,6,8)
if ne {5,7,9}

—oo if10<n<16

N

if2<n<3
LH3(I7): 3 if n=24 LH4(n):
—o0 if5<n<8

Observations:
@ The leafed sequence can increase by at most 1 each step.
@ The leafed sequence is not always non-decreasing.

@ The leafed sequence Lg(n)yeqo,...|v|} is non-decreasing
iff G is a tree.



Problem LIS

@ Instance: a graph G and two integers n, k > 1

@ Question: Is there an induced subtree of G with n
vertices and k leaves?
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@ Question: Is there an induced subtree of G with n
vertices and k leaves?

Theorem (Blondin Massé, de Carufel, Goupil, V. 2017)
The LIS problem is NP-complete.



Problem LIS

@ Instance: a graph G and two integers n, k > 1

@ Question: Is there an induced subtree of G with n
vertices and k leaves?

Theorem (Blondin Massé, de Carufel, Goupil, V. 2017)
The LIS problem is NP-complete.

Reduction to the problem:
@ Instance: a graph G and an integer n > 1

@ Question: Is there an induced subtree of G with more than n
vertices?

which is NP-complet. [Erdés, Saks, Sés 1986]



LIS is NP-complete

e Polynomial transformation f : (G, n) — (H,2(n+1),n + 1)

19/31



Polynomial transformation f : (G, n) — (H,2(n+ 1),

If G has an induced subtree with > n vertices
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e Polynomial transformation f : (G, n) — (H,2(n+ 1), )

@ If G has an induced subtree with > n vertices
= 3T induced subtree with n+ 1 vertices {vi,..., vpt1}

= H has a subtree induced by {vi,...,vop1} U{v{,..., v/ 1}
with 2(n + 1) vertices and leaves



Polynomial transformation f : (G, n) — (H,2(n+ 1),

If H has an induced subtree T with 2(n + 1) vertices and
leaves



e Polynomial transformation f : (G, n) — (H,2(n+ 1),

e If H has an induced subtree T with 2(n + 1) vertices and
leaves

= T has > n+ 1 vertices in V



e Polynomial transformation f : (G, n) — (H,2(n+ 1),

e If H has an induced subtree T with 2(n + 1) vertices and
leaves

= T has > n+ 1 vertices in V

= G has an induced subtree with > n vertices



Theorem (Blondin Massé, de Carufel, Goupil, V. 2017)

For a tree T with m vertices, the leafed sequence Ly(n) is
computed in polynomial time and space.

Algorithm based on the dynamic programming paradigm



|dea of the algorithm
O
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Idea of the algorithm
O
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For a directed tree ﬁ rooted in u
o f(T,) =#{x € T, |degt(x) =0}
o L=(n) =max{f(T}]): T, C Tu,|T| = n}

@ Generalization to a directed forest F with k connected
components F; :

k
Lz(n) = max {Z Le(A(D) | A€ C(n, k)}
i=1

o If F is the forest of the subtrees rooted in the children of u,

L—(n) n ifn=0,1
—~(n) =
Tu Lz(n—1) otherwise



|dea of the algorithm
O

— =7
L+ =1
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Idea of the algorithm
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Idea of the algorithm

®)
01 01 /01
O
01123 O
01 0112334556
o———@f W 0
0112 O

01 01
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Assuming L/?; are known,

e Naive computation of Lz via

= max{ZL

is not polynomial

Ae C(n, k)}



Assuming L/?; are known,

e Naive computation of Lz via

= max{ZL

is not polynomial

Ae C(n, k)}

e Computation of Lz via
Lg(n) = max{Lz—¢ (i) + Lg(n—i) |0 < i < n}

in time O(k|F|?)
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|dea of the algorithm
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@ Maximal number of leaves in the subtrees with n vertices,
containing the edge {u, v} :

Ly (n) = max{Lﬁ(/) + Ly (n—1) ) 1<i<n— 1}

10112334556

| 011223

Ly = 012234456677889



@ Maximal number of leaves in the subtrees with n vertices,
containing the edge {u, v} :

Ly (n) = max{Lﬁ(/) + Ly (n—1) ) 1<i<n— 1}

10112334556

| 011223

Ly = 012234456677889

o Lr(n)=max{Lg,,1(n) | {u,v} € E}



Could we improve the time and space complexity?

@ We can not hope to obtain a procedure computing L1(n)
which deletes leaves successively.

o Counter-example :

LT(7) =5 et LT(Q) =6

27/31



From graph theory to combinatorics on words

@ Each tree has a non-decreasing leaf sequence L = (L;);Zg.

e For any graph, Li;1 —L; <1.
The difference word AL := (Ljy1 — L;);>3 is a binary word.
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o Leafed sequence: L = 223445567789
@ Difference word: AL = 01101011011
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e Each tree has a non-decreasing leaf sequence L = (L;);>2.

e For any graph, Li;1 —L; <1.

The difference word AL := (Ljy1 — L;);>3 is a binary word.

o Leafed sequence: L = 223445567789
o Difference word: AL = 1101011011

The language of a class of graphs is the set of all their difference
words.



e Each tree has a non-decreasing leaf sequence L = (L;);>2.

e For any graph, Li;1 —L; <1.

The difference word AL := (Ljy1 — L;);>3 is a binary word.

o Leafed sequence: L = 223445567789
@ Difference word: AL = 1101011011
The language of a class of graphs is the set of all their difference

words.
Language of Trees =777



Caterpillars
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N TN A

L = 223455667778 and AL = 1110101001
What is the language of caterpillars ?

Language of caterpillars C Language of trees

Enumerate caterpillars
Get their associated difference words

Count them by length

n|001 2345 6 7 8 9
|1 2 3 58 14 23 41 70 125

Check OEIS It is A194850!

e, 0,1, 00, 10, 11, 0000, 1000, 1001, 1010, 1100, 1101, ...



A prefix normal word wj - - - wj, is a binary word such that
Vl<ni<n-—/,

lwi - welt > wi - Wige]r.

L = 223455667778 and AL = 1110101001




A prefix normal word wj - - - wj, is a binary word such that
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A prefix normal word wj - - - wj, is a binary word such that
Vl<ni<n-—/,

lwi - welt > wi - Wige]r.

L = 223455667778 and AL = 1110101001

Conjecture:

Language of Caterpillars = {prefix normal words}

Proposition (Blondin Massé, de Carufel, Goupil, Lapointe, V.)

Language of Caterpillars O {prefix normal words}



Perspectives
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@ Determine when an integer sequence corresponds to a tree or
to a graph



@ Determine when an integer sequence corresponds to a tree or
to a graph
@ Find an application in Chemistry or Biology



Perspectives

@ Determine when an integer sequence corresponds to a tree or

to a graph

e Find an application in Chemistry or Biology

o Extend the results obtained in Z? to the infinite triangular grid

(polyiamonds) and to the infinite hexagonal grid (polyhexes)
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