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Abstract 

We present a self-consistent calculation of nucleon and hyperon single-particle potentials for a system of nucleons and A 
hyperons of nonzero densities pi, pi using the Brueckner-Hartree-Fock approximation scheme. Fixing the nucleon density 
at PN = po we find a minimum of the total binding energy per baryon at a finite ratio p~/p~ M 0.1 and a corresponding 
gain of binding energy per baryon of about 0.4 MeV. 

PACS: 21.65.+f; 21.80.+a 

The availability of reliable nucleon-hyperon poten- 
tials [ 1,2] has led to the possibility of investigating 
many-body systems consisting of n&eons and hyper- 
ons in a quantitative manner. The motivation for such 
investigations arises from the interest in constructing 
an effective, density dependent nucleon-hyperon po- 
tential for the use in shell-model hypernuclei calcula- 
tions [3-71, from the search for production of mul- 
tistrange clusters in relativistic heavy ion collisions 
[ 81, and from speculations concerning “strangelets”, 
i.e. strongly bound systems of strange matter which 
may even be stable against weak decay [ 91. A more 
exotic application concerns the structure of neutron 
stars, which are thought to consist in the core region 
of basically hyperonic matter under extreme densities 

[lOI. 
Up to date, these investigations of hypemuclear 

matter have been carried out either in relativistic 
mean-field (Rh@) calculations [4-61, or within the 

framework of an extension of Brueckner-Hartree- 
Fock (BHF) theory for a mixture of nuclear matter 
and hyperonic matter [ 33. These latter works, how- 
ever, proceed in a non self-consistent way, i.e. by 
concentrating on the action of a medium of nucleons 
on an isolated hyperon, and neglecting the effects of 
the thus calculated hyperon self-energy on the nucle- 
ons in the case of a finite density of hyperons in the 
medium. It is the purpose of this article to provide 
such a self-consistent calculation. 

Our calculations are based on the Paris nucleon- 
nucleon [ 111 and the Nijmegen soft-core nucleon- 
hyperon [l] potentials. This choice constitutes the 
natural extension of our previous work on nuclear mat- 

ter using the Paris potential [ 121, by the introduction 
of the most elaborated version of the nucleon-hyperon 
interaction available up to now. Unfortunately we are 
not aware of reliable hyperon-hyperon, in particular 
A-A potentials, so that, for the time being, we neglect 
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the hyperon-hyperon interaction in our calculation and 
are thus somehow restricted to small lambda densi- 
ties. Our main interest lies in the possible application 

to hypernuclei and heavy-ion collisions, in which this 
restriction might be justified. 

Let us establish our notation. Both the Paris 
nucleon-nucleon and the Nijmegen nucleon-hyperon 
potentials are given in the common general form 

&2 = E(r) + $W-~ + 4dr)Al 

+ vss(r)a1 . u2 + vLs(T)L . s 

+v,(~‘)~E(al.L)(az.L)+(az.L)(al.L)l 

+ VT(r)3(a1 .a (u2.3) - (a1 . (T2)l 9 (1) 

i.e. containing a central and momentum dependent 
component as well as spin-spin, linear and quadratic 
spin-orbit, and tensor parts. This fact allows a reliable 

numerical treatment on equal footing. 
Using these potentials we have to solve the Bethe- 

Goldstone [ 13,141 equation in the nucleon-nucleon 
and nucleon-hyperon channel. We write down the 
equation for the latter case: 

u~Y/,LL~(~~) =j~(kr)&wh 

oc) 

+ 47r dr’ r” DYYI,LJ (r, r’) 

with 

DC) 

DYY~,L~ (r, r’) = -& 
s 

dk’ k12 

0 

x jLj(k’r)jLr(k’r’)fYt(k’) 

EY(k) - Ey’(k’) 

and 

Ey(k) = & + & + UN(h) + Un(ky) 
N Y 

+MN+MY. 

