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Chapter 1

Introduction

Shape Memory Polymers (SMP) are those unique materials that have the ability to
memorize a macroscopic shape, in other words, to change shape and to recover the original
shape. SMP can fix a temporary deformed configuration and recover their initial shape upon
application of a stimulus such as temperature [36], light [38], electric field [1§], magnetic
field |65], water [31] and solvent [49]. Additional information about the different kinds of
stimuli can be found in [9,/52]. These polymers take advantage of a property change at the
glass transition temperature Ty. Below T, the movement of the polymer segments are frozen
and the polymers are considered to be in a glassy state. Once they are heated above Ty the
chains become weak and the polymers are considered to be in a rubbery state, such that
the materials can be deformed with minimal force. Shape Memory Polymers are capable of
large deformations (high recovery strain), which are essential for applications where storage
space is critical. Structures can be folded in a compact phase and then they can recover
their shape, because of an external stimulus. In addition they have other advantages such
as low density, low cost, and easy processability.

However, SMP have the drawback of low strength and stiffness when they are used
for structural applications. This drawback can be overcome by disperesing (distributing)
continuous or discontinuous reinforcements throughout a polymer matrix, leading to Shape
Memory Polymer Composites (SMPC). Meng et al. [53] have clarified that the aim of SMPC
is to improve the shape memory recovery stress and the mechanical properties in addition
to act as triggering mechanisms under light, moisture, electricity, or magnetic field, but
also to tune the transition temperature. In particular, the kinds of reinforcement that we
are interested in are nanowires, carbon nanotubes, and continuous carbon fibers dispersed
throughout a shape memory polymer which results in composite materials with high stiff-
ness and strength to weight ratios. The polymer matrix indeed avoids catastrophic failure
due to fiber breaking, and the existence of the carbon fibers enhances strength and stiffness.
Moreover, carbon fibers exhibit conductivity which can be exploited as a shape memory
triggering mechanism. The range of composite material electrical conductivity can be con-
trolled by the amount of carbon fibers, and the increase of temperature required to trigger
the Shape Memory effect is obtained through Joule effect by applying an electric current,
which makes them favorable and meet the particular requirements for many applications
in which applying an external heat is difficult. Henceforth SMPC are the prime candidate
materials for the area of deployable space structures (intelligent structures). A review con-
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cerning polymer composites and conductive polymers under the scope of a thermoelectric
application and the evaluation of their figure of merit along the last years have been re-
ported by Culebras et al. [15], in which the improvement of the thermoelectric properties
of polymers mixed with graphite/graphene, carbon nanotubes, or inorganic thermoelectric
nanoparticles has been studied. Characterization, fabrication, and modeling of SMP and
SMPC, in addition to their potential applications across a wide variety of fields from outer
space to automobile actuators have been extensively described by Leng et al. [39], see Pilate
at al. [59] as well for more applications. In particular, Yu et al. [78] have suggested to incor-
porate shape memory polymer with carbon nanotubes and short carbon fibers, because the
existence of carbon nanotubes alone could decrease the elastic modulus and the stretch of the
materials. They have shown experimentally the enhancement of the electrical, thermal, and
shape memory properties of the conductive SMP composites, as the addition of the short
carbon fibers has increased the electrical conductivity by 1000 times in comparison with
carbon nanotubes alone when the same amount of the fillers are used. Besides, they have
shown that this kind of SMPC is able to recover 98% in comparison to its original shape. It
should be noted that continuous carbon fiber reinforced SMP shows an improvement in the
mechanical properties related to stiffness and strength and this makes them good candidates
for applications where structural stiffness is required, contrarily to particles or short fibers
reinforced composites [35,40].

The aforementioned studies and many other ones [19,41}53|78] have shown the potential
of SMP reinforced by fibers to be used for the spacecraft self-deployment devices such as
antennas, hinge, trusses, boom, reflector, solar array, morphing skin, and vibration control
devices. A good example is the prototype of solar array deployed by means of a SMPC
hinge proposed by Lan et al. [35]. This panel can be compacted on earth, stored in a
compacted shape, and then self deployed in space. The hinge is heated above glass transition
temperature Ty by applying an electric potential of 20 [V], then it is bent to 90° by applying
an external force at soft state, cooled while constrained to a room temperature, afterward
reheated by applying the same electric potential again which causes the deployment of the
prototype of the solar array, as shown in Fig.

Many experimental studies for conductive shape memory polymer composites actuated
by Joule heating have been explored by many researchers [18}35,/42}45]46,,47,48]. However,
the Electro-Thermo-Mechanical coupled large deformation constitutive theory and numerical
simulations for such behaviors are not wide spread, although it is useful to reduce the number
of expensive experimental tests. In this work, a multi-field coupling resolution strategy
is used for the resolution of electrical, energy, and momentum conservation equations by
means of the Discontinuous Galerkin Finite Element Method (DGFEM) to solve the various
interacting physics and coupled simulations.

The main idea of the Discontinuous Galerkin (DG) formalism is to constrain weakly
the compatibility between elements, on the contrary to classical FEM. In this case, the
solution is approximated by piece-wise continuous polynomial functions, which allows using
discontinuous polynomial spaces of high degree and facilitate handling elements of different
types and dynamic mesh modifications. Indeed, the possibility of using irregular and non
conforming meshes in an algorithm makes it suitable for time dependent transient problems.
They also allow having hanging nodes and different polynomial degrees at the interface,
with a view to hp-adaptivity. In addition, since the DG method allows discontinuities of
the physical unknowns within the interior of the problem domain, it is a natural approach
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Figure 1.1: Shape recovery process of a prototype of solar array actuated by SMPC hinge

to capture the jumps across the material interface in coupled problems. Above all, DG
methods are also characterized by their flexibility in terms of mesh design while keeping
their high order accuracy and their high scalability in parallel simulations while optimal
convergence rates are still achieved.

However, if not correctly formulated, discontinuous methods can exhibit instabilities,
and the numerical results fail to approximate the exact solution. It is, therefore, important
to have methods available which lead to reliable results for a wide variety of problems. By
using an adequate inter element flux definition combined to stabilization techniques, the
shortcomings of non-stabilized DG methods can be overcome .

Since the seminal work of Reed et al. , DG methods have been developed to solve
hyperbolic, parabolic, and elliptic problems. The state of the art of DG methods and their
developments can be found in . Most of DG methods for elliptic and parabolic problems
rely on the Interior Penalty (IP) method. The main principle of IP, as introduced in ,
is to constrain weakly the compatibility instead of building it into the finite element which
enables the use of discontinuous polynomial spaces of high degree. The interest in the
symmetric interior penalty (SIPG) methods, which will be considered in this work, has
been renewed by Wheeler due to demands for optimality of convergence rates with the
mesh size hg (i.e., the rates of the convergence is k in the H'-norm and k + 1 in the L2-
norm, where k is the polynomial approximation degree). However there exist other possible
choices of traces and numerical fluxes as discussed by Arnold et al. , who have provided
an analysis of a large class of discontinuous methods for second order elliptic problems with
different numerical fluxes, and demonstrated that correctly formulated IP, NIPG (Non-
Symmetric Interior Penalty), LDG (Local discontinuous Galerkin), and other DG methods
are consistent and stables methods. In particular Arnold et al. [5] have proposed a framework
for dealing with linear elliptic problems by means of DG methods and demonstrated that
DG methods which are completely consistent and stable achieve optimal error estimates, and
that the inconsistent DG methods like the pure penalty methods can still achieve optimal
error estimates provided they are super-penalized. Besides, Georgoulis has derived
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anisotropic hp-error bounds for linear second order elliptic diffusion convection reaction
using Discontinuous Galerkin finite element method (SIPG and NIPG), on shape-regular and
anisotropic elements, and for isotropic and anisotropic polynomial degrees for the element
bases. He has also observed optimal order of convergence in the L2-norm for the SIPG
formulation when a uniform mesh size refinement for different values of k is employed.
Moreover, he has shown that the solution of the adjoint problem suffers from sub-optimal
rates of convergence when a NIPG formulation is used. Yadav et al. [76] have extended
the DG methods from a linear self-adjoint elliptic problem to a second order nonlinear
elliptic problem. The nonlinear system resulting from DG methods is then analyzed based
on a fixed point argument. They have also shown that the error estimate in the L?-norm
for piece-wise polynomials of degree k > 1 is k + 1. They have also provided numerical
results to illustrate the theoretical results. Gudi [24] has proposed an analysis for the most
popular DG schemes such as SIPG, NIPG, and LDG methods for one dimension linear and
nonlinear elliptic problems, and the error estimate has been studied for each of these methods
by reformulating the problems in a fixed point form. In addition, according to Gudi [24],
optimal errors in the H'-norm and in L?-norm are proved for SIPG for polynomial degrees
larger or equal to 2, and a loss in the optimality in the L2-norm is observed for NIPG and
LDG. In that work a deterioration in the order of convergence in the mesh size hg is noted
when linear polynomials are used.

Recently, DG has been used to solve coupled problems. For instance Wheeler and Sun [69)
have proposed a primal DG method with interior penalty (IP) terms to solve coupled reactive
transport in porous media. In that work, a cut-off operator is used in the DG scheme to
treat the coupling and achieve convergence. They have declared that optimal convergence
rates for both flow and transport terms can be achieved if the same polynomial degree of
approximation is used. However if they are different, the behavior for the coupled system is
controlled by the part with the lowest degree of approximation, and the error estimate in the
L?(H')-norm is nearly optimal in k with a loss of % when polynomials with different degrees
are used. Furthermore, Zheng et al. |[79] have proposed a DG method to solve thermo-elastic
coupled problems due to temperature and pressure dependent thermal contact resistance.
In that work the DG method is used to simulate the temperature jump, and the mechanical
sub-problem is solved by the DG finite element method with a penalty function.

The main aim of this work is to derive a consistent and stable Discontinuous Galerkin
(DG) method for Electro-Thermo-Mechanical coupling analyzes, which to the authors knowl-
edge, has not been introduced yet. The constitutive equations governing Electro-Thermo-
Mehanical coupling can be formulated as a function of the displacement u, the electric
potential V and the temperature T, in particular under the form f(u, %, %) Such a
formulation for Electro-Thermal coupling, without the mechanical contribution has been
considered in the literature, e.g. Mahan [51], Yang et al. |[77], Liu [43], in order to obtain
a conjugated pair of fluxes and fields gradient. Mahan [51] has provided a comparison be-
tween the different energy fluxes that have been developed and used by different researchers
and concluded that all these different treatments result in the same equation. We have
extended this energy consistent formulation to Electro-Thermo-Mechanics and by this way
we are able to derive a consistent Discontinuous Galerkin (DG) method and its numerical
properties for Electro-Thermo-Elasticity. The main advantage of this work is the aptitude
to deal with arbitrary geometry and the capability of the formulation to capture the Electro-
Thermo-Mechanical behavior for composite materials with high contrast: one phase has a
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high electric conductivity (e.g., carbon fiber) and other is a resistible material (e.g., poly-
mers). Moreover, another objective of this study is to investigated the response of carbon
fiber reinforced shape memory polymer composites when an electric power is applied. For
that a micromechanical model of unidirectional carbon fibers embedded in a shape memory
polymer matrix is formulated considering the interaction of electrical, thermal, and mechan-
ical fields. It is then solved using the DG method to determine the time dependent response
of the Electro-Thermo-Mechanical shape memory polymer composites and to determine the
effective properties and quantify the variation of the fields in the large deformation regime,
when they are actuated by a low electric power.
This work is structured as follows

e Chapter 2, general properties of the finite element method and Hilbert spaces, describes
the general properties that will be needed for deriving the numerical properties of DG
formulation in the following three chapters, and defines the function spaces and the
norms that will be considered.

e Chapter 3, a coupled Linear Thermo-Elasticity Discontinuous Galerkin method, fo-
cuses on the governing equations of Linear Thermo-Elasticty coupling and the deriva-
tion of a Discontinuous Galerkin (DG) finite element method. Next some theoretical
results on the stability and uniqueness of the solution for this problem are presented,
followed by the error analysis and numerical tests verification of the theoretical study.

e Chapter 4, a coupled Electro-Thermal Discontinuous Galerkin method, introduces
Electro-Thermal coupling and its application. Then the chapter describes the gov-
erning equations of Electro-Thermal materials. An alternative weak form in terms
of energetically conjugated fields gradients and fluxes is proposed. This weak form
is then discretized using the Discontinuous Galerkin method, resulting in a particu-
lar choice of the test functions (3fr = d(7),dfy = 6(=)) and of the trial functions
(fp = %, fv = %V), where T is the temperature and V is the electric potential. This al-
lows us to develop a DG formulation for nonlinear Electro-Thermo coupled problems.
The numerical properties of the DG method are demonstrated, based on rewriting
the nonlinear formulation in a fixed point form [34]. The numerical properties of the
nonlinear elliptic problem, i.e. the consistency and the uniqueness of the solution are
demonstrated, and the prior error estimates are shown to be optimal in the mesh size
for polynomial approximation degrees k > 1 for the energy-norm and L2-norm (re-
spectively in order k and k 4+ 1). Eventually several examples of applications in one,
two, and three dimensions are provided for homogeneous and composite materials, in
order to verify the accuracy and effectiveness of the Electro-Thermal DG formulation
and to illustrate the algorithm properties.

e Chapter 5, a coupled Electro-Thermo-Mechanical Discontinuous Galerkin method, is
developed considering the interaction of electrical, thermal, and mechanical fields. The
DG method is formulated in finite deformations and finite fields variations, resulting
into a set of non-linear equations. The DG method is implemented within a three-
dimensional finite element code. Afterwards, the uniqueness and optimal numerical
properties are derived for Electro-Thermo-Elasticity stated in a small deformation
setting. In particular, the convergence rates of the error in both the energy and L2-
norms are shown to be optimal with respect to the mesh size in terms of the polynomial
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degree approximation k (respectively in order k and k + 1). This chapter concludes
with some numerical tests supporting the developed theory. Moreover a unit cell of
composite microstructures corresponding to periodically distributed carbon fibers in
a polymer matrix is considered to clarify the Electro-Thermo-Mechanical behavior of
composite materials.

e Chapter 6, the constitutive law of composite materials, presents details of two models
that are used to describe the carbon fiber and shape memory polymer behaviors. A
simple transversely isotropic hyperelastic formulation is used to model carbon fiber
in the fully nonlinear range, and an Elasto-viscoplastic large deformation constitutive
model is used for the shape memory polymers. These constitutive models are applied
in simulating the behavior of SMPC unit cells in the large deformation regime, when
it is actuated by a direct heat or low electric power.

e Chapter 7, the conclusions with future perspectives, contains some final comments
regarding this work and some possible future directions of research.

The publications related to the thesis are

e L. Homsi, C. Geuzaine, L. Noels. Numerical properties of a discontinuous Galerkin
fomulation for electro-thermal coupled problems. Proceedings of the 7th European
Congress on Computational Methods in Applied Sciences and Engineering. Volume 2,
2016, 2558-2565.

e L. Homsi, C. Geuzaine, L. Noels, A coupled electro-thermal discontinuous Galerkin
method. Journal of Computational Physics, 2017. (Minor revision)

e .. Homsi, L. Noels. A discontinuous Galerkin method for non-linear electro-thermo-
mechanical problems; application to shape memory composite materials, Meccanica,
submitted, 2017



Chapter 2

General properties of the finite
element method and Hilbert spaces

2.1 Introduction

In this chapter, short introductions about the Sobolev space and Hilbert space in addition
to the definitions of the norms and the main approximation properties, which will be used
in the error analysis of the Discontinuous Galerkin Finite element method for linear and
non-linear coupled problems, are presented without proofs.

2.2 Finite element partition

Let the body 2 € R4, with d = 2 or 3 the space dimension, be approximated by a
discretized body €}, such that 2 ~ Q) = UeQ°, where a finite element in €2}, is denoted by
Q°. The boundary 92y, is decomposed into a region of Dirichlet boundary dp{2y, and a region
of Neumann boundary dn{,. The intersecting boundary of the finite elements is denoted
by O1Qn = U090 \ 9Oy, as shown in the Fig. with ONQp = UcONQS, OpQn = UeOp2°,
00 U 01, = Ug00°, and 1Q° = 9Q° [ Or{dy.

Within this finite element discretization, an interior face (9Q)° = 9Q°T NIN°~ is shared
by elements Q°T and Q°~, and n™ is the unit normal vector pointing from element Q°~ toward
element Q°", see Fig. Similarly, an exterior Neumann edge (OnQ)° = 992° N ONQy, is the
intersection between the boundary of the element Q°, an exterior Dirichlet edge (OpQ)® =
90° N IpQy, is the intersection between the boundary of the element Q° and (9p1f2)°is a face
either on 91, or on dpQy, with Y (9p12)® = HhQy U OpQy. Finally n= = n is used to
represent the outward unit normal vector of the external boundary 0.

In this work, we assume a constant mesh size on the elements, but the theory can be gen-
eralized by considering bounded element sizes such as in [24]. We assume the discretization
is shaped with a regular mesh of size hy defined as HaQTee" We also assume shape regularity
of €y, so that there exist constants ci, co, c3 and cg4, independent of hg, such that

¢y diam ((9102)°) < hg < co diam ((9Q2)%), and

2.1
cg diam (92°) < hg < ¢q diam (Q°), (1)

where (91Q2)° is a face between elements.

15
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Figure 2.1: interface between two elements (°") and (2°7)

2.3 Discontinuous Finite Element spaces

01
Let us define a vector O = ' of size n, then let us now recall the Sobolev space

On
W3(Q), with s a non-negative integer and r € [1, o[, the subspace of all functions from the
norm L'(2) whose generalized derivatives up to order s exist and belong to L"(€2), which is
defined as

W5(Q) = {0 € (L'(Q))", 9°0 € (L'(Q)™; V| a|<s, s> 1}. (2.2)

When r = 2, the spaces are Hilbert spaces: W5(Q) = (H*(R2))", and for s = 0, the space is
the L? space: (HO(Q))rl = (L2(Q))".

Furthermore in order to account for the discontinuity in O, we can define the associated
norm of the standard broken Sobolev space W3 (€)y,) of order s and exponent r with 1 <r <
oo. Starting from the Sobolev space norm and semi norm

1

10 i) = (Siajee o, 1107011 () IF dx 4 30y Jo, 11 0700] (%) |7 i),

1

Olwier) = (Jo 11001 00) I dx o Jo, 1 [0°0] G) | x)
(2.3)

the norm and semi norm of the broken Sobolev space read

1

10 sy = (Ze 110 fiysany)
10 lwaen) = (Ze | O |§vg(90))

For the case r = 0o, the norm is defined as

(2.4)

=

| O [lwe_ ()= maxe || O [lw=_(qe) - (2.5)
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As the finite element space consists of discontinuous elements, the unknown field O does not
belong to H*(£2y,) but in the following piecewise broken Sobolev space

Xs = {0 € (L2())" logeem o) VQeth}' (2.6)

We can now define the following broken Sobolev spaces X, particularized for s = 2, by

2 n
X = {0 € (12(0))" lo (1)) vorcny | (2.7)
and
2 a\"
Y = {0 € (I2)!) " Ivo pe(i1(@e)" vorea, | - (2.8)
We define the discontinuous manifolds on the polynomial approximation by
k n
X" = {Oh € (LQ(Qh)) ’Oh|gee(Pk(Qe))“ \meegh}a (2.9)

where PX(0°) is the space of polynomial functions of order up to k.

At the interface between two elements, Fig. each interior edge (91€2)® is shared by
two elements ~ and T, where (8;Q)° € Q¢ and (A)° C %0 . We can thus define two
useful operators, the jump operator [-] = [eT — 7] that computes the discontinuity between
the elements and the average operators (-) = % (eF + 7) which is the mean between two
element values. Those two operators can be extended on the Dirichlet boundary dp€);, as
(o) = o, o] = (o).

Let us define the mesh dependent norms, which will be considered in the following
analysis, for O € X

10112 = S IVOIR2 00y + 315 10T 220 (2.10)
NolP=> I\OH%l(Qe) +Y h' [On] Hiz(age), (2.11)
and
Noli=> 101 ey + > hoflO I o) +> 1 Y[ [Oa] 12 o0e): (2.12)
n- 0.0
with 0Q°¢ = 91Q2°¢ U 9pN¢ and Op = ) 0.
0 0.n" Inxn

2.4 Finite element properties

First we discuss some inequalities for future use.
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Lemma 2.4.1 (Interpolant inequality). For all O € (H*(Q¢))" there exists a sequence O" €
(Pk(ﬂe))nand a positive constant C% depending on s and k but independent of O and hs,
such that

1. forany0<n<s
| O— 0" | < CHIE™ || O || gy (2.13)
2. for any 0 < n< s—l—i—%
| 0= 0" llwzary= Gyl ™™™ [ 0l if d=2 (2.14)
3. for any s> n—l—%
10— 0" llmoan< ChHH"* 1 O (e, (2.15)

where p = min{s, k+ 1}.

The proof of the first and third properties can be found in [6], then by the use of the properties
(1) and (3) in Lemma 1 of 2] and the scaling argument in [3], the second property can be
derived in the particular case of d =2 as demonstrated in [24)].

Remarks

i) The approzimation property in (2) is still valid for r= co, see [50].

ii) For O € X,, let us define the interpolant I,0 € X* by I0|qc = O"(O|qe), which means
I;,0 satisfies the interpolant inequality property provided in Lemma on Qp, see [30].

Lemma 2.4.2 (Trace inequality). For all O € (H*™(Q¢))", there ezists a positive constant
Cr, such that

r 1 r r— s
10 goa9= €r (5 110 Wiy + 1 015 7*0lzen ). (210

where s = 0,1 and r= 2,4, or in other words

1
10132900 Cr (h 1017200y + 1 Ol 200y VO HLZ(QB)) :
° (2.17)

1
104450 < O (h 104400 + 1 O I35 | VO Hmm) -
The first equation, s =0 and r= 2, is proved in [60], and the second one, r =4 and s =0,
is proved in [24)].

Lemma 2.4.3 (Trace inequality on the finite element space). For all Oy, € (Pk(ﬂe))n there
exists a constant C’,kc > 0 depending on k, such that

_1
| V'Ou || 2900y < Cichs 2 || VIOR [l 120y 1=0, 1, (2.18)
k hS‘HVOhHiQ(QQs) . .
where Cy = SUDue () RO, . S O constant which depends on the degree of the
L2(Q¢)

|€2¢]

polynomial approximation only with hs = o - See [27] for more details.
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Lemma 2.4.4 (Inverse inequality). For O), € (P*(Q¢))" and r > 2, there exists C% > 0,
such that

d_d
| On |y Chi 2 || O |l 1200, (2.19)
_d—1
I O || (o02¢) < Cih 7 o, 1z2(000), (2.20)
VO || 200 < Cen' | O 22 (qey - (2.21)

The proof of the first two properties can be found in [24] and the last one in [60]. Note that
Egs. involve the space dimension d = 2

Lemma 2.4.5 (Relation between energy norms on the finite element space). From [74], for
Oy, € X*, there exists a positive constant C*, depending on k, such that

I On lll1< C* 1]l On - (2.22)

The demonstration dzrectly follows by bounding the extra terms ) hs || O ||H1(BQ of the
norm defined by Eq. in comparison to the norm defined by FEq. (-) USINg succes-

sively the trace mequa,lzty, Eq (-) and the inverse inequality, Eq. , for the first
term, and the trace inequality on the finite element space, Eq. , for the second term.

The demonstration is reported in Appendiz [A1]

Lemma 2.4.6 (Energy bound of interpolant error). Let O° € X,, s > 2, and let I,0 € X*,
be its interpolant. Therefore, there is a constant C* > 0 independent of hs, such that

| 0° — L,O |\ < C*H~1 || O° || () (2.23)

with u = min{s, k+ 1}. The proof follows from Lemma Eq. , and Eq. (2.15),
applied on the mesh dependent norm and is given in Appendix @

Lemma 2.4.7 ((Generalized) Holder’s Inequality). Let 1 < p, q, < oo be such that %—l—%l =1
and D € R™. Suppose that ® € LP(D) and ¥ € LY(D), then the Hélder’s inequality reads [37],

y/D\IJcI)dx\ < (/D]\I!]pdx>; (/D<I>|qu);. (2.24)

Let 1 < p, q, r < oo be such that % + %1 + % =1 and D € R™. Suppose that ® € LP(D), ¥ €
LY(D) and p € L"(D), then the generalized Holder’s inequality is stated as [37]

|/D\If<1>udx| < </D|\11|de>;’ </D|<1>|qu>1’ (/Dwdx)i. (2.25)

Lemma 2.4.8 ((Generalized) Cauchy-Schwarz’ inequality). Let 1 < p, ¢ < oo be such that
1y % = 1. Suppose that a; and b; are two sequences of n positive real numbers, then the
Cauchy-Schwartz’ inequality reads [60]

B ) e
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Let1 < p, q, r < oo be such that %—1—%4—% = 1. Suppose that a;, b;, and c; are three sequences
of n positive real numbers, then the generalized Cauchy-Schwartz’ inequality reads [60]

<z”: (Iibici> < <z”: af) ' (i: b?) ' (Zn: cf) ' . (2.27)
i=1 =1 =1 =1

2.5 Conclusions

S

Within this chapter, we have presented all the general definitions and space properties,
that will be used in the following three chapters in the purpose of proving the uniqueness,
the stability, and the optimal order of the convergence rate of the DG approximated solution
for many kinds of non-linear coupled problems.



