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Summary

This paper is devoted to the analysis of shells of revo- . .

lution, using cylindrical components of the displacement., This
procedure, coupled with a Fourier expansion by respect of the
azimuth permits the gemeratibm: of finite elements in which ri-

gid body motions are represented exactly, even in the case of

_doubly curved shells.,



1--.-INTRODUCTION

A particular feature of rotational solids is the fact that
nonaxisymmetric motiozs may be treated by a Fourier expansion. In
this approach, the geometry is described by only giving the half-
meridional section B = 0 . Considering a shell, the trace of its
middle surface in the half-plane @ = 0 is a curve which may be pa-

rametrized by a single variable, say § (see fig. 1). In practical

‘applications, however, this procedure is advantageous only if the

differentazimutﬁdlharmonics may be treated separarely, i.,e, if

they are decoupled in energy, Under certain conditions on the con-
' /

stitutive laws, which are precised in /1/ and verified in most cases,

thie fundamental property is true for linear elastostatics and 1li-
near elastodynamics., It is also verified for linear buckling ana=
lysis, provided the initial stresses are axisymmetric. In more
general problems including nonlinear effects, all Fourier modes
may be coupled and a tridimensional analysis'using general shell
elements, seems easier to perform. ) '

As a consequence, there is = at least from a numericist
view point - noreal need to develop rotational shell theories

whose genetrality exceed the frame of moderate deflections. By

these words, reference is made to the assumption that .no displa-
cement gradient is greater in magnitude than r'% ’ [ being the
order of magnitude of the strains, This simplification, also known
as "moderate rotations theory"/10/ (Koiter refers to it as "small
finite deflections" /9/), may be considered as a first approxi-
mation of geometrical nonlinearities and constitutes a sufficient
basis for buckling analysis.

As is well known, an exact representation of rigid body

- motions is of considerable importance in finite element applica~-

tions, When the displacements are decomposed in the classical
curvilinear basis of the shell, this condition cannot be fulfilled
unless the shell is conical. Cansequently, doubly curved shells
need another treatment.

The eldest solution, which was pioneered by GRAFTON and
STROME /5/ and subsequently followed by many authors /11,6/, con-
gits in approximating the actual geometry by conical frustra.
This procedure saves the representation of rigid body motions,
but at the price of a crude geometrical approximation which, in
particular, may be responsible for spurious bending stresses under

pressure loads,
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More accurate, but still of approximate nature, is the
quasi-conical shell theory developed by the author/3/ from the
concept of fictitious displacements. In this theory, the actual

shell is viewed as a geometrical perturbation from a set of co=-
nical frustra. Since the system of displacement components is de-
termined by the reference cones, rigid body motions may be repre-
sented exactly by the use of parametric elements,

Pursuing in this way of disconnection of the displacement
basis from the geometry, the ultimate step consists in the use

of Cylindrical components, This is in fact no new idea, a fini-

te element based on this concept having been developed in 1975
by DELPAK /4,6/. Delpak's analysis, however, is restricted to
linear elasticity and axisymmetrical deformation., Fundamentally,
it makes use of the classical expressions of strains in terms
of locally directed displacements, a transformation into c¢ylin-
drical components being performed a posteriori. |

In this .paper, a more general approach is developed, in

- which the strains are directly expressed in terms of cylindrical

components of the displacements. In a first step, transverse shear
effects are takeny into account, and geometrical nonlinearities4
are included. The second step is the intoduction of the moderate
deflectighs hypothesis. ‘At this stage, Kirchhoff«Love conditions
are intoduced. Concerning the old problem. to determine wﬂethér
Kirchhoff-Love assumptions have to be used or not, author's peint of
view is that it is a question of opportunity. On one hand, Kirch-
hoff-Love assumptions result in a simpler theory, working even for
very thin shells for which the theory including transverse shear
effects may exhibit numerical degeneracigs. On the other hand, in
situations where the shell has to be comnected with volume ele-
ments, e.g. in the case of a shell filled wi@h'a,solid propellant, ‘
this connection is easier when shear effectsﬂére taken into account,
due to an exact correspondance of generalized displacements. Both
approaches have thus their own field of application and no uni-
versallanswer does exist to the question whether one is better
than the other.

