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1. Abstract

This paper compares two methods based on machine vision to provide driver assistance 

in seed drill guidance in order to improve spacing accuracy during contiguous passages. 

The first  case consisted of following the furrow created at  the preceding passage by a 

special  marker disc  attached to  the  seed drill.  A  camera  was  located on the  tractor  and 

detected this  furrow.  In  the second case,  the seed rows themselves were detected by the 

camera without making use of the marker disc.

In  both cases,  several  video sequences  were  acquired in  various  situations,  including 

different  soil  textures  and various  illumination  conditions  (375 sequences  were  acquired 

during  three  years).  A  pre-treatment  of  these  sequences  was  performed and  included  a 

background subtraction in order to remove shadows and other wide unevenness. In the first 

case,  the  best  results  were  obtained  by  using  an  image  treatment  based  on  the  Hough 

transform coupled to a recursive filter. The search of the maximum of the Hough transform 

was performed using a mean shift algorithm. In the second case, where several parallel rows 

were  simultaneously  present  on  the  images,  an  adapted  Hough transform  was  proposed 

which  took into  account  the  a  priori  knowledge  of  the  rows  spacing.  The  trueness  and 

precision in row detection were superior in the second case.  The results are compatible with 

the application, since the trueness was smaller than 30 mm. This suggested that it can be 

possible to assist the manual guidance of a seed drill by an automatic system consisting in a 
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camera detecting the seed rows.

Key words : guidance, Hough transform, mean shift, precision seed drill, machine vision, 

sugar beet.

2. Introduction

The guidance of the seed drill is obtained by steering the tractor.  A furrow created by a 

disc in the soil, during a previous passage have to be followed to ensure a correct lateral 

position.  Currently, this guidance is entirely undertaken by the tractor driver therefore some 

variation in the spacing between two contiguous passages may occur.  

Historically, the harmonisation of the sugar  beet production leaded to machines of six 

row widths or of multiples of six rows.  The seed drill often comprises twelve rows and the 

harvesting machines six rows.  The development of height-row harvesting machines would 

increase the productivity and reduce the harvesting costs.  These new versions of harvesters 

must  therefore operate  within  plant  rows  corresponding to  adjacent  passages  of the seed 

drill  with  slightly  varying  spacing.   The  current  solution  consists  of  mounting  pairs  of 

harvest  shares on independent frames to allow a certain clearance between pairs of rows. 

However,  the  driving  precision  required  during  the  sowing  demands  a  constant 

concentration  from  the  tractor  driver  during  the  seed  drill  operation,  increasing 

susceptibility to fatigue and consequently decreasing productivity.

This paper addresses  the problem of assisting  the guidance  of a  seed drill  in order to 

control the distance between contiguous passages.  This work was performed in two ways: 

detection of the furrow created by a disc during the previous passage and detection of the 

seed rows themselves.  

Different methods have been studied for automatic guidance for off-road vehicles such as 
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agricultural  machines,  using  a  combination  of  existing  solutions  including  global 

positioning,  inertial  sensors,  odometers and computer  vision (Jahns,  2000; Pilarski  et al., 

2002).   Stoll  and  Kutzbach  (2000)  presented  a  guidance  system  for  a  self-propelled 

windrower  using  a  real  time  kinematic  global  positioning  system,  but  most  devices  for 

precise driving assistance  of agricultural  machines are  mainly based on simpler, cheaper 

systems such as machine vision.  

No studies were found about a guidance system based on the detection of furrow or on 

seed rows.  Guidance systems based on computer vision in agriculture are mainly used for 

cut edge and plant rows detection.  The similarities between these researches and the task 

presented in this paper are presented here after.

To distinguish between cropped and uncropped zones in images Debain  et al.   (2000) 

used grey level and texture information.  Pilarski et al.  (2002) tracked the cut crop line edge 

by adjusting each row of the image with a step function, initially arbitrarily chosen and then 

determined  by  computing  Fisher’s  linear  discriminant  function  on  the  previous  image. 

Benson et al.  (2003) localised the cut edge of maize during harvesting by first determining 

whether or not the cut edge was shadowed and then localising the edge using an adaptive 

threshold.  

Considering the problem of crop row detection, Pla  et al. (1997) based an algorithm on 

the detection of the vanishing point of the row cluster.  This technique was borrowed from 

road vehicle  guidance  and the  authors  stated  that  compared with  other  applications,  the 

‘natural’ environment is characterised by irregular and undefined shapes with a high texture 

content.  The processing of the images included the segmentation of the colour images, the 

computation  of  the  row  skeletons,  the  localisation  of  straight  lines,  the  tracking  of  the 

vanishing point and the extraction of information from the lines concurring to the vanishing 

point.  However, this technique was computationally demanding.  Tillett and Hague (1999) 

described a method to track rows of cereals.  The images were segmented by ‘thresholding’ 
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and the position of the rows was given by applying the Hough transform.  Marchant (1996) 

used a similar technique tested on cauliflowers, sugar beet and widely spaced double rows 

of wheat and showed how considering several rows simultaneously increased the robustness 

of  the  algorithm.   Tillett et  al.   (2002)  exploited  the  periodic  variations  of  luminance 

between the soil and the plants due to the parallel crop rows.  A filter was applied which 

allowed  the  frequency  of  the  crop  rows  to  be  extracted  whilst  attenuating  the  lower 

frequency  effects  of shadows  and higher  frequency  effect,  due  predominantly  to  weeds. 