Chapter 3

A coupled Linear
Thermo-Elasticity Discontinuous

Galerkin method

3.1 Introduction

In this Chapter an illustration of DG for linear coupled problem is presented, such
as linear Thermo-Elastic coupled problems. Many researchers have dealt with Thermo-
Elasticity problems using different FE methods [1,/70], or Discontinuous Galerkin (DG)
methods [2§].

In the general cases of 2-way coupling between thermal loading and mechanical pro-
cess, either a change of the stress causes a change on the temperature, or a change of the
temperature causes a thermal stress. In the elasticity case, the effect of the mechanical
deformation on the temperature variation can be neglected when not seeking the Thermo-
Elastic damping. Henceforth, the thermal flux and temperature can be computed without
the consideration of mechanical stresses, as it will be shown later.

This chapter consists of five sections after this introduction. The constitutive equations
that govern Thermo-Elasticity are derived in Section 3.2. In Section 3.3 the DG formulation
is developed. In Section 3.4 the numerical properties, such as the consistency, the upper
and lower bounds, and the solution uniqueness are derived. The optimal error bounds are
theoretically estimated and numerically verified in Section 3.5 using the Thermo-Elastic
model. The conclusions is given in Section 3.6.

3.2 Governing equations for Thermo-Elasticity
In this section, the governing equations for linear Thermo-Elasticity with small displace-
ments over the domain 2 and its boundary df2, are presented. First the conservation of the

momentum balance is reduced into the following equation after neglecting the contribution
of the body force and inertial forces as

V-o=0,witheo=H:e—H:ayu(T— Ty, (3.1)

21
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where o [N/m?] is the Cauchy stress tensor, T¢ [K] is the initial temperature, @, = gl
is the thermal expansion coefficient [1/K], with I is the identity tensor, H = gjge is the
elasticity tensor [N/m?], with 1) is the strain energy density per unit volume and € is the
strain tensor which is defined for small displacements as & = 3 (Vu+ (Vu)7T).

Furthermore, the second governing equation is the balance of energy, which is given by

—V-q+ f = pe,T,withq = —k- VT, (3.2)

where the dot denotes the time derivative, @ [W/m?] is the thermal flux vector, k [W/(K-m)]
is the thermal conductivity tensor, ¢, is the volumetric heat capacity per unit mass [J/(K -
Kg)], and f represents all the body sources of heat and could depend on both the space and
time. Here for Thermo-Elasticity f is defined as f = —H : athT%.

These two equations are completed with the boundary conditions. First the natural
(Neumann) boundary conditions, which constrain the secondary variables like forces and
traction

o - n=t, q - n=q VxeconQ, (3.3)

where t and q are respectively the traction and heat flux per unit reference surface. Second
the essential (Dirichlet) or geometric boundary conditions, which constrain the primary
variables like displacements and temperature

u=1, T=T Vx € dpQ, (3.4)

where @ and T are the prescribed displacement and temperature respectively.

Let us define a (d+ 1) x 1-vector of the unknown fields E = < T uT , where u is the
— 10
Ux
displacement vector,u = | uy, |. In addition, let us introduce a vector ¢ of size (4d—3) x 1
Uz

0 k
with C the matrix form of the material tensor H. Besides, VE is written using Voigt rules
for the mechanical contribution, in other words the stress and strain are transformed into
vectors, such that VE is a vector of size (4d — 3) x 1 and defined for d = 3 as

as ¢ = WVE, where w is a coefficients matrix of size (4d — 3) x (4d — 3), w = < ¢ 0 ),

0

VE =

o O O O O
=
o]

K
85(
2
0z
Then the partial differential equations (3.1)) and (3.2)) of the linear Thermo-Elastic coupling

problem, after neglecting the Thermo-Elastic damping, are rewritten under the form

VI(c(VE) - VI@E)=fE  inQ, (3.6)

o
o
g
I
o oo oFe¥ovo oFv
o coYYroFrvoFvo

o o oo oflv o ©
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where f is of size (d4+1) x (d+1) with f = < 8 p((): ) and r is a matrix of size (4d—3) x (d+1)
with
- 0 Cathc . T C .
r=1{, 0 , with a; . = ( on Ogn i 00 0 ), such that Cayp. is a (3d — 3) X

1 vector and given for d = 3 by (CathC)T = ( 3Ky, 3Kay, 3Kag 000 ) for isotropic
materials, where K is the bulk modulus.
This equation is completed by the BCs

n'(c—rE)=¢ VxechQ, (3.7)

E-E Vx € IpQ, (3.8)
which result from the boundary condition Eqgs. (3.3)) and (3.4), and where

n, 0 0 O
0 ny, O O
0 0 n, O
i ny ny2 0 0
é:<_), n=| n, 0 ne 0 |. (3.9)
1 0 n, ny, O
0 0 0 ny
0 0 0 ny
0 0 0 ng

In this part, we assume that On§2 and Opf2 are the same for both fields u and T.

3.3 Discontinuous Galerkin formulation for linear Thermo-
Elasticity

3.3.1 Weak form

The DG weak formulation for linear Thermo-Elastic coupling is derived from the two
governing equations and separately, then they are combined together in the matrix
form.

Starting from the first governing Eq. and multiplying it by the test function du €

[HeHl(Qe)]d leads to

Z/e(v co)-udQ =0 Véue [Heﬂl(Qe)]d. (3.10)

Then by performing a volume integral and using the divergence theorem on each element
Q°, we reduce the order of the differential equation, so the weak form is stated as

Z Su-(Vu:H)-ndS— Z su- (M : oy (T — Tp)) - ndS
o0Ne o0e

(3.11)
_Z/ Vu:H : VéudQ — Z/ (H : aw (T — Tp)) : Voude,
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where

6u~a-ndS:/ 6u-o-ndS+/ du-o -ndS. (3.12)
a0e AnGre AQeUIpQ°

Different versions of the discontinuous Galerkin finite element methodology can be obtained
by using different numerical flux coefficients [13]. In the present research, the arithmetic
average of the two field gradient values at the boundary is employed. At the interface
between two elements, Fig. E each interior edge (9192)%, shared by two elements ~ and T,
is integrated over twice in Eq. 13._TI), since (91Q)* C 81Q° and (91Q)° C A" . By recalling
the two useful operators, the jump [-] and the average (-) operators, which are defined in

Section Eq. (3.12) can be rewritten using

Z/ 6u-a-ndS:—/ (fu-o6" —6u"-07)-n"dS
e e o

(3.13)
= —/ [ou- o] -n~dS,
O

Z/ 5u.,,.nds:_/ [fu-o] ndS and n~ =n, (3.14)
e opQe OpQy

where n~ is defined as the outward unit normal of the minus element Q° , whereas n™ is

the outward unit normal of its neighboring element, nt* = —n~.

Eventually, using Eq. (3.3)), Eq. (3.11) is rewritten
/ du - tdS :/ o : VéudQ) +/ [bu-o] -n~dS Véue [HeHé(Qe)]d. (3.15)
8NQh Qh aIanuaDQh

For DG formulations, the jumps are commonly replaced by fluxes, which must be consis-
tent. Thereafter, applying the mathematical identity [ab] = [a] (b) + [b] (a) on 9§, and
neglecting the second term because the exact stress is continuous, the flux related to Eq.
becomes [du - o] = [6u] - (o).

Due to the discontinuous nature of the trial and test functions, in the DG weak form,
the interelement discontinuity is allowed, so the continuity of unknown variables is enforced
weakly by using symmetrization and stabilization terms at the interior elements boundary
interfaces 1€2,. The BC (3.4)) is also enforced weakly on the Dirichlet boundary. In order to
remain general, and to ensure the optimal convergence rate, we consider the compatibility
term as [u] - (H : Vou) — vy e, : HT] - (du), where v is a constant that will be determined
later in order to achieve the optimal convergence rate.

Therefore, the SIPG formulation for the mechanical contribution is defined as finding
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ux T e [TLH'(9°)]? x TI,H(2°), such that:

/ du - tdS — u-(H:V&u)-ndS+/ ﬁ®n:HB:5u®ndS

N o O, hy

—I—Py/ Su- (a, : HT) -ndS = / o : VéudQ +/ [ou] - (o) -n~dS
Opn Qy 012, U0p

5 (3.16)
+/ [[u]]'(H:V5u>~n_dS+/ [u] ®n™ : <> : [ou] ®n~dS
01, U0p Oy A Udp hg

— fy/ (6u) - oy, : HT] -n~dS Véu € [HeHl(Qe)]d.
012, U0p

In this DG formulation B is the stability parameter which has to be sufficiently high to
guarantee stability as it will be shown later, H is the constant elastic tensor and hg is a
measure of the mesh fineness.

In the same spirit, if Thermo-Elastic damping is neglected, the weak formulation for the
second governing equation , can be derived by multiplying it with the test function
6T € T H'(Q°), leading to

- / V-qiTdQ =) / pcy TOTAQ WOT € TI.HY(Q°). (3.17)
e e e Qe

As for the mechanical equation, by using the divergence theorem, introducing the jump
operator, and using the boundary condition Eqgs. (3.3) and (3.4]), this last equation becomes

/ 6Tq-ndS+/ pe, T T :/ q-V&TdQJr/ [0Tq] -n~dS. (3.18)
ONQ Qy Qy o, U op

The consistent and stable weak form is obtained by considering the numerical thermal flux
(q) = %(q+ + q7), then using the virtual heat flux 0q = —k - V0T, and adding stability
and symmetrization terms. The DG formulation of the thermal governing equation is then
stated as finding T € II.H'(Q2°), such that

— / 6TpadQ — / pcy T OTAQ — / (k-V46T)-nTdS
8NQh Qh aDQh

+/ 5Tn'l;1£-anS= VT k- ViTd2
Op Oy s Qpn (3'19)

+ / [6T]n" - (k- VT)dS + / [T]n~ - (k- V6T)dS
o1 UOp Q1 01QLUOp 2,

+ / [6T]n~ - <Bk> -n~ [T]dS VoT € TIH' (Q°).
O UDD D, h,

S

Thereafter, the two parts of the DG formulation can be combined in terms of the nota-
tions w, r, and f resulting in a stabilized DG formulation for linear Thermo-Elastic coupling.
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The weak form is stated as finding E € [HeHl(Qe)]3 x IIH(9Q°) such that

) _ _TwB
/ SETedS — [ SETfEdQ — / E,wVJE dS + / ETYC5E, ds
ENoN 2, I, oo, Bs
+ / SEITEdS = / (VOE)TwVEdQ — / (VOE)TrEdQ
Opn Qp Oy
+ / 6EEH (WVE) dS — HéEE]] (rE) dS (3.20)
orQUop Yy, O Uop 2y,
+ / E! ]] (wVE)dS — / <5EE > [*E] dS
oQpUIP QY -+ o1 QL UOp 2,
[T w3 1/0ey14 1/0e
+ Enﬂ =) [0Ea] dS YoE € [ILH'(0°)]" x ILH!(Q°),
QU Y, & hy
where E, is a 9 x 1 vector
Uy n, 0 0 O
uyn, 0 ny, 0 O
u,n, 0 0 n, O
Uy + Uy ny ng 0 0 EX
E.=| uwn, +un, |=| n, 0 ng O uy , (3.21)
u Ny + uyn, 0 n, ny O -
Tny 0 0 0 ng T=To
Tn, 0 0 0 nj
Tn, 0 0 0 n,

and E,, is defined in the same way as E, after replacing n~ by n and E by E in Eq. (3.21)).

The last fifth terms presented in Eq. (3.20) are the interfaces terms, which correspond
to:

1. The first two terms ensure consistency, they result directly from the discontinuity of

the test function JE between two elements, and involve the consistent numerical flux
which is here the traditional average flux.

. The third and forth terms ensure compatibility of the weak form and the symmetry of
the stiffness matrix after FE discretization. They also ensure the optimal convergence
rate in the L?-norm.

. The last term ensures stability, as it is well known that the discontinuous formulation
of elliptic problems requires quadratic terms. The stabilization terms depend on a
stability parameter required to be large enough, which is independent of mesh size and
material properties, as it will be shown in Section

. The contributions on dp €, ensure that the Dirichlet boundary condition (3.8)) is weakly
enforced.

Let us recall the definition of the discontinuous FE space, Eq. (2.6, and rewrite it for the
case of linear Thermo-FElasticity

d
XS = {E € [LQ(Qh)] X L2(Qh) |E|Qe€[HS(Qe)]dXHS(Qe) VQeGQh} 5 (322)
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we denote Xo by X. It should be noted that the test functions in the previous equations of
the weak formulation belong to [Hl(Qe)]d x H!(Q2°), however for the numerical analysis, we

will need to be in [HZ(QG)}d x H?(Q°). Therefore, Eq. 1’ can be rewritten under the
form of finding E € X such that

a(E,oE) = b(dE) — [ SETfEdAQ, VIE € X, (3.23)
Qp

with

a(E, 6E) = / (VOE)TwVEdQ — /Q (VOE)TTEdQ + /8 HéEEﬂ (WVE) dS

QLUOp O

/ [{ ]] (WwVIE) dS+/ [{Eﬂ] <WB> [6Ea] dS (3.24)
CAUNEZ N O UdD
[[

/ OE ]] (E) dS — 7/ <5EE> [xE] dS,
012, Udp Oy A1, Udp

b(0E) = / SETEdS —
N

E, wVE dS + / &' V5 5E, as

BDQh 8DQh h

i (3.25)
+ / SEITEdS.
OpQy

Note that

/ (VOE)TrEdQ = Z / (VOE)TrEdQ
zfz 5ETVT tE) dQ+Z/ SEI(rE)d
e

onNe

= | SE'VTEE)dQ — / ﬂaEErEﬂ ds + / SETATrEdS + / SETTEdS (3.26)
Qh 81911 8NQh 6DQh

=~ [ SETVTGE)dQ — /a [[5EE ]] (@E) dS — <5E} > [E] dS
1

Qn 01, U0p

+ / SETaTrEdS.
ONp

For future use, it can been noted that the gradient of (rE) consists of zero components and
of the gradient of ey, : H'T, which is ayy, : HVT. Henceforth the matrix r can be rearranged
in a new form T of size (d + 1) x (4d — 3) and by this way VT (rE) can be replaced for d = 3
by tVE, with

€XX

Eyy
EZZ

xy

0 3Kagn 0 %
0 0 3Kan, 2€xz . (3.27)
vz

0 0 0 ofr
8
J¢)
ofr

0z

Iall

—

=

N—

<

=

I
(e R en e BN an)
S O O O
oS O O O
o O O O
S O O O
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Moreover, the following equality is also useful

0
VT (F16E) = r'VOE — 8 (3.28)
3Kath5€XX + 3Kath5€yy + 3Kath5£ZZ
Therefore, using Eq. (3.26]), Eq. (3.23) can be rewritten as
a/(E,0E) = b/(6E) — [ SETfEdQ, VIE e X, (3.29)

Qp

with

a/(E,0E) = / (VOE)TWVEdQ + [ JETVT(E)dQ + /

HéEE ﬂ (WVE) dS
Qp Qp 012, U0p

+ / [[E,T ]] (WVSE) dS + / [[E,T ]] <“’B > [0Ea] dS
012, U0p Oy 01, Udp hS

+(1-7) / (0Eq ) [FE]dS ~ JETET (rE)dS —
012,Udp N

HéEE }] (rE) dS,

OpQy
(3.30)
b (6E) = SETcds — E.wVE dS + / E. Wh—BéEn ds
8Nﬂh ) 6Dﬂh aDﬂh S (331)
+ 7 / SELTEdS.
OpQy

In comparison with the 1D DG formulation proposed by Gudi et al. [24] for elliptic problems,
Eq. has additional terms on the Dirichlet and Neumann boundary parts related to
the term r. This is due to the fact that as the stress tensor is directly integrated in a
FE model, we prefer to have the term in th(VéE)TrEdQ in Eq. instead of the term
th SETVT(xE)dQ of Eq. , as dealt with by Gudi et al. [24]. Therefore, the integration
by parts Eq. yields these two extra terms.

3.3.2 Finite element discritization

Let us recall the polynomial space, Eq. (2.9)), which becomes for the Linear Thermo-
Elastic problems

d
XK = {Eh € [L2(20)]" X L2 () [gy e epr(0e)jaxpe () VQeth}a (3.32)

Up
Ty —To
discrete approximation of E, where the displacement vector up and the temperature T}, and
the corresponding test functions duy and 07T}, respectively are approximated by the same
shape functions N? at node a, which are defined piecewise on the elements, we thus have

where P¥ is a piecewise polynomial function of degree < k. Let E}, = < > be the

sup = N2 u®, 6Ty, = N& 6T?,  and (3.33)
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u, =N2u?, T, =N&T? (3.34)

where u* denotes the nodal values of u;, at node a and T? denotes the nodal values of Ty, at
node a.
Likewise, the gradients of the fields can be deduced from

Véu, = 6u® ® VN2 V6T, = VN& TP, and (3.35)

Vuh =u? & VNﬁ s VTh = VN%Ta, (3.36)

where VN;, and VN7 are the gradients of the shape functions at node a.
The Discontinuous Galerkin Finite Element discretization of linear Thermo-Elastic cou-
pled problems is stated as finding the approximated solution Ey, in XX, such that

a(Ey, 0Ey,) = b(6Ey,) — / SEIfELdQ, VOE, € XX, (3.37)
Qp

with a(Ey, 0Ey) and b(JEy,) defined by Eqgs. (3.24] [3.25).

3.3.3 The system resolution

The set of Egs. (3.16)) and (3.19) can be rewritten under the form:

Fo, (Eb) —F2, (Eb) +F? (Eb) : (3.38)
where EP is the (4 x 1) vector of the unknown fields at node b.

The nonlinear Egs. are linearized by means of an implicit formulation and solved
using the Newton Raphson scheme using an initial guess of the last solution. To this end,
the forces are written in a residual form. The predictor at iteration 0, reads EP = EPY, and
the residual at iteration i reads

F2, (E) - Fi, (B") - Ff (E") = R*(E"), (3.39)

and at iteration i, the first order Taylor development yields the system to be solved, i.e.

OF%, OF%, OF} b perge
< OEP ~ OEbP  OEP |g—g« AE” = —R*(E“). (3.40)
Let us define the tangent matrix of the coupled Thermo-Mechanical system K%b = a;éﬁt —
%lgﬁt - %7 and AEP = (Eb — Ebi>, then we have
Kuww Kyt Au\ [ Ruy(u,T) (3.41)
Krg  Krpp AT Rr(u,T) /- :

The new solution is given by Et! = E! + AE, and the iterations continue until the
convergence is obtained, that is || R [|< tol.
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The formula of the forces can be derived from Egs. (3.16) and (3.19]), which lead at each
node a to:

Fﬁext Fumt + FuI ) (3 '42)

F%‘ext = F%‘int + FaTI‘ (343)

First, the mechanical contribution, Eq. (3.42)), reads

Flext —/ NﬁtdS—/ ﬁ-(H~VN3)-ndS+/ ﬁ®n:(HB) -nN2dS
ON Op&y OpQp hs (344)
+ 7/ N3 (e - HT) -ndS,
Op
ulnt - Z/ea VNadQ (345)
Fﬁi Fii‘:l + FuI2 + FuI37 (346)
with the three mechanical contributions to the interface forced!]
Fif =3 [ (N (o) moas, (3.47)
s /(019
Fit — Z / [up] - (H* - VN&£) .n—dS
s J(01Q)° (3.48)

i / at —
- = N [[Olth : HTh]] ‘n dS,
2 ES: (819)5 u

. JHB\ .,
Fif = ES:/(&Q)S([[uh]] ®@n"): <hs> -n~ (£N&F) dS. (3.49)

In these equations the symbol + refers to the node a* (+ for node a* and — for node a™).
By the same way, the thermal contributions read

_ kB _
Boxt = _/ N2.q dS — (k- VNZ)-nT dS +/ Tn- — -nTdS, (3.50)
ONOn Opn OpQn b
Fing = — Z/ﬂ q- VN;dQ + Z/Q pey TNGAQ, (3.51)
Fit = Fin + Fin + Fin, (3.52)

where the three thermal contributions to the interface forces read
Fip = Z / (FNT°) (@) -n~ds, (3.53)

'The contributions on dpQ can be directly deduced by removing the factor (1/2) accordingly to the
definition of the average flux on the Dirichlet boundary.
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a 1 a -
Fip = 2 Z/ . [Tu] (ki : VNTi) -~ dS, (3.54)
— Jow
_ B N
=X [ e (k) (eNgas, (359
s 7 (0p19)° hs

The stiffness matrix, has been decomposed into four sub-matrices with respect to the dis-
cretization of the four independent fields variables (3 for displacement u and 1 for the
temperature T), see Appendix for the details.

3.4 Numerical properties of linear Thermo-Elastic DG for-
mulation

In order to prove the consistency and the stability of the DG formulation for linear
Thermo-Elastic formulations, we consider a steady state. Therefore the equation that gov-
erns the linear Thermo-Elastic coupling, Eq. (3.6, is rewritten in the following elliptic
form

~ VHwVE) +VT@E) =0, inQ. (3.56)

More details about the analysis of such linear elliptic problem formulation have been dis-
cussed in |74] for the case of one-field formulation. For the sake of completeness, we report
the analysis for coupled problem here after. Henceforth, the weak DG formulation of the
problem becomes, find E € X such that

a(E,6E) = b(dE) VOE € X, (3.57)

with a(E, E) and b(JE) defined by Eq. (3.24) and Eq. (3.25|) respectively.
It should be noted that the norms defined in Chapter 2, Egs. (2.10/42.12)), are considered
for the linear Thermo-Elastic coupling, with O = E, which is a vector of size (d + 1) x 1.

Moreover, we have the following properties:

e The matrix w, is a symmetric real matrix of size (4d — 3) x (4d — 3) whose entries
are bounded, piecewise continuous real-valued functions defined on €2, and for every
non-zero column vector € of 9 real numbers, one has

ETwx)E >0 VEeRM3 xeq. (3.58)

Let A be the minimum eigenvalue of the matrix w, then there is a positive constant
C, such that

0<Cqo <A (3.59)

e There exists Cy such that

Cx = max {|| W [l | T [l } - (3.60)
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3.4.1 Consistency

To prove the consistency of the method, the exact solution E® € [HQ(Q)]d x H2(Q) of
the problem is considered. This implies [E¢] = 0, (WVE®) = wVES® on 01}, and [E°] = —E
and (WVE®) = wVE® on dpQy,. Therefore, Eq. (3.23]) becomes:

SETedS — E, wVsEdS + / SET <Bw> EndS
N, I, I, hy
+ 5 / SEITEdS = / (VOE)TwVESdQ — / (VOE)TrEcdQ

oS n i (3.61)

+ / [PEL] wVESdS — / [OEL] rE°dS — ES wVOEdS
oy Op

B
- / SEfwVE®dS + / SEI —wESdS + (1 +7) / SEITE®dS VIE € X.
I, oy D I

S
Integrating the first term of the right hand side by parts leads to
Z / (VSE)TwVESdQ = Z / SETVT (WVE®)dQ + Z SEqwVE®dS.  (3.62)
e BQe
Similarly, we have

Z / (VOE)TrECdQ = — Z 5ETVT (rE°) dQ+Z SEITECdS. (3.63)
e aQe

Substituting Eqgs. (3.62) and (3.63) in Eq. (3.61)), yields

/ SETedS — E, (wWVJE)dS + / SEX <Bw> E,dS
BNQh aDQh aDQh hs

+7 / SE,rEdS = — / SETVT(wVE®)dQ + / SES (wVE®)dS
OpQy Qn ONQy (3.64)
+ [ SETVT(EE®)dQ — / SETTEdS — E¢' wVOEdS
Qn ONQn Opfy

B
- / SEI —wESdS + v / SEITE°dS.
Op hS Ip&y
The arbitrary nature of the test functions JE leads to recover the set of conservation laws,
Eq. (3.6, and the boundary conditions, Eqs. (3.8)) and ([3.7).

3.4.2 Solution uniqueness

In this part and in the following sections, we assume that dp€2;, = 9€2;,. This assumption
is not restrictive but simplifies the demonstrations.

Lemma 3.4.1 (Lower bound). For B larger than a constant, which depends on the polyno-
mial approximation only, there exist two positive constants le and 0157 such that

(0B, 0Ey) > CY ||| 6By |||2 —C5 || 6B, ||52,g, VOE, € XF, (3.65)

()
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a(0Ey, 0Ey) > CY ||| 0By, |||> —C5 || 5By, |32 VOE), € X*, (3.66)

(©)
where the norms have been defined by Eqs. (2.10,|2.11)).

Proceeding by using the bounds (3.59) and @, the Cauchy-Schwartz’ inequality, Fq.
, the trace inequality on the finite element space , the trace inequality, Eq. ,
and inverse inequality, Fq. , the &-inequality £ > 0 : |ab] < %aQ + %b2, as in
Wheeler et al. [74)] and Prudhomme et al. [60] analysis with some modifications, yields to
prove this Lemma m The two positive constants C]f, C% are independent of the mesh
size, but do depend on k and B, for details, see Appendix. In particular, for C* to
be positive the following constrain on the stabilization parameter should be satisfied B >
%m(w(él Cr(Ch+1), 40,]‘%2). Therefore for the method to be stable, the stabilization parameter
should be large enough depending on the polynomial approzimation under consideration for
C¥ to remain positive.

Lemma 3.4.2 (Upper bound). There exist C > 0 and C* > 0 such that

| a(m,3B) | < C|| m|li I 6B |l; ¥m,JE€ X, (3.67)
| a(m,3Ey) | < C*[| m || || 6By || Vm € X, 6B, € X*, (3.68)
| a(mp, 6Ey) | < C* [ my, || | OBy || Yy, 0B, € X, (3.69)

where the norms have been defined by Fqs. (2.10H2.13).

