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Abstract

We present a self-consistent calculation of nucleon and hyperon single-particle potentials for a system of nucleons and A
hyperons of nonzero densities pw, pa using the Brueckner-Hartree-Fock approximation scheme. Fixing the nucleon density
at py = pp we find a minimum of the total binding energy per baryon at a finite ratio pr/pny = 0.1 and a corresponding

gain of binding energy per baryon of about 0.4 MeV.

PACS: 21.65.+f; 21.80.+a

The availability of reliable nucleon-hyperon poten-
tials [1,2] has led to the possibility of investigating
many-body systems consisting of nucleons and hyper-
ons in a quantitative manner. The motivation for such
investigations arises from the interest in constructing
an effective, density dependent nucleon-hyperon po-
tential for the use in shell-model hypernuclei calcula-
tions {3-7], from the search for production of mul-
tistrange clusters in relativistic heavy ion collisions
8], and from speculations concerning “strangelets”,
i.e. strongly bound systems of strange matter which
may even be stable against weak decay [9]. A more
exotic application concerns the structure of neutron
stars, which are thought to consist in the core region
of basically hyperonic matter under extreme densities
[10].

Up to date, these investigations of hypernuclear
matter have been carried out either in relativistic
mean-field (RMF) calculations [4-6], or within the

framework of an extension of Brueckner-Hartree-
Fock (BHF) theory for a mixture of nuclear matter
and hyperonic matter [3]. These latter works, how-
ever, proceed in a non self-consistent way, i.e. by
concentrating on the action of a medium of nucleons
on an isolated hyperon, and neglecting the effects of
the thus calculated hyperon self-energy on the nucle-
ons in the case of a finite density of hyperons in the
medium. It is the purpose of this article to provide
such a self-consistent calculation.

Our calculations are based on the Paris nucleon-
nucleon [11] and the Nijmegen soft-core nucleon-
hyperon [1] potentials. This choice constitutes the
natural extension of our previous work on nuclear mat-
ter using the Paris potential [ 12], by the introduction
of the most elaborated version of the nucleon-hyperon
interaction available up to now. Unfortunately we are
not aware of reliable hyperon-hyperon, in particular
A-A potentials, so that, for the time being, we neglect
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the hyperon-hyperon interaction in our calculation and
are thus somehow restricted to small lambda densi-
ties. Our main interest lies in the possible application
to hypernuclei and heavy-ion collisions, in which this
restriction might be justified.

Let us establish our notation. Both the Paris
nucleon-nucleon and the Nijmegen nucleon-hyperon
potentials are given in the common general form

Via = Ve (r) + 3[Ad(r) + ¢(r)A]
+Vss(r)o - o+ Vig(r)L- 8
+ Vo (N 3l(o1-LY(o2-L) + (02- L) (o1 - L)]
+ W (r)3(oy - F)(o2-F) — (o -02)], (1)

i.e. containing a central and momentum dependent
component as well as spin-spin, linear and quadratic
spin-orbit, and tensor parts. This fact allows a reliable
numerical treatment on equal footing.

Using these potentials we have to solve the Bethe-
Goldstone [13,14] equation in the nucleon-nucleon
and nucleon-hyperon channel. We write down the
equation for the latter case:

uyyr i (k,r) = jrL.(kr)Oyy Oy

o
+4vr/dr' r'? Dyyr 1 (r, 1)
0
X Z VY’Y”,L’L”(r/) uYYII,LLII(k, r') (2)
Y.L

with
1 o]
= 2
DYYI’L/(r, r') = _F /dk/ kl
0

Ju (K'n)ju (K'r') fr (k)

Er(k) — By (K) )
and
2 R
Ey(k) = My + My + Uy (kn) + Up (ky)
+ My + My . 4)

Here k and &’ denote the relative momenta of the initial
NY and the intermediate NY” state, Ey(k) and Ey/ (k')
are the corresponding energies, and fy/ (k") denotes
the angle-averaged Pauli operator in the intermediate
states.

In these expression [ Y, ¥Y" = A, 3 account for the
possibility of NA <+ N3 mixing through the strong
interaction, and the equation has to be solved for a
set of states with definite quantum numbers 7, S, J,
which have not been indicated explicitly. The Bethe-
Goldstone equation has thus a 2 X 2 matrix struc-
ture due the coupling between nucleon-lambda and
nucleon-sigma states and a 4 x 4 structure when the
mixing of angular momentum states through the ten-
sor potential applies.