Søgaard  and  Olsen  (2003)  used  an  original  method  for  double  spaced  wheat  row 

localisation.  The grey level images were divided in horizontal strips and each strip into sub-

strips  having  a  width  corresponding  to  the  inter-row  width.   The  gravity  centre  of  the 

mathematically enrolled mean sub-strip gave, for each strip, the position of the rows and an 

estimation of the relative accuracy.  The estimation of the offset and of the orientation was 

given  by weighted linear  regression  for the  image.  The procedure  was  stated  to  reduce 

computational time.  

One of the problems encountered in outdoor image acquisition is the unevenness of the 

lighting  conditions,  in  time  and  space.   The  variations  of  the  sun  elevation  and  the 

nebulosity contribute to change the global illumination of the scene observed by the camera. 

The presence of shadows is due to illuminations variations within the image.  The variations 

from  one  image  to  the  other  could  be  partly  compensated  by  the  camera  itself  or  by 

adjusting threshold levels with the mean grey level of the image (Tillett & Hague, 1999) or 

by developing robust algorithms (Tillet et al., 2002 ; Søgaard & Olsen, 2003).  The problem 

of  the  shadows  should  be  considered  carefully.   Pilarski  et  al.   (2002)  developed  an 

empirical  shadow  compensation  algorithm.   Onyango  and  Marchant  (2001)  proposed  a 

colour image (red, green, blue) to grey level image transformation to eliminate the effect of 

the shadows, computed using the spectral characteristics of the irradiance and of the objects 

(soil and plants).

There are differences between these previous works and the use of machine vision for the 
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detection of soil furrows or seed rows (the traces), described in this paper.  Compared with 

edge detection, the traces are narrow elements which present dimensions similar to the clods 

responsible for the image texture.   In  contrast  to  plant  row detection, the traces  and the 

surrounding matter  (the rest  of the field) are  of the same nature,  differing only by mean 

luminance or texture but  not  by hue.  Furrow detection implies the detection of a single 

trace  in  the  image rather  than  several  rows.   For the  seed rows,  as  the  traces  are  quite 

narrow, the camera must be placed close enough to them.  

Two methods for the detection of the furrow were studied, the first  one that  used the 

Hough transform was inspired by the works of Marchant  (1996) and of Tillet and Hague 

(1999).  The second one was based on the division of the image into several strips following 

Tillet  et al. (2002) and Søgaard and Olsen (2003).   To localise  the seed rows,  the basic 

concept  was  to detect  several  rows simultaneously by using an  adaptation  of the Hough 

transform.  

The objective of this paper is to select the most suitable method to be used in a seed drill  

automatic guidance system: furrow detection or seed rows recognition.  

3. Materials and methods

2.1. Material

Video sequences were acquired during three sugarbeet sowing seasons, from Spring 2002 

to Spring 2004.  In  2002 and 2003, 326 videos of the furrows were acquired by a camera 

fixed on the tractor, which represent around three hours an a half and about 12 km covered. 

In 2003 and 2004, 49 videos of the seed rows were acquired, which is around two hours and 

7.5 km wandered.  The camera was fixed to the seed drills beyond the left extremity of the 

machine, in such a way that at least two rows could be observed.  

Many parameters, such as the lighting (direct sun or light diffused by clouds, elevation of 

the sun), the soil humidity and the dimensions of the clods change the luminance and the 
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contrast  in  the  image and may thus  affect  the  way  the  algorithms  operate.   In  order  to 

encounter this variability, the experiments took place in two regions in Belgium, differing 

by the climate and the soil (Hesbaye, with deep silty soils, rather flat relief and an altitude 

around  150 m and  Condroz  with  sandy-clay  soil  sometime cobbly,  varied  relief  and  an 

altitude  around 250 to 300 m which usually  induces a delay of one to two weeks in the 

beginning of the seeding period, compared with Hesbaye).  The videos were acquired during 

the  whole seeding period.  However,  as  the  soil  have  to  be sufficiently  warmed-up and 

sufficiently dry to able to drill, the weather was  always clement.  Sunny conditions with 

morning fog or mist and drying soils were most encountered.  

An  inexpensive  universal  serial  bus  (USB)  camera  Philips  PCVC 740K (Koninklijke 

Philips  Electronics  N.V.,  Eindhoven,  the  Netherlands)  was  used  in  2002  and  2003.   A 

Unibrain  Fire-iA400 1394 camera  (Unibrain  S.A., Athens,  Greece) equipped with a  lens 

having a focal length of 6 mm was used in 2004.  Both were colour mono-charge coupled 

device (CCD) cameras.  It  was a fix aperture for the USB camera and the aperture of the 

lens  of  the  Unibrain  camera  was  set  manually.   The  built-in  automatic  control  of  the 

electronic shutter were found suitable for the application.  