Applying the Hélder’s inequality, Eq. (2.24]), and the bound on each term of
a(m,dE) and then applying the Cauchy-Schwartz’ inequality, Eq. , lead to relation
. Therefore relations and are easily deduced from the relation between
energy norms on the finite element space, Eq. . The proof is presented in Appendiz
[B.3.

Using Lemma [3.4.1] and Lemma [3.:4.2] the stability of the method is demonstrated using
the following Lemma.

Lemma 3.4.3 (Auxiliary problem). We consider the following auxiliary problem, with ¢ €
[22()] ¢ x L2():

VT (wVy) + Ve =¢ on Q,

(3.70)
P =0 on 00,

Assuming reqular ellipticity of the operator, there is a unique solution ¥ € [HQ(Qh)]d X
H?(Q,) to the problem stated by Eq. (3.70) satisfying the elliptic property

1% 2= Cl @ 2, - (3.71)

The proof for one field is given in [25], by combining [23, Theorem 8.3] to [23, Lemma 9.17].
Moreover, for a given ¢ € [LQ(Q;L)] ¢ L2(Qy). There exists a unique @), € X* such that

6B be) =Y [ oTSBa V5B, € X (372
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and there is a constant C* such that:

lénlll< C Ml e N2, - (3.73)

The proof follows from the use of Lemmaw to bound ||| @y ||| in terms of || ¢ | 120,
and || én [ 12(0,)- I @1 120, @ then estimated by considering ¢ = ¢, € X* in Eq. (3.70

multiplying the result by ¢y, and integrating it by parts on Qy, yielding || ¢y, ||%2(Qh): a(®, o).

Inserting the interpolant In@ in these last terms, making successive use of Lemmatal|3.4.2 and
and using the reqular ellipticity Eq. allows deriving the bound || @, HLQ(Q;L)S

C* || @ |2 q,): Which results into the proof of . The proof is derived in details in
Appendiq;

The proof of the uniqueness can be derived directly using the auxiliary problem defined
in Lemma Let us assume there exist two solutions Ey,, Ey,, for the problem stated in

Eq. (3.57), such that we get
a(Eh1 — Eh27 (5Eh) =0 VOéE, € Xk, (3'74)

Let v = Ey, — Ey,, then by recalling the auxiliary problem defined in Lemma Eq. (3.72)),
and setting ¢ = v and JE, = v

|| v ||EQ(Qh): a(yv¢h) = a(:Eh1 - Eh27¢h) =0. (375)
Hence Ey, = Ey, and there exist a unique solution Ej, for the problem Eq. (3.57).

3.4.3 Error in the energy norm

Let us decompose the global error which is the difference between the exact solution and
the approximated solution e = E¢ — Ej, by adding and subtracting the interpolation of the
exact solution IE, such that we get e = ¢ —n, withé = L,E—E, € XX andn =E*—LLE € X,
we thus obtain

el =l E® =En [[i=[1§—n [ €[l + [l n Il - (3.76)
By the use of the lower bound, Eq. (3.66)), we have
CHIEN? =C5 1€ IF2(q,) < al6,6) = a(LE — E°) + (E° — Ey),£). (3.77)

From the Galerkin orthogonality property, i.e. as both E€ and Ey, satisfy the weak form Eq.
(3.23), a(E® — Ey,dEL) =0 VY JE;, € XX, and

CEIIE N —C5 11 € IF2(,) < al=m.6) < C¥ [l [[l1]1I € I, (3.78)

where we have used the upper bound Eq. (3.68). Moreover, as || £ [|p2(q,)<|[[ € |||, this last

relation becomes

TN < CE Il m il +C5 11 € Il - (3.79)
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In order to bound || & [/ 2(q,), using the property of Lemma and stating ¢ = &, the
orthogonality relation, 0E;, = £, and the upper bound Eq. (3.68)), leads to

1€ 1% = a(€,én) = a(—n,6n) < C*[[In |1 ]| én | - (3.80)
Then using Eq. (3.73)), Eq. (3.80) is rewritten as
HEN< el il - (3.81)

Substituting this result in Eq. (3.79), yields
€< CE Nl s (3.82)
which leads to bound the error in term of 5, such that Eq. (3.76)) becomes

el <C[lnll- (3.83)

Using the energy norm bound of the interpolant error, Lemma[2.4.6 Eq. (2.23)), for hy small
enough, there exists a constant C* such that

e il < CRE™ I E® s (ay), (3.84)

with g = min {s,k + 1}.

3.4.4 Error estimate in the L>-norm

Since the linear problem is adjoint consistent, an optimal order of convergence in the
L2-norm is obtained by applying the duality argument.
To this end, let us consider the following dual problem

—VHwVep +ilp) =e on Qy,

(3.85)
’lp:g on th,

which is assumed to satisfy the elliptic regularity condition as w is positive definite with
P e [H2m(Qh)]d x H?™(Qy,) for p > 2m and

1% e )< C <H e HHp 2+ gl oy ) ; (3.86)

(092y)

if e € [HP~2m(0,)]" x HP=2m(1,).
Considering e = E® — Ej, C [LQ(Qh)]d x L?(),) be the error and g = 0, multiplying Eq.
(3.85) by e, and integrating over Qy

/Qh[ww]TVedQ—/ TIVTETy)] da - Z/ wva] " "endS=|e iz, (3.87)

o0e

with

1% a2 < Clle 2, - (3.88)
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However VT (tT4) = rTVa as shown in Eq. (3.28) and Eq. (3.87) becomes

/ wvy]T Ved? + / wv ea]dS — [ [wVe]T endS
Qn o OpQp (389)

_ /Q} re]” Vpd = e [l12(q,)

Therefore since ] = [V9p] = 0 on 01, and ¥ = 0 on Ipy, and since w is symmetric, by
the comparison with Eq. (3.24]), Eq. (3.89) reads for v = 0,

e HTZ}(Qh): a(e,9). (3.90)

Considering Iy € XX, and using the orthogonality relation, Eq. 1j is rewritten

e 22, = alet — L) — ale, L)
= a(e, — Iny) — a(E", Ing) + a(Ep, np) (3.91)
= a(ea '(/J - Ih¢)

Using Lemma Eq. (3.67), Lemma Eq. (2.23), and Eq. (3.84), leads to

[ ae,y —Tnyp) | < C* Il eIl ] ¥ —Tne |2
< Clllelll hs |l 9 Iz,

N . (3.92)
< C%hs [ B® = LE ([ | 9 Iz
< CEBY 1 EC [lme(an) | 9 2o
and using Eq. (3.88)), this last reult becomes
| ale, ¥ — ) | < CB || B Jlisq @ ooy - (3.93)

Therefore, by substituting this last result into Eq. (3.91)), the final result of the L?-norm
error estimate is thus

e 2 < Ce [ E [lrsay)., (3.94)

with 4 = min {s,k 4+ 1}. This result demonstrates the optimal convergence rate in the L
norm of the method in terms of the mesh size hg, providing v is equal to 0 in relation (3.20)).
Indeed the convergence rate is k + 1 for s > k 4 1.

3.5 Numerical results

In this section, a numerical model for a pipe made of steel subjected to temperature
differences is considered. Due to the symmetric nature of the problem, the study is restricted
to a quarter of the pipe, whose planar model in plane strain is depicted in Fig. The
system’s parameters are given in Table An example of the mesh that is used for the
numerical results is presented in Fig.
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Figure 3.1: The boundary conditions for a quarter of a pipe

annnnatannaia

T

Figure 3.2: Mesh example

Table 3.1: Steel parameters
Parameter Value
Density p [Kg/m?] 7850
Young’s modulus E [Pa] 2 x 101!
Poisson ratio v [—] 0.3
Thermal expansion ay, [1/K] diag(1.2x107°)
Thermal conductivity k [W/(K - m)] | diag(51.9)

The analytical solutions for the pipe in a plane strain state are given as follows. Consid-
ering T, is the temperature at the outer radius r,, while T} and r; denote the same respective
features, at the inner part, the analytical solution at any radius r is derived by following the
approach proposed in , leading to

(3.95)
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, -
In() $-1
or(r) =C = , 3.96
() 51 (3.96)
(e —1) 541]
n(-2 — =
oe(r)=C Y + = , and 3.97
(%) %1 (3.97)
o,(r) = v(oy + 0g) — ay TE, (3.98)
where C = % The problem is solved numerically using the Finite Element imple-

mentation of the DG formulation Eq. , with v = 0. Quadratic polynomial approxi-
mations and a stabilization parameter of value of 10 are considered. Figures
and present the respective analytical and DGFEM solutions to our problem. It can be
seen that the temperature distribution and the stress distribution agree very well with the
analytical solution. The resulting dilatation of the outer radius is 2.257x1073 [cm].

106x T r -
o DGFEM
90r —— Analytical
80r
3
E 700
=
S 60r
Q
£
5 50r
it
40r
30r
20 L L L L )
3 3.2 34 3.6 3.8 4
Radius [cm]

Figure 3.3: Analytical and numerical distributions of the temperature along the radius

The accuracy of the method is tested by analyzing the H'-norm and L?-norm. The error
measured in the H'-norm against the mesh size in the log-log scale is illustrated in Fig.
3.7((a), where the analytical solution is used as a reference solution. The optimal rate is
observed and matches the theoretical order of convergence obtained in Section In Fig.
3.7(b), as a uniform mesh refinement for polynomial of second degree is applied, a third
order convergence rate in the L2-norm is observed which agrees with the theorem derived in

Section B.4.41

3.6 Conclusions

Throughout this chapter, the discontinuous Galerkin weak formulation for linear Thermo-
Elasticity coupled problem has been derived. The stability of the bilinear weak form has been
proved for stabilization parameter larger than a constant which depends on the polynomial
order only. The error estimates in the H'-and L?-norms were derived as being optimal which
has been verified through a numerical example.
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Figure 3.4: Analytical and numerical radial stress distributions
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Figure 3.5: Analytical and numerical hoop stress distributions
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Figure 3.6: Analytical and numerical out of plane stress distributions
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Figure 3.7: Error with respect to the mesh size. (a) The relative error in the energy-norm,
and (b) the relative error in the L?-norm



Chapter 4

A coupled Electro-Thermal
Discontinuous Galerkin method

4.1 Introduction

Electro-Thermal materials received a significant interest in recent years due to their
capability to convert electricity directly into heat and vice versa, which promises a wide
range of applications in energy and environment fields.

The main interest of this chapter is to derive a consistent and stable Discontinuous
Galerkin (DG) method for two-way Electro-Thermal coupling analyzes considering Electro-
Thermal effects such as Seebeck and Peltier effects, and also Joule heating. These effects
describe the direct conversion of the difference in electric potential into the temperature
difference within the system (Peltier effect), which we are interested in, and vice versa
(Seebeck effect). This is typical of thermo-electric cells which could work in two ways:
electric generations |17] and heat pumps which operate in cool or heat modes [57].

Electro-Thermal continuum has extensively been developed in the literature [57,51,58|
43]. For example, as a non-exhaustive list, Ebling et al. [17] have implemented Thermo-
Electric elements into the finite element method and have validated it by analytical and
experimental results for the figure of merit values. Liu [43] has developed a continuum
theory of Thermo-Electric bodies. He has applied it to predict the effective properties of
thermo-electric composites. However he has considered that the temperature and voltage are
constant on a homogeneous thermo-electric body as their variations are small, which leads
to a linear system of partial differential equations. Pérez-Aparicio et al. [58] have proposed
an Electro-Thermal formulation for simple configurations and have provided a comparison
between analytical and numerical results.

The key point in being able to develop a stable DG method for Electro-Thermo coupling
is to formulate the non-linear equations in terms of energetically conjugated pairs of fluxes
and fields gradient. Indeed, the use of energetically consistent pairs allows writing the
strong form in a matrix form suitable to the derivation of a SIPG weak form as it will be
demonstrated in this chapter.

In this chapter we discuss the fundamental equations for the transport of electricity
and heat, in terms of macroscopic variables such as temperature and electric potential. A
fully coupled nonlinear weak formulation for Electro-Thermal problems is developed based

41
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on continuum mechanics equations which are discretized using the Discontinuous Galerkin
method.

The existence and uniqueness of the weak form solution are proved. The numerical prop-
erties of the nonlinear elliptic problem i.e., consistency and stability, are demonstrated under
specific conditions, i.e. use of a high enough stabilization parameter and at least quadratic
polynomial approximations. Moreover the prior error estimates in the H'-norm and in the
L2-norm are shown to be optimal in the mesh size with the polynomial approximation degree.

This chapter is organized as follows. Section 4.2 describes the governing equations of
Electro-Thermal materials. In order to develop the DG formulation, the weak form is for-
mulated in terms of a conjugated pair of fluxes and fields gradients, resulting in a par-
ticular choice of the test functions (6fp = §(4),0fy = 6(=%')) and of the trial functions
(fr = %, fy = %V), where T is the temperature and V is the electric potential, as proposed
by Liu [43]. A complete nonlinear coupled finite element algorithm for Electro-Thermal ma-
terials is then developed in Section 4.3 using the DG method to derive the weak form. This
results into a set of non-linear equations which is implemented within a three-dimensional
finite element code. Section 4.4 focuses on the demonstration of the numerical properties of
the DG method, based on rewriting the nonlinear formulation in a fixed point form [34]. The
numerical properties of the nonlinear elliptic problem, i.e. consistency and the uniqueness of
the solution, can then be demonstrated, and the prior error estimate is shown to be optimal
in the mesh size for polynomial approximation degrees k > 1. In Section 4.5, several exam-
ples of applications in one, two and three dimensions are provided for single and composite
materials, in order to validate the accuracy and effectiveness of the Electro-Thermal DG
formulation and to illustrate the algorithmic properties. We end by some conclusions and
remarks in Section 4.6.
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4.2 Governing equations

In this section an overview of the basic equations that govern the Electro-Thermal phe-
nomena is presented for a structure characterized by a volume §2 whose external boundary is
0f). In particular we discuss the choice of the conjugated pair of fluxes and fields gradients
that will be used to formulate the strong form in a matrix form.

4.2.1 Strong form

The first balance equation is the electrical charge conservation equation. When assuming
a steady state, the solution of the electrical problem consists in solving the following Poisson
type equation for the electrical potential

Vije=0 VxeQ, (4.1)

where jo [A/m?] denotes the flow of electrical current density vector, which is defined as
the rate of charge carriers per unit area or the current per unit area. At zero temperature
gradient, the current density je is described by Ohm’s law which is the relationship between
the electric potential V [V] gradient and the electric current flux per unit area through the
electric conductivity 1 [S/m], with

je=1-(=VV). (4.2)

However when T [K] varies inside the body, an electromotive force (VV)® per unit length
appears, and reads

(VV)* = —aVT, (4.3)

where a [V/K] is the Seebeck coefficient which is in general temperature dependent and
defined as the derivative of the electric potential with respect to the temperature. By taking
in consideration the Seebeck effect, Eq. , and adding it to Ohm’s Law, Eq., for
systems in which the particle density is homogeneous [51], the current density is rewritten
as

je=1-(=VV)+al- (-VT). (4.4)

The second balance equation is the conservation of the energy flux, which is a combination
of the inter exchanges between the thermal and electric energies:

V.jy=—-pdy VxeQ. (4.5)

The right hand side of this equilibrium equation is the time derivative of the internal energy
density y [J/Kg]

y=Yot+c T, (4.6)

which consists of the constant y, independent of the temperature and of the electric potential,
and of the volumetric heat capacity per unit mass [J/(K - Kg)] multiplied by the absolute
temperature T. Moreover the energy flux j, is defined as

Jy =a+ Vie, (4.7)
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where q [W/m?] is the heat flux. On the one hand, at zero electric current density, jo = 0
(open circuit), the heat flux is given by the Fourier ’s Law

qa=k (-VT), (4.8)

in this equation k [W/(K - m)] denotes the symmetric matrix of thermal conductivity coef-
ficients, which may depend on the temperature. On the other hand, at zero temperature
gradient, the heat flux is given by

q = Baje = aTje, (4.9)

where the coupling between the heat flux q and the electric current density je is governed
by the Peltier coefficient 5, = aT. By superimposing the previous terms to the Fourier’s
Law, Eq. (4.8), the thermal flux can be rewritten as:

q=k-(-VT)+aTj. = (k+ a®T1) - (-=VT) + aTl- (-VV). (4.10)

The first term is due to the conduction and the second term corresponds to the joule heating
effect.
Therefore the conservation laws are written as finding V, T € H2(Q) x H2' () such that

Vije=0 V¥xeQ (4.11)
Vijy=V-a+j VV=—pdy VxeQ, (4.12)

where T belongs to the manifold H2+, in which T is always strictly positive.

These equations are completed by suitable boundary, where the boundary 0f) is de-
composed into a region of Dirichlet boundary dpQ? and Neumann boundary on$ (i.e.,
OpQUONQ = 99, and IpQ NI = 0). On the Dirichlet BC, one has

T=T>0, V=V VxepQ, (4.13)

where T and V are the prescribed temperature and electric potential respectively. The nat-
ural Neumann boundary conditions are constraints on the secondary variables: the electric
current for the electric charge equation and the energy flux for the energy equation, i.e.

qn=7q, je-n=j, jy-n=j, VxedQ, (4.14)

with n is the outward unit normal to the boundary 0f2. For simplicity we consider the same
boundary division into Neumann and Dirichlet parts for the both fields T and V. However
in the general case this could be different.

The set of Egs. can be rewritten under a matrix form. First we rewrite Eqs.

under the form

;T je _ 1 Ckl _VV
J_<jY>_<\/1+aTl k+aV1+a2Tl><—VT>' (4.15)

The set of governing Eqs. (4.11] [4.12) thus becomes finding V, T € H2(Q) x H2+(Q) such
that

—poky

div(j)z( 0 >:i, (4.16)

where we have introduced i = < > for a future use.

—pOy
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4.2.2 The conjugated driving forces

First the weak form of the conservation of electric charge carriers, Eq. (4.1)), is obtained
by taking the inner product of this equation with a suitable scalar test function dfy € H' ()
over a sub-domain Q' C Q, yielding

V -jedtydQ =0 Vofy € HY(Q). (4.17)
Q/

After a simple formal integration by parts and using the divergence theorem, we obtain
— / jo - Vofy dQ —|—/ je -méfy dS =0 Vofy € HY(Q). (4.18)
Qf oY

Secondly, taking the inner product of the second balance equation, Eq. (4.12]), with the test
function &fp € H'™ (€V), over the sub-domain €' C  leads to

V - qéfpd¢Y +/ jo - VV6ofrdQ = —/ pOyofpdQY  Vofp € HY(QY). (4.19)
Qf Qf Q/
Moreover by applying the divergence theorem, one obtains
/ q - VéfrdQY :/ q - noéfpdS + VV-jeddeQ’—i-/ pOeydfrdQ  Vofr € HY(Q).
Q oY Q Qf

(4.20)
By substituting the internal energy, Eq. (4.6), and the thermal flux, Eq. (4.10)), this last

equation reads

/ (k- (=VT) + aTje) - VéfpdQ' = / pcy O, TéfrdQ + VV - jeofrdQ
/! Q/ Q/
(4.21)
+/ (k- (=VT) + aTje) - néfrdS.
o

In order to define the conjugated forces, let us substitute dfy by —% in Eq. (4.18). This
results into

. Vi [ . vv 'V ,
/{m/_]e -n(—f)dS = /Q,.]e (— T + TQVT)dQ. (4.22)

Substituting éf by % in Eq. 1) leads to:

(=VT) Je / / Cv / / Je 1oy
-VvT) -k- — a2l .vT — 2 OT AV
/I <( ) -k 5 o VT | dQ2 Q/(pT 0, T)dQY + ; V TdQ

(4.23)
-VT .
o[ (kG +ai) mas,
89/ T
By subtracting Eq. (4.22)) from Eq. (4.23)), one gets
PCvy , -VT ) .V
— 0, TdQ2 ~|—/ <k- —— )+ Adje +je(= > -ndS
/, T oy (=) ()
B . VvV VvV _V ,
_//< Je?+]e? JerI\QVT) dQ (424)

+ / ((—VT) k- (_Tva) - aj% : VT) gy,
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or
1 1 T
/ —(pcy 0, T)dY —|—/ —(q+jeV) -ndS = V eV —k VT + aj.T)dQ.
/ T 89/ T Q/

(4.25)

Henceforth, as j, = q +j.V, this last result is rewritten
Oy ydfpdQY +/ jy -nofpdS = / Jy - VotpdQY'. (4.26)

Q ! Q

By this way we recover the conservation equation of the energy flux, Eq. , which shows
that je, jy and V(—%),V(%) are conjugated pairs of fluxes and fields gradients as shown
in [43].

subsectionStrong form in terms of the conjugated pairs of fluxes and fields gradients

fp
fr = %, then the gradients of the fields vector VM, a 2d x 1 vector in terms of (Vfy, Vir),
is defined by

o= () (7)) () o

T2

Let us define a 2 x 1 vector of the unknown fields M = ( fv >, with fy = —% and

where I is the identity tensor. Hence, the fluxes defined by Eq. (4.15) can be expressed in
terms of fy, fr, yielding

. (e ) _ 1T VTI + aT?1 Viy (4.28)
17y ) T\ VT4 aT2  T%k+20T2V1+ o?T31 4+ TVA ) \ Vip /- '

The 2d x 1 fluxes vector j is the product of the fields gradients vector VM, which derived
from the state variables (fy,fr), by a coefficients matrix Z(V,T) of size 2d x 2d, which
is temperature and electric potential dependent. The conjugated pairs of fluxes and fields
gradients stated by Eq. were proposed by Liu [43]. This formulation of the conjugated
forces leads to a symmetric coefficients matrix Z(V,T) such that

j= Z VM. (4.29)

From Eq. (4.28), the symmetric coefficients matrix Z(V, T) is positive definite if Zyy and Z1;
- Z;FOZ&)IZ(H are positive definite. As Zyg = 1T is positive definite, and Z; - Z1T0Z501Z01 =kT?
is also positive definite, then Z(V,T) is a positive definite matrix.

The coefﬁment matrix Z(V T) in Eq. (4.28) could also be rewritten in term of (fy,fr) =

(—%, %), as T = V__G
£l - fll +og 1
Z(fy, fr) = 4.30
(fv, fr) ¥14adl fj—mfvua 1+ 1 (4.30)
T T
As the coeflicients matrix is positive definite, the energy can be defined by
vMTj = VM'Z(ty, fr)VM
f
7l —glrogl Viy (4.31)
=(Viy Vir ) [ . ¢ 2 0.
—2l+agpl f — 2« Vl+oz l—|— 1 Vit
T T T
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Finally, the strong form (4.15] [4.16]) can be expressed as

divj) =i  Vxeq,

M =M VxecdpQ, (4.32)
atj =j Vx € onNQ,
_ n 0 v 2 2+ - je
where n = 0 n , M € L*(0pQ2) x L*" (0pQ?), and j = i)
y

As explained by Liu [43], there is no unique choice of fluxes and fields gradients describing
the transport process, such that an arbitrary additive constant in the electrical potential V
should have no physical consequence. It can be shown that if (fy, fr) satisfies the conservation

law Eq. ([£32)

div (Z(T,V+C)VM’) — < _gty ) VM = < V(fV)vzf;)v(fT) ) (4.33)

showing that (fi, = fy — cfr, f1) also satisfies the conservation law.

4.3 Electro-Thermal analysis with the Discontinuous Galerkin
(DG) finite element method

4.3.1 Weak discontinuous form

The weak formulation of Eq. (4.11) is defined by multiplying it by a function 6fy €
II.H!' (Q°), performing a volume integral, and using the divergence theorem on each element
Q°. This leads to state the problem as finding fy, f € TI.LH(Q°) x IH!" (Q2°) such that

- Z/ jo(fy, f1) - Voty dQ + Z/ jo(fy,fr) -noty dS =0 Voty € ILHY(Q°). (4.34)
o0e

The surface integral of this last equation is rewritten as

Z/ je(fy, fr) - nofy dS_Z/ (fy, fp) - néfy dS
one s,

NQe

(4.35)
+ / je(fy, fr) - néfy dS,
Z 8[QEU6DQe
where the subdivision 9;Q2¢, Ip§2¢, and INQ2° have been defined in Section
The second term of the right hand side of Eq. (4.35) can be rewritten using
S [ Sttt mdtdS = [ (G B Oy + 5 (B ) RS
orQe o1
(4.36)

Z/ je(fv, fr) - nofydS = —/ (—de(fv, fr) -n=dfy) dS,
° ope OpQp

where n~ is the outward unit normal of the minus element ¢ | whereas n™ is the outward
unit normal of its neighboring element, n™ = —n~, and n= = n on dpQy,. We can use trace
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operators introduced in Section to manipulate the numerical flux and obtain the primal
formulation. As a reminder on 91{)y,, the average (o) and the jump [e] operators are defined
as (o) = 3(e" +e7), [] = (eF — 7). The definition of these two trace operators can be
extended on the Dirichlet boundary dply, as (e) = e, [e] = (—e). Therefore, Eq.

becomes

Z/ Je(fv, fr,) -néfydS = / je(fv, fr) - néfy dS
=~ Joqe N

(4.37)
[ Bl tr)si ] n s,
01, Uop Qy

Applying the boundary conditions specified in Eq. (4.14) and using this last result, allows
Eq. 1) to be rewritten as finding fy, fr € IL.H(Q°) x HeHﬁ(Qe) such that

/ JTe ofy dS = / je(fv, fT) - VofydQ) + / ﬂje(f\/, fT)5fv]] -n~dS
N Qn 012, U0p

Voty € TILH' (Q°).