(2) 

(3) 

(4) 

Here k and k’ denote the relative momenta of the initial 
NY and the intermediate NY’ state, Ey (k) and Eyj (k’) 

are the corresponding energies, and fr, (k’) denotes 
the angle-averaged Pauli operator in the intermediate 
states. 

In these expression Y Y’, Y” = A, 2 account for the 
possibility of NA f-f A% mixing through the strong 
interaction, and the equation has to be solved for a 
set of states with definite quantum numbers T, S, J, 

which have not been indicated explicitly. The Bethe- 

Goldstone equation has thus a 2 x 2 matrix struc- 
ture due the coupling between nucleon-lambda and 

nucleon-sigma states and a 4 x 4 structure when the 
mixing of angular momentum states through the ten- 
sor potential applies. 

The solutions of the Bethe-Goldstone equation de- 
termine the diagonal G-matrix elements 

M 

(kNkr&L(T, S, J) ]kNkr) = 4~ 
I 

drr’jL(kr) 

0 

X 
c VYY/,LL~ (r) w’,LL’ (k, r) , (5) 
Y’,L’ 

and the single-particle potentials are then given by 

Uy)(kA) = c 
(2Tf 1)(2J+ 1) 1 

T,S>J,r. 
(2tA + 1) (2sA + 1) 21T2 

p 
F 

X I dke k’B (kAk&A,L(T, s, J)lkAk& 3 (6) 

0 

where the notation Uy’ denotes the single-particle 
potential of particle A due to the interaction with par- 
ticles B in the medium. Carrying out the calculation 
for the four combinations A = N, A ; B = N, A, we 

obtain finally the total single-particle potentials of nu- 
cleans and lambdas as 

Uiv(kiv> = UcN’(k,) + Uh?(k~) , N 

U,(k,) = UcN’(kn) + U’*‘(kn) . A A 

Ua) 

(7b) 

(Presently we set Uy) = 0 due to the neglect of the 
lambda-lambda interaction). We are interested in the 
total binding energy per baryon. In the BHF approxi- 
mation the binding energy B and the baryon number 
A per unit volume are given by 
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Fig. 1. The nucleon and lambda single-particle potentials (real and imaginary parts) for three values of ky) = 0.8,1.2,1.6 fm-r at fixed 

kLN’ = 1.35 fm-‘. The dashed curves represent Ui’v’, and the full curves (IN (lower curve) and Ui!’ (upper curve). The shaded areas 

thus represent LILA’. The real parts correspond to the increasing functions whereas the imaginary parts are given by the curves with a 

negative slope. The arrows denote the positions of the Fermi momenta. 

f2 & + &i(k) >I (8) A 
0 

A = & (2k$fNj3 + kgj3) . 

We come now to the presentation of our results. 
Our code has been tested by first carrying out ordinary 
nuclear matter calculations, i.e. for vanishing hyperon 
densities. The results are in good agreement with pre- 
vious BHF calculations using the Paris potential [ 151. 

We then proceed to the simultaneous, self-consistent 
determination of nucleon and lambda single-particle 
potentials in an environment of nucleon density PN and 
non-zero hyperon density pn. In this article we will re- 
strict our investigation to a variation of the lambda den- 
sity for fixed nucleon density pi = po = 0.17 fmV3, 

which is relevant for the situation in heavy hypernu- 
clei. As an illustration we show in Fig. 1 three sets of 
single-particle potentials for fixed kbN-“’ = 1.35 fm-’ 

and different values of kg’ = 0.8,1.2,1.6 fm-‘, cor- 
responding to density ratios p~/p~ = 0.10,0.35,0.80. 