The commercial camera (Philips PCVC 740K) was chosen for its performances and its 

low cost.  This camera enable numerical video sequences to be produced with a resolution 

of 320×240 pixels, at  a rate  of 30 images per second, in various lighting conditions.  Its 

main  drawback  was  the  poor  optics  which  caused  some  ‘vignetting’  (darkening  of  the 

border of the image).  This aspect was easily corrected by an image treatment (background 

subtraction, see section 2.2.1.).  

The cameras were placed looking downwards, with their optical axis having an angle of 

30° with the vertical, in the forward direction.  The distance between the soil and the camera 

was of 0.9 m for the five first measurement places and of 1.2 m for the others.  The cameras 

were plugged on the USB or on the IEEE 1394 port of the computer.  The programs used for 
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the images treatments and the post-treatments were written in C++ using gcc (Free Software 

Foundation, Inc.).  The central processing unit was a ‘Pentium III’ (® Intel Corp.) having a 

clock frequency of 667 MHz.  The video sequences were saved as audio video interleave 

(AVI) files.  

2.2. Detection of the furrow

2.2.1. The Hough transform based method

The Hough transform is widely used for localisation of linear objects in images (Sonka et 

al., 1993).  This transform is quite robust against ‘noise’ and missing parts (the result of the 

algorithm is only slightly sensitive to imperfect data or to interferences), but limitations can 

be  encountered  when  the  ‘noise’  becomes  important  compared  with  the  contrast  of  the 

objects and when lures are present in the images.  In these situations, the detection of the 

maxima corresponding in the Hough space to the rows in the image could become a difficult 

task.  The studied application presents those characteristics.  Indeed, in the detection of seed 

rows, variations in the soil relief induce differences in the irradiance and consequently clods 

or tillage furrows add high uncertainty (the ‘noise’).  

The Hough transform computes uni-dimensional integrals of the image in a given number 

of directions.  The result is a new image (the ‘Hough space’, one dimension for the position 

perpendicularly to the integration direction, noted r and one for the angle, noted α) where 

the position of straight lines appears as maxima.  The classical pretreatment of the Hough 

transform consists of revealing the limit of the objects and applying a threshold in order to 

obtain bi-level images.  The objective of this research was to localise linear elements rather 

than  to find the limits  of objects.   Consequently  the pretreatments  had to make the lines 

visible  by removing unnecessary  information,  unwanted  noise (clods)  or the shadows of 

neighbouring  objects  (such  as  trees,  the  tractor  or  the  camera).   The  results  of  the 

pretreatments were grey level images, not bi-level images.  Figure 1 shows each step of the 

pre-treatment, the result of the transformation and the result of the detection.  
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Because the hue and the saturation of the soil was uniform in the images, the information in 

the three colour channels were redundant and only the data of the green channel were used 

(Fig. 1a).  The images were acquired with a size of 320×240 pixels.  The furrow was about 

100 mm (30 pixels) wide and the clods were far smaller.  As a smaller image contained 

sufficient information and generated a smaller computational load, the size was reduced, the 

scaling coefficient  being adjusted  (Fig.  1b).   Aliasing  effect  was  avoided by applying a 

Gaussian  convolution  filter.   After  the  reduction,  another  Gaussian  filter  was  applied in 

order to remove high frequencies (Fig. 1c).  The size of the second filter was adjusted.  

The  shadows  and  other  wide  unevenness  were  then  removed  using  a  background 

subtraction.  The background was first obtained by applying a median rank filter on the pre-

treated image.  The median filter is well suited to remove spikes and thin lines while leaving 

the edge of the objects  non blurred (Fig.  1d).  Subtracting the background from the pre-

treated  image  revealed  the  trace,  as  shown  in  Fig.  1e.   This  method  was  efficient  for 

shadows  larger  than  the  furrow.   The size of the  median  filter  was  thus  a  compromise. 

Values varying from 5 to 13 pixels were considered.  A larger filter was able to reveal larger 

traces, but also left larger shadows and was more computational demanding.

As the angle between the trace and the moving direction remained small, the angles of 

the integration directions were limited between -π/12 and π/12, with 48 steps.  The position 

of the trace was given by the maximum of the Hough transform and then by computing the 

position at the bottom of the image.  The considered maximum was the absolute maximum. 

A variant for the selection of the maximum was used, in order to identify and try to avoid 

the lures.  All the local maxima were researched by the mean shift algorithm proposed by 

Cheng (1995).  The basic principle is to consider a set of point in the Hough space.  The 

mean value of the Hough transform is computed on an area around each point, and each 

point  is  shifted  to  this  mean  position.   These  two  steps,  computation  of  the  mean  and 

shifting, are repeated up to the convergence of each point to a local maximum.  The points 
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reaching the limit of the Hough subspace, corresponding to lines at the limit of the image or 

presenting an angle of -π/12 and π/12 were ignored.  One of these maxima was then selected 

taking into account one or a combination of three parameters: the distance with the maxima 

extracted from the previous image, the highest maxima, the maxima presenting the highest 

volume i.e. the one to which the most point have converged.  