(4.38)

Applying the mathematical identity [ab] = [a] (b) + [b] (a), and by neglecting the second
term because only consistency of the test functions needs to be enforced, then the consistent
flux related to Eq. reads [0fy] Ge(fv, fr)) -n™.

Moreover, on the one hand, due to the discontinuous nature of the trial functions in
the DG weak form, the inter-element discontinuity is allowed, so the continuity of unknown
variables is enforced weakly by using symmetrization and stabilization terms at the interior
elements boundary interface 01{2,. On the other hand, the Dirichlet boundary condition
is also enforced in a weak sense by considering the same symmetrization and stabi-
lization terms at the Dirichlet elements boundary interface dp€l,. By using the definition of
the electric current density, Eq. , the virtual electric current density djo(fv, fT) reads

e =1-(=V8V) —al - (=V4T). (4.39)

Using the definition of the conjugated force, Eq. (4.28)), this last relation is rewritten

. 1 f 1
Sje(fv, fr) = — - Vofy + (=~ + a5 )1- Vifr. (4.40)
fr i f+
Eq. (4.40) is rewritten in terms of 1; = % and lp = l(—%V + ozf%) as:
T T
dje(fv, f1) =11 (fr) - Vofy + Lo (fy, fr) - Vofr. (4.41)

This last result allows formulating the symmetrization and quadratic stabilization terms so
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. +
-\ v, 1T e ¢ e .
the weak form Eq .(4.38) becomes finding fy, fr € II.H'(Q°) x II.H'" (Q°) such that:

/ JTe(sfv ds — / (11 @T) . V(va + lQ(?V,fT) . V(SfT) . nfv ds
NQh 8DQh

+/ (5fvn.11(fT)B + 6fm W) -nfydS :/ jo(fy, f1) - VotydQ
Op hS hS Qn

+/ [0Fv] Ge(fv, fr)) -n™dS +/ [tv] (1 (fr) - Voty) -n~dS
OrQ,Udp Oy o,
+ / [fv] (L1 (fr) - Véfy) -n~dS
A
+ / [tv] Q2 (fy, fr) - Vofr) -n—dS
o,

+ / [fv] (a(fy, fr) - Véfr) -n~dS (4.42)
Op

e (4

+/ — h<fT>B ‘0 [fy] dS

+ ;Dgh[[éfﬂ]n— : <<12(fifT)>B> oI
o hs

1o (fy, f1
+/ [6fr]n~ - <2(V7T)B> 0~ [fy]dS
O, hg
Voty, oty € TIH(Q°) x T.H (92°).

The last two terms of the left hand side of Eq. make sure that the Dirichlet boundary
condition is weakly enforced, as it will be shown in Section Moreover, in this
equation B is the stability parameter which has to be sufficiently high to guarantee stability
as it will be shown in Section [1.4] and hg is the characteristic length of the mesh, which will
also be defined in Section [4.4]

In the same spirit, the weak formulation of the second governing Eq. is derived
by multiplying it by kinematically admissible function §fr € TI,H(Q°), integrating over the
whole domain, and applying the divergence theorem on each element, which lead to

—Z / jy(fv, fr) vadeQ+Z / jy(fv, fr) - néfrds
o0e
(4.43)

=-> / pOydtrdQ Vofp € TI.H(Q°).

As for the electrical equation, by introducing the jump operator and the boundary condition
Eq. (4.14), this equation becomes

/ Sfrj, dS = / jy(fy, fr) - VofrdQ + / [6f Gy (fv,fr))] -n~dS

O o 0182 UOD O, (4.44)

— / pOyydtrdQ Vot € TILH' (Q°).
Qp
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The consistent and stable weak form is obtained by considering the numerical energy flux
(jy(fv,fr)), and by adding stability and symmetrization terms in a weak sense. Using the
definition of the conjugated force, Eq. (4.28]), the virtual energy flux is expressed as

Sy (fy, fr) = (KT? + 2a1T?V + o21T? +1TV?) - Véfr + (aT? +1TV) - Vity

k f I 1 f 4.45
=(z —2 l% 0421@ —i—l%) - Véfr + (ad 5 — 17\/) - Vity. (4.45)
T fr fr 1 fr 15
Let us define jy, (fv,fr) = fT - 204f"1 + a? 1+ l , allowing Eq. (4.45)) to be rewritten in
terms of jy1, 1o as:
5jy(fv, fT) = jy1 (fv, fT) -Vofr + lQ(fv, fT) - Voty. (4.46)

Eventually, considering the Dirichlet boundary condition (4.13)), the stabilized form can be
stated as finding fy, fp € TI.LH(Q°) x HeH1+(Qe) such that

/ 5fTJTy ds — / (jy1 (fv, fT) -Vofr + 1y (fv, fT) . stfv) . nfT ds
aNQh aDQh

jv1(fy, fy, f -
+/ <5an . JYI( Vs T)B + (Sf\/'n . 12( Vs T)B> X ndeS
6]:)Qh hS hS

— / iy (b, 1) - VoErdQ — / DByt
Qh Qh

+/ [[(SfT]] Gy(fv,fT» -n~dS —|—/ [[fT]] ﬁyl(fv, fT) . V(SfT> -n~dS
012, U0p 2,

o1y

4 / 2] (g1 (6, £7) - V) -ndS
OpQn

+ / [fr] Q2 (fy, fr) - VSfy) -n~dS
o (4.47)

+ / [t2] (1a(fy, fr) - V6fy) - n—dS
OpQn

o [ poteda - (MO8 s

(fy. fr)
+/ [6fr]n~ <Jy1 v, fr) >.n—[[fT]}ds
Op

L (fy, f1)
+ [0fy]n— - <2V’T > n~ [fr]dS
aIQh

1o (fy, fr)
+/ [6fy]n~ <2 v fr) > n~ [fr] dS
OpQn
Vofy, ofr € HeHl(Qe) x TI.H(Q°).

The last nine terms presented in Eq. (4.42] 4.47) are the interfaces terms, which ensure the
following characteristics and properties:

1. The consistency by the first term.
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2. The compatibility by the second till fifth terms.

3. The stability by the last four terms, which is ensured by a stability parameter inde-
pendent of mesh size and material properties, as it will be shown in Section [£.4]

4. The contributions on dp€l, ensure that the Dirichlet boundary condition (4.13) is
weakly enforced.

The weak form (4.42] [4.47) is thus summarized as finding fy, fp € TI.H' (Q°) x IH'" (Q°)
such that:

a1 (fv, f, oty, 6ft) = by (6fy, ofp)  Vofy, ofp € TIL.H (Q°) x TI.H' (Q°), (4.48)

ag(fy, fr, 8fy, 8fr) = ba(dfy, f) + (pg}t’, Str) Vofy, oft € IILHY(Q°) x TL,HY(Q°), (4.49)
with
a1 (fy, fr, ofy, 6fr) = [ Viy -1i(fr) - VéfydQ + [ Vir - L(fy, fr) - VéfydQ

Qn Qp

+ / [[5fv]] <11(fT) . va) -n~dS
QLU Q1

+ / [[(va]] <12(fv, fT) . VfT> -n~dS
O Uop 2y,

+ / [[fv]] <11 (fT) . V(va> -n~dS -I—/ [[f\/]] <11(f:[‘) . V(va> -n~dS
oy,

OpQp

+ / [[fv]] <12(fv, fT) . V5fT> -n~dS + / [[fv]] <12(f§/, f_T) . V5fT> -n~dS
o

Op Sy

+/fmh [6fy]n~ <11(fT)B> n~ [fy]dS

+/aDQh[[5fﬂ < > n” [fv]dS

1y (f f
+ [6fr]n— <2 v. fr) > n~ [fy]ds
8IQh

L (fy f
+/ [6fx]n~ <2 v. fr) >-n_[[fv]]dS,
Op

(4.50)
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as(fv, f, ofy, ofr) = Vir - jyi(fv, fr) - VofpdQ + Viv - la(fy, fr) - VofrdQ2
Qh Qh

+ / [[(Sf'_[‘ﬂ <jy1(fV7 fT) . VfT> -n~dS
O, U0p 2y,
+ / HéfTﬂ <12(f\/, fT) . Vf\/> -n—dS
012, Udp
+ /a 0 [[fT]] (jyl (fv, fT) . V(SfT> -n~dS + / HfT]] <jy1(f;/, f:r) . V5fT> -n~dS
1

OpQy

+ / [fT] Q2(fv, fT) - Vofy) -n~dS —I-/ [fr] <12(f;/',f_T) . V5fv> -n~dS
o

Op Oy

+ /8  [ofnln” <Jy1(thfT)B> ‘0~ [fr] dS
o prn - (MO g as
o [[5fv]]n‘<12 o B> o [fr]dS

(4.51)
ba(oty.dtr) = [ oot ds
ON O
- /8 ((fr)- Tty +1o(fy.Fr) - Vitr) -nfy s (4.52)
D3¢th
+ / (6f\/n ilin)B + 5frn - W) -nfyds,
GDQh hS hs
by (8ty, fr) = / j, 6fr dS
Ol
- /a (iy1(Fv, r) - Vofr + La(fy, fr) - Vofy) -nfr dS (4.53)
D
+/ <5an n(tv, fr)B + 6fyn - W) -nfrdS,
OpQn hs hs
and
dy 0
f <z JT) 8t dQ. ,
(¢ ofr) = /th(%(ycmLC ) ofr (4.54)

The weak form stated by the set of Eqs. (4.48{4.49) can be rewritten in a matrix form by
considering a two-field coupled problem as in Section We can now recall the broken

Sobolev spaces, Eq. , With|I|

X+ = {M € L2() x L2 () | (4.55)

M e H3(00) xH5 ) (¢) \meegh} :

!By abuse of notations, the (4) superscript means either usual H?-space or the space 2t of strictly
positive values.



4.3 Electro-Thermal analysis with the Discontinuous Galerkin (DG) finite element
method 53

For future use, we define X(*) as X;JF) and X' the manifold such that fr > 0, while X is the

manifold for which fp § 0, with XT c X.

Eq. (2.9) becomes

Y = {VM € (L2(n)? % (L*())° |om ge ettt () <11 (29) \meeﬂh}- (4.56)

It should be noted that the test functions in the previous equations of the weak formulation
belong to H(0°) x H1+(Qe), however for the numerical analysis, we will need to be in
H2(Q°) x H2' (Q°), in order to be able to consider s = 2 in Eq. 1)

Using the notations considered to state the strong form , the weak form stated by
Eqgs. can be reformulated as finding M € X such that

az(M,0M) = bz(6M) — [ sMTidQ VoM € X. (4.57)
Qp

For simplicity we introduce the vector My, = < (I)l nQ > M and M, = < (1)1 ?1 > M , which
allows defining the different terms of the weak discontinuous formulation as

a5 (M, 5M) = /

(VoM)Tj(M, VM)dQ + / [{Mo] G(M, VM))dS
Qy

O UID

T
+ /819h M ] (Z(M)VéM) dS + /8DQ

+/{mh [M] <st(M)>[[Mn]] dS+/8

[Ma] (Z(M)VéM) dS (4.58)
1 /B

and

b3 (6M) = / sMTjds — M, (Z(M)VéM) dS
On oo (4.59)

- / oMY <BZ(M)> M,dS.
O, h

S

4.3.2 Finite element discretization
In the finite element method, the functions fy and fr are approximated by fy, and
fr,,, which are defined over a finite element Q2° using the interpolation concepts in terms of
standard shape function N* € R at node a, see [81], yielding
th = N?V %/’ fTh = N?T 91‘7 (4.60)
where f{; denotes the nodal value of fy, at node a. This directly leads to

Viy, = VN& £, Vip, = VN2 £, (4.61)

where VN? is the gradient of the shape function at node a.
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In order to obtain a Galerkin formulation, the test functions are approximated using the
same interpolation, i.e.

ofvy = Ng, 0fy,  ofry, = Ng ofp. (4.62)
Véty, = VN, ofy,  Véfr, = VNi oft, (4.63)
The finite discontinuous polynomial approximation My, = ( {;Vh > € XX of the solution
Th
is thus defined in the following space according to Eq. ([2.9)

XK = {Mh € L2() x L2 () | (4.64)

My, [ge €Pk(0) x Pk (Qe) voe ey, } )
where IP’k(Qe) is the space of polynomial functions of order up to k and P<" means that

the polyllomial approximation remains positive. As a result, the problem becomes finding
M, € XX such that

az(My, M) = b3(0My) — [ oMTidQ VéM, e Xk, (4.65)
Qp

The set of Egs. (4.65) can be rewritten under the form:
F2 (M) = Fiy, (M°) + Ff (M), (4.66)
where MP is the vector of the unknown fields at node b
fb
MP = < fg > . (4.67)
T

The nonlinear Eqs. (4.66|) are solved using the Newton Raphson scheme. To this end, the
forces are written in a residual form. The predictor, iteration 0, reads MP = MP?, the resid-
ual at iteration i reads

F, (Mbi) ~F2, (Mbi) —Fe (Mbi) ~R® (Mbi) , (4.68)

and at iteration i, the first order Taylor development yields the system to be solved, i.e.

OF:, OF%, OF} i & (MO
< VO Y 8M1b> |MMe (Mb —Mb) = —R* (M) (4.69)

The formula of the forces can be derived from Eq. (4.48]) and Eq. (4.49), after substi-
tuting Eq. (4.60] , which leads at each node a to:

Fi =F} +Fp (4.70)

fVext

a — 2
fText fTint

+FE (4.71)



4.3 Electro-Thermal analysis with the Discontinuous Galerkin (DG) finite element
method 55

F2 = / N2 j.dS — / fyn 14 (fp) - VN2 dS
fvext zS: (Ox )’ fyv Z (O A% 1 T) fv
aDQS S (ODQ)s hS
B
+Z/ an 1o( nyfT)h nN¢ ds,

with
F?\/im = Z /ere(fvhvah) : VN?VCIQ, (473)
e
at at at at
FfVI Ffvn Ffv12 + Ffv13’ (4.74)

where the three contributions to the interface forces on &Qhﬂ are respectively

fvn Z/a Q) iNai) (e (th 7fTh)> n—ds, (4.75)
fV12 = Z /810)5 [[f\/h]] 1 fTh) VN?\%) -n~dS
(4.76)
+ Z/ [[fTh l thyfTh> * VN?\:):> . nidS,
B - at
fVLs Z &9 [[fvh]] n - (fTh)}TS ‘n (iva ) ds
I (4.77)

+ Z/ lfr,Jn™ - <12(fvhafTh)fs> ‘n~ (iN?jE) ds.

(012)°

Similarly, the thermal contributions read

P = E Z /a o fy dS — § / -y (v, fr) - VNS
N
B a
- E oo fyn - 1p(fy, fr) - VN dS + E e an -yt fv,fT)h*'anTdS (4.78)
D S

B
+3 / fyn Ll ) -u,dS,

(pQ)*
with
Fp = /Q (v fry) - VNEAQ = /Q pOyNE A, (4.79)
e e
+ + + +
F?TI F?TI + F?TIQ + F?Tlg’ (480)

2The contributions on dpQy can be directly deduced by removing the factor (1/ 2) accordingly to the
definition of the average flux on the Dirichlet boundary and substituting 1, (fr), la(fv,fr) and jy(fv, f1),
which are constant with respect to fv,, and fr, , instead of 11 (fr,,), l2(fv,,, fr,) and jy(fv,,fr,)-
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where the three contributions to the interface forces are respectively

F?l:“i = Z /(BIQ)S (iN?;t> <jY(th7 fTh)> : n_dsv (4.81)

a 1 . a _
Ffig D) Z /(‘BIQ)S [fr,] (J;ﬁ:l (fv,, fr,) - VNf;t> -0 dS

1 (4.82)
a + . at )| o —
! 2 Zs: /(319)s [[th]] (12 (th, fTh) VNfT ) n-ds,
a - . B B .
S (4.83)

B
+ / f n—-<1 fy, ,f >-n_ +N3+) ds.
zs: il s )y (+857)

In these equations the symbol + refers to the node e (+ for node et and - for node e™).

This system is solved by means of a Newton-Raphson method with the stiffness matrix
computed in Appendix [C.I] where the iterations continue until the convergence to a specified
tolerance is achieved.

4.4 Numerical properties

In this section, the numerical properties of the weak formulation stated by Eq.
are studied in steady state conditions (i = 0), and under the assumption that d = 2.
It is demonstrated that the framework satisfies two fundamental properties of a numerical
method: consistency and stability. Moreover we show that the method possesses the optimal
convergence rate with respect to the mesh size.

4.4.1 Consistency

To prove the consistency of the method, the exact solution M® € H2(Q) x H2' (Q) of the
problem stated by Eq. is considered. This implies [M¢] = 0, (j) = j on 9{}y,, and
[Me] = —M = M°, (j) = j = Z(M®)VM¢, and Z(M) = Z(M) = Z(M°®) on dpQ,. Therefore,
Eq. becomes:

/ MTjas - [ MY (Z(M)VeM) dS + / oM (fzm)) M,dS
8NQh 8DQh aDQh 8
= / (VoM)Tj(Me, VM®)dQ + / [6M, ] §(M®, VM®)dS
o i (4.84)
- / SMEj(Me, VM®)dS — MeTZ(M)VMdS
Op O

- / Y éZ(M)MgdS VoM € X.
Op&y

S
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Integrating the first term of the right hand side by parts leads to

> / (VoM)Tj(M®, VM®)d) = —Z SMTVj(M®, VM®)d$
e Qc

(4.85)
+ Z §(M®, VM®)dS,
8(2‘3
and Eq. becomes
/ sMTjds — M, (Z(M)VsM) dS + / sMTY <BZ(M)> M,dS
BNQh BDQh aDQh hS
= —Z 5MTVJ Me, VM®)dQ) + / SMIj(Me, VM®)dS (4.86)
ON

- / MgTZ(M)deS + / 6MTB ZM)MEAS VoM e X.
6]39}, 6DQh h

The arbitrary nature of the test functions leads to recover the set of conservation laws, Egs.

(4.11H4.12), and the boundary conditions, Eqs. (4.13H{4.14)).

4.4.2 Discontinuous space and finite element properties

In this part, we will assume that Op{2, = 0Qn. This assumption is not restrictive but
simplifies the demonstrations.

The main approximation properties and norm definitions, which will be used in the error
analysis of the Discontinuous Galerkin Finite element method, will first be recalled without
proofs.

The norms which have been defined in Chapter 2, Egs. , will also be considered
for our subsequent analysis of Electro-Thermal coupling, with O = M, for M € X5, where
the norm [||[M]|| = 0 is defined in such a way that it will be equal to zero only when
fy = cst and fr = cst on Q}, and are equal to 0 on Ipfly,.

4.4.3 Second order non-self-adjoint elliptic problem

The demonstration of the stability follows closely the approach developed by [25])60,74.76]
for linear and nonlinear elliptic problems. As the problem is herein coupled, and as the
elliptic operator is different, we report and modify the main steps of the demonstrations
that were initially developed in [25,|76] for d = 2.

The main idea to prove the solution uniqueness and to establish the prior error estimate
is to reformulate the nonlinear problem in a fixed point form which is the solution of the
linearized problem as proposed in [24,|30}76].

Starting from the definition of matrix Z(M), Eq. (4.30), which is a symmetric and
positive definite matrix, as we have proved in Section let us define the minimum and
maximum eigenvalues of the matrix Z(M) as A(M) and A(M); then for all ¢ € R2d one has

0 < AM)E[? < 6ZT(M)g; < AM)[¢ (4.87)
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Also by assuming that || M |1 < o, then there is a positive constant C, such that
0<Cq < AM). (4.88)

In the subsequent analysis, we use the following integral form of the Taylor’s expansions
of j, defined in Eq. (4.29)), for (V,VP) € X x Y in terms of (M, VM) € X xY:

i(V,VP) = jM, VM) = —ju(M, VM)(M — V) — jymu(M, VM)(VM — VP)
+R;(M - V,VM - VP) (4.89)
= —iMM, VM)(M — V) — jou(M, VM)(VM — VP),

where jy is the partial derivative of j with respect to M, jym is the partial derivative of j with
respect to VM expressed in the matrix form, and R; is the residual. With V¥ = M+t(V—M),
VP' = VM + t(VP — VM), we have

1 1
i (M, VM) = / i (V' VPt opr(M, VM) = / jom(V',VPYds,  (4.90)
0 0

RjM —V,VM — VP) = M — V) jym(V, VP)M - V)
+ (VM — VP)jomom(V, VP) (VM — VP) (4.91)
+2M — V) Hyom(V, VP) (VM — VP),

and
) 1
imm(V,VP) = / (1 — t)imm (V' VPY)dt,
0
1
imvm(V,VP) = / (1 = t)imom (V' VP)dt, (4.92)
0
1
jvmwm(V, VP) = /0 (1 - t)iymom (V" VP')dt.

Using the definition Eq. of j, we have jyr = gTZAVM, ivM =2, jmm = %VM

iMyMm =JvmMm = 2%, jumum = 0. If fp > fro > 0, then jy, jaym € L (@ xRxR{ x RYxRY)
and joum, imums Jumm € L (2 x R x Ry). The expressions of the derivatives are given in
Since j is a twice continuously differential function with all the derivatives through the
second order locally bounded in a ball around M € R x Rg as it will be shown in Section

for d = 2, we denote by Cy
Cy = max { 1] HWgO(QxRxRar xRdxRd)> | ims Joms Ivms Imoms Jomm ||L°°(Q><R><]RE)")} - (4.93)

We can now study the weak form defined by Eq. 1' under the assumptions i = 0 and j
independent of M. The problem thus reads as finding M € X such that

az(M, SM) = bs(6M) VoM € X, (4.94)

with az(M, dM) defined by Eq. (4.58) and b3(6M) by Eq. (4.59).
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4.4.3.1 Derivation of the non-self-adjoint linear elliptic problem

Let us define M® € H2(Q) x H2"' (2) the solution of the strong form stated by Eq. ()
Thus as [M°] = 0 on 9iQ2° and as [M°] = —M® = —M on 9p€2°, we have

ag(M®, 5MF) — / (VoME)Tj(M®, VM®)dQ + /
Qp

5M3T]] G(M®, VM®)) dS
o,

- / SMEj(Me, VM®)dS — M. Z(M®)V5M®dS (4.95)
Opfly Op
+ / sMe ézuvle)l\‘anols = by(0M®) VOM° € X,
8DQh hS

as the weak form stated by Eq. (4.57) is consistent, see Section m

Using the weak formulation (4.94)), we state the Discontinuous Galerkin finite element
method for the problem as finding My, € Xk+, such that

a3(My, 6My,) = b3(0My) VoM, € XX C X. (4.96)

Therefore, using 6M® = 6M}, in Eq. (4.95) and subtracting it from the DG discretization
(4.96) yields

0 = ag(M®, 6My,) — az(My, 0My,) = / (VoMy,) Tj(Me, VM®)dQ
Qy

—/Q (vaMh)Tj(Mh,VMh)dQ+/ [6ML ] G(M®, VM®)) dS

8IQh
- / SM j(M®, VM®)dS — M, jom(M®) VoM, dS
Op & e o ) (4.97)
+ / oMY, jom(M*)MadS - ML ] Gom (M) VM) dS
OpQy S O, Uop Qy

-/ [OMT] (M, VM) dS
012, UOp Q2
B.
- / My <hJVM(Mh)> [6My,]dS, VoM, € X,
O, Uop s

where Z = jum-

By adding and subtracting successively | P [{MﬁT - Mgnﬂ (Gvm(M®)ViMy,) dS

and [, o, HMﬁT — Mgnﬂ <h§sjVM (Me)> [6My, ] dS to this last relation, and using [Mg] = 0
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on O, and [M{] = —M§ = —M,, on dp§, one gets

0= / (VOM,)T (M, TMC) — §(My,, VMy,)) d2

h

+ [ME] GME, VM®) — j(My,, VMy) dS
QLU O,

o)

_l’_

hUOD 4.98
[ Mh}]<<jVM<Me>—jVM<Mh>>V6Mh>ds

+
o

B. .
My - ME ] (i) ) [, s
31911U3D9h s

/(mh . Mgnﬂ <f (jom(M®) —jVM(Mh))> [6My, ] dS VoM, € XX,

Using the Taylor series defined in Eq. (4.89)) to rewrite the differences, we successively have:

\

(WMh) (G(M?, VM) —j(My,, VMy,))d$2

V(SMh JM Me VMe)(Me — Mh))dQ
Qy

(4.99)
+ V(SMh JVM (Me)(VMe VMh))dQ
Qy
(VoMy,) T (R;(M® — My, VM® — VM,,))dQ,
Qy
and
/ [6My, ] GM®, VM®) — j(My, VMy,)) dS
QLU O,
_ / [SME ] (jag(ME, VM) (M€ — My,)) dS
LU, (4.100)

T / [ML ] Gom(M®)(VM® — VM,,)) dS
01, U0

— / [oMy, ] (R;(M® — My, VM® — VMy,)) dS.
O UIp O,
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We can now first define N'(M®¢, My; 0M},) as follows

N (M, My,; 6M},) = / (VoMy) T (Rj(M® — My, VM® — VMy,))dQ
Qp

" / [oML, ] (Rj(M® — My, VM® — VMy,)) dS
aIQhUaDQh
" /6 Q [[MET B MED]] (Gvm(M®) —jvm(Mn)) VoMy,) dS (4.101)
I3¢h

o B . o
[P ME] (o) M) ) oM
aIQh hS
=T +Iy + 13+ 14.