~~As any finite element analysis implies the comnection of
the elements at their common interfaces, conformity conditions
have to be settled. This is done in section 9, for both approaches,

it is to say with or without transverse shear effects.



2., GEOMETRICAL DESCRIPTION
As mentioned in the introduction, the trace of the middle
surface of a rotational shell in the meridian half-plane 8= 0 is

a curve which may be parametrized by a single variable 5 . The
shape of the shell depends upon the form of the applications
E+=R(E) and £+ Z(E). In what follows, it will be assumed
that S is normalized in the sense that
' )

ng+ zf§= 1. | (1)
In practical applications, the functions R(E) and Z(E ) are appro-
ximated by polynomials of some degree k whose coefficients are de-
termined with the aid of nodes, in the same mahmer as in parametric
finite elements. This being done, the position vector s(g,6, x3)
of any point of the shell may bs written in the following form

n 3
s=Re, +2Ze +x -Z e +R_e,) 2
ReRegriogr ™ (Fgeg+ Rz oy @
In this expression, and throughout the present paper, €ps €5 5 €y
o~ ~~ LN

are the three vectors forming the normed basis of cylindrical co-

ordinates,

3« DISPLACEMENTS

For the displacement field, a linear structure along the

normal to the middle-surface will be considered, namely

‘ 3

v=ue,+ve +wWe, +x (e, +Be +Ye,) (3)
L=negt Ve vy g Py t¥eg)

where u, v, W, o/ , F »y are functions of § and € . The finite

element model is constructed as follows., In a first step, the dis-

placements are expanded in Fourier series

. ; ,
2. = u (F) cos(nb + m"%—)

o=
n=0 m=0
1
v = %(,) 5} vmn(‘g) sin(n9+m—1§")

1
w = = = wnm(g)‘cos(n6 + m ‘T‘;"‘)
(4)

| 1 |
K= = = ol (8) cos(n8 + m —5-)

1
P= 2 Z an(g) SJ-n(ne +m-1t2—) o

( system continues)
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)
¥ = = = b’nm(g) cos(nb +m-T-C-2-—)
n=0 m=0 ‘

Admitting on the moduli some restrictions which are ordi-
narily verified /1/, this dedomposition ensures that harmonies
corresponding to different values of the couple(n,m) are energe-
tically decoupled. The second step consisis in a polynomial appro=-
ximation by finite elements of each harmonic in terms of § . The
rigid body displacements are contained in this model provided
u, v, w are at least polynomials of degree k and « , /6 Y at
least polynomials of degree (k - 1) in terms of § .,

4. STRAIN EXPRESSIONS FOR LARGE DISPLACEMENTS

In the strained configuration, the position vector 3 of

a point of the shell is transformed in g' by the following rule

t .
) _(R+u) op + ¥ € + (Z + w) e,

~ ~t

+ ;;3((--Z’\g +0ol) op *+ B % * (Rg +y) e'\%) (5)

Throughout the text, primes will be used to distinguish quantities
attached to the strained configuration. The base vectors

of the unstrained shell are

- - 3¢
Bs= s =z tigopt T (greptResey)

- - 3.
.gNe-ie-Riq +x(z’§ig) (6)
fg\? =i’3== --Z:g iR_+R’"g(e@ - ..\.

The corresponding metric tensor has thus the following components

(Bgg = 1+ (R Gy 4 L Rgg) 4 () (Rgg 4 Bigg)
_ pe _ a3 3,2 .2 '
gee-—R 2xRZ;§+(x)Z;§
) : (7)
&33 = 1
nge"’ S,ga" 863 =0
The Green strain tensor K is defined by
fag = ¥ely - &) (8)

To obtain a two-dimensional shell theory, an assumption is neces-

sary on the pinch 5'33. The simplest one consists to impose that

g n s &
Bg0 %0 &
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normals to the middle surface are not stretched during the defor-

mation process, i.e.