The Hough transform based method was found too slow to treat the videos at 30 images 

per second.  As  the speed of the tractor  during the sowing was  about  1 ms-1 and as the 

lateral movements were relatively small, a slower rate was considered and the behaviour of 

the algorithm was tested with one image out of five (equivalent to an acquisition frequency 

of six images per second).

2.2.2. Profile and regression based methods

The Hough transform requires  as  many  uni-dimensional  integrations  of  the  image  as 

there are angle steps in the resultant image (48 in our case).  Another method was developed 

with the objective of reducing the computational time.  This method required the equivalent 

of one integration.  Moreover, the pre-treatments were applied on one dimensional profiles, 

which contributed to reduce the computational load.  

The furrow appeared on the images as an almost vertical band (Fig. 1a).  Because of the 

small portion of ground observed by the camera and the large radius require by the seed drill 

to turn, the direction changes did not produced visible curvature in the images.  The image 

was divided horizontally into n strips, and each strip vertically integrated into a mean profile 

which was then pre-treated in a similar way as the images (Fig. 2).  The size reduction and 

the original  profiles were computed in one step, the luminance attributed to a point of a 

profile being the mean value  of the area  covered by this  point  on the image.  This  was 

sufficient to avoid any aliasing effect.  An uni-dimensional Gaussian convolution filtering 

was  applied  to  remove  minor  interference  from clods,  amongst  other  sources  (Fig.  2). 

Similarly, a uni-dimensional median rank filter was applied to the profile to remove peaks 
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and  troughs.   It  must  be noted  that  the  ‘standard  deviation’  of  the  Gaussian  filter  was 

considerably  smaller  than  the  width  of  the  median  filter.   Those  two  parameters  were 

adjusted.   The  difference  gave  the  flattened  profile,  where  the  general  trends  and  the 

shadows had vanished, but where the peaks corresponding to the traces remained.  

After having extracted the minimum in each profile (represented by the dot in Fig. 2), a 

straight line was then adjusted by regression and the position was computed at the bottom 

of the image.  

2.3. Detection of the seed row

The passage of the seed drill leaves a trace on the soil presenting a flat profile of about  

0.06 m width, with a small hollow in its centre.  For each row, the central hollow as well as 

one boundary of the flat profile were usually visible on the images as thin dark lines on a 

bright background (Fig. 3).  

The pretreatments presented in  Fig. 3 were the same as for the detection of the furrow. 

The trace left by the seed drill is narrower than the furrow and the value of the parameters 

were adapted.  The size of the image was reduced to various sizes from 120×90 pixels to 60

×60 pixels.  Square and rectangular Gaussian filters of various dimensions were also tested. 

Several sizes of the median filter were considered (varying from 3 to 11 pixels width).  

As long as the geometry of the acquisition (height  and tilt  angle of the camera, focal 

length) is not modified, the distance and the angle between the projection of lines in the 

image remain constant, even if the camera move horizontally.  In order to detect the cluster 

of lines in one operation, one transform was  carried out  for each line, but  with different 

angular and lateral references, so that the maximum representing each line was positioned at 

the same point of the Hough space.  The transforms were carried out for angles comprised in 

an  interval  of 0.6 radian  centred on the reference angle  of the considered line and for a 

width given by : 
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wHT wi nrow 10 (1)

where:  wHT is  the  width  of the  part  of the  image to  which the  Hough transform was 

applied; wi is the width of the image; nrow is the number of rows in the cluster.  The values of 

each part of the transform were summed.  The maxima corresponding to the crop row were 

added, while others peaks resulting for example from the tillage were added to the ‘noise’ 

and  thus  diluted.   When  the  seed  drill  was  correctly  positioned,  the  coordinate  of  the 

maxima was at (0,0), which corresponded to the centre of the Hough space image.  

2.4. Post processing

The results  from the image treatment  were quite  noisy and could not  be used directly to 

command the displacement of a seed drill.  Two methods were used to filter the data, the 

Kalman filter and a non linear recursive filter.  

The Kalman  filter  (presented originally  in  Kalman,  1960) is a  Bayesian  estimator  of the 

position provided that the movement of the seed drill and the measurement could be given 

by: 

xk Axk 1 Buk wk , x ,w n , u l (2)

zk Hx k vk , z m (3)

where: xk, xk-1 are the state vector at time step k and k-1, respectively; zk the measurement; uk 

is the displacement imposed by the regulation; wk was the process white noise (this noise is 

supposed to present no correlation between its value at a time step and any previous time 

steps) having a Gaussian distribution with a null mean and a covariance matrix Q; vk is the 

measurement white noise having a Gaussian distribution with a null mean and a covariance 

matrix  R.  The values of Q and  R were estimated thanks to the reference presented below 

(2.5.; the reference was considered as the true value of xk).  As there was no regulation on 

the lateral displacement of the seed drill, uk was always zero and B was not necessary.  The 

matrices A and H had to be determined.  For the detection of the furrow, the state vector xk 
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is the  abscissa of the  furrow  at  the  bottom of the  image.   The estimation  of the  actual 

position and its best estimation based on earlier data is the previous positions xk-1 , thus A=1 

and the measurement of the position is correct and unbiased, thus H=1.  For the detection of 

the seed rows, xk was the estimated Hough space coordinates:

xk
r

k
(4)

and zk was the measured Hough space coordinates:

zk
r

k
(5)

where: r and r are  the  position  perpendicularly  to  the  integration  direction  (respectively 

estimated and measured), and and α are the angle of this direction with the vertical in the 

image (idem).  The measurement came directly from the detection of the maximum in the 

Hough  space and the variables r and α where considered independent respectively to each 

other.  Matrices A and H where thus equal to the two dimensional unity matrix.  

