

Canopy aerodynamic distance (z-d) estimation and impact on eddy covariance measurements

Objectives:

Context

- Is turbulent transport impacted by canopy aerodynamic distance (z d) variability in the roughness sublayer?
- How to estimate canopy aerodynamic distance?

The Vielsalm Terrestrial Observatory (VTO)

Context

The Vielsalm Terrestrial Observatory (VTO)

The Vielsalm Terrestrial Observatory (VTO)

Context

- Aerodynamic measurement height estimation based on cospectra :
 - Observed mean cospectrum

Theoretical cospectrum

Context

Canopy aerodynamic distance (z-d):

- Validation by confronting the results to :
 - the expected changes in d (as canopy height was variable)
 - the observed changes in z (as the measurement height was changed)

Results – Discussion

• Correlation coefficients:

$$r_{uw} = \frac{\overline{u'w'}}{\sigma_u \sigma_w}$$
 ; $r_{wT} = \frac{\overline{w'T'}}{\sigma_w \sigma_T}$; $r_{wc} = \frac{\overline{w'c'}}{\sigma_w \sigma_c}$

- may be referred to as normalized covariances or transport efficiencies as they indicate how much w is related to u, T and c.
- repeatable measurements require constant correlation coefficient during all the measurement period

- r_{uw} (neutral conditions): pronounced temporal dynamics
- $-r_{wc}$ and r_{wT} (unstable conditions): no temporal dynamics.
- r_{uw} , r_{wc} and r_{wT} : pronounced spatial variability $(r_{uw} > r_{wT} > r_{wc})$.

Canopy aerodynamic distance and correlation coefficients:

- Momentum correlation coefficient (r_{uw}) is strongly linked to z-d.
- → Characteristic of the roughness sublayer.
- Heat and CO₂ correlation coefficients (r_{uw} , r_{wc} , r_{wT}) independent of z-d.
- → More homogeneous sources-sinks distribution.
- Difference between azimuthal direction sectors in r_{wc} and r_{wT} (more pronounced)
- \rightarrow Not related to z-d variability.

- Why is there a difference between NE and W for r_{wT} and r_{wc} ?
 - Tree height transition between high Douglas firs and beeches?
- Why is it more pronounced for r_{wT} than for r_{wc} ?
 - Horizontal/vertical heterogeneity in sources/sinks distribution?
 - Large turbulence structures?
 - Occurrence of cloud passages?
 - Active role of temperature?

Canopy aerodynamic distance (z-d) estimation:

- Original z-d estimation method based on single point eddy covariance measurements with a relatively high temporal and spatial resolution.
- z-d temporal dynamics and spatial variability fairly well reproduced.

Relation to turbulence statistics

- $-r_{uw}$ directly related to $z-d \rightarrow$ roughness sublayer.
- $-r_{wc}$ and r_{wT} not related to z-d even in the roughness sublayer
- Other parameters need to be considered in order to explain the observed spatial variability.

Next step

Consider the fluxes themselves by considering footprint issues.

More information?

- quentin.hurdebise@ulg.ac.be
- Poster session (A29, 17h30, Hall A)
- Paper submitted (AFM)

