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Polyomino

A polyomino is a connected union of unit squares, called cells.
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Solomon W. Golomb (1932 - 2016)
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Combinatorial Problems

Monomino:

Domino:

Tromino:

Tetromino:

How many polyominoes with n cells?
Unknown for n ≥ 57

6/31



Combinatorial Problems

Monomino:

Domino:

Tromino:

Tetromino:

How many polyominoes with n cells?
Unknown for n ≥ 57

6/31



Combinatorial Problems

Monomino:

Domino:

Tromino:

Tetromino:

How many polyominoes with n cells?
Unknown for n ≥ 57

6/31



Combinatorial Problems

Monomino:

Domino:

Tromino:

Tetromino:

How many polyominoes with n cells?
Unknown for n ≥ 57

6/31



Combinatorial Problems

Monomino:

Domino:

Tromino:

Tetromino:

How many polyominoes with n cells?

Unknown for n ≥ 57

6/31



Combinatorial Problems

Monomino:

Domino:

Tromino:

Tetromino:

How many polyominoes with n cells?
Unknown for n ≥ 57

6/31



Combinatorial Problems

Can we pave the plane with a finite set of polyominoes?

Examples:

Polyominoes:

Yes, we can!

Polyominoes:

No, we can’t!

In general, the problem is undecidable.
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Combinatorial Problems

Can we pave a finite area with a finite set of polyominoes?
Example:

Area: 45× 36 rectangle

Polyominoes: all pentominoes
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Combinatorial Problems

Can we pave a finite area with a finite set of polyominoes?

http://www.knowltonmosaics.com

8/31



Combinatorial Problems

Can we pave a finite area with a finite set of polyominoes?
Example:

Area: a checkerboard

without two opposite corners

Polyominoes: a domino

No, we can’t!

In general, the problem is NP-complete.
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Behind each polyomino hides a graph

Vertices are the cells.

Two vertices are adjacent if their corresponding cells have a
common side.

Such graph can contain cycles.
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Tree-like Polyominoes

If there are no cycles, we call it a tree-like polyomino.

This tree-like polyomino has 9 cells and 4 leaves.

For a given n, what is the maximal number of leaves realized
by a tree-like polyomino with n cells?
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Maximal number of leaves?

For n ≥ 1, the maximal number of leaves realized by a tree-
like polyomino with n cells is given by

`(n) =


0 if n = 1

2 if n = 2

n − 1 if n = 3, 4, 5

`(n − 4) + 2 if n ≥ 6

Theorem (Blondin Massé, de Carufel, Goupil, Samson 2017)
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Trees in Minecraft

tree-like

polyominoes ⇒

tree-like

polycubes

The maximal number of leaves realized by a tree-like polycube
satisfies a linear recurrence.

Theorem (Blondin Massé, de Carufel, Goupil, Samson 2017)
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Tree-like polyominoes are induced subtrees of Z2.

Tree-like polycubes are induced subtrees of Z3.

Can we study this problem in other graphs?
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Definition

For a graph G = (V ,E ) and n ≥ 2

Tn = set of induced subtrees with n vertices

LG (n) = max{# leaves in T |T ∈ Tn}
Leafed sequence of G : LG (n)n∈{2,...,|V |}

8 7

54

1 2 3

6

n 2 3 4 5 6 7 8

LG (n) 2

2 3 4 4 5 −∞
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Particular cases

K6 LKp(n) =

{
2 if n = 2 et p ≥ 2

−∞ if 3 ≤ n ≤ p

C6 LCp(n) =

{
2 if 2 ≤ n < p

−∞ if n = p

R6 LRp(n) =


2 if 2 = n ou bp2c+ 1 < n < p

n − 1 if 3 ≤ n ≤ bp2c+ 1

−∞ if p ≤ n ≤ p + 1

K3,2 LKp,q(n) =


2 if n = 2

n − 1 if 3 ≤ n ≤ max(p, q) + 1

−∞ if max(p, q) + 1 < n ≤ p + q
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Particular cases: hypercubes

Only partial results:

LH3(n) =


2 if 2 ≤ n ≤ 3

3 if n = 4

−∞ if 5 ≤ n ≤ 8

LH4(n) =


2 if n ∈ {2, 3}
3 if n ∈ {4, 6, 8}
4 if n ∈ {5, 7, 9}
−∞ if 10 ≤ n ≤ 16

Observations:

The leafed sequence can increase by at most 1 each step.
The leafed sequence is not always non-decreasing.