The UiN) part of the nucleon mean field turns out to 
be very close to the mean field in undisturbed nuclear 
matter. There is only a slight reduction of the potential 
due to the self-consistency requirement: the G-matrix 
in the NN channel is just changed by the addition of 
the Up) contribution in the denominator. Since this 
contribution is slowly varying with momentum, the de- 
nominator changes very little and the resulting change 
of UhN) is quite small, as can be seen by comparing 
the corresponding curves at different lambda densi- 
ties in Fig. 1. Due to the absence of a Ah interaction 
the potentials U, = UiN’ are basically unchanged on 
varying the lambda density. Only a slight reduction 
due to the increased lambda Pauli blocking in the in- 
termediate states is to be seen. When the lambda den- 
sity is varied, the dominant effect is thus the substan- 
tial enhancement of the total nucleon potential due to 
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Table 1 

The contributions (in MeV) of various partial waves to the single-particle potential U,,(k,, = 0) at kkN) = 1.35 fm-’ and ki*) = 0 

State (AA) (AH) (AA) + (AZ) 

‘SO -12.7 (-13.8) -2.3 (-2.2) -15.1 (-16.0) 

34 0.4 -0.1 0.2 (0.3) 

3x$ 17.3 (15.6) -10.2 (-8.3) 7.0 (7.3) 
3SD1 -2.1 (-2.2) -20.8 (-19.9) -22.9 (-22.1) 
3DD1 -0.06 -0.02 -0.08 
3DS1 -0.00 -0.02 -0.02 -15.9 (-14.8) 

‘PI 2.0 -0.4 1.5 (1.6) 
3p1 2.2 -0.3 1.9 (1.7) 

3PP* -3.0 -0.4 -3.3 
3PF2 -0.0 -0.8 -0.8 
3FF2 -0.01 -0.00 -0.01 

3FPz -0.00 -0.00 -0.00 -4.1 (-3.8) 

‘DZ -0.4 -0.01 -0.4 
3D2 -0.4 -0.06 -0.4 

sum -32.3 (-30.8) 

Where available, the numbers in brackets show the comparable results of Ref. [ 31. The numbers in the last column give the summed 
contributions for the corresponding coupled pa&al waves. 

the additional attraction of the nucleons by the hyper- 
ens in the medium, as given by I$,?). Even neglect- 
ing the AA interaction, this nucleon-hyperon attrac- 
tion provides significant extra potential energy to the 
system. Let us also mention that the effective mass 
of the lambda has a typical value Mi/M* x 0.8 1, 
whereas the nucleon effective mass decreases slightly 
with increasing lambda density. 

The imaginary parts of the nucleon and lambda 
mean field are also displayed in Fig. 1. One can ob- 
serve that the nucleon-hyperon interaction brings a 
stronger relative change to this quantity than to the 
real part of the potential, especially at large lambda 
densities. We recall that these imaginary parts arise 
from collisions and, for the hyperon, do not include 
weak interactions. 

We come back to the discussion of the binding en- 
ergy a bit later, but would first like to compare quan- 
titatively our results for the limiting case kg’ = 0, 
i.e. for an isolated hyperon in a nucleonic environ- 
ment, with those of Ref. [ 31: In both calculations the 
continuous BHF scheme together with the Nijmegen 
soft-core potentials and partial waves up to L = 2 

are used. The main differences are the nucleon single- 
particle potentials Ui? (in our case BHF with Paris 
potential, whereas the choice of Ref. [ 31 is not explic- 
itly known), and the sigma potentials Us employed 
in the intermediate states (we approximate U, (k) x 
UA (k), whereas the explicitly calculated U,(k) is 
used in Ref. [3]). The latter difference does play a 
minor role, as the associated mass difference MI: - 

MA M 77 MeV is dominating in the energy denomina- 
tor of the Bethe-Goldstone equation. We therefore find 
a fairly good agreement between both calculations: 
our lambda mean field is 32.3 MeV deep, whereas the 
value of Ref. [ 31 is 30.8 MeV. For a closer compari- 
son, we list in Table 1 the contributions of the various 
partial waves to the lambda well depth U, (0). Also 
here we find good agreement between both works. 