The solutions of the Bethe-Goldstone equation de-
termine the diagonal G-matrix elements

oo
(knky|Gyr(T, S, J) |knky) = 47 / drr?* j, (kr)
0

X > Ve (r) wypr e (k1) (5)
YL

and the single-particle potentials are then given by

2T+ 120+ 1 1

2
reiL 2t4+1)(2s4+ 1) 27

K
X /dkBk% (kakp|GaL(T, S, J)|kaks) , (6)
0

where the notation UE&B ) denotes the single-particle
potential of particle A due to the interaction with par-
ticles B in the medium. Carrying out the calculation
for the four combinations A = N,A; B = N, A, we
obtain finally the total single-particle potentials of nu-
cleons and lambdas as

Uy (kn) = U (k) + UG (k) (7a)
Up (ky) = UM (kp) + UM (ky) (7b)

(Presently we set Uj(\A) = 0 due to the neglect of the
lambda-lambda interaction). We are interested in the
total binding energy per baryon. In the BHF approxi-
mation the binding energy B and the baryon number
A per unit volume are given by
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Fig. 1. The nucleon and lambda single-particle potentials (real and imaginary parts) for three values of k;.A) =0.8,1.2,1.6 fm™1! at fixed
k}N) = 1.35 fm~!. The dashed curves represent U[(\N ), and the full curves Uy (lower curve) and UI(VN ) (upper curve). The shaded areas
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>
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thus represent Ul(f‘>. The real parts correspond to the increasing functions whereas the imaginary parts are given by the curves with a
negative slope. The arrows denote the positions of the Fermi momenta.

k) ) which is relevant for the situation in heavy hypernu-

B=- A4 77 < |—4 [ dk k? (AI_(’ + éUN(k)\ c}ei._As an»il_lustratior_l we §hox_~ in_ F_i,g;,\l thre? sets 01f
£m)” | -é \<MN < / single-particle potentials for fixed k"’ = 1.35fm™"

o and different values of k{* =0.8,1.2,1.6 fm™!, cor-

£ k2 1 lePUllUulg io UUllblLy 1auua PA/ [}N - U lU U JJ U OU

+2 / dk i? <2M + —2-UA(k)>] (8) The U(N) part of the nucleon mean field turns out to

o A be very close to the mean field in undisturbed nuclear

matter. There is only a slight reduction of the potential
due to the self-consistency requirement: the G-matrix

1 3 )3 in the NN channel is just changed by the addition of
A= 372 (2kF +kp ) : ® the UI(VA) contribution in the denominator. Since this

We come now to the presentation of our results.
Our code has been tested by first carrying out ordinary
nuclear matter caicuiations, i.e. for vanishing hyperon
densities. The results are in good agreement with pre-
vious BHF calculations using the Paris potential [15].

We then proceed to the simultaneous, self-consistent
determination of nucleon and lambda single-particle
potentials in an environment of nucleon density py and
non-zero hyperon density p,. In this article we will re-
strict our investigation to a variation of the lambda den-

sity for fixed nucleon density py = po = 0.17 fm~3,

and

contribution is slowly varying with momentum, the de-
nominator changes very little and the resulting change
of U‘()\,N ) is quite small, as can be seen by comparing
the corresponding curves at different lambda densi-
ties in Fig. 1. Due to the absence of a AA interaction
the potentials U, = UI(\N) are basically unchanged on
varying the lambda density. Only a slight reduction
due to the increased lambda Pauli blocking in the in-
termediate states is to be seen. When the lambda den-
sity is varied, the dominant effect is thus the substan-
tial enhancement of the total nucleon potential due to
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Table 1
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The contributions (in MeV) of various partial waves to the single-particle potential Iy (k4 = 0) at k}N ) =1.35fm~! and k(FA) =0

State (AA) (A3) (AA) + (A3)

;so -12.7  (-13.8) —23 (-2.2) —~15.1 (~16.0)

Py 04 -0.1 02 0.3)

388, 17.3 (15.6) —102 (—8.3) 7.0 (1.3)

38D, -21 (=2.2) -208  (—19.9) -229 (=22.1)

3pD, —0.06 -0.02 —0.08

3Ds; —0.00 —0.02 —0.02 —159 (-14.8)
' 2.0 ~0.4 15 (i.6)

3p, —0 9 (1.7)

3pp, —3.0 ~0.4 -33

3pF, —0.0 -0.8 —0.8

3FF, —0.01 —0.00 —0.01

3FPy —0.00 —0.00 —0.00 —4.1 (-3.8)
Ip, —04 —0.01 —0.4

3D, —04 —0.06 —04

sum -323 (-30.8)

Where available, the numbers in brackets show the comparable results of Ref. [3].

teihatiang for tha anmeaannnding anninlad nactsal

contrivutions ior the COICsSponaing CoupiCa partias waves.

the additional attraction of the nucleons by the hyper-
ons in the medium, as given by U,(VA). Even neglect-
ing the AA interaction, this nucleon-hyperon attrac-
tion provides significant extra potential energy to the

system. Let us also mention that the effective mass
of the lambda has a typical value M* /M. =~ 0.81

[ESoy E- 1 E 010,00 T iy § 4 pabal Vaiue O, HEA ™~ V.01,

whereas the nucleon effectwe mass decreases slightly
with increasing lambda density.

The imaginary parts of the nucleon and lambda
mean field are also displayed in Fig. 1. One can ob-
serve that the nucleon-hyperon interaction brings a
stronger relative change to this quantity than to the
real part of the potential, especially at large lambda
dens1t1es. We recall that these imaginary parts arise
from collisions and, for the hyperon, do not include
weak interactions.