gy = (Zg+o)2 4B 24 (g 4y )P (9)
or, equivalently,

Koz = Bg® + Ry + 3(o? +f 2iy® =0. (10

Using Greek letters for indices £ and 0 , one has the

general relation

0
IRV 3
K"F X"I‘ x P>,~ + (x )2\}!)‘ (11)
where b’ are the membrane strains and Fx/u_ the changes of cur-

vature. (It is for convenience that this name is used, thogh it is
abusive when shear effects are present). From general order of ma=-
gnitude evaluations for shells, based on compatibility equations,
following a step pioneéreé. by CHIEN /7/ for thin shells, it may
be prowed /8/ that the term (553)2 \]f) is negligibly small. It
will therefore not be computed. After any calculations, the mem-
brane strains and changes of curvature are found as follows

o

g ngmg 5 ma b eV o)
(o]
Xse= R(v;e +u) + %(u,e -2 %(v’e rw)? s %er
(¢]
2 Y R,.g (u’e - %)+ R Ve + U g (u’e -V) + Ve (V,e + u)
+ w’_g W;B A

TP NE%n T RE Y s TR e YR s

-i-u’.5 o(’?’+v;g P;S +W’_§ X’_g

—fge = R( p,e +0) = Z;g (v’e +u) + (“,e - v)(OL’9 —P)
+ (v'e + u)(F’6 +0) W 5,6
-2() g (%g -BY+zs ¥, +RF)’§ - Zg v ‘

- Z,zg (u,e - V) + ’R,Z'g W’e + u.’.g (01’6 —/3))
v’_g (5’9 +00) + Ve X’e + ol’g (u.’6 -v)

{5,5'-+u)+2§ .

(12)



Let us now turn to transverse shear strains. They are of the

general form

S 3
s = Yoz * % Pas o

with

{9§3 (-z’g +0 )(_Z,gg + d,g )+ IB ﬁ’g + (R,3 +Y )(R,gg ¥ )

8332

and, similarly,

F93 = ('Z-é o) doG * [3 pse * (R!’g +K.)X:9 =:§§3’9;

Thus, due to condition (9), both strains are constant by respect

3

of x”. Their explicit expressions are

2 7%3 = R,go( + Z,?,X + R’_g w’_g - Z,_g g’g +0(u’_§ '+ pv’"g + b'w,_g
(13)

N
=
(=3
W
1

= RP + R’S w’e - Z’.g (u,e -v) + & ‘u’e - V)
+P(v,e + u) + Xw’e

Up to now, tensorial components of the atrains and changes
of curvature have been used. Physical components are prefered as
design variables. To make the distinetion, physical components will
be noted E Tor the strainsand K for the__chaz@ég‘g -of -curvature. The
correspdndance is as follows |

° Ay _1y
Eézxété ’ & = G S0 ’ Ege‘ R V58
| o o = Lp
K;P% ’ " 2 Foo K5t Rl as
1 "
253._.2{33 ' 3= & Jo3

5. CONSTITUTIVE TLAWS
By similar arguments as those that KOITER /12/ used in the

frame of the Kirchhoff-Love hypothesis, the following expression
may be used for the energy by unit of middle surface area when

shear effects are present /8/

_, Sapy o © Oapdpm 43 Oap 2
v =4 %P, X"‘P e +%0Pr.1.§?d‘b?)‘/~ +%detb,a(3xf’3 (15)



This expression implies a relative error which does not exceed

2 2
o( )'(oz?-”

whichever of these quantities may be critical. Here, R is the

o(r) K]

order of magnitude of the radii of curvature, L is the "wave lengyh"

of the deformation, and t+ is the thickness of the shell. E“PN*
[}
and GdPare the moduli at x3=

0. The following stress resultants
may be deduced by derivation

Membrane resultants dp = Cap\r-t K;

Moments =™ = C“Pki’“ (t3/12) Py (16)
%«

Shear resultants IB XP3

These are of course teunsorial components. The physical ones will
be noted by capital letters and are related te the preceeding ohes by
the following relations

£t 2 08 £6
N = = =
£ n ’ NO R ’ Nﬁe Rn
M_g = 111-?"g 9 Me = R2 mee ) M_ge =“R mge (17)
Qg = q‘f, ’ Qﬁ =R qB

6. MODERATE DEFLECTIONS

The moderate deflection approximation is characterized by

%),

the order of magnitude of the strains. In the present case, this

the fact that all displacement gradients are at most O([" " being

hypothesis may be explicited as follows

u 3V -‘l(u‘

v "yE " R ,6 (18)

In each strain and change of curvature, relative errors O(rq%) are -

;
- v) ; R(v’e

S %
+u),‘R,e,o( F; ¥ O(F1

admitted. Let us examine the simplifications which proceed from

this hypothesis.