The  position  was  then  computed  into  two  steps,  a  prediction  and  a  correction  as 

presented by Hague  et al. (2000).  The covariance matrix  P of the estimated position was 

also returned.

Many  objects  present  in  the  image  such  as  seedbed  preparation  furrows  or  clods 

occasionally  provided several  alignments  which  lured the  detection  algorithms.   In  such 

situations several  extrema were present  in the Hough space and a confusion between the 

real furrow and the lures was possible.  The assumption made about the noise were then no 

more fulfilled.  For these reasons,  a  non linear  recursive  filter  was  also used.  As  thirty 

images were acquired each second, the lateral  displacement  of the furrow relative  to the 

seed drill had to change only a little.  Thus a measure which was far from the estimation 

was less likely than a measure close to it.  The principle was to estimate the actual position 

xk based on the previous estimation xk-1 and on the measurement zk as following :
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xk = ak xk-1 + (1-ak) zk (6)

The factor ak or elements of the vector ak, respectively for the detection of furrow and for 

the detection of the seed rows, were given by:

ak = 1- c exp(-(xk-1 – zk)
2 /s)   (7)

ak

1 c exp
k 1 k

2  

s

1 cr exp
r k 1 rk

2  

sr

(8)

with c and s, cα and cr, sα and sr, coefficients which were adjusted.  

For the method based on the  Hough transform, the  filter  was  applied on the position 

estimated at  the bottom of the image.  For the profile based method this  processing was 

applied on the value extracted from each profile, before the regression.  

2.5. The reference and the measurement

Several  hundred  videos  were  acquired  in  the  fields,  representing  many  kilometres  of 

travel,  however,  the position  of the  camera  relative  to  the furrow  or seed rows was  not 

recorded.   To  evaluate  the  behaviour  of  the  different  algorithms  a  reference  had  to  be 

established.  A special program was written to record the position of the traces determined 

by an operator using the mouse while each video was played at a reduced speed (up to about 

20 images per seconds, for a trained operator).  All the videos were analysed and at the end 

of the  treatment  five  videos randomly selected were analysed a  second time in  order to 

evaluate the variability of the operator.  

Both for the algorithm and the reference, the position of the traces were measured at the 

bottom of the image (the closest to the tool).  The traces localisation program extracted each 

image of the video sequentially, localised the row and filtered the signal.  The data  were 

measured in pixels but were translated in mm in the ‘Result’ section.  The deviation (the 
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absolute difference, denoted by dx) and the difference between the reference and the point 

deduced from the filtered data  were then computed and recorded against  the elapsed time 

from the beginning of the video.  The classical error parameters, the trueness, given by the 

mean of the deviation, and the precision given by the standard deviation of the difference 

were  computed  for  each  video.   The  median  of  deviation  being  less  influenced  by  the 

extreme values  was  also  computed.   The  extreme values  indicating  when  the  algorithm 

failed, were characterised by the third quartile and by the maximum of the deviation.  

4. Results

3.1. Detection of the furrow

First, the adjustment of the parameters are described (3.1.1.).  Then, the results are given 

for the method based on the Hough transform and its variants (3.1.2.).  The comparison of 

the Hough method and of the profile based method follows afterwards (3.1.3.).

The mean absolute difference between each pair of the five videos analysed twice was of 

13 mm.  This represented four to five pixels and compared with the trace width varying 

from about 10 mm (3-4 pixels) to around 200 mm (60 pixels).

3.1.1. Parameters fitting

The two detection techniques and the two post-treatments can be combined in different 

ways  and Table 1 gives the parameters having been adjusted  for different  combinations. 

Most of the parameters showed similar values for the different methods.  Concerning the 

size of the Gaussian filter it should be noted that, for the Hough transform based method, 

this  concerned  a  two-dimensional  filter  and,  for  the  regression  based  method,  a  uni-

dimensional filter.  In this latter case, a filtration already occurred during the computation of 

the profile, which explained the lower value.  Unlike other parameters, the maximal value of 

the recursive filter c (Eqn 7) showed high variations.  Both post-treatments tended to filter 

the signal.  Thus, when the recursive filter and the Kalman filter were applied together,  c 

was higher [according to Eqns (6) and (7), this meant that the value of ak decreased and that 
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the signal was less filtered].  

3.1.2. Results of the Hough based methods

Table 2 summarises the results  of the trace localisation for the different combinations. 

The best   filter applied after  the Hough transform based method was the recursive filter. 