The leafed sequence LG (n)n∈{2,...,|V |} is non-decreasing
iff G is a tree.
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Complexity

Instance: a graph G and two integers n, k ≥ 1

Question: Is there an induced subtree of G with n
vertices and k leaves?

Problem LIS

The LIS problem is NP-complete.

Theorem (Blondin Massé, de Carufel, Goupil, V. 2017)

Reduction to the problem:

Instance: a graph G and an integer n ≥ 1

Question: Is there an induced subtree of G with more than n
vertices?

which is NP-complet. [Erdös, Saks, Sós 1986]
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LIS is NP-complete

Polynomial transformation f : (G , n) 7→ (H, 2(n + 1), n + 1)

G H

a b

cd

e

f

a b

cd

e

a′ b′

c ′d ′

e ′
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What about trees?

For a tree T with m vertices, the leafed sequence LT (n) is
computed in polynomial time and space.

Theorem (Blondin Massé, de Carufel, Goupil, V. 2017)

Algorithm based on the dynamic programming paradigm

20/31



Idea of the algorithm

u v

L
T̂u

=?
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Idea of the algorithm

For a directed tree T̂u rooted in u

f (T̂u) = #{x ∈ T̂u | deg+(x) = 0}
L
T̂u

(n) = max{f (T̂ ′u) : T̂ ′u ⊆ T̂u, |T̂ ′u| = n}

Generalization to a directed forest F̂ with k connected
components F̂i :

L
F̂

(n) = max

{
k∑

i=1

L
F̂i

(λ(i))

∣∣∣∣∣ λ ∈ C (n, k)

}

If F̂ is the forest of the subtrees rooted in the children of u,

L
T̂u

(n) =

{
n if n = 0, 1

L
F̂

(n − 1) otherwise

22/31



Idea of the algorithm

u v

01 01 01

01

01 01

0112

01123
0112334556

L
T̂u

=?
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Idea of the algorithm

Assuming L
F̂i

are known,

Naive computation of L
F̂

via

L
F̂

(n) = max

{
k∑

i=1

L
F̂i

(λ(i))

∣∣∣∣∣ λ ∈ C (n, k)

}

is not polynomial

Computation of L
F̂

via

L
F̂

(n) = max{L
F̂−F1

(i) + L
F̂1

(n − i) | 0 ≤ i ≤ n}

in time Θ(k|F |2)
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Idea of the algorithm

01123

0123012

u v

01 01 01

01

01 01

0112

01123
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Idea of the algorithm

Maximal number of leaves in the subtrees with n vertices,
containing the edge {u, v} :

L{u,v}(n) = max
{
L
T̂u

(i) + L
T̂v

(n − i)
∣∣∣ 1 ≤ i ≤ n − 1

}

u v

0112334556

011223

L{u,v} = 012234456677889

LT (n) = max
{
L{u,v}(n)

∣∣ {u, v} ∈ E
}
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Could we improve the time and space complexity?

We can not hope to obtain a procedure computing LT (n)
which deletes leaves successively.

Counter-example :

LT (7) = 5 et LT (9) = 6
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From graph theory to combinatorics on words

Each tree has a non-decreasing leaf sequence L = (Li )i≥2.

For any graph, Li+1 − Li ≤ 1.

The difference word ∆L := (Li+1 − Li )i≥3 is a binary word.

Leafed sequence: L = 223445567789

Difference word: ∆L =

0

1101011011

The language of a class of graphs is the set of all their difference
words.

Language of Trees =???
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Caterpillars

L = 223455667778 and ∆L = 1110101001

What is the language of caterpillars ?

Language of caterpillars ( Language of trees

Enumerate caterpillars

Get their associated difference words

ε, 0, 1, 00, 10, 11, 0000, 1000, 1001, 1010, 1100, 1101, . . .

Count them by length

n 0 1 2 3 4 5 6 7 8 9

1 2 3 5 8 14 23 41 70 125

Check OEIS It is A194850!
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Prefix normal word

A prefix normal word w1 · · ·wn is a binary word such that
∀` ≤ n, i ≤ n − `,

|w1 · · ·w`|1 ≥ |wi · · ·wi+`|1.

L = 223455667778 and ∆L = 1110101001

Conjecture:

Language of Caterpillars = {prefix normal words}

Language of Caterpillars ⊇ {prefix normal words}

Proposition (Blondin Massé, de Carufel, Goupil, Lapointe, V.)
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Perspectives

Determine when an integer sequence corresponds to a tree or
to a graph

Find an application in Chemistry or Biology

Extend the results obtained in Z2 to the infinite triangular grid
(polyiamonds) and to the infinite hexagonal grid (polyhexes)
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