6.1 - Membrane strains

One has .
2 2 -2
R’_gu’_g+Z;gvv;g=£_§--%-(u;g * Vg +W;§)=&_§-O(r)=0(r')
(19)
Siﬁiiarly,-
% (v,a +u) = 0o([) (20)



and

' - ' . - 21
?R;g /R)(u'6 v) + v +(Z;g /}Eif)w’e Q‘f") (21)
These results implie directly

Ee = % (v’e +u) + 21R2 ((u’e -2 wfe ) + o([3).  (22)

Concerning %g

By g ) mERgug 2w ) B u g SR

, note that
)2

?

so that, from (19),

3

| 2 2 2
_g=R,_gu,g -R’_gw’_g) +%v’_§ + 0((%)

(23)

+ Z;g W;g + %(Z;g v.’_g

In the expression of Zégeappears the term

v, +w) = o<f"3/2),

Vg R,0

which may be neglected. Now,

ETH T .

-v) + W

ue (g
= (RgB gt 2 g )Rg Mg V)42 gwy)

+ (Z;g u;g - R;g W;g )(Z;g (u,e -7) - R;g w’e )

and, owing to relation (19), the first product of the right hand
side is 0( B 77/2), so that, finally,

2E, - Re RMuy =¥+ 7 'f"°'(zv’§:/R) v e
1 .
+ 3 (Z,g u'_g - R’_g w,g )(z,% (u’e -V) = R’% w’e )
+ 0( 32 ~ (24)

6.2 - Changes of curvature

The linear. terms -of the changes. of cirvaturé are:of. tHé Follo-
wing orders of magnitude ‘ |
rin ., rUR .
The nonlinear terms are of order [ /L and may therefore be ne-
glected as negligibly small in comparison of the linear ones. This

results in the following simplified expressions

9.



f'Kg=R’§ o(,g +Z’§ b’,g"z,gg u,g +.R;ggw

= (1/R)(ﬁ,o +l) - (2 _ /R® )(v + u) (25)

3

- 2R = (R g /RI(0 -p) + ﬁ-g + (2 ¢ /R) ¥io

" /) vy (g Ry =) v (Rgg /R Wy

6.3 - Transverse shear strains

Here, the nonlinear terms are visibly of order [T and in
principle, no 31mp11flcatlon may be done. This conclusion has to be
qualified - .i:., In many applications, the transverse shedr terms
of fh;fénéréy.ﬁlay the role of a penalty functional for the Kirch-
hoff-Love conditions /6/. As will be seen in the following section,
nonlinear terms may be neglected in these condition, at the same
error level as the reat of the theory. In this view, it is thus
perfecﬁiy consistent to omit nonlinear terms of the transverse shear

strains in most applications. They will consequently be written

" dinm.: %, square brackets in the explicit expressions which 'fo_llow
2 &§3 = R;gOL' + Z’_gz + R;g w;g + Z;g u’_%

[+uu ﬁv +5W3]
S B+ (R /B) Wy = (B /R)ug =) N

[+0( (u’e - V) + fg(v,e + u? + 5w’e:l

6.4 =~ Pinch strain

The group (-Z _go( + R_gx ) is a priori of order r'% ’
H ’ .

and the exact condition bf33= 0 may be written

-z’ga "'R;gﬁ =-%(o(2+ ﬁ:2+ 2{2)=0(F’)-

Admitting a Ptelative error 0([”%), this condition may be replaced
by its linearized form '

-2 ol + R

it 28 =0 (26)

10.



7. THE KIRCHHOFF-LOVE CONDITION IN THE FRAME OF MODERATE DEFLECTIONS

The well-known Kirchhoff-Love condition consists to neglect

transverse shear strains, i.e. to impose

= E, =0 : ‘ (27)

g
£3 o3

From the vanishing of 693, it is found

P=-Re R Wy + (g /Ry -v)+0(I) (28)

The simultaneous vanishing of & and &.. leads to the follo-

k%) 33

wing system

o~

{R,;gcx +Z;gb’ ='R;§ L +Z,~g u’_g+0(|—') (29)

"Iy %+ R Y = 0() (30)

Owing to the gemeral error level O r %) of the theory,. quantities
0([" ) appearing in equations (28) fo (30). are negligibly small as

compared to the displacement gradients composing the left sides

of these equations. Now, by virtue of the normalization condition (1),

oL and ¥y may be explicited from (27) and (28). This gives .
2 .