The  trueness  and  the  precision  were  not  very  accurate  though  compatible  with  the 

application.  The trueness was comparable or higher than the third quartille and the median 

was  lower  than  the  trueness,  which  indicates  a  strong  asymmetry  in  the  frequency 

distribution  (Fig.  4a).   The  mode  of  the  frequency  distribution  was  not  at  zero  which 

indicated a bias between the reference and the results.   The mean difference (and not the 

mean of the absolute differences) was of -11 mm in 2002 and 45 mm in 2003.  This bias can 

also be observed in Fig. 5, showing the position returned by the algorithm and the reference 

in function of the image step (equivalent  to the time, with 30 images per seconds), for a 

typical video sequence.  The raw measure was generally close to the reference but it can be 

seen that the algorithm was sometimes lured.  When the algorithm succeeded to localise the 

trace,  this  offset  depended  on  the  lighting  conditions  (clouds,  orientation  of  the  sun 

compared with the furrow, humidity).  An assymetric ‘v’-shaped furrow was formed by the 

disc with one edge almost vertical and close to the bottom of the furrow, while the other 

edge was more flared.  The operator localised the bottom of the furrow while the algorithm 

found  the  darkest  part,  which  explained  the  residual  offset.   Most  of  the  results  were 

grouped around the main mode, indicating that the algorithm worked correctly in most of 

the situations.  The algorithm was considered to have failed to localise the furrow when the 

deviation  was  above  200 mm, the  clearance  tolerated  by  the  harvesting  machine.   The 

frequency of the sequences showing a deviation above 200 mm was of 36 (on a total of 326, 

i.e. 12%).   These  data  were  not  observed at  random but  were  grouped into  four  places 

(Barsy, Liroux, Wallay, Acosse).  Most of these (29) were encountered in one place (1 out 

of 16), which may explain a part of the difference between the results of the two years, in 

Table 2.  Figure 6 shows an image extracted from a video acquired at Liroux.  The furrow 
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was clearly visible, but other furrows resulting from the seedbed preparation were visible 

too.  A detailed observation of intermediate  results  showed that  the problem was related 

with  the width  of the  trace  which was  very thin  compared with  the  others.   In  fact  the 

algorithm followed a cluster of less contrasted traces.  It  was easily possible to ‘tune’ the 

parameters  to  solve  this  problem, but  as  explained  earlier,  the  parameters  fitting  was  a 

compromise and tuning the parameters to detect  narrower traces would mean to decrease 

the  detection  of  wide  traces.   These  failures  occurred  when  the  sun  was  approximately 

overhead, resulting in limited or no shadows (as for Liroux).  This was a limitation of the 

method.  This was however not systematic: at other places with similar lighting conditions, 

other  factors  such  as  the  moisture  of the  soil  were able  to  reveal  the  trace,  while  some 

seedbed preparations produced lures (Fig. 6) which could be avoided.  

The comparison of the different methods or combinations showed that the Kalman filter 

applied alone after the Hough transform was not suitable and provided no advantage when 

used in  combination  with  the recursive  filter.   The non linear  recursive  filter  was  found 

better for filtering the impulsive noise than the Kalman filter.  This later is based on several 

hypotheses,  amongst  other  white  noises  with  Gaussian  distributions.   Neither  of  these 

requirements  were fulfilled.  Some test  with  ‘coloured noise’ (noise having a  decreasing 

power spectrum as the frequency increase, meaning that its value at time step k, Eqns 2 and 

3,  is  somehow  correlated  to  its  values  at  time  steps  k-1,  k-2,  ...  k-n)  showed  that  the 

autocorrelation  of the noises vk and wk varied from one video to the other and we were 

constrained to use the white noise hypothesis.  Moreover, the variances of the noises also 

varied from place to place, depending on the contrast  of the furrow with the surrounding 

matter for the measurement noise (vk) or on the behaviour of the driver for the process noise 

(wk).  These variations in the noises variances also complicated the rejection of the lures 

based on the estimated covariance of the estimated position, as did Tillett et al. (2002).

When one image out of five was treated, to simulate the behaviour of the algorithm running 

at  6 images per second, the increase in  the image steps  did not  change significantly  the 
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results, thus allowing the algorithm to be run on-line on a cost effective processor.

The mean-shift algorithm (with the selection of the absolute maximum) used to retrieve 

the maxima in the Hough space enhanced significantly the results (Table 2).  Particularly, 

the trueness and the precision of 2003 were strongly reduced.  The maximal values were 

brought  from above  700 to  below  300,  the  third  quartile  were  slightly  reduced and  the 

median were about the same.  Figure 4 shows the frequency distributions of the deviation 

for the base method and for mean-shift variant.  The mode is at the same place as for both 

methods  but  the  outliers  are  strongly  reduced  with  the  mean-shift  variant.   With  this 

method, only 9 videos (out of 326,  i.e. 3%) presented a deviation above 200 mm and all the 

concerned videos were acquired at the same place (Liroux).  

3.1.3. Comparison with the profile and regression based method

The profile and regression based method showed a trueness and the precision lower than 

for the Hough transform based method dispersion (higher values of the mean, median and 

standard deviation, Table 2).  The values of the trueness were tested with paired t-test and 

the medians with paired Wilcoxon rank test.  The means were not significantly different, but 

showed a probability to observe the difference if the mean were equal of 0.06, close to the 

significance  level.   The  median  were  very  highly  significantly  different.   The  standard 

deviations also showed very  high significant differences.  The major drawback came from a 

drop in robustness,  with 60 videos presenting deviations over 200 mm which was nearly 

twice as much as for the Hough transform based method.  Only a part  of the image was 

integrated for each profile, which means that the ‘noise’ was less attenuated compared with 

the Hough transform method.  