Moreover, for given 9 € X1, w € X and dw € X, we define the following forms:

Al w, 6w) = / (Vw) Tjo () Vard + / [60T] (ivy (%) Vi) dS
Qn 01, U0p
+ [wF] (o) Vaw) s + | 3] { ivel) ) Towal o5
012, U0p 2, 012, U0p 2, S
(4.102)
B(t;w, dw) = / (Vow) Yy (¥, Vip)wdQ + / [6wa] Gy @, Vipw)dS.  (4.103)
Qn 012, U0p Oy

For fixed %, the form A(%;.,.) and the form B(v;.,.) are bi-linear. Therefore, using the

relations (4.9944.100) and the definitions (4.101H4.103), the set of Eqs. (4.98)) is rewritten as

finding My, € XX such that:

A(M® M — My, 0My,) + B(M®; M® — My, M) = AV (M°, My,; 6My) VoM, € X, (4.104)

4.4.4 Solution uniqueness

Let us first define n = M — M° € X, with [[ M € XK the interpolant of M€ in Xk
The last relation (4.104)) thus becomes

AM®;T,M — My, 6My) + B(M®; I,M — My, 6M,)

4.105
= A(M®; 5, 6My,) + B(M®; 5, 6My,) + N (M®,My,; 0My,) VoM, € XE. (4.105)

Now in order to prove the existence of a solution My, of the problem stated by Eq. (4.98]),
which corresponds to the DG finite element discretization (4.96)), we state the problem in

the fixed point formulation and we define a map Sy, : XK" 5 XK as follows: for a given
y € X¥" find Sh(y) =M, € X57, such that
.A(Me; .M — My, 5Mh) + B(Me; LM — My, (SMh)

4.106
= AM®;n,6My) + BM®;, 6My,) + N (M®,y; 6My,) VoM, € XX ( )

The existence of a fixed point of the map Sy, is equivalent to the existence of a solution My,
of the discrete problem (4.96)), see [24].
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For the following analysis, we denote by Ck, a positive generic constant which is indepen-
dent of the mesh size, but may depend on Cy, CX, C%, Ck., and on k, so it can take different
values at different places.

To demonstrate the uniqueness, we have recourse to the following Lemmata.

Lemma 4.4.1 (Lower bound). For B larger than a constant, which depends on the polyno-
mial approximation only, there exist two constants C’f and CS, such that

A(M®; 5My, M) + B(M*;: M., 6My) > CF [[| 0My, [||2 —C5 || 6My, [|72 ) VOM), € X,
(4.107)

A(M®; 6Mp, 6My) + B(M*; My, My) > CF ||| 6My, [[|* —C5 || My |72 VoM € X,
(4.108)

where the norms have been defined by Eqs. (2.10) and (2.11]). Proceeding by using the bounds
and , the Cauchy-Schwartz’ inequality, Eq. @, the trace inequality on the
finite element space , the trace inequality, Fq. (@ , and the inverse inequality, Eq.
, the &-inequality =€ > 0 : |ab] < §a2 + %bQ, as in Wheeler et al. (7] and Prudhomme
et al. [60] analysis with some modifications, yields to prove this Lemma m The two
positive constants C’f, C¥ are independent of the mesh size, but do depend on k and B, for
details, see Appendix . In particular, for le to be positive the following constrain on

the stabilization parameter should be satisfied B > gg’ maz( Cr(Ch 4 1), 40,’%2). Therefore for

the method to be stable, the stabilization parameter should be large enough depending on the
polynomial approrimation.

Lemma 4.4.2 (Upper bound). There exist C > 0 and C* > 0 such that
| AM®; u, 6M) + B(M% u,0M) [ < C|[[ wll[1 [[| 0M ||}y Vu, M€ X, (4.109)

| A(M®;u, 0My) + B(M®u,6M;) | < C* ||| ul||1 ||| 0My, ||| Yue X, 6M, € X+, (4.110)
| A(ME; up, 6M,) + B(M®; w, My) | < C° ||| w, (|| [|| My, ||| Vun, 6My, € X¥,  (4.111)

where the norms have been defined by Eqs. (2.11) and (2.13). Applying the Holder’s inequal-
ity, Eq. (2.24)), and the bound on each term of A(M¢; u, M)+ B(M¢; u,0M) and then
applying the Cauchy-Schwartz’ inequality, Fq. , lead to relation . Therefore
relations and are easily deduced from the relation between energy norms on
the finite element space, Eq. . The proof is presented in Appendiz .

Lemma 4.4.3 (Auxiliary problem). We consider the following auxiliary problem, with ¢ €
L2(Q):

—VT Gou(M)VY + ju(M VM) = ¢ on Q,

5—0 on 00 (4.112)

Assuming regular ellipticity of the operator, there is a unique solution ¥ € H*(Q) x H?(1)
to the problem stated by Eq. satisfying the elliptic property

% )< Cll @ 2@, - (4.113)
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The proof is given in [23], by combining (25, Theorem 8.3] to (25, Lemma 9.17].
Moreover, for a given @ € L*(Q) x L*(Qy) there exists a unique ¢j, € X* such that

A(M; My, 1) + B(M": My 1) = > /Q o 5 M;dQ2 VM), € X, (4.114)

and there is a constant C* such that :

énll1< C 1l Il - (4.115)

The proof follows from the use of Lemmam to bound ||| @, ||| in terms of || ¢ HL2(Qh)
and || én llr2(,)- | én |2, i then estimated by considering ¢ = @), € X* in Eq.

, multiplying the result by ¢y, and integrating it by parts on Qy, yielding || ¢, ||iQ(Qh):

A(M®; 9, dn) + B(M®;,¢). Inserting the interpolant Ing in these last terms, making suc-
cessive use of Lemmata|{.4.2 and|2.4.0, and using the reqular ellipticity Eq. allows
deriving the bound || @ || 12(q,)< C* || @ |2 q,): Which shows that ||| ¢y ||| is bounded by
| HL2(Q}L) and results into the proof of . The proof is derived in detail in Appendiz
[C7a

Now, to prove the existence of the solution of the discrete problem, it is enough to prove
that the map Sy has a fixed point. So in order to prove that the solution My is unique for

a giveny € Xk+, and that the solution is Sy(y) = My, let us assume that there are two
distinct solutions My, , My, to the problem stated by Eq. (4.106]), which results into

AM® I,M — My, ,0My) + B(M®; I,M — My, , 6My,)

4.116
= AM® ;M — My2, oMy) + B(M®; ;M — My2, oMy)  V oMy € Xk, ( )

For fixed M€, A and B are bi-linear, therefore this last relation becomes
AM® My, — My, M) + BM®; My, —My,,6My,) =0 V §M;, € X~ (4.117)

Using Lemma :4.4.3L with ¢ = My, = My, — My, € XK results in stating that there is a
unique @}, € X* solution of the problem Eq. (4.114)), with for 6M;, = My, — My,

_A(I\/Ie;My1 — My2,<I)h) + B(Me;Myl - My27<I>h) :H MY1 - MY2 ”iz(Qh)’ (4'118>

and that ||| @, |||< C¥ || My, — My, [12(,)- Choosing 6My, as @y, in Eq. (4.117), we have
| My, — My, [[12(q,)= 0. Therefore, the solution Sp(y) = My is unique.

We will now show that Sy maps from a ball O, (I,M) C XX" into itself and is continuous
in the ball. We define the ball O, with radius ¢ and centered at the interpolant I,M of M*¢
as

Oy (I,M) = {y € X" suchthat || I,M —y || < a} ,

LM — Me (4.119)
po WM M
hS

ith .
wi 1
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The idea is to work on a linearized problem in a ball O, (I,M) C XX around an interpo-
lation ;M of M€ so the nonlinear term j and its derivatives are locally bounded in the ball
O, (InM) C X5, We note that from Lemma Eq. 1} one has

[ 1M — M [ € CE || M© [lys(y) and o < CXCphE " || M® [l if k > 2,
(4.120)

5 5+
Assuming M°® € H2 (Q)xHz (), using the previous relation with s = 2, Cyy =[] M® HH%(Q

and u = % = s, then we have
3 3_
||| ILM — M® [||; < C*h2 || M® I ) 20 o < CkCyh2 ™ if k> 2. (4.121)
h

It is shown in Appendix that j(x;y, Vy), im(x:y, Vy), imm(x:y, Vy), jvm(x:y),
jMvMm(x;y) are bounded for x € Q, y € O,(IM), by the same reasoning as in [76] for d = 2,
which justify Eq. .

We can now bound the nonlinear term N'(M®,y; M) of Eq. (4.108). Let y € Oy (I,M)
and ¢ = M® —y which can be expanded as { = n + & with n = M® — ;M € X and
&€ = LM —y € XX, where I,M is the interpolant of M®. Toward this end, let us begin by
computing the bounds of some terms which will be used in the following analysis.

Lemma 4.4.4 (Intermediate bounds). Let § = LM —y, M), € X*, n = M°* — ,M € X and
¢ =&+, then by bounding successively the two contributions, we can derive

(Z I¢ HQLQ(QE)) < Cho

N

(4.122)
3_
< CERETITE || MO || gy = CFR2TT || M ||Hg(Qh) if k> 2,
1
4 1
1€ 1Ty | < C'hs 20
(Z e (4.123)
ST ~ _
< Chs || M ()= C°hy || M HHg(Q}) ifk > 2,
1
Z | V¢ HL2 < Co
(4.124)
3_
< R || MO || g,y = CFRE T | ME | 12 () if k> 2,
h
1 3
|7 [ 2000 < CLOBHS T || M® || s(ey= 04 || Mo, 5@9) ifk> 2, (4.125)

NI

1 _3
(Z | 90 14 s ) < GG | M o,y < CROBME || MF |50 ifh 22
(4.126)

\1

1 7
| V0 s oy < OGRS | M = CHOBIS | ME | g o k22, (4127)
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»MLO

(Z 1€ 114 e ) < CLCECph

1 _7_ 1 3_
< CHChOpHY T || M |y = CHCECRRE ™ | M || if > 2,
(4.128)

1

1 _3_ T_
(Z I €D 200 ) < Chhio < G | M = Coh " I ME 5, ifR =2,
(4.129)

N

_3
(Z | V€ HL4 90e ) < Cfccéhs ‘o

_T_ 3_
ChCAE ™ | M o= O Coli ™" | ME g, i8> 2
(4.130)

IN

1

. Cthy *
(Z €154 00 ) = 7 (4.131)

T 3_ .
< O M o= OB I ME g 22,

PN

(Z I ICT 14 0 ) < C*hio

(4.132)
_3_ 7_
< Cls T ME (| gy= CRETT | M 13 0, FH2 2
1
4 CJC 3
I V¢ 290 | < CPhsto
<Z o) (4.133)
_T_ 3_
< COHy T || ME | g,y = CFRETT || ME “H%(Qh) ifk > 2,
_1
| My [y ey < CI : | oM, |H1(Q

with u = min{s, k+ 1}. Theses previous inequalities are derived in Appendz'a: and only
the final results are reported here.

We have now the tool to bound the nonlinear term N (M®,y; éMy,) of Eq. (4.106).

Lemma 4.4.5. Let y € O,(I,M) and 6M;, € X*, then the nonlinear term N (M°, y; M)
defined in Eq. (4.101]), is bounded by

| N (M, y:0My) | < CCy || M 1) Pe™2750 [ 6M) [0

2 1 ) 2] (4.13p)
—+ <Z hs ’ 5Mh ‘Hl(age)> + (Z hs_l H [[5Mhn]] HLQ(aﬂe))
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The bound follows from the use of Lemmal[{.4.4, Taylor’s series , the generalized
Hélder’s inequality , the generalized Cauchy-Schwartz’ inequality , the definition

of Cy in Eq. (4.93), and is reported in Appendix . Moreover, using the definition of the
energy norm (2.14), this relation becomes

| N(M7,y:6My) | < CECy | ME |l e,y Bt ™20 |l My, || (4.136)
which could be rewritten using Lemma[2.4.5 for the general case as

| N(M7,y: 6My,) | < C*Cy | ME || e,y B> ||| My, ]

(4.137)
< C*CyCuhs %0 || 6My ||| if k> 2.

We now have the tools to demonstrate that Sy, (i) maps from a ball O, (I,M) c X¥ into
itself and (ii) is continuous in the ball.

Theorem 4.4.6 (S;, maps O, (I,M) into itself). Let 0 < hy < 1 and o be defined by Eq.
/.121). Then Sy, maps the ball O,(I;,M) into itself.

Let y € Oy (IM) € X¥ and Sy(y) = M, be the solution of the problem given by Eq.

14.106:. Then using Lemma m Eq. (4.108), Lemma 4.4.2] Eq. (4.110), Lemma m
Eq. (4.136)), and the definition of the ball (4.119)), we successively find that

le |H IhIVI _My ”|2 _CIQ{ H Ihl\/I _My Hi2(gh)
< AMS LM — My, LM — M) + B(M®; ,M — My, LM — M)
< AMS M — M, )M — My) + B(MS; T,M — M, [,M — My) + N (M®,y, [,M — My)
< CH || IhM = M® [[[ ||| IbM — My ||| +C5Cy || M® ||g=(q,) b4~ %0 ||| 1M — My ||
< (C*hE + CRCy | ME [ls(q,) b2 7)o ||| TM — My ||| .
(4.138)

Let us define Ck/(Ck,Cy,CM) a constant, that can depend on C, Cy and Cy, then, as
O<e< i, the last expression can be rewritten for k > 2:

CY /]| InM — My [||* ~C5 || 1M — My < C¥ohg || IM — My || (4.139)

2
HLQ(Qh)

Then, in order to estimate || I\M — My [|;2(q,, We consider the auxiliary problem defined
in Lemma Choosing ¢ = My, = I;M — My, there exists ¢y, such that,
I #n [I< C* || ThM — My |1 2(q) with

| .M — My ||52(Qh) = AM®*I,M — My, ¢y) + B(M®; I,M — My, ¢y,)
< AM® LM —M?, ¢y) + BM%T,M — M®, ¢y) + N (M, y; ¢n)
< CF || TM — M [[[1][] ¢n [[| +CECy [| M® ||,y 0& 750 [[| 6 |l]
< (C¥ohg 4 C*Cy || M® s (q,) ob727%) || IM — My [|2(, )
< C¥ohf || LM —My || 12, ifk >2,
(4.140)
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where we have used Lemma[4.4.2] Eq. (4.110), Lemma[4.4.5 Eq. (4.136), and the definition
of the ball (4.119]). Substituting Eq. (4.140) in Eq. (4.139) gives

C (I 1M — My [[[2 < C¥obg ||| TM — My ||| +C5 || M — My |2
< C¥ohe ||| 1M — My ||| +C5CK obe || TM = My || 2, (4141)
< C¥ohs ||| ,M =My ||| if k > 2.

Hence, we get
| IM =My |||< C¥'ohf if k > 2, (4.142)

and for a mesh size hy small enough and a given ball size o, [,M — My — 0, hence Sy, maps
O, (InM) to itself.

Theorem 4.4.7 (The continuity of the map Sy, in the ball O, (I,M)). Fory:, y2 € O,(I,M),
let My, = Sp(y1), My, = Sp(y2) be solutions of Eq. . Then for 0 < hy < 1

|| My, — My, ||| < CCy || M ||y P42 g — w2 II] - (4.143)
The solutions My, and My, of the linearized problem (4.106)) satisfy
AM® )M — My, 6My) + B(M®; LM — My, , 6My,)

= AM®n,6My,) + B(M®;n, 0My) + N (MC,y1;0My) VéM,, € XX, (4.144)
and
AM®; I,M — My, , 0My) + B(M®; I,M — My, , 0My,)
= AM®;n, 0My) + BM®; 9, 0My,) + N (M®,y2; M) VoM, € XX, (4.145)
where n = I,M — M°®. By subtracting Eq. from Eq. , we have
AM®; My, — My, M) + B(M®; My, — My, My,) (4.146)

= N(MG,Y% 5Mh) —N(Me,y'1; (SMh)

Choosing 1 = M°® —y; € X and {2 = M°® —yy € X, the right hand side of Eq. (4.146] can
be rewritten as follows:

N(Mevy2; 5Mh> - N(Meayl; 5Mh)
- /Q (VoM™ (B;(Ca, VCs) — By (€1, V1)) A2

+ [oMT ] (R;(C2. VC2) — Ry(C1, V1)) dS

S—

O 2,U0p Q2

o L] o0 o) Vam) as .

T

- /8 e L] (o) — onnty)) Vo) as
T36h -

+ /aIQh :MeT _YQTn: <Z(jVM(Me) _jVM(YQ))> [6M,,, ] dS

_/alﬂh :MeT —Y1T.,: <i(jvm(Me) —jvm(yl))>ﬂ5Mhn]]ds,
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By applying Taylor series, Eqs. (4.8914.92)), to rewrite the right hand side, every term will
be either in y; —y2 or in V(y; —y2). For example, the bound of the first term is as follows

/Q (VM) " (Rj(C2, V€2) — R;(¢1,V¢1)) A2 =

/Q (VM) (3(y2, Vya) — §(ME, VME) + jag(MC, VME)(ME — )

+ivm(M®, VM) (VM® — Vys) —j(y1, Vy1) +j(M°, VM?)
—iM(M?, VM®)(M® —y1) — jum(M®, VM®)(VM® — Vy,)) dQ

— /Q (VoMy)" (§(¥2, Vy2) — 531, Vy1) — i (ME, YM®)(y2 — y1)
h
—jvm(M®, VM®)(Vy2 — Vy1)) dQ

- /Q (VoM™ ((ar(y1, Vyn) — i (M?, VM®)) (y2 — 1)) d2

(4.148)

+ /Q (VM) ((om(y1) — jona(M®)) (V2 — Vy1)) d
+/Q (VoMy)™ (Rj(y1 — y2. Vy1 — Vy2)) dQ.

The first term of the right hand side of Eq. (4.148]) is bounded by using the generalized
Hélder’s inequality ([2.25)), the generalized Cauchy-Schwartz’ inequality (2.27]), the definition
of Cy in Eq. (4.93), the inverse inequality (2.19)), and the bounds (4.122] [4.124] and [4.134]))
as

| ; (VoM) " ((m(y1, Vy1) — im(M®, VM®)) (y2 — y1)) d€2 |

<| /Q (VeML)" ((y1 — y2) "imm(y1, Vy1) (M — y1) dQ |

+ | A (VoML)" ((v1 — y2) imom (1) (VM® — Vy)dQ) |

< Cy > I VoM oo | M =y 2ol ¥1 = ¥2 llLiar)

+ Cy Z || V5Mh HL4(QQ)|| VMe — vyl HLQ(QQ)H Y1 —¥y2 ||L4(Qe) (4149)

4

1
1
<Gy <Z | VoM, ’évi(m)) (Z | y1—y2 \|i4(ge)>

{(Z ¢ !izme)> + (Z | V¢ Hiz(ge)> ]
<

CRCyhl ™7 | 6My, il ¥1 = ¥2 2| M® lus@,) -

Similarly, the second and third term are bounded using the generalized Holder inequality

(2.25)), the generalized Cauchy-Schwartz’ inequality (2.27)), the definition of Cy in Eq. (4.93))
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and other inequalities that are introduced in Lemma [{.4.4] Then the other terms in Eq.
(4.147)) can be rewritten in a similar way to Eq. (4.148)), see [24]. Therefore, we have

| NV(M®,y2; 0My) = N (M®,y150My) | < C5Cy | M® [[rre(e) b7 [y — w2 [l 1] oM, |l -

(4.150)
Choosing 0My, = My, — My, and using Eq. (4.108), Eq. (4.146|) becomes:
CY ||| My, — My, [|[* =C5 || My, — My, [}2q,
< A(M:§MY2 - My, My, - My,) (4.151)
+ B(M* My, — My, , My, — My,)
< N(M67Y2;My2 - Myl) _N(ManHMYQ _MYI)'
Similarly, setting )My, = My, — My, in Eq. (4.150)), Eq (4.151) becomes:
My, — My, [|> < CECy | M® ||s(a,) h4727 || y2 — y1 || || My, — M
1 My, — My, [I[> < CECy || M® [ a) [ My =My )

+ CIQ{ H MY2 _MY1 Hi?(gh) :
As | My, — My, HEQ(Qh)ﬂH My, — My, [|[ [| My, — My, [/ 2(q,), this last relation becomes

I My, =My, || < CECy | M [lsa,) 0& 7% [l y2 — y1 [I| +C5 [| My, — My, [l12(q,) -
(4.153)

In order to estimate || My, — My, Hig ) Ve consider ¢ = My, — My, in Lemma W
Therefore, there exists a unique ¢y, satisfying Eq. (4.114) YoM, € X¥. In particular for
O0M;, = My, — My, this implies
H Myz - My1 ||i2(gh) = A(MeSMyz - My17¢h) + B(M65My2 - My17¢h)
= N(M67Y2§¢h) - N(Man1§¢h)
< C*Cy | M® [l D275 [y =y 1 & [l

< Ckcy | M® ||HS(Qh) hg_z_e Il'ye =y lll |l My, — My, HLQ(Qh)»
(4.154)

where we have used Eq (4.146)), Eq. (4.150)), and Eq. (4.115)). Substituting Eq. (4.154)) in
Eq. (4.153)) completes the proof of the theorem.

Using the Theorems[f.4.6|and [4.4.7] of the map Sy, we can conclude that for all 0 < hg < 1,
the maps Sy, has a fixed point My, of the ball O, (I,M), which is the solution of the nonlinear
system of Eqs. (4.96)).

4.4.5 A priori error estimates

As Sy, maps a ball into itself, we can use My, instead of My in Eq. (4.142), hence we have

Il TM = My, | < C¥ohg = C¥ ||| T,M — M® |||, . (4.155)
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Now using this last relation, Lemma [2.4.5 u Eq. -, Lemma [2.4.6} u Eq. -, and Eq.

m ) lead to
[[| M® =My, [I[; <[[| M® =T,M ||| + ||| ITnM — My, |||z
<[|| M — M || +C* ||| T.M — M |||,
<(1+CK) M~ LM ||y
< CK'npt | M 1= ()5

(4.156)

where p = min {s,k + 1}, and C¥" = C¥(1 + C¥). This shows that the error estimate is
optimal in hg.

4.4.6 Error estimate in the L?-norm

Since the linearized problem (4.106) is adjoint consistent, an optimal order of convergence
in the L2-norm is obtained by applying the duality argument.
To this end, let us consider the following dual problem

~VT(iymM®)Ve) + iy (M®, VM)V =e on Q,

b—g on 00 (4.157)

which is assumed to satisfy the elliptic regularity condition as jypm is positive definite with
¥ € H () x H*(€,) for p > 2m and

1% e, < <|| e ||Hp 2 + Il -3 ) ; (4.158)

(0%2)

ife e Hp_2m(Qh) X Hp_Zm(Qh).
Considering e = M® — M;, € L2(Qy,) x L?(Qy) be the error and g = 0, multiplying Eq.
(4.157) by e, and integrating over €}y, result in

lvmM®)Vap]T VedQ + / i (M°, VM®) V| Tedn
Oy

=30 [ oMY endS =l g

o (4.159)

with
1% Iz < Clle 2, - (4.160)

As [¥] = [VY¥] = 0 on 91y, and [¢] = —¢ = 0 on Ipdy, we have by comparison with Egs.

(.102[4.103), that

{th om M)V " VedQ + [, o oo M) V)T [ea] S = AMS;e, ),

Jo, lim(Me, VM©)e]" Vepd©2 _ B(Mio.p). (4.161)

as juM, jvm are symmetric. Therefore, Eq. (4.159) reads
e IF2q,)= AMS;e,%) + B(MS;e,9). (4.162)
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From Eq. , one has
AM®M? — My, ny) + BM*M® — My, Ing) = N(M®, My; Iny), (4.163)
as M€ is the exact solution and Iy € XX, and Eq. is rewritten
| e |’i2(gh)= AM® e,y — L) + B(M® e, ¢ — Ipp) + N (M, My; Ipep). (4.164)

First, using Lemma Eq. (4.109)), Lemma Eq. (2.23), and Eq. (4.156), leads

to

| AMCe, % — L) + BMC;e, % — Lgp) | < CXCy [l e [[1 ]| % — L ||
< C*fllelll he [l % 2y (4.165)
< WM s 1% iz -

with g = min {s,k + 1}.
Then proceeding as for establishing Lemma and using the a priori error estimate

[ET5HA156), we have
| N (M® My ) | < O/ Cyh2 3 | M 3 [ T ] (4.166)

The bound of | N(M® My;1,%) | is given in detail in Appendix
Finally, using Lemma [2.4.6] Eq. (2.23), remembering [¢] = 0 in €2, we deduce that

[ I ||| <|l| I =% |1 + |9 |1
< % |9 2y + 119 iy (4.167)
< Chs+1) | 9 2y -

Combining Eqs. (4.16514.167)), Eq. (4.164]) becomes, for u > 3
e llF2iq,) < C e (14 | M [liegy) | MC =@l % l2e,): (4.168)

with g = min {s,k + 1}, or using Eq. (4.160)), the final result for k > 2

e lli2ga,)< CF Cubl | M® s, - (4.169)

This result demonstrates the optimal convergence rate of the method with the mesh-size for
cases in which k > 2 (so that p > 3).