{O(= "R,g W,_g + R;g Z,.g ue (31)
- 2
X="R;§Z;§W;§+Z;gu;g (32)

Results (28), (31), (32) could of course be introduced
directly in the changes of curvature. Such a direct step, howe- \
ver, would be laborious, and a more effective step is as follows.
Firstly, from (29),

- =R_ ot + 2 + R w, -2 u =
Kvg X I -1 5 X;é 3% s 2% ,§
=-R_O0L=-2 -R_, W + 2. 0
a2 T sl T e Tae Y Ps Vs
Noting that, from (29),3! awd 32

228 = Rg Rop + 2.2 5gsg VR Wy + 2 4uy)

R
,_g_gd. + 2

where appears the group

2 2 :
getig ey " Rg v Tg) . =0,

R,f,, R

the following result is obtained

11,



K "—'R w ~"Z u °

T T T,e g8 | 48 EE (33)

Concerning Ke , one first computes

(1/R) }5,9 = -, /R%) ¥ oo t (Z /82 )(u -7 )

=

g
and

(OL/R) = - (R’?_‘g /Ii) Ve * (r Z ¢ /R) u"_g .-

s

from which

5 2
Ky= (R /ROW o0 @ (2 g /RJu 5 4 (Rg /RIR g Wog = Ziit’f

S
N -~

+ (g /%) u . (34)

The computation of K 5o WY be started by deducing from (29)

R & Z = -R_ W + 2 .1 o
2% T2e0,0 7 e Mot Big Ve
A differentiation of the following equivalent form of (28)

Rﬁ+R.g ,0 -Z,_g(u’efv)=0

with respect to § leads

RIS’?>+R,_§gw’g -Z,_g_g(u,e-v)= R’.gﬁ---l?.,_gw’_ge

2 (gg-vg)
from which

-2 Kga— (1/R)( - 2 R’_g Py

and, finally,

+ 2 2

= =(R'§ /R)W <0 - (Z ..g /R)u,.ge -

ng

=(R 2 /B2 )(R;g - Z;g (u’e -v)) + (Z;g /R)vs (35)

8. ON THE CONFORMITY CONDITIONS FOR FINITE ELEMENTS BASED UPON

THE PRESENT THEORY

Two adjacent elements are connected on a nodal line,
whose trace on the meridian half-plane -is " reduced to a single

point, The question now arises, to know what are the variables

200 "2 Rgf m 225 7e)

12.



13.

to be connected on this nodal line.

When trangvers shear effects are taken into account, all
components of the displacement and the rotation have to be trans-
mitted. However, an interrelation exists between o and y . In
fact, considering the vector '

w=af§+Pi@ + Y o ’ | (36)

~

the condition

= - (o4 R = 0
€33 = = 2% + Ra¥
may be interpreted as the vanishing of the normal component aJ3
of W . As a consequence, only f3 and the tangential component
= o A
Wy =R + Ty (37)

have to be connected., Let us mention here that the condifion

€_. = may be obtained in practice by a penalty method /6/.

33

In the frame of the Kirchhoff-~Love conditions, it follows
from (28) that P is automatically transmitted whenever the displa-
cements are connected on a nodal circle. Consequently, the only '

rotatio that has to be connected in this case is Dy Tts expression,

taking accoﬁnt of (29) and (30), is
wt=-R;§w;g+Z;gu;g A (38)

9. CONCLUSIONS

A general ftheory of rotational shells using cylindrical

- components of the displacements has been developed. This approach

permits an exact representation of rigid body motions by finite
elements using a Fourier decomposition, Shear effects have been
congidsred, but the XKirchhoff-Love hypothesis has also be exploited,
Finally, conformity¥ conditions have been examired in both cases.

It is interesting to note that the present theory is not signifi-
cantly more complex than the conical shell theory and rather sim-
pler than the quasi-conical shell theory. This fact, added to its

-exactness,make it very attractive for applications.
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