The  Hough  transform based  methods  were  able  to  compute  just  above  7 images  per 

second (the program treating one image out of five was thus able to treat the whole video in 

real time), while the regression and profile based method could reach 50 images per second. 

3.2. Detection of seed rows
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Few parameters had to be fitted.  The size of the reduced image were of 120 pixels wide 

and 90 pixels high, conserving the original width to height ratio.  The lines to be detected 

were sometimes quite thin and smaller image size tended to lessen the results.  The Gaussian 

filter size was 11 pixels in height and 3 pixels in width.  This asymmetry contributed to 

reduce the ‘noise’ while preserving the thin vertical lines.  The median filter was square and 

of 5 pixels.  A bigger median filter attenuated wider objects in the background image and 

thus preserving them better in the final image.  This was favourable to reveal the seed rows 

(the ‘target’) but also for other lines resulting from the soil tillage, for example.  These other 

lines appeared often wider on the images and the parameter fitting led to median filter size 

relatively small for this application and far smaller than for the detection of the furrow.

The results of the pretreatments are shown in Fig. 3.  Most of the shadows were removed 

by  the  background  subtraction.   The  contrast  which,  on  the  original  image,  was  less 

important  in  the  shaded  part,  remained  smaller  in  those  parts  of  the  pretreated  image. 

Nevertheless, the lines were visible in that part too.  A thin part of the tractor door remained. 

This linear element has similarities with the seed rows except for its orientation.  As the 

adapted Hough transform was carried out in an interval of 0.3 radians on each side of the 

vertical in the image,  such objects are not considered by the adapted Hough transform and 

was  for this  reason  not  confused  with  the  seed rows.   This  means  that  the  presence  of 

vertically elongated objects, which may provide shadows with an orientation and a width 

similar to the seed rows, if these objects are found near the camera, have thus to be avoided 

to prevent confusions.  

The images in the rows 5 in Figs 3, representing the result of the classical Hough plane 

for angles varying from - π /2 up to  π/2 rad, are given for didactic purposes and were not 

used by the proposed algorithm.  The images of the row 6 (Fig. 3) were the results of the 

adapted Hough transform (for angles varying from -0.3 to 0.3 radian around the reference). 

For both the classical and the adapted Hough space, the grey scale was scaled so that the 



19

black level represents the minimum and the white level represents the maximum.  

In good conditions when the rows were clearly visible, as in  Figs 3a, one maxima was 

observed for  each  crop  row  for  the  classical  Hough  transform.   The  detection  of  these 

maxima might have been achieved using for example the mean-shift.  When the conditions 

were less favourable, the maxima decreased while others might appear.  This can be seen 

particularly in Fig. 3-5b where highest maxima corresponded to the furrow between the seed 

rows.  The problem of the association of the pairs or triplets of maxima corresponding to the 

lines in the cluster would became more intense.  On the adapted Hough transform, one main 

maximum was observed in most conditions.

Considering the  filtering of the signal  resulting  from the image analysis,  it  should be 

noted  that  lateral  movements  of  the  drilling  machine  was  more  likely  than  an  angular 

movement.  Consequently, the values of both coefficients c were different and fixed at 0.002 

for cα and at 0.01 for cr.  

Table  3  gives  a  summary  of  the  statistics  described  above.   The  trueness  and  the 

precision of the method were found to be satisfactory for the application, the rows being 

localised with a trueness of a few centimetres and a good precision.  The third quartile was 

barely higher than the mean, thanks to the asymmetry of the frequency distribution of the 

deviation.  The maximal values were well beyond the clearance of the machines.  

3.3. Comparison

The precision reached in the detection of the seed row was far better than the best method 

of furrow detection.  The detection of the furrow had to deal with traces of quite different 

widths while the traces left by the drill were of constant width (even if narrow) which was 

an advantage for the detection.  The computation load of both methods was comparable.

5. Conclusions

The  localisation  of  a  seed  drill  relative  to  previous  passages  was  carried  out  with  two 
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techniques. 

First,  methods for the localisation  of a  furrow in video sequences were presented and 

compared.  Pre-treatment, consisting mainly in a background subtraction, was introduced to 

avoid the effects of the shadows and was found effective.  An image treatment based on the 

Hough transform and followed by the localisation of the maxima based on Cheng’s mean 

shift  algorithm and by a  recursive  filter  gave  the  best  accuracy.   The treatment  of 326 

videos,  acquired  during  two  sowing  seasons,  showed  a  trueness  (below  65 mm)  and  a 

precision (below 55 mm) compatible with the application.  The main limitations came from 

the  geometrical  characteristics  of  the  illuminant,  when  two  circumstances  were  both 

present, no shadow of the furrow was visible and when the soil was dry at the depth of the 

furrow.  