It is gratifying to see that the lambda mean field 
obtained by the BHF method (with the so-called con- 
tinuous choice) plus the Nijmegen potential agrees 

quite well with the lambda average potential extracted 
from hypernuclei phenomenology [ 161, which is 
about 30 MeV deep. One has however to remind that 
higher order diagrams in the Bethe-Goldstone expan- 
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Fig. 2. Total binding energy (fall curve, scale on the left) aad 
lambda Fermi energy (dashed carve, scale on the right) as func- 
tions of kg) for fixed kkN) = 1.35 fm-‘. 

sion are likely to change the calculated value by as 
much as 10% [ 171 and that the relationship between 
the lambda interaction average potentials in nuclei 
and in infinite matter may not be a simple equality. 

In order to assess the stability of the hypernuclear 
matter with respect to strong interaction, we then dis- 
play in Fig. 2 the total binding energy per baryon 
as given by Eqs. (8)) (9)) as well as the Fermi en- 

ergy of the lambda, eg) = kg’2/2Mh + U,(k$)), 

for fixed nucleon density k$? = 1.35 fm-’ and vary- 
ing lambda density. We find that the binding energy 
per baryon assumes a minimum at kp) M 0.8 fm-*, 
i.e. pa/p~ = 0.1. The gain in binding energy per 
particle at this minimum compared to pure nucleonic 
matter is about 0.4MeV. This is a novel result in the 
context of a BHF calculation, and it agrees quite well 
with similar findings in RMF calculations [4,5]. Let 
us mention that this minimum does not imply stabil- 
ity against weak interaction as the mass difference is 
not included in the quantity B/A. It however empha- 
sizes the stability of hypernuclei with many lambdas 
against strong interaction. The lambda Fermi energy 
vanishes for k$!*) M 1.2 fm-’ . This corresponds to the 
impossibility of adding a further lambda to the mat- 
ter with the corresponding pA and pN values, as this 

particle cannot be bound any more. If a local density 
approximation iS valid, the limiting value of pn/fN, 
i.e. the ratio of the number of lambdas to the number 
of nucleons, in a hypernucleus lies around 0.35. (In 

the RMF calculation of Ref. [ 61 a ratio pi /pN F=: l/3 
was found in heavy hypernuclei) . Of course, this con- 
clusion assumes that the nucleonic matter inside the 

hypernucleus is not distorted too much by the pres- 
ence of the lambdas. 

In conclusion, we have presented the first self- 
consistent BHF calculation of nucleon and hyperon 

single-particle properties in a uniform infinite matter 
made of neutrons and protons in equal proportions 
and of lambdas. Two important results are obtained. 
First, the lambda mean field in basically nuclear 
matter (M 32 MeV) is in good agreement with the 

phenomenological value extracted from hypernuclei 
systematics (M 30MeV) [ 161 and with the result of 
the comparable calculation of Ref. [ 31 (M 3 1 MeV) . 
Second, the binding energy per baryon of the matter 
has a shallow minimum for pn/pN M 0.1, and there is 
a critical density ratio pn/pN M 0.35, beyond which 
an additional hyperon will no longer be bound. 

Our calculation presently neglects the hyperon- 
hyperon interaction because of its great complexity 
(coupled channels) and the lack of experimental 

constraints on its possible form. Note also that the 
presence of a substantial A density may imply also a 
finite B density, due to the Pauli-blocking of the decay 
EN -+ Ah [ 6,181. One can therefore only speculate 
at the moment that the inclusion of the presumably 
globally attractive hyperon-hyperon interaction will 
increase the binding energy of the system even more 
and lead to a minimum at a larger strangeness content 
of the matter. On the other hand these effects might 

not be too large, since for hyperon densities larger 
than the ones investigated here, i.e. larger than 0.4~0, 
the strong repulsive parts of the AN and AA interac- 
tions start to play an important role. An estimate of 
the effect of including a Ah interaction as well as a 
detailed account of our numerical procedure will be 
given in an extended publication. 
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