

1. What is a transition(al) disk? Why should we observe them?

2. First results of the AGPM on transition disks

1. What is a transition(al) disk? Why should we observe them?

2. First results of the AGPM on transition disks

Transition Disks (TDs)

credit: L. Pérez

Short definition of TD:

Protoplanetary disk (still has gas!) showing evidence for a gap/cavity in the dust distribution

Why are they so interesting?

Giant planet formation must occur before the gas in the disk gets dissipated (max. ~10Myr)

First observational identification

pre-Transitional disks

UX Tau A best-fit model 10⁻⁹ λF_λ(erg cm⁻² s⁻¹) /inner disk outer disk 10-11 10 | 30 AU

Espaillat+07

Confirmation with resolved images

gub-mm continuum

RX J1604

RX J1615

RX J1633

V4046 Sgr SR 21

Fspaillat+14 (PPVI)

Espaillat+14 (PPVI)

N-IR polarized light
(small grains)

PDS 70 (Hashimoto+12)

0.5"

Distance (arcsec)

HD 169142

e •

LkCa 15 (Thalmann+14)

Origin?

Grain growth

Photoevaporation

Companion

G A S

D

U

S

(Strom & Najita)

So far most observations indicate a shallower gap in the gas than in the dust distribution => hint towards a companion origin

Additional companion signposts

BUT alternative origins: gravitational instability, recent fly-by, shadowing from inner disk

Additional companion signposts

A pressure bump or "vortex" (e.g. generated by a planet) can trap large dust grains

BUT alternative origin: any extrema in the surface density profile can trigger instabilities leading to the formation of a vortex and hence to a dust trap

1. What is a transition(al) disk? Why should we observe them?

- It is a primordial disk with some evidence for gap/cavity
- Their age and morphology are consistent with the presence of planets
- Additional companion signposts have been observed (spirals, dust traps)
 => TDs are prime targets to look for forming planets
- Most TDs might reveal remarkable disk features given enough angular resolution and sensitivity
- 2. First results of the AGPM on transition disks

- 1. What is a transition(al) disk? Why should we observe them?
 - It is a primordial disk with some evidence for gap/cavity
 - Their age and morphology are consistent with the presence of planets
 - Additional companion signposts have been observed (spirals, dust traps)
 => TDs are prime targets to look for forming planets
 - Most TDs might reveal remarkable disk features given enough angular resolution and sensitivity

2. First results of the AGPM on transition disks

Protoplanet candidates

HD 100546 b

(Quanz+13,+15; Currie+14)

- If photospheric, the L-band mag of these detections would correspond to brown dwarfs (>15-28 M_{Jup})
- The morphology of the disk would be different for such objects
- Very faint H and K band counterparts
 Nost likely explanation: accreting protoplanets heating circum-planetary disk (e.g. Montesinos+15)

LkCa 15 b (Kraus & Ireland 12; Sallum+15)

L'-AGPM hunting trophies in TDs

- 1. What is a transition(al) disk? Why should we observe them?
 - It is a primordial disk with some evidence for gap/cavity
 - Their age and morphology are consistent with the presence of planets
 - Additional companion signposts have been observed (spirals, dust traps)
 => TDs are prime targets to look for forming planets
 - Most TDs might reveal remarkable disk features given enough angular resolution and sensitivity

2. First results of the AGPM on transition disks

- L'-AGPM ideal to look for protoplanets
- L'-AGPM also allows to probe disk features
- 3. Current transition disk programs with the AGPMs

- 1. What is a transition(al) disk? Why should we observe them?
 - It is a primordial disk with some evidence for gap/cavity
 - Their age and morphology are consistent with the presence of planets
 - Additional companion signposts have been observed (spirals, dust traps)
 => TDs are prime targets to look for forming planets
 - Most TDs might reveal remarkable disk features given enough angular resolution and sensitivity
- 2. First results of the AGPM on transition disks
 - L'-AGPM ideal to look for protoplanets
 - L'-AGPM also allows to probe disk features

NACO+AGPM (mini-)mini-survey (PI: Christiaens)

- Search for protoplanets using direct imaging in L'-band
 - Initial plan: mini-survey of 16 transition disks with NACO+AGPM ...but severe streak of bad luck
 - Targets observed so far:

Source	Туре	Instrument	Obs. strategy
PDS 66	TD	NACO (+AGPM)	RDI
RU Lup	TD	NACO (+AGPM)	ADI
HD 98800B	TD or circum-binary gap?	NACO	BDI
DoAr 21	TD?	NACO (+AGPM)	ADI+RDI
TWA 7	Debris disk	NACO (+AGPM)	ADI
gamma doradus	Debris disk	MagAO/Clio2	ADI
HD 35650	Debris disk	MagAO/Clio2	ADI

Data reduction in progress

NIRC2+AGPM mini-survey (PI: Ruane)

- Search for protoplanets using direct imaging in L'-band
 - Beginning of the observations last Saturday
 - First result:

LMIRCam+AGPM mini-survey (PI: Defrère)

Weather loss for TDs => commissioning of ALES+AGPM

First ALES+AGPM images

First AGPM+IFU image (beta Aur)

Summary

- 1. What is a transition(al) disk? Why should we observe them?
 - It is a primordial disk with some evidence for gap/cavity
 - Their age and morphology are consistent with the presence of planets
 - Additional companion signposts have been observed (spirals, dust traps)
 => TDs are prime targets to look for forming planets
 - Most TDs might reveal remarkable disk features given enough angular resolution and sensitivity
- 2. First results of the AGPM on transition disks
 - L'-AGPM ideal to look for protoplanets
 - L'-AGPM also allows to probe disk features
- 3. Current transition disk programs with the AGPMs
 - VLT: results for the NACO+AGPM mini-survey will arrive soon
 - Keck: promising start for the NIRC2+AGPM mini-survey
 - LBT: LMIRCam+AGPM mini-survey delayed