4.5 Numerical examples

We present 1-, 2-, and 3-dimensional simulations to verify the DG numerical properties
for Electro-Thermal problems on shape regular and shape irregular meshes. First the method
is compared to analytical results and a continuous Galerkin formulation on simple 1D-tests,
then the method is applied on 2D-tests to verify the optimal convergence rates. Finally, a
3D unit cell model is presented. In the applications, the Dirichlet boundary conditions have
been enforced strongly for simplicity.
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4.5.1 1-D example with one material

The first test is inspired from [58], where the boundary condition induces an electric
current density, with the temperature constrained on the two opposite faces, as shown in
Fig. The target of this test is to find the distribution of the temperature, electric
potential and their corresponding fluxes, when considering the material properties, i.e. 1k,
and «, as reported in Table The simulation is performed using a quadratic polynomial
approximation, with 12 elements, and the value of stabilization parameter is B = 100.

T=25 [°C] T=25 [°C] q=0

V=0.058 [V] V=0 [V]

.
1.524 [mm] —

Figure 4.1: One-material Electro-Thermal problem and the boundary conditions

Table 4.1: Material parameter for Bismuth telluride

’ Parameter ‘ Value ‘
Electrical conductivity 1 [S/m] diag(8.422x10%)
Thermal conductivity k [W/(K - m)] | diag(1.612)
Seebeck coefficient a [V/K] 1.941x10~%

As it can be seen in Fig. [£.2|(a), the electric potential distribution is close to linear but
the temperature distribution is almost quadratic with a maximum value of 47 [°C] due to
the volumetric Joule effect. This shows that this Electro-Thermal domain acts as a heat
pump. Then Fig. [4.2b) presents the distribution of thermal flux which is almost linear
with an electric current of about 3.2 x 10°[A/m?]. The results of the present DG method
agree with the analytical approximation provided in [58] —the difference being due to the
approximations required to derive the analytical solution.

Then the same test is simulated with the same boundary conditions, polynomial degree
approximation, and value of B, but with successively 3, 9, and 21 elements. Figure 4.3
presents the comparison of the results obtained with a Continuous Galerkin (CG) and the
Discontinuous Galerkin (DG) formulations. As the distributions are almost parabolic, three
elements already capture the solution, which does not make this test fit to study the conver-
gence rate. Figure illustrates the comparison of the thermal flux (one value per element
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Figure 4.2: (a) The distributions of the electrical potential and temperature in the Electro-
Thermal domain for one material, (b) the distribution of the thermal flux in the Electro-

Thermal domain for one material. Ref.-curves are from [5§]
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Figure 4.3: Comparison between the distributions of the temperature in the Electro-Thermal
composite domain for different numbers of elements between (a) the DG formulation, and

(b) the CG formulation

is reported) with different mesh sizes between the CG and DG formulations and shows that
the same thermal flux distribution is recovered. We also note from Figs. [4.3|a and b) and
Figs. [4.4[a and b), that the results of the present DG formulation are in agreement with
those obtained by the CG method.
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Figure 4.4: Comparison between the distributions of the thermal flux in the Electro-Thermal
composite domain for different numbers of elements between (a) the DG formulation, and
(b) the CG formulation

4.5.2 1-D example with two materials

By applying the same kind of boundary conditions but for a combination of two materials
—matrix (i.e., polymer) which is a non-conductive material and conductive fillers (i.e., carbon
fiber)— as shown in Fig. we can study the effect of the DG formulation in case of material
interfaces. The electrical and thermal material properties considered for the verification are
considered constant and reported in Table. for the carbon fiber and the polymer matrix.

T=25[°C] Filler T=25[°C]

V=20 [V] V=0 [V]

L
=
1.524 mm ——>

Figure 4.5: Electro-Thermal composite domain and the boundary conditions

=<

Second order polynomial approximations, 12 elements, and the value of B = 100, are
still considered in this test. An electric potential difference of 20 [V] is applied, which is
higher than in the previous test in order to reach a similar increase in temperature as for
the previous test. Figure (a) shows the distribution of the voltage and the temperature
in this Electro-Thermal composite domain, and Fig. [4.6(b) the distribution of the thermal
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Table 4.2: Composite material phases parameters

’ Parameter ‘ Carbon fiber H Polymer ‘
Electrical conductivity 1 [S/m] diag(100000) || diag(0.1)
Thermal conductivity k [W/(K - m)] | diag(40) diag(0.2)
Seebeck coefficient « [V /K] 3 x1076 3 x1077
2 60 PLE
15
; 15 Ay \‘ 50? (\E 1
g P %\ g 2 05
o} N 2 x
S0t F X 408 2 0
) U N o <
3 A Y £ E 05
QL 1 A = 2
Y osy Y 130 oo
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= + = Temperature - ‘ ‘
% 02 04 06 08 1 12 14 18 0 0.5 _ 1 15
Horizontal distance [m] ©16° Horizontal distance [m] x10°

(a) (b)

Figure 4.6: (a) The distributions of the electrical potential and temperature in the Electro-
Thermal composite domain, and (b) the distribution of the thermal flux in the Electro-
Thermal composite domain

flux. We can see that the temperature, electric potential, and thermal flux fields are almost
constant in the filler (the conductive material), as its electrical conductivity is high, and
transient gradually in the polymer matrix (non conductive material). The resulting electric
current is of about 1.96 x 103 [A/m?].

Then, we carry out the study of the stabilization parameter effect on the quality of the
approximation in Fig. where the internal energy per unit section is presented in terms
of the stabilization parameter. The test is simulated with different values of the stabilization
parameter B =1, 10, 25, 50, 100, 250, 500, 1000, and 5000. Although for the lower value
of the stability parameter, the energy is overestimated, sign of an instability, the energy
converges from below for stabilization parameters B >10, which proves that if B is large
enough, the method is stable.

Figure [4.8| compares the results obtained on the composite domain for different electrical
conductivity values of the matrix material, all the other parameters being the same as
before. This figure shows the difference in the maximum temperature reached when different
values of the electrical conductivity are applied. This result indicates that the present DG
formulation can be used for composite materials with high or low contrast.
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Figure 4.7: The internal energy of the Electro-Thermal composite domain for different values
of the stabilization parameter B
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Figure 4.8: The temperature distributions in the Electro-Thermal composite domain for
different values of electrical conductivity of the matrix material

4.5.3 1-D The variation of electric potential with temperature difference

The following test is motivated to convert heat energy into electricity, in the Bismuth

Telluride with the material parameters as presented in Table and with the boundary
condition stated in Fig.

The result in Fig. shows the relation between the electric potential and temperature
difference. It can be seen that the output electric potential, according to Seebeck coeflicient,
increases as the temperature difference increases. This proves that our formulation is effective
and works in the two directions, production of electricity from temperature difference, as
showed on this test and production of temperature difference by applying electric current,
as showed in the previous examples.
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T,
T, = 25 [°C] Je
q=0

___________________

z_-
%X
1.524 [mm] ——>

Figure 4.9: Electro-Thermal unit cell and boundary condition
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Figure 4.10: The variation of electric potential with temperature difference

T=25[°C]

V =0.05[V]

1 [mm)] —

je=0

q=0
T=25[°C]

V=0[V]

et ———— ] c—

Figure 4.11: L-shaped Electro-Thermal problem and the boundary conditions
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Electric potential [V] Temperature [°C]
0 0.025 0.05 25 33 41
B B ]

(a) (b)

Figure 4.12: The distribution in the L-shaped Electro-Thermal problem of (a) the electrical
potential, and (b) the temperature

4.5.4 2-D study of convergence order

In order to generate 2D gradients, we consider an L-shaped domain with the boundary
condition illustrated in Fig. [£.11] and with the material properties reported in Table. [£.1} To
prove the optimal rate of convergence in the L2-norm and H'-norm, a uniform h refinement
is considered. A second order polynomial approximation is considered with B = 100. The
resulting distributions of temperature and electrical potential are illustrated respectively in
Fig. 4.12[(a) and in Fig. [4.12|(b).

First the convergence rate of the energy error ||| M® —M,, ||| —error in the H'-norm— with
respect to the mesh size is reported in Fig. [4.13[a). The reference solution is obtained with
a refined mesh of hy/L = 1/32. It can be seen that as the mesh is refined, the error in the
energy decreases quadratically for quadratic elements, once the mesh size is small enough.
Thereby that confirms the prior error estimate derived in Section

Second, the error in the L2-norm in terms of the mesh size hy is illustrated in Fig. [4.13(b).
The computed order of convergence of order k + 1 for k = 2 is optimal, once the mesh size
is small enough, in agreement with the theory predicted in Section

4.5.5 3-D unit cell simulation

The third test illustrates the electrical thermal behavior of a composite material i.e.,
carbon fiber reinforced polymer matrix, which is heated by electric current. The studied unit
cell and the boundary conditions are illustrated in Fig. 4.14] and the materials properties
are reported in Table A finite element mesh of 90 quadratic bricks is considered (the
test is thus run in 3D). The initial temperature of the cell is 25 [°C].

Figure presents the distributions of the temperature and the electric potential in
the unit cell. When the electric potential of 10 [V] is applied on one side, the temperature of
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Figure 4.14: Electro-Thermal unit cell and boundary condition

the other side increases from 25 [°C] to 50 [°C]. This shows the applicability of the present
formulation when different (irregular) mesh sizes are used simultaneously.

4.6 Conclusions

In this chapter, starting from the continuum theory for Electro-Thermal coupled prob-
lems, based on continuum mechanics and thermodynamic laws, a weak discontinuous Galerkin
(DG) form has been formulated using conjugated fluxes and fields gradients.

As the weak discontinuous form is derived in terms of those energy conjugated fluxes
and fields gradients, the resulting DG finite element method is consistent and stable. The
numerical properties of the DG method for nonlinear elliptic problems, such as the consis-
tency and uniqueness of the solution have been analyzed by reformulating the problem in
a linearized fixed point form, following the methodology set by previous works [76}25] for
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Electric potential [V] Temperature [°C]
0 5 10 25 375 50

(a) (b)

Figure 4.15: The distributions in the unit cell of (a) the electrical potential, and (b) the
temperature

non-linear elliptic problems, but adapted for thermo-electrical problems.
The numerical verification has been undertaken to demonstrate the theoretical results.
In particular, the convergence rates in the L?-norm and the H'-norm with respect to the
mesh size are optimal and agree with the error analysis that was derived in the theory.
Finally, a unit cell problem has been solved numerically to illustrate the capability of
the algorithm.



Chapter 5

A coupled
Electro-Thermo-Mechanical
Discontinuous Galerkin method

5.1 Introduction

When an electrically conducting phase is dispersed in sufficient quantity in a matrix of
polymer, conductive polymer composites are formed.

Conductive polymer composites can be extended for application in various fields: heaters
with distributed heat-emission and self-regulated heaters, shieldings for electromagnetic pro-
tection, contact buttons in computers and media technics, current-limiting devices, con-
ductive adhesives, electronic applications, actuation of hybrid conductive shape memory
polymers SMPs, and many others.

Carbon fiber reinforced polymer composites consist of at least two components, a poly-
mer matrix (generally dielectric) and electrically conductive fillers. This combination results
in multifunctional composites, both structural and conductive. The existence of the polymer
matrix will avoid catastrophic failure due to fiber breaking because of its viscoelastic char-
acteristic especially at high temperature, and the existence of the carbon fibers will enhance
strength and stiffness on one hand, and will exhibit conductivity under an Electro-Thermal
coupling effect on the other hand.

With a view to the modeling of such structures, a multi-field coupling resolution strategy
is developed for the solution of electrical, energy, and momentum conservation equations by
means of Discontinuous Galerkin finite element method. There have been many studies on
Electro-Thermo-Mechanical coupling, e.g., Muliana et al. [55] have studied the time depen-
dent response of active piezoelectric fiber and polymer composite. They have illustrated
that time dependent response in the composites depends not only on the properties of the
components but also on the prescribed boundary. In addition they have concluded that the
study in a steady state of active composite fibers can lead to false detection of localized
failure as the variation in field variables in the composite are not considered.

Rothe et al. [64] have considered the three-field problem of small strain for Electro-
Thermal-Elasticity, where they have focused on the numerical treatment of the monolithic
approach, with one dimensional analytical solution in the purpose of code verification. In

81
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particular Zhupanska et al. [80] have discussed the governing equations describing electro-
magnetic, thermal, and mechanical field interactions. However the magnetic contribution
was neglected for the current magnitude below 40 [A], this in turn results in solving Electro-
Thermo-Mechanical coupling problem. In that paper, they have concluded that an applica-
tion of an electric current to the unidirectional carbon fiber polymer matrix plates leads to
1D thermal field, which is constant in the direction transverse to the fiber direction.

A state of art report about Thermo-Electric polymers and figure of merits have been
reviewed in [15]. Moreover the improvement of the thermoelectric efficiency has been dis-
cussed in that paper, and it was shown that it can be achieved by using materials either
with high electrical conductivity or with high Seebeck coefficient.

In this chapter, a problem of electric current induced heating and the associated stresses
in the conducting polymers composites are considered. When an electrical current is applied
and heating is produced by the joule effect in conductive faces, and the material dilates.

This chapter is organized as follows. Section 5.2 describes the governing equations of
Electro-Thermo-Mechanical materials. In this chapter the Electro-Mechanical coupling has
been disregarded, as this coupling is out of the scope of our interest and the Thermo-
Elastic damping has been disregarded as well, since the heating occurs slowly. The theory
that is considered in the previous chapter has been extended for large deformation and the
Discontinuous Galerkin formulation for Electro-Thermo-Mechanical bodies is developed in
Section 5.3 with appropriate choice of trial functions (u,fy = %, fr = %), where u is the
displacement, T is the temperature, and V is the electric potential, which results into a
set of non-linear equations which is implemented within a three-dimensional finite element
code. In Section 5.4 the stability, the uniqueness, and the convergence rate of the error in
both the energy and L?-norms have been derived in the particular case of small deformation.
Afterwards, in Section 5.5 a volume element of carbon fibers embedded in a polymer matrix
is considered to illustrate the Electro-Thermo-Mechanical behavior of composite materials,
in addition to another numerical tests which support the theory that is developed in this
chapter.

5.2 Governing equations for Electro-Thermo-Mechanical cou-
pling

In this section an overview of the basic equations that govern the Electro-Thermo-
Mechanical coupled phenomena is presented, where an Electro-Thermo-Mechanical body
in its reference configuration Qg € R is considered, where d is the spatial dimension, whose
Dirichlet boundary dp{2y and Neumann boundary Onx{)g are the outer boundaries 02y of the
domain.

The material properties may in general depend on the position. The first balance equa-
tion is the equation of motion which is the balance of linear momentum in the absence of
body force with respect to the reference frame

Vo -PT =0 VX €, (5.1)

where P is the first Piola-Kirchhoff tensor and Vg = 8% is the gradient with respect to the
reference configuration.
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The second balance equation is the electrical contribution which is the conservation of
the electric current density flow with respect to the current frame . Recalling Eq.
from the second chapter and in order to transfer it into the reference configuration the
formulation of Nanson is used such that

/je ndS = | (jo-F~T)-NJdS, (5.2)
S So

where J = det(F) is the determinate of the deformation tensor F = %, je is the flow of
electric current density, Jo = jo - F~1J is the current density with respect to the reference
surface, and N is the outward normal in the reference configuration. Hence the conservation
of the electric current density flow with respect to the reference frame is

0= / V-jedQ= [ Vo Ge-F 1A = [ Vo-JedQo. (5.3)
Q Qo Qo

The flow of electric current density which is mapped into the reference configuration reads
after recalling its definition from Eq. (4.4))

Y oT
_. . _T f— _1. . _T. —_—— _1- . _T. [ —
J.F,T.V)=jo - FTJ=F1.1.F ( 8X>J+aF 1-F ( ax) J. (5.4)

Let us define the electrical conductivity in the reference configuration L(F) as
LF)=F1.1.F 1. (5.5)
Then Eq. can be simplified as
Jo(F,T,V) =L(F) - (=VoV) + aL(F) - (=V,(T). (5.6)

The third balance equation is the conservation of the energy flux Eq. (4.5). Let us first
compute the divergence of the energy flux in the reference configuration using the formulation
of Nanson which reads

/ jy -ndS = / Gy -F~1)-NJdSo = [ Jy-NJdSo, (5.7)
S So So
and leads to
/ V- jydQ = / Vo Gy - FT1dQ = [ Vo-JydQo, (5.8)
Q Qo Qo

where Jy is the energy flux per unit surface in the reference configuration. Then the conser-
vation of the energy flux in the reference configuration is stated as

Vo 'Jdeo = —/ p()@dQ() —I—/ Fdﬂo VX eQ. (59)
Qo

Qo Qo ot

The right hand side of this equilibrium equation is the time derivative of the internal energy
density y and is given in Eq. (4.6) multiplied by the density pg = pJ and F represents all
the body energy sources per unit reference volume.
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Moreover, the left hand side of Eq. (5.9) involves the energy flux Jy in the reference
configuration, which is defined as

JET,V)=j, - F1I1=Q+ VI, (5.10)

where Q is the heat flux per unit surface in the reference configuration, which is defined

after recalling Eq. (4.10]) as
QF, T,V) =K. (-VT) +aTl.. (5.11)

In this last relation, we have defined the heat conductivity in the reference configuration
K(F) as

KF)=F'.k.-F 1] (5.12)

and by substituting Eqs. (5.5 and [5.12)) in Eq. (5.10)), we have

Jy(F,V,T) = (VL(F) + oTL(F)) - (-VoV) + (K(F) + aVL(F) + o*TL(F)) - (-V,T).
(5.13)

The set of equations (5.6} [5.13]) can be rewritten under a matrix form as

J= ( jy > = ( VL(F) ﬁfﬁ(}?) K(F) +04VL85P)(E‘—)042TL(F) ) < Zgg ) (5.14)

The set of governing equations ([5.3 thus becomes

—podey + F

Vo (3) = ( ’ ) =1, (5.15)

where V( is a vector operator in the reference configuration and I; represents the internal
energy rate and the body eney sources.

the vector of the unknown fields M = ( ﬁv > , with fy = —%
T

and fr = %, then the gradients of the fields vector in the reference frame VoM, a 2d x 1
vector in terms of (Vofy, Vofr) are defined by

Let us recall from Chapter

o )= ()= mn) (9)
VoM ) = = ) = T T . 5.16
(VoM ) ( Vofr Vo(4) 0 —:5I)\ VT (5.16)
Furthermore, the fluxes defined by Eq. (5.14) can be expressed in terms of fy, fp, and Eq.
|i is rewritten in terms of (fy,fr) = (—%, %), as T = %,V = —% in the reference
configuration as:
- £L(F) ~ PL(F) + oz L(F) 2 < Vofy )
- f;
—%L(F) + aéL(F) éK(F) — Qa%L(F) + a%L(F) + ¥ L(F) Vofr

=Zo(F, vy, fT) VoM.
(5.17)
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Similarly to Chapter 4] we have defined energetically conjugated pair of fluxes and field gra-
dients in the reference configuration, in term of a symmetric and positive definite coefficient
matrix Zg, whose its contents are in the reference configuration. By this way Eq. has
the new expression of the electric current density flow and energy flux in term of fy, fr in
the reference configuration. For the future use, and from the last equations, one can define

Ll(F, fT), LQ (F, fv, fT) as

fy 1

1
Li(F,fr) = —L(F), Ly(F,fy,fr) = (-5 + a5 )L(F), (5.18)
fr o fi
and Jy, (F,fy,fr) as
1 fyr 5 1 2,
Jy,(F,fyv, fr) = 5 K(F) — 2azL(F) + o* zL(F) + S-L(F). (5.19)
fr fr fr fr
Therefore, Eq. (5.17)) can be rewritten as
J _ < Ll(FafT) LQ(FafT7fT) > < VOfV > (5 20)
Lo (F, fr, fr) Jy, (F,fyv,fr) Vofr )~ )

To summarize, the conservation laws for Electro-Thermo-Mechanical coupling are rewritten
in the reference configuration as finding u, fy, fr € [H*(Q)] -~ H2(9) x H2' (Qp) such that

Vo-PT=0, P=PFFfyiréE<t)  VXe, (5.21)
Vo-Je=0, Je = Je(F, fv,fT) VX e Q, (5.22)
Vo - Jy = —pg(?ty + F R Jy = Jy(F,fv,fT) vX e (523)
u=u, fr = fT , fy = fv VX € dpQ, (5.24)
P N=T, J, N=J,, J N=IJ ¥X € onQ. (5.25)

In these relations, we have expressed the governing equations P, Je, and Jy, in a general
way and in terms of the internal variables €. The definition of P will be specified in the
next Chapter, while the definition of J. and J, follow Eq. . N is the outward unit
normal to the boundary 0€)y in the reference configuration, and T, Jy, J. represent the
outward traction, energy flux and electric current density respectively. Finally u, fr, fy are
the prescribed u, fr, fy respectively.

5.3 The Discontinuous Galerkin formulation for Electro-Thermo-
Mechanical bodies

5.3.1 The Discontinuous Galerkin weak form

Let Qon be a shape regular family of triangulation of €, such that Q¢ = U.Qg, with
hs = maxqecay, diam(€25) for Qf € Qo with 05 = ONQGUIp QG U 01€Y;, and where 01Qg, =
Ue0125 \ 9Q0n, is the intersecting boundary of the finite elements. Finally (Opi€0)® is a face
either on 01y, or on dpQlgy, with Zs (8DIQO)S = Qon U OpQoh-
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The discontinuous Galerkin finite element method results from the integration by parts
on the finite element of the governing equations multiplied by discontinuous test functions.
Let us multiply the first governing equation by the virtual displacement du, and
integrate on Qqy, yielding

Z/e(P(F,fV,fT) Vo) -é6udy =0 Voue [Hl(Qg)]d. (5.26)

Using the divergence theorem and integration by parts we reduce the order of the differential,
and the weak form is then reduced to the following problem

Z ou - P(Fv fv, fT) -NdSg — Z/ P(Fv tv, fT) : VooudQp =0, (527)
e Y005 e 0
where
ou-P(F, fy,fr) - NdSy = / ou-P(F, fy, fr) - NdSy
2% OnETS (5.28)
+/ ou-P(F, fy, f1) - NdSy,
OrQGUOD o
and

Z/ ou -P(F,fv,fT) -NdSy = / ((5117 ‘Pf(F,fv,fT) -N~dSy
e J oI 01820n (5.29)

—|-(511+ : P+(F, fv, fT) : N+dSO) s

where N7 is defined as the reference outward unit normal of the minus element Qf , whereas
N is the reference outward unit normal of its neighboring element, N* = —N~.

Using the two useful operators defined previously in Chapter [3| the jump and average
operators, at the interface terms and at the Dirichlet boundary as it will be enforced weakly
as well, we have

Z/ (5u-P(F,fv,fT) -NdSg = —/ ((511Jr -P+(F,fv,fT) —ou” -Pi(F,fv,fT)) -N™dSg
e 6198 aIQOh

= — / [[511 . P(F, fv, fT)]] -N7dSy, and
01Q0n

(5.30)
Z/ ou-P(F,fy, fr) - NdSp = —/ [6u-P(F,fy,fr)] -N~dSy and N~ =N.
— Jopag OpQ0n
(5.31)
Eventually using Eq. (5.25), Eq. (5.27) is rewritten
/ ou - TdSO = P(F, fv, fT) : Vo(ﬁlon + / [[511 . P(F7 fv, fT)]] . N_dSO
OnQon Qon O1€20nU0D Qon

vou e [H'(925)]°.
(5.32)
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As the consistency due to the jump of the test functions needs to be enforced, then the flux
related to Eq. becomes [ou - P(F, fy, fr)] = [6u] - (P(F, fv, f1))

Then by considering the virtual Piola stress for a linearized problem expressed as 6P =
H : Véu, where for simplicity we consider H as constant, we can add the compatibility and
stabilization terms at the interior elements boundary interfaces 9i€y, and at the Dirichlet
elements boundary interface Op{), in a similar way to what has done in Chapters [3| and
Note that when writing the SIPG, we do not have a contribution on éfr to ensure
optimal convergence rate in L?-norm as discussed in Chapter 3. Altogether, we seek to find

u, fr € T, [H1(925)]! x TLH!(Q), such that:

/ ou - TdSO — / u- (H : VO(SII) -NdS()
(9NQOh 8DQOh

+/ u@N:(HB):5u®NdSO+/ fu - (=2 7{quL0‘“12:"'11-’%)-NdSO
OpQon hy Op0n fr fTO
= P(F, fy, fT) : VooudQy + / II(SII]] . <P(F, fy, fT)> -N™dSg
Qon 01Q20,U0p Q01 (5.33)
+ / [u] - (. : Vosu) - N—dS,
01Q20nU0D Q0n

HB
+/ [u] @ N~ : < > : [ou] ® N~dSy
01Q20nU0Dp Qon hy

_/ Héuﬂ‘(—athzﬂf achH
OpQon

b fr + S fr,) -NTdSy Wou [T.H (25)]¢,
T To

where fp, is the initial value of fp, which is extracted from fr, = T%), B is the stability
parameter which has to be sufficiently high to guarantee stability, H is a constant tangent
and hg is a measure of the mesh fineness. The term in ay, : H on Op€lgy is used to constrain
weakly the variable fT on the Dirichlet BC.