We come back to the discussion of the binding en-
ergy a bit later, but would first like to compare qucun—
titatively our results for the limiting case k(A) =
i.e. for an isolated hyperon in a nucleonic environ-
ment, with those of Ref. [3]: In both calculations the
continuous BHF scheme together with the Nijmegen

soft-core potentials and partiali waves up to L = 2

The numbers in the last column give the summed

are used. The main differences are the nucleon single-
particle potentials UI(VN) (in our case BHF with Paris
potential, whereas the choice of Ref. [3] is not explic-
itly known), and the sigma potentials Us employed
in the intermediate states (we approximate Us (k) ~

Ui (k)

MANYY TR SRS WAV MAapasvavld
used in Ref. {3]). The latter difference does play a
minor role, as the associated mass difference My ~
M, =~ 77MeV is dominating in the energy denomina-
tor of the Bethe-Goldstone equation. We therefore find
a fairly good agreement between both calculations:
our lambda mean field is 32.3 MeV deep, whereas the
value of Ref. [3] is 30.8 MeV. For a closer compari-
son, we list in Table 1 the contributions of the various
partial waves to the lambda well depth U, (0). Also
here we find good agreement between both works.

It is gratifying to see that the lambda mean field

4 ten lan aiathad tha an_~allad Anoe

obtained b y tne BHF method \'vv'uh wiC 8G-Cauca Con-
tinuous choice) plus the Nijmegen potential agrees
quite well with the lambda average potential extracted
from hypernuclei phenomenology [16], which is
about 30 MeV deep. One has however to remind that
higher order diagrams in the Bethe-Goldstone expan-

whereas the explicitly calculated Tf.«(!f\ ig

Ll iaiNls YA
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Fig. 2. Total binding energy (full curve, scale on the left) and
lambda Fermi energy (dashed curve, scale on the right) as func-
tions of k}A) for fixed k}N) =1.35fm™ 1.

sion are likely to change the calculated value by as
much as 10% [17] and that the relationship between
the lambda interaction average potentials in nuclei
and in infinite matter may not be a simple equality.
In order to assess the stability of the hypernuclear
matter with respect to strong interaction, we then dis-
play in Fig. 2 the total binding energy per baryon
as given by Eqgs. (8), (9), as well as the Fermi en-
ergy of the lambda, e = kM7 /2M, + U, (kD)
for fixed nucleon density k4"’ = 1.35fm™! and vary-
ing lambda density. We find that the binding energy
per baryon assumes a minimum at k}A) ~ 0.8fm™1,
i.e. pp/pn = 0.1. The gain in binding energy per
particle at this minimum compared to pure nucleonic
matter is about 0.4 MeV. This is a novel result in the
context of a BHF calculation, and it agrees quite well
with similar findings in RMF calculations [4,5]. Let
us mention that this minimum does not imply stabil-
ity against weak interaction as the mass difference is
not included in the quantity B/A. It however empha-
sizes the stability of hypernuclei with many lambdas
against strong interaction. The lambda Fermi energy
vanishes for k% ~ 1.2 fm~!. This corresponds to the
impossibility of adding a further lambda to the mat-
ter with the corresponding p, and py values, as this

particle cannot be bound any more. If a local density
approximation is valid, the limiting value of p, /pw,
i.e. the ratio of the number of lambdas to the number
of nucleons, in a hypernucleus lies around 0.35. (In
the RMF calculation of Ref. [6] aratio ps /py ~ 1/3
was found in heavy hypernuclei). Of course, this con-
clusion assumes that the nucleonic matter inside the
hypernucleus is not distorted too much by the pres-
ence of the lambdas.

In conclusion, we have presented the first self-
consistent BHF calculation of nucleon and hyperon
single-particle properties in a uniform infinite matter
made of neutrons and protons in equal proportions
and of lambdas. Two important results are obtained.
First, the lambda mean field in basically nuclear
matter (= 32MeV) is in good agreement with the
phenomenological value extracted from hypernuclei
systematics (~ 30MeV) [16] and with the result of
the comparable calculation of Ref. [3] (=~ 31MeV).
Second, the binding energy per baryon of the matter
has a shallow minimum for p, /px = 0.1, and there is
a critical density ratio p, /py = 0.35, beyond which
an additional hyperon will no longer be bound.

Our calculation presently neglects the hyperon-
hyperon interaction because of its great complexity
(coupled channels) and the lack of experimental
constraints on its possible form. Note also that the
presence of a substantial A density may imply also a
finite & density, due to the Pauli-blocking of the decay
EN — AA [6,18]. One can therefore only speculate
at the moment that the inclusion of the presumably
globally attractive hyperon-hyperon interaction will
increase the binding energy of the system even more
and lead to a minimum at a larger strangeness content
of the matter. On the other hand these effects might
not be too large, since for hyperon densities larger
than the ones investigated here, i.e. larger than 0.40g,
the strong repulsive parts of the AN and AA interac-
tions start to play an important role. An estimate of
the effect of including a AA interaction as well as a
detailed account of our numerical procedure will be
given in an extended publication.
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