Second, an adapted Hough transform was applied on grey level images for the detection 

of seed rows.  The adaptation consisted in computing one Hough transform per seed row 

with  for  reference  the  theoretical  position  and  orientation  of  the  considered  line.   This 

method showed one maxima in the Hough space while the classical method gave one local 

maxima for each trace.  This maxima presented a good contrast  in most conditions.  The 

images had to be pretreated with the same algorithms as the in first method, but the traces 

being narrower, a slighter median filtering was required.  The overall performance of the 

method, showing a deviation from a reference of few centimetres (below 30 mm) was found 

totally satisfying.  

The cost  in terms of equipment  or computational  power are around the same for both 

techniques.  The precision of the seed row detection was found superior and this method 

will be implemented to control the prototype which shall be tested during the next sowing 

season.  
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Table 1

Optimal values of the parameters fitted for each of the method combinations

Parameter/
main method +
posttreatment,

variant
Image scaling

Standard deviation of the 
Gaussian 

filter,  
pixels

Square median filter  
width,  
pixels

Parameters of the
recursive filter

Eqn (5)
(c)              (s)

                  pixels²

Process ‘noise’  
covariance 

(Q)
pixels²

Measurement ‘noise’  
covariance 

(R)
pixels²

Hough based + 

recursive filter
0.15 3 7 0.01 5×104 - -

Hough based + 

Kalman filter
0.15 3 9 - - 1.6×103 3.6×106

Hough based + 

recursive filter + 

Kalman filter

0.15 3 9 0.3 5×104 1.6×103 3.6×106

Hough based + 

recursive filter, step 5
0.15 3 7 0.01 5×104 - -

Hough based + 

recursive filter, 

mean shift

0.075 2 9 0.01 1×104 - -

Regression based + 

recursive filter + 

Kalman filter

0.15 1 9 0.7 5×104 1.6×103 3.6×105
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Table 2

The results for the various method combinations, post-treatments and eventual variants are 

summarised with the trueness (mean of the deviation, the absolute differences between the 

reference and detection), the precision (standard deviation of the difference), the median, 

the third quartile and the maximum of the deviation.  All the distances are given in mm

Statistic/
Main method +
posttreatment,

variant

Year
Trueness
(mean)

Precision
(standard deviation)

Median Third quartileMaximum deviation

Hough based + 

recursive filter
2002

2003

64

106

49

156

51

41

66

88

301

731

Hough based + 

Kalman filter
2002

2003

74

115

62

164

54

43

75

99

378

753

Hough based + 

recursive filter + 

Kalman filter

2002

2003

65

101

55

151

54

41

64

74

353

608

Hough based + 

recursive filter, 

step 5

2002

2003

64

108

48

157

54

46

67

97

301

660

Hough based + 

recursive filter, 

Mean Shift

2002

2003

65

58

34

54

57

39

76

70

157

284

Regression based + 

recursive filter + 

Kalman filter

2002

2003

99

125

112

144

57

55

100

158

509

593



25

Table 3

Main statistics of the deviation with the reference, concerning the detection of seed rows, summarised 

with the trueness (mean of the deviation, the absolute differences between the reference and 

detection), the precision (standard deviation of the difference), the median, the third 

quartile and the maximum of the deviation.  All the distances are given in mm

Trueness 
(mean)

Precision 
(standard 
deviation)

Median Third quartile Maximum
deviation

Mean 28 22 23 38 112

Standard 

deviation 16 14 15 22 88
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a b

c d

e f

g

Fig. 1.  Images extracted from the different steps of the Hough transform based method. (a) green channel of a  

colour image extracted from the numeric video sequence : 320×240 pixels; (b) size reduction 48

×36 pixels; (c) low pass Gaussian filtering; (d) rank median filter returning the background; (e)  

background subtraction; (f) the ‘Hough space’, with horizontally the the angle of the projection  

line with the horizontal (α) and vertically the distance along the projection line; (g) the detected  

line in the image
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Fig. 2.  Graphical representation of the different steps of the Profile and regression based method : (a)  image  

was extracted from a video sequence and divided into four strips, the second one being outlined;  

and (b) its profile; in light grey, the raw profile; in grey, the median filtered profile (the  

‘background’); in black, the difference; the minima were localised on the upper image (a) by dots  

and the dashed line represents the result of the regression  
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a b

1
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4

5

6

7

Fig. 3.  Pretreatments of the seed row images: (1) original images; (2) images after resizing and after the  

Gaussian filter; (3) background images (after median filter); (4) images after background  

subtraction; (5) image of the classical Hough transform; (6) image of the modified Hough 

transform; (7) result of the detection; (a) sample image containing a wide shadow; (b) sample  

image containing fine shadows and a tillage furrow (lure)
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Fig. 4.  Histogram of the mean absolute difference with the reference, obtained with the Hough transform 

based method (a), with the same method and the mean shift variant (b)
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Fig. 5.  The position returned, for a video, by the Hough transform method alone (raw data, in light grey) and  

by the whole algorithm (filtered, in dark grey).  The reference is in black
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Fig. 6.  Image extracted from a video and showing the furrow (the most contrasted trace at the first quarter  

from the left) and lures produced here by the seed bed preparation 
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