Secondly let us multiply the second balance electrical equation Eq. by a virtual
potential 6fyy = d (%V) and let us integrate over g, yielding

> | Vo Jo(F fy, f1)dtydQy =0 Vofy € ILH'(Qf), (5.34)

e
€ Q(J

where J, is the electric current density in the reference configuration. Using the divergence
theorem and the notations introduced before for the average and the jump operators, since
the test function ofy is discontinuous, Eq. (5.34) becomes

> | Jo(Bfy, fr,) - VodfydSo = / Jodfy dSo
e 7% Onflon (5.35)
— / [Je(F, fv, fT)(sfv]] -N™ dSp.
0120,UID Qon

Similar to what has been done for the mechanical equation, a consistent interface flux re-
lated to Eq. (5.35)) is considered and we choose [6f,] (Jo(F,fy,fr)) - N~. According to
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the definitions of Ly (F, fr), Lo(F, fy, fr), in Eq. (5.18]), the virtual electric current density
0Je(F, fy, fr) is written as

8Jo(F, fy, fr) = Ly(F, f1) - Voofy + La(F, fy, f1) - Voofr. (5.36)

This last result allows formulating the compatibility and quadratic stabilization terms so the
weak form Eq. (5.35) is stated as finding u, fy, fp € T, [H'(25)]¢ x TLH' (Qg) x TILH'" ()
such that:

/ je(;fv dSg — / (L1 (F,fT) - Voofyv + LQ(F,?V,?T) . Voéf’p) . va dSq
ONQon Opon

F,f F,fy,f .
+/ <5fvn-L1( )8 | g LeE v )8 T)B> -Nfy dSp
OpQ0n hg h

= Je(F, fv, fT) - VootydQg + / ﬂéfv]] (Je(F, fv, fT)> -N™dSg
Qon 0120, V0D Q01
4 / [8v] (L (F. fr) - Voofy) - N~dSy
O1Q0n
+ / va]] <L1 (F, f:l‘) . V05fv> -N™dSg
OpQon
+ / [8v] (La(F, fy, fr) - Vootr) - N~dS,
O1Q0n (5.37)
+ / [[fv]] <L2 (F, f{/, f:p) . V()(SfT> -N™dSg
OpQ0n

o N (PEIIE) N as,

L, (F, fr)
+/ [N - < 1(F, fr) > N [fv] dSo
Op0n
L Ff fr)
+/ [ofr]N— <2 v. fr) >-N_[[fv]]dSO
O0rfdon
L Ff f1)
+/ [6fr] N~ <2 v i1) >~N‘[[fv]]dSO
IpQon
Voty, oty € TILH(9F) xHHl(Qe)

Thirdly, like for the electrical solution, an IP discontinuous Galerkin finite element formu-
lation is used to discretize the thermal equation. Let us multiply the third balance thermal
equation Eq. 1’ by the test function éfp = ¢ (%)7 and integrate over )y, yielding

Z vo (. fy, fr)6fpdQy = — Z / poaty5deQO+Z / F&frdQy

V(SfT € Heﬂl(Qg).

(5.38)

As for the electrical equation, by using the divergence theorem and introducing the jump
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operator and the boundary condition Eqgs. (5.24 [5.25]), this last equation becomes

/ 5ijy dS() = Jy(F, f\/, fT) . VO5deQO - / poatyddeQO
ONQon Qon Qon (5.39)

+ / deTJy (F, fv, fT)]] -N7dSg + F(SdeQO Vofr € HeHl (QS)
01920nU0D Qon Qon

The consistent and stable weak form is obtained by considering the numerical energy flux,
and by adding stability and compatibility terms.
The virtual energy flux is expressed from Eq. (5.17)) in terms of Jy; (F, fy, f1), Lo(F, fy, f1)

from Eqgs. (5.19} [5.18)), leading to

0Jy(F, v, fr) = Jp1 (F, fv, fr) - Voofr + Lo(F, fy, fr) - Vodfy. (5.40)

Eventually the stabilized form of Eq. () can be stated as finding u, fy, fr € Il [Hl (QS)] 4
II.H' () x IILH' (Q8) such that

/ 5ijy dSO — / (Jy1 (F,?V, ¥T) . Vo(ng + LQ(F,%\/, fT) . VO5fv) . N?T dSo
8Nﬂoh 8DQOh

+ / <5fTN In@E B s n LB 0B ) -Nfr dSg
OpQon hg hy

= Jy(F, fv, fT) . V05deQ0 - / p()atyédeQ() + / F&deQO
Qon Qon Qon
+ [57e] (3, F. ) -NaS,
01220, U0D Q01
+ / [t] (3,1 (P, fy, fr) - Vostr) - N~dSq
O1Q0n
-+ / [[fT]] <Jy1(F, f{/, f:[‘) . VO5fT> -N™dSy
OpQ0n

+ / [fr] (L2 (F, fv, fr) - Vooty) - N~dSy (5.41)
01€0n

+ / [fr] (La2(F, fv, fr) - Voofy) - N~dSp
IpQon

+/ [ofp] N~ -
01€20n

+/ HéfTHN > -N~™ [[fT]] dSO
IpQon

L Ff f

+/ [6fv] N~ < 2( V’ 1) > N~ [fr] dSo

01€20n

L Ff 1) _
+/ [6ty] N~ < 2( V T > N~ [fr] dSo
OpQ0n

Voty, ofr € TILHY(QF) x IT Hl(Qe)

(F, fy, fr)
I (F, fv, fr)B v, T) >~N [£2] dSo

<J \(F fv,fT

Using the notations considered to state the strong form, Eq. - the weak forms stated
by Egs. . can be combined and reformulated as finding u, M € [H Hl(Qe)]
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II.H' () x ILH'" (Q8) such that

/ SMTJdQ, — / My (Zo(F,M)V6M) dSg
ONQon OpQon

+ / My (fZO(F,M)) MpdSy = VooMTI(F, M, VoM)dQy
OpQon S Qon
+ / SMTTdQ, + / [sMy] (J(F, M, VoM)) dSy
Qon 01Q20nU0D Q0on
+ / [My] (Zo(F, M) V(M) dSo (5.42)
0120n
+ / [MR] (Zo(F,M)V(M) dSg
OpQon
B
+ / [oMy] <Z0(F,M)> [Mn] dSo
01Q0n hg
B _
+ /6 . [eMK] <hZ0(F,M)> [Mn]dSy VM € IIH' (QF) x IH(QF),
D0oh s

N 0
0 N

where J = < ;e > and M = < fy ), and where the vector My = <

> M and
y fp

My = < (1)\1 1(\)1 > M are introduced for simplicity.

It should be noted that the test functions in the previous equations of the weak for-
mulation belong to [Hl(Qe)]d x HY(Q°) x Hﬁ(Qe), however for the numerical analysis, we

will need to be in [HQ(QQ)}d x H2(Q°) x H2"' (Q°), as shown in the following sections. The
equivalent manifold to Eq. 1’ is rewritten as

) G e [L2()]" x L2() x L2 ()
X(H = ; o L (543)
such that Gje € [H*(29)]4 x HY(Q°) x B (Q°) Qe € 0

For the future use, we define X as Xgﬂ and XT the manifold such that fr > 0, while X
is the manifold for which fp § 0, with X* ¢ X. Moreover, using Eq. |D we have

v = {va e (w2nd) 5.44

= VG € ((2@)Y) " Igg o cquran)™* e, | (541
Thereafter, the problem is formulated as finding u, M € X' such that

A(F,M,éu) = B(du), Voéue X, and (5.45)

C(F,M,éM) = D(F,M) — SMTTdQ, VéM € X. (5.46)

Qon

'One more time, by abuse of notations, the (4+) superscript means either usual H*-space or the space H*
of strictly positive values.
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In these last two equations, the nonlinear forms read

A(F,M, (5u) = / P(F,M) : Vooud€)g +/ [[5u]] . <P(F,M)> -N™dSy
Qon 01€20,U0D Qon
HB

+/ [u] - (H : Voou) -N—dSy —|—/ [ul @ N~ : < > : [ou] @ N™dSp
01920, U Qon A1, U0D Qon hg

- /a Dol (- OOM VM) NS

(5.47)

1
where Y(fr), Yo(fT,) are a matrices of size d x d x 2 such that Y(M)M = ayy, : 'Hf?fT and
T
1
YoMo)Mg = oy, : H5—fry,
£,

B(du) = / ou - TdSo — / u- ('H : VQ5U) . NdSo
ONQon OpQon

HB
+/ u®@N:( ):5u®NdSo—|—/ ou - < -yYM M—|—yOM0> NdSq
OpQ0n hy OpQon

(5.48)

C(F,M, M) = / (VosM)TJ(F, M, VM)dQyo
Qon
+ / [eMy] (J(F, M, VoM)) dSy
0120,UID Qon

+ / [My] (Zo(F,M)VodM) dSo

o (5.49)

+ / [MX] (Zo(F,M)VsM) dSo
IpQon

+ /a et < Zo(F M)> [Mx] dSo
+ /M% [oME] < Zo(F M)> [My] dSo, and

D(F, M) = / SMTIdQ, — / My (Zo(F,M)V6M) dSg
ONQ0n OpQon (5.5())

+/ My (BZO(F,M)> MpdSp.
Op0n hg

5.3.2 The Finite element discretization of the coupled problem

In the computational model, a finite dimensional space of real valued piecewise polyno-
mial functions is introduced such that

<h _ | (v, fr,) € [L2(Q0m)] " x L2(Q0n) x L2 Q1) N
- +
such that (up, fv, , fr,) [as € [PX(Q9)] x PE(Q5) x PX(0Q5) VO € Qon
(5.51)
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where PX(Qg) is the space of polynomial functions of order up to k and PX" means that the
polynomial approximation remains positive. The dicretization of the system is carried out
using the discontinuous Galerkin Finite element (DGFE) method. Accordingly, we introduce
the shape functions for the trial functions u, fy, and f1 and test functions du, éfy, and dfp
which are thus interpolated as

w, = NGu®, fy, =N& £, fr, = N3 3, (5.52)

where u?, f{;, and f denote the nodal values of respectively uy, fy,, and fr, at node a.
Similarly, we have

511h = Ni 6ua, 5fvh = N?v ofY s 5fTh = N?T (5f3, (5.53)
The gradients are computed by:
Vou, = V()Ni & lla, Vofvh = VON?\, f?/, VOfTh = V()N?T aT’ (5.54)

where VoNg, VoN ?V, and VoN§, are the gradients of the shape functions at node a. Similarly,
we have

Vobu, = VoNi ®@ 0u*,  Voofy, = VoN§ 6fy,  Voofr, = VN 6ff. (5.55)
A solution approximation My = < ﬁvh ) , up, of respectively M, u, is sought as the solution
Th

of the discrete coupled problem, is stated as finding uy,, My, € XX such that

A(Fy, My, duy,) = B(du,) Véuy, € XX, and (5.56)

C(Fy,My, My, ) = D(Fy,, dMy,) — 5MEIidQO VoM, € Xk, (5.57)
Qon

5.3.3 The system resolution
The set of Egs. (5.56} [5.57)) can be rewritten under the form:

F2, (G") = Fi (G*) +F3 (GY), (5.58)
where GP is a 5 x 1 vector of the unknown fields at node b
ub n
Gh=|[ & |, withuP=[ u® |. (5.59)
i uﬁ
T Z

The nonlinear Eqgs. (5.58|) are linearized by means of an implicit formulation and solved
using the Newton Raphson scheme using an initial guess of the last solution. To this end,
the forces are written in a residual form. The predictor at iteration 0, reads G¢ = G, and
the residual at iteration i reads

F2,, (G°) — F, (G°) - F} (G) =R* (G°), (5.60)
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and at iteration i, the first order Taylor development yields the system to be solved, i.e.

oF:, OF%,  OF} b pa (e
(aGb TG aa ) le=at AGT= R (G ) (5.61)
Let us define the tangent matrix of the coupled Electro-Thermo-Mechanical system

Kab Fove OF _ E and AGb = (Gb — Gbi), then we have

Kuu K’uf\/ KufT Au Rll (u7 fV7 fT)
Kfvu Kfva Kfva Af\/ = — Rfv (ll, fv, fT) . (5.62)
KfTu KfT f\/ KfoT AfT RfT (u7 fV7 fT)

The new solution is given by Gi*! = G! + AG, and the iterations continue until the conver-
gence is obtained, that is until || R ||< tol.

The formula of the forces can be derived from Eqgs. ([5.56 , which leads at each
node a to:
Fi/f\//fTeXt = F?l/f\//fTint + Fi/f\//fTI' (563)

First the mechanical contribution reads

uext Z/ NaTdSO - Z/ 11 ®N: H) : VONﬁdSO
(On%20)° )

(6pQ0)®
HB
+ / (ﬁ ® N : ) -NN2dS,
Z (Oo)° hy u (5.64)
H- :H
+ / S g B ) NN2dS,,
OpQon fr fTO
Flint = Z _P(Fn. fv,, fr,,) - VoNyd€do, and (5.65)
Fii Fui +Fap + Fuis (5.66)
with the three mechanical contributions to the interface forces [
Fﬁﬁ Z /8 0 S(iNﬁi) <P(Fh’ th’ fTh)> -N™dS,, (5.67)
S 1360
| Z / [un] ® N~ : HE - VNaEdS, (5.68)
s 010)*
a HB _ a
Fiis = Z /a on) ([un] ®N7) < > N~ (£N§)dS,. (5.69)
1 0

2The contributions on dp Qo can be directly deduced by removing the factor (1 /_2) accordingly to the defi-
nition of the average flux on the Dirichlet boundary and by using L1 (Fy, f1), Lo (Fy, fv, fr), and Jy, (Fy, fv, f1)
instead of Ly (Fu, fr,,), Lo (Fy, fv,, fr, ), and Jy, (Fu, fv,, fT,). However, there is one more additional term in

F2% in the Dirichlet boundary, which is 37, [, o 1. (N&) ( ““; Moy "t;;: 7"fTo> -N—dSo.
T To
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Secondly, the electrical contributions read

fVext Z /aNQO NaL JedSo — Z/ fVN . L1(Fh,fT) . VON?VdSO

(0pQ0)*®

- Z / frN - Ly(Fy, fy, fr) - VoNgFdSo
(0pQ0)*

B
+Z/a o N Ll(Fh,fT)h -NN¢ dSq
D 0

B
+Z/8DQO N - Lz(Fh,fv,fT)h -NN2 dS,,

fth Z J Fh? th7 fTh) VUN?VdQO, and

+ Fa:t

fvis’

Fa:t Fa:l: Fa:l:

fvi fvn fviz

with the three electric contributions to the interface forces

Fin =2 /alﬂo)s(iN?vi) (Je(Fu, fv,,, fr,)) - N~dSo,

fv12 = 2/8190 [[th]] (Fh7fTh VgN?\jt) -N~dSg

+5 Z /a Q [[fTh (Fh7 th7fTh) ° VON?\:::> . NidS()’
1 0

Fis = Z/amo [fv, IN" <L1(Fh7fT})f> N (NS
+Z/

B
. M, INT <L2(Fh,fvh,fTh)h> N~ (£NEH)dS,.
1 0 S

Similarly, the thermal contributions read

Fho=> [ NI, 0= [ N3 VoS,
= S ooy (Op )’
—Z / fyN - Ly(Fp, fy, fr) - VoNg, dSo
8]390 s
_ = . B a
+Z fTN'Jyl(thfV7fT)h NN dSO

. . .. B
+Z/ N -Lo(Fy, f, fr) = - NN S,

Firme = Z /ﬂe Jy(Fu, fy,,, fry,) - v01\I€fj‘TdQO - Z /Qe pOatyN?TdQO
e 0 e 0

+) . FNg dS,
0

(5.70)

(5.71)

(5.72)

(5.73)

(5.74)

(5.75)

(5.76)

(5.77)
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and

Fai Fai

fr1 = ~frnn

+ Fat (5.78)

fr13’

+ Fat

fr12

where the three thermal contributions to the interface forces read

=2 / o CENE) 03Bt ) N (5.79)

fT12 = Z /3190)5 [[fTh]] J 1(Fha th,fTh) : VON?Ti) -N~dSy

+ /
(6120)°
B
fTIo} Z [[fTh]] N y1 (Fh7 f\/h7 fTh ) F
(0190)

S

(5.80)
[[fvh]] L (Fh7thafTh)‘V0N?;t> -N—dS,

— at
> N (NS,
5 (5.81)
+ Z/ [fv,IN"- <L2(Fh,fvh,fTh)h> -N_(iN?Ti)dSo.
s 7 (01Q0)° s

The stiffness matrix has been decomposed into nine sub-matrices as shown in Eq. (5.62)
with respect to the discretization of the five independent field variables (3 for displacement
u, fy, and fr). The stiffness derivation is detailed in Appendix

5.4 Numerical properties in a small deformation setting

The demonstration of the numerical properties for Electro-Thermo-Mechanical coupled
problems is derived in the same spirit as in Chapter [4, under the assumption d = 2, under
the assumptions of temperature independent material properties, (however Jy, Ly, Ly remain
temperature and electric potential dependent but C (the matrix form of the material constant
tensor H), ay, are temperature and electric potential in-dependent), and in the absence of
the heat source, such that the term F in Eq. is equal to zero. We also require a
framework in small deformation and linear elasticity in order to demonstrate the stability
and convergence rates.

Let us consider the vector of the unknown fields G defined as in Eq. . In ad-
dition, by recalling Eqgs. 4.39] and [4.45)), we can introduce the matrix w of size
(5d—3) x 1 as w(G, VG) = v(G) VG, with v the coefficient matrix of size (5d —3) x (5bd — 3)

c 0 0
such that v = 0 14 1y |, where C is the constant material tensor corresponding
0 I jy,
to M written using Voigt’s notations. By the use of Eq. (4.30), v can also be writ-
c o 00 e
J— 1 pr— T
ten as v = ( 0 7 ) Moreover, we define the matrices o = 0 0 0 and
00 0
_Tathc
0y = To of size (5d — 3) x (d +2), aypc is a vector of size (3d — 3) x 1 with

00
00 0
00 0
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a;rhc = ( on ogn ot 00 0 ), and Caype a vector of size (3d — 3) x 1 and given for d = 3

by (Came)” = ( 3Kagm 3Kaw, 3Kay, 000 ) for isotropic materials. Finally we define h

00 O
a matrix of size (d+2) x (d+2) withh = | 0 0 0 |. In these relations VG is a
0 0 pcy

(5d — 3) x 1 vector of the gradient of the unknown fields, which is defined as VG = (V)G
and is written for d = 3 using Voigt’s rules for the mechanical contribution as

2exy
2€xs
2ey,
(VG) = | o | =
8
zzfyv
Z
fr
5

)
oty
0z

u, |. (5.82)

ccoo oo offe¥vo oFw
coococ ocoProFvoFvo
cococo o oW o¥vo o

o c oo o oo oo
YeFeflooc co oo oo oo

From these definitions and using Voight’s notation, the energy conjugated stress for small
deformation can be written under the form

O-XX

™2 | =v(G)VG +0(G)G — 00Go. (5.83)

Therefore, the boundary value problem for Electro-Thermo-Elasticity coupled Egs. (5.21
5.25)) is written under small deformation assumption under the form

— VT [w(G,VG) +0(G)G —00Gg] =hG  in, (5.84)

with
G=G Vx € dp, (5.85)

ﬁT(W +0G — OoGo) =W Vx € one, (5.86)
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n, 0 0 0 O
0O ny, O 0 O
0O 0 n, 0 O
n, ngk, 0 0 O
n, 0 ng 0 O
_ 0 n,b n, 0 O . e
where for d = 3 n = Y , Gg is a vector of the initial values Gg =
0 0 0 ne O
0 0 0 ny, 0
0 0 0 n, O
0 0 0 0 ny
0 0 0 0 ny
0O 0 0 0 n,
Uy,
Uy,
Uz, s
tv,
fr,

G gathers the constrained fields @, fy, ft and w gathers the constrained fluxes t, _]Ty, and j,.
For the following analysis we will consider a steady state, such that the time derivative
term is neglected, hG = 0, then Eq. 1) becomes

~VIw(G,VG)) - VT(0(G)G)=0  inQ. (5.87)

It can be noticed that the gradient of (o(G)G) consists of zero components and of the

gradient of (—%f@p), such that V(—%fﬂ = %Vf@p. Henceforth the matrix o(G)

can be rearranged in a new form 6(G) of size (d +2) x (5d — 3), such that —V™ (0(G)G) can
be replaced by 6(G)VG, with

€XX
Eyy
EZZ
_ 3K§yth 0 0 2exy
It 2644

0 2ey,,
0 O _ 3K agn %
0
0

5t
8t

)
oty
0z

(o]

=

E

()

Il
SO O O O
oo O O O
oo O O O
oo O o O
OO O O O
oo O O O
oo O O O
oo O o O
oo O O O

(5.88)

The operator 0 can be seen as the transpose operator which accounts for the definition of
the V operator.

Therefore Eq. (5.87) becomes
- V'(w(G,VG)) +6(G)VG =0  inQ. (5.89)
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By comparing this formulation for Electro-Thermo-Elasticity with the formulation of Thermo-

Elasticity in Chapter 3, it can be seen that the two formulations Eq. (3.6) and Eq. (5.89)
are similar, however, it is nonlinear in this Chapter, while in Chapter 3 it is linear. The weak

form can be derived straightforwardly in a similar way as for Eqgs. (5.33} [5.37} [5.41]) under
the matrices form defined in Eq. , with the assumptions hG =0 and w independent
of G.

The associated DG form for the Electro-Thermo-Elasticity problem is now defined as
finding G € X* such that

a(G,6G) =b(5G), ViG € X, (5.90)
with
a(G, G) = /Q h(V&G)Tw(G,VG)dQ+ /Q h 5GT6(G)VGdQ
* /619}%% 56| w(e.vG))as + /a o Ner] v@wae)as
- /Mh 63| (vG)voG) as + /8 . (e <V(fs)3 > [6Ga] dS (5.91)

- /%Qh (e <V(f')6> [Cajas— | (5GT) o(G)G — 00Go] dS

+ / 5GTﬁT(O(G)G —00Gy)dS,
o NN

and
h(5G) = / 56 wdS — [ GIv(G)VeGdS
N - OpQp (5 92>
rv(G)B 5 Ty A '
+ 0G, G, dS + 0G,, (0(G)G — 0pGy)dS,
OpQn hs OpQn
where Gy, is a 12 x 1 vector, which is defined as
Uy Ny ng, 0 0 0 0
uyny 0 n, 0 0 0
u,n, 0 0 n, O 0
Uxlly + Uy ng,  ng 0 0 0 a
Uxn, + uyng n, 0 n; 0 O ux
_ | uny +uyn, | 0 n, ny 0 O Y
Gn fyng 0 0 0 nZ O ;1 ‘ (5-93)

fyny 0 0 0 ny O v

y y fr
fyn, 0 0 0 n, O
frng 0 0 0 0 ng
an; 0 0 0 0 ng
frn, 0 0 0 0 n,
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Note that, using the identity [ab] = [a] (b) + (a) [b] on 01, we have

dGT6(G) VG = — | 6GTVT(0(G)G — 0pG)dQ
Qy Qp

-y / (V6G)T(0(G)G — 00Go)dS2 — Z SGT(0(G)G — 09Go)dS
e N o0Ne

_ / (V6G)" (0(G)G — 09Go)dS — / 5GTaT (0(G)G — 09Go)dS
Qn ON,

- / 5GT(0(G)G — 00Go)dS + / [[5(}} ]] ((0(G)G — 0Go)) dS
OpQn

o1y
+ / (561 10(G)G ~ oG] as.
o

Therefore, Eq. can be rewritten as
2/ (G, Q) = b/(5G), V5G € X,
with
2/ (G, 0G) = /Q (V6G)Tw(G, VG)dQ + / (VOG)T(0(G)G — 00Go)dQ2
h

Qp

* /am},uaDnh ﬂéGEﬂ (w(G,VG))dS + /6 - [[G,T]] (v(G)V4G) dS

+/6D9h 1] v V5G>dS+/819h (e <"<§S)B>[[5Gn]] ds

+/8D9h [[GTH < v(G)B >[[5Gn]] dS+/819hU8DQh HéGEﬂ (0(G)G — 00Gy) dS

_ /%Qh <5Gg> [0(G)G — 00Go] dS,

b (6E) = / 5GTwdS — Gov(G)VSG dS
aNQh aDQh

4 / 5G,T"(§)Bc‘;n ds + / SGT (0(G)G — 0pGo)dS.
OpQp S OpQy

(5.94)

(5.95)

(5.96)

(5.97)

Henceforth, using Eq. (5.83)), it is shown that Eq. (5.95)), which is derived from Eq. (5.90),

corresponds to the weak form Eqgs. (.45} [5.46).

Unlike the usual case in DG, where the interface term involves o in the average operator
(), Eq. (5.91)) shows that o is rather involved in the jump []. This comes from the integration
by parts in Eq. (5.94), in which o is G dependent. However, this allows the volume and

consistency terms in Eq. (5.95) to be directly expressed in terms of the stress wVG —
00Gy), which is convenient when dealing with a non-linear formulation as in Egs.

5.40)).

(oG —
G45
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5.4.1 Consistency

To prove the consistency of the method, the exact solution G® € [HQ(Q)]d x H?(Q) x
H2' () of the problem stated by Eq. is considered. This implies [G°] = 0, (w) = w,
[o(G®)G® — 09Gop] = 0 on hQy, and ﬂGe]] = -G = —G°, [0(G®)G® —00Go] = —0o(G)G +
00Gy, (w) = v(G)VG = v(G°)VG®, and v(G) = v(G) = v(G®) on dp€y,. Therefore, Eq.
becomes:

/ 3G wds — [ GTV(G)VIGdS + / 5GT (0(G)G — 00Go)dS
ONQy Op&y 2]

NN

+ / saTVCBG 4g / (V6G)Tw(G®, VG°)dO
OpQn hS Qp

+ [ 6GTe(GS)VGEAN + / [[5@,?]] (w(GE, VG®)) dS (5.98)

Qn 01y

_ / SGTw(Ge, VGdS — [ GETv(G)VIGdS + / sar By @)aeas
OpQn

B
O h

Op&y

+ / 5GT (0(G*)G® — 0Go)dS + / 5GTaT (0(G%)G® — 00Go)dS VG € X.
8DQ}, 8NQh

Integrating the first term of the right hand side by parts leads to

> | (v56)Tw(er, vae) =3 [ 967V Iw(G VG0
(5.99)
+Z/ SGrw(Ge, VG®)dS,
o0e
and Eq. becomes
/ §GwdS — G, (V(G)VIG) dS + / G, (0(G)G — 09Go)dS
8NQh 8Dﬂh 8DQh
+ / 5GT <BV(G)> GudS = — [ 5GTVTw(G®, VGE)dD
BDQh hS Qh
+ / JGTw(Ge, VGo)dS + [ 0GT6(GC)VGedQ (5.100)
aNQh Qh
[ G v@)veads + / saT B yv(@)ceds
BDQh aDQh h
+ / 5GT (0(G)G® — 09Go)dS + / 5GTaT (0(G%)G® — 00Go)dS VG € X.
ODQh 6NQh

The arbitrary nature of the test functions leads to recover the set of conservation laws, Egs.
(5.84]), and the boundary conditions, Eqgs. (5.85H5.86).
5.4.2 Second order non-self-adjoint elliptic problem

In this part, we will assume that opQy = 9€;,. This assumption is not restrictive but
simplifies the demonstrations.
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Our subsequent analysis will be derived similar to the one in Section

Starting from the definition of matrix v(G), which is a symmetric and positive definite
matrix, as its components C and Z are positive definite matrix. Let us define the minimum
and maximum eigenvalues of the matrix v(G) as A(G) and A(G), then for all ¢ € R}~

0 < MG < &v(G)g < A(G)[¢. (5.101)
Also by assuming that || G [|yy1 < c, then there is a positive constant Cq such that
0 < Cqo < \G). (5.102)

In the following analysis, we use the integral form of the Taylor’s expansions of w, introduced
in Eqs. [1.92).

For the future use, let us introduce for d = 3, d(G, VG) = 6(G)VG a (d +2) x 1 vector,
dvc(G) = o(G) of size (d + 2) x (5d — 3), dg(G,VG) = 0¢(G)VG a (d + 2) x (d + 2)
matrix, dgg (G, VG) = 6gg(G)VG a (d + 2) x (d 4 2) x (d + 2) matrix, dyvga(G) = 6g(G)
a (d+ 2) x (5d — 3) x (bd — 3) matrix, the (5d — 3) x 1 vector p(G) = o(G)G and its
first and second derivatives pg(G) of size (5d — 3) x (d + 2) and pgg(G) of size (5d —
3) x (d 4+ 2) x (d + 2) respectively, which will be computed later. Those matrices will be
needed for the further derivation of Taylor series as in Eq. (4.91). By recalling the definition
w(G,VG) = v(G)VG, then the expression of the derivatives wg(G,VG) = vg(G)VG,
Wv(;(G) = V(G), ng(G, VG) = Vgg(G)VG, and WGVG(G) = V(;(G) of W(G, VG) can be
extracted directly from Appendix as C for all the derivation is a constant matrix.

Let us define the solution G® € [H*(Q)] 4 H2(Q) x H2' () of the strong form stated by
Egs. (5.8445.86)). Thus since [G°] = 0 on 9i2° and [G°] = —G® = —G on Ip2°, and since
Eq. satisfies the consistency, we have

a(G®, 0G®) = / (V5Ge)TW(Ge, VG®)dQ + 5GeT6(Ge)VGedQ
O

Qp

+ / [[5@;?]] (w(G®, VG®)) dS — 5GS w(Ge, VG®)dS

O Op (5.103)
- G v(G®)VGedS + cetVGIB e g

6]39}] 6DQh 8
+ / 5GS (0(G*)G® — 00Go)dS = b(6G®) ViGE € X,

OpQp

with
b(5G®) = — / G, (v(G)V5G®)dS + / 5GS (0(G)G — 00G)dS
Op oo (5.104)

B -\ -
+ / e <V(G)) GndS.
Opn hS
Therefore, using 6G® = dGy, in Eq. (5.103]) and subtracting the DG discretization ({5.90)) from
Eq. (5.103), then adding and subtracting successively |, o, [[GST - ngﬂ (wya(G®)VIGy) dS,
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S [[Ge GT]] < WVG(G9)> [6Gn,. ] dS to this last relation, and using [GS] = 0, [o(G®)G® — 0gGo] =
0 on I, and [GL] = —GE = —Gy, [0(G®)G® — 00Go] = —0(G)G +0¢Go on IpQy,, one gets

(V6G)T (w(G®, VG®) — w(Gy, VG)) dQ2

h

I
S~

JGT (6(G9)VGE — 6(Gy)VGy) dQ

+
s

_|_

/69 Udp ) [[5 E“]] (w(G®, VG®) —w(Gp, VGy)) dS
13th D3¢h
/ [[GflT - GE..H (wyg(G®)VIGy,) dS
e e ot (@ T T (5.105)
_/asz U [[ © 0 (G) ~Gyo (Gh)ﬂ (6Gy, ) dS
13¢h VODAh
- /aQ [{ - E"H (Wva(G®) — wya(Gn)) VOGy) dS
13 th
/ HGﬁT - ngﬂ <BWVG(G6)> [6Gy, ] dS
QU hg

- /8 ) [[GgT —GTnﬂ <i(wVG(Ge) —WVG(Gh))> [6Gh, ] dS VoG € XK.

Using the Taylor series defined in Eq. (4.89) the first three terms of the previous equation
can be successively rewritten as following. The first term of Eq. ([5.105)) can be rewritten as

/ (VoG T (wW(G®, VG?) — w(Gy, VG))dD

(V6Gy) T (wg (G®, VG)(G® — Gp))dQ

o (5.106)
+ | (V)T (wog(GO)(VGE — VGy))dQ
Qp
(V6G1)T Ru(GE — G, VG — VG,))dQ
Qn
with
Rw(G® — Gy, VG® —VGy) = (G° -G TwL~(GL) (G — G
( h n) = ( n) Waa(Gn)(Gn — Gn) (5.107)

+2(G° — Gy) "W ge(GL) (VG — VGy,),

where wgg is (5d — 3) x (d + 2) x (d + 2) matrix and wygg is (5d — 3) x (bd — 3) x (d + 2)
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matrix. Similarly, the second term of Eq. (5.105)) can be rewritten as
6GL (6(G°)VG® — 6(Gp,)VGy) dQ = 6Gp (d(G®, VG®) — d(Gy, VGy)) dD
Qh Qh

= [ 5GTdg (G, VGE) (G — Gp))dQ
Qh

(5.108)
+ / G dug(G°)(VGE — VGy))dD
Qp

— [ SGTR4(G® — Gy, VG® — VGy,)dQ,
Qh

Rq(G® — Gy,) can be derived from Eq. as
Ra(G® — Gy, VG® — VGy) = (G° — Gy) "dag (G, VG)(G® — G)
+2(G° — Gp)"dvea(Gn)(VG® - VGy).

Likewise, the third term is rewritten as

/ [6GL ] (w(G®, VG®) — w(Gy, VGy)) dS
1L UOp 2,

where

(5.109)

= [ BGL] (w(G%, VGG @) s
O, Uop (5.110)

b GL] wee(G(VET - VG as
O U0p QA

- / [6GT ] (R (G — Gy, VG® — VGy)) dS.
O U0p O

The fifth term is developed by using the definition of pT(G) = GTo™(G) and using the
Taylor’s series as in Eq. (4.89), but written on p(G): pT(G®)—pT (Gn) = (G°—Gyp) p&(G®)—

Rp(G® — Gy,), where Rp(G® — Gy) = (G° — Gh)Tf)gG(Gh)(Ge - Gy).
Therefore, the fifth term of Eq. (5.105]) becomes

_ / [eo (@) - GTo™(@)] (3G, ) as
O, Uop Qy
-/ e~ alpd(@)] (6Gu,) ds (5.111)
012, U0p
+ / [Rp(G° — Gu)] (6Gn, ) dS.
QL UOD

However, one has pg = % = GT% + OT (G), which once computed explicitly as
to derive Eq. (5.94) gives p& = —0"(G). Moreover Rp(G°—Gy) = —(G°—Gp) o (Gn) (G —

Gy), and the previous equation can also be written as
- / [a"o™(@) — alo" (@] (3G, as
0102, U0D
_ / [ —GhoT@9)] (6Gu,) as (5.112)
01, Udp

- /619 U9 [(G* — Gn)"0g(Gn)(G* — G)] (0G,) dS.
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Finally since GTo"(G')6G, = GI6" (G')6G = —%fTathngéuX—%,{fTozthn;(Suy—%{fTathn;(Suz,
T T

then Eq. is rewritten as g
R /alghuaDQh [60™(G") - GIo™ (G)] (9G,) a8
= /al . H(GﬁT _ GEn)aT(Ge)ﬂ (0Gy,) dS (5.113)
- /BlﬂhuaDQh [(G* = Gn)"0g(Gn)(G* — Gy)] (G, ) dS.

We can now first define N'(G®, Gy; 0Gy,) as follows

N(G®, Gy;0Gy) = / (V(SGh)T(Rw(Ge — Gy, VG® — VGy))d2
Qp

+ / [6GL, | (Rw(G® — Gi, VG® — VGy,)) dS
01 2L,UIp Q.
[ e - el ] (tweal@) ~ weal@i) ViGs) as
I3¢h

" /a Q [{G‘elT - GE,,H <}i (wya(G°) —WVG(Gh))> [6Gy,]ds  (-114)

+ / [(G® — G1)"6&(GL)(G® — Gu)] (3G, ) dS
MU,

+ [ 0GIR4(G® — Gy, VG® — VGy,)dQ
Qh

=D +Io+1Is+ 1y +1Is + Is.

Moreover, for given 9 € X1, w € X and dw € X, we define the following forms:

A@p;w, dw) = [ Viow wyy () VwdQ + / [6wa ] (wyy (¥) Vw) dS
Qn O, Uop Qy

+/ [[wz]] (Wyy () Viw) dS + / [wg]] <fwv¢ ('t/))> [own] dS,
01, U0p O 01, U0p s

(5.115)
B(p;w,dw) = [ Véw" (wy(ph, Vip)w) dQ+ [ dw dyy (1) Vwd

Qy Qp

+ /BmhuaDQh [ows] {wh@)w)ds + /Q . Vo2 (5.116)

+ /8 oo |wadd,@)] (w) as.

For fixed %, the form A(%;.,.) and the form B(%;.,.) are bi-linear. Comparing with the
fixed form from Gudi et al. [24] for non-linear elliptic problems, the formulations A and B
are similar, except the last term of B(#;.,.) in which dy, () appears in the [] operator
instead of the () operator. Nevertheless, this term becomes identical with the one in Gudi
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et al. [24] for fixed . However the N is different in the fifth and sixth term, so they will
require a different treatment.

Therefore, using the relations (5.114}5.116) and the definitions ((5.106}5.110)), the set of
Egs. is rewritten as finding Gy, € X" such that:

A(G® G® — Gy, 6Gy) + B(G® G — Gy, 6Gy) = N(G°, G 0GL) VoG, € X5, (5.117)

When comparing the Electro-Thermo-Elasticity coupling formulation of this Chapter, and
the Electro-Thermal coupling formulation of Chapter 4, it can be seen that both of them are
nonlinear formulations. However, additional terms appear in the Electro-Thermo-Elasticity
coupled formulation, which are related to the expansion term (the term in o).

If fr > frg > 0, then Wg, Wya, WgG, Wava: Wvaas 0c, d, dg, dvg, dgg, dvee €
L™ (Q x REU+D x RY). These matrices with (=) are related to the remainder term of
Taylor’s expansion formulation, similar to Eq. , as will be shown later. Since w, o,
and d are twice continuously differentiable function with all the derivatives through the sec-
ond order locally bounded in a ball around G € [R]? x R x R as it will be shown in Section

and we denote by C,

Cy = max{” W, d ”Wgo(QXR(H_lXRg xR(5d—3) 5
(5.118)

| Wa, Wya, Waa, Wave: Wyvaes 06, da, dve, dee, dvae ||L°°(Q><Rd><R3')} :

5.4.3 Solution uniqueness

Let us first assume 9 = [;G — G® € X, with [;}G € XK' the interpolant of G® in Xk
The last relation (5.117)) thus becomes

A(G% 1,G — Gy, 0Gy) + B(G®; 1LG — Gy, 0Gy) = A(G®n,0Gy) + B(G®;n, 6Gy)

5.119
+N(Ge,Gh; 0Gy) VOGy € Xk, ( )

Now in order to prove the existence of a solution Gy, of the problem stated by Eq. (5.105)),
which corresponds to the DG finite element discretization (5.90), we state the problem in

the fixed point formulation and we define a map Sy, : XK 5 XKT as follows: for a given
ye Xk+» find Sp(y) =Gy € Xk+, such that

A(G% I,G — Gy, 6Gy) + B(G®; 1LG — Gy, 6Gy) = A(G®;n,0Gy) + B(G%;n,6Gy)

5.120
+N(G,y;6Gy) VYOG, € XX, (5.120)

The existence of a unique solution Gy, of the discrete problem is equivalent to the
existence of a fixed point of the map Sy, see [25].

For the subsequent analysis, we denote by CX, a positive generic constant which is inde-
pendent of the mesh size, but does depend on the polynomial approximation degree k.

Lemma 5.4.1 (Lower bound). For B larger than a constant, which depends on the polyno-
mial approximation only, there exist two constants le and C’z“, such that

A(G%6Gy, 8Gy) + B(G* 06y, 6Gy) = CY ||| 6G |12 = C5 || 6Gh |72y VOGh € X¥, (5.121)
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A(G*6G1, 6Gy) + B(G30G1,8G) = CF 116G P ~Ch | 6G |y VOGH € X (5.122)

(©)
The two positive constants C’f, C§ are independent of the mesh size, but do depend on k and

B. These bounds are estimated by proceeding in a similar way as for Lemmatta and
in Chapters[3 and []] respectively, and the stability of the method is conditioned by the

constant B > ?ymax(élCT(C% +1), 40,]%2) under consideration for C¥ to remain positive, for
details see Appendiz[D.3,

Lemma 5.4.2 (Upper bound). There exist C > 0 and C* > 0 such that
| A(Gm,0G) + B(G%m,0G) | < Cl[|m||1 ||| 0G|||1 Vm, 0G € X, (5.123)

| A(G%m,5Gy) + B(G*m, 6Gy) | < C* | m |1 || 6Gy ||| Vme X, 6Gy € X*,  (5.124)
| A(G®my,, 6Gy) + B(G®my, 6Gy) | < C¥ ||| my ||| || 6Gw ||| Ymy, 6Gy e X<, (5.125)

The upper bounds are established similarly to the demonstration of Lemmatta[3.4.9, [{-4.3 in
the previous two chapters. The proof is presented in Appendiz[D.3,

Using Lemma and Lemma [5.4.2] the stability of the method is demonstrated
through the following Lemmata.

Lemma 5.4.3 (Auxiliary problem). We consider the following auxiliary problem, with ¢ €
L*(Q):
VT (wye(G) VY + we(G, VG )W) + dye(G)VY +da(G*, VG ) = ¢ on,

50 on o0 (5.126)

Assuming reqular ellipticity of the operators and that wg and dg satisfy the weak minimum
principle [25, Theorem 8.3], there is a unique solution ¢ € [H*(€)] 4 x H2(Q) x H*(Q) to the
problem stated by Eq. satisfying the elliptic property

| ¥ HHQ(Q,L)S Cll ¢ HLQ(Qh) . (5.127)

The proof is given in [23], by combining [23, Theorem 8.3] to [25, Lemma 9.17].
Moreover, for a given ¢ € [LZ(Qh)]d x L2(Q) x L*(Q,) there exists a unique ¢y, € X*
such that

A(G%5Gh, ¢1) + B(G*; 6Gy, ¢1) = Z/ﬂ 070Gy d) V5G), € X", (5.128)

and there is a constant C* such that :

lén llI< C 1l Nl 2y - (5.129)

The proof follows from the use of Lemmam to bound ||| @y ||| in terms of || ¢ | 12(q,)
and || én 12, | @n ll12@,) i then estimated by considering ¢ = ¢n € X* in Eq.
, multiplying the result by ¢y, and integrating it by parts on Qy, yielding || ¢y, ||iQ(Qh):

A(G% 4, ¢1) + B(G% 9, ¢y). Inserting the interpolant Ing in these last terms, making suc-
cessive use of Lemmata|5.4.9 and|2.4.0, and using the reqular ellipticity Eq. allows
deriving the bound || @p || 12(q,) < C* || ¢ 1 12(,): which results into the proof of the solution
uniqueness. The proof is derwed in details in Appendiz[D)
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In order to prove that the solution Gy is unique for a giveny € Xk+, and that the solution
is Sp(y) = Gy, let us assume that there are two distinct solutions Gy,, Gy, to the problem

stated by Eq. (5.120)), which results into
A(G% 1,G — Gy, 0Gy) + B(G% 1,G — Gy, 6Gy)

. (5.130)
= AG*% 1,,G — Gy,, Gy) + B(G% 1L,G — Gy,, 0Gy) V 0Gy, € X*.
For fixed G®, A and B are bi-linear, therefore this last relation becomes
A(G® Gy, — Gy,,0Gy) + B(G% Gy, — Gy,,0Gy,) =0 V §Gy, € X~ (5.131)

Using Lemma with ¢ = 6Gy, = Gy, — Gy, € XX results in stating that there is a unique
®,, € XX solution of the problem Eq. (5.128), with for 6Gy, = Gy, — Gy,

A(GQ;G)H - Gy27q>h) + B(Ge;Gy1 - GyQaq)h) :H GY1 - GY2 ||iQ(Qh)7 (5-132)
and with ||| @, [||[< C* || Gy, — Gy, l12(,)- Choosing 6Gy, as @y in Eq. |D we have
| Gy, — Gy, [l12(q,)= 0. Therefore, the solution Sy(y) = Gy is unique.

We will now show that S, maps from a ball O, (I,G) C XK into itself and is continuous
in the ball. Therefore we define the ball O, with radius o and centered at the interpolant
I,,G of G¢ as

05(14G) = {y € X" suchthat [| LG ~y |1 < o},
_linG -6y 1 (5133)

O<e<-.

with B , 1

The idea proposed in [25] is to work on a linearized problem in a ball O, (I,G) C Xk"
around an interpolat I;;G of G® so the nonlinear terms w and d and their derivatives are

d
locally bounded in the ball O,(I,G) € XX*. Assuming G € [Hg(Q)} « H3(Q) x H3 ' (Q),
and applying Lemma [2.4.6), Eq. (2.23) with s = %, Ce=|G®. 5  ,and u= % =g, it
H2 ()
follows that

3 3_
| IhG — G€ ||]; < C*h2 || G¢ I3, 224 0 < CkCgh2 © if k> 2. (5.134)
h

We can show that W(Xa Yy, VY)v WG(X; Yy, VY)v WGG(X;ya VY), WVG(X; Y)a WGVG(X;Y)a
o(x;y), og(x;y), d(x;y, Vy), da(x;y, Vy), dae (x;¥, Vy), dva(%;y), dava(x;¥) are bounded
forx € Q, y € O,(I,G), by the same reasoning as in |76] and as explained in Chapter 4,
which justifies Eq. (5.118]).

Lemma 5.4.4. Let y € O,(I,G) and 6Gy, € X*, then the bound of the nonlinear term
N(G®,y;0Gy,) defined in Eq. (5.114]) reads

2

| N(G4;6Gh) | < C°Cy || G° i) P25 || 6Gn [l + <Z hs || 6G ||iﬂ(am)> +

1

(5.135)
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This bound of the nonlinear term N (G°,y; 6G}) defined Eq. 1s derived in Appendiz
by bounding every term separately using Taylor series (5.107 and[5.109), the generalized
Holder inequality, the generalized Cauchy-Schwartz’ inequality, the definition of Cy in Eq.
, the definition of the ball, Eqs. and some other inequalities which
are reported in Chapter@ such as trace inequalities, Eqs. (2.16 , tnverse inequalities,
Egs. for d = 2, and interpolation inequalities for d = 2, Eqs. . The
proof follows from the argumentation reported in [25] and the bound of the nonlinear term
N(G®, y;0Gy,) is nominated by the term with the largest bound, see Appendz'xfor details.
Moreover, using the definition of the energy norm , this relation becomes

| N(G.5:6Gs) | < CC, || 6 ey b0 [ 3G 1. (5.136)
which could be rewritten using Lemma[2.4.5 for the general case as
| NG 3:5Gh) | < CC, || G ) 1% [ G ||

(5.137)
< C*C,Cehs %0 || 6Gy ||| if k> 2.

We now have the tools to demonstrate that Sy, (i) maps from a ball O (I,G) € XX into
itself and (ii) is continuous in the ball.

Theorem 5.4.5 (S, maps O, (I,G) into itself). Let 0 < hy < 1 and o be defined by Eq.
5.134)). Then S, maps the ball O,(I;,G) into itself.

Il .G — Gy |l|< C¥ohs if k> 2, (5.138)

and for a mesh size hy small enough and a given ball size o, I,G — Gy — 0, hence Sy, maps
Oy (I, G) to itself. The demonstration follows the same procedure as in the Theorem .

Theorem 5.4.6 (The continuity of the map Sy, in the ball O, (I,G)). For yi, y2 € O,(I1,G),
let Gy, = Sh(y1), Gy, = Sh(y2) be solutions of Eq. . Then for 0 < hy < 1

Il Gy = Gy Il < C°Cy || G Mgy > Ml =2 Il - (5.139)
Repeating the same argument as in Theorem [[.4.7, one can easily obtain the proof.

Using the Theorems of the map Sy, we can deduced that for all 0 < hg < 1,
the maps Sy, has a fixed point Gy, of the ball O, (I;;G), and this fixed point is the solution of
the nonlinear system of Eqs. ((5.90).

5.4.4 A priori error estimates

As Sy, has a fixed point Gy, we can use Gy, instead of Gy in Eq. (5.138]), hence we have
I TG — Gy ||| < C¥'ohf = C¥ ||| LG — G ||s - (5.140)

Now using this last relation, Lemma Eq. (2.22), Lemma Eq. (2.23), and Eq.
(4.155)) lead to
11G° = G Il <[l G° = LG Il + |l TG = Gu, [ <[] G = TG [[[1 +C¥ ||| TG — G |||y

<1+ C) | G~ LG [[1< ChE | G [l ()
(5.141)
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where 1 = min {s,k + 1}, and C¥" = C*(1 4+ C¥). This shows that the error estimate is
optimal in hg.

5.4.5 Error estimate in the L% -norm

The optimal order of convergence in the L?-norm is obtained by applying the duality
argument. Thereby, let us consider the following dual problem

~VT(wyg(G®) VY + deg (G)Y) +wi (G, VG)Vep + dg (G, VG®)yh = e on ©,

which is assumed to satisfy the elliptic regularity condition as wyq is positive definite
and that dgG and dg satisfy the weak minimum principle [23, Theorem 8.3], with ¥ €

[Hzm(Qh)]d x H?™(Qy,) x H2™(Qy,) for p > 2m and

14 e )< C <|| e HHp 2+ g | ) ; (5.143)

p7§
H(anh)

if e € [HP~2m(;)] x HP=2m(€,) x HP~2m(()).
Considering ¢ = G® — Gy, C [L2()]" x LA() x L2(Q) be the error and g = 0,
multiplying Eq. (5.142)) by e, and integrating over €y,, yields

/ woe(G) VT Ved + / [T (G%)p] T Vedn + / W (G, vae)vy) T edn
On

Qn Qp

+ / [dg(G®, VG )] T ed — Z wyg (G2 V)" endS
one

Qp
X ldba@vas el
(5.144)
with
1% a2 < Clle 2@, - (5.145)

As [¢] = [VY] = 0 on 01 and 9 = 0 on Ipdy, we have by comparison with Egs.
EITH5ITE), that
Jo, Wva(GH) VYT VedQ + [, o [Woa(G*)V]" [en] dS

faDQh Wy (G VY] endS = A(GSse, 9),
Jo, Wa(Ge, vc;e)e VYpdQ + [, [da(G®, VGe)w]TedQ (5.146)
+ Jo, [dve G’ VedQ + Jorey, [endg(GO)] dS
- f@nﬂh eEd%G( )1,de - (Ge7e,,¢,)7

as wg, Wyg are symmetric. Therefore, Eq. (5.144) reads

e ll72q, = AG";e.9) + B(G®;e, ). (5.147)

e
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From Eq. , one has
A(G:G® — Gy I) + BG5 G — Gy i) = NG, G i), (5.148)

since G¢ is the exact solution and Iy € XX, and Eq. (5.147) is rewritten

| e |’i2(gh)= A(G% e, —Twp) + B(G®% e, — Iyyp) + N (G®, Gp; Inep). (5.149)
First, using Lemma Eq. (5.123)), Lemma Eq. (2.23), and Eq. (5.141), leads

to
| A(G®;e,9 — Iny) + B(G% e, —Tupp) | < C|lle ||l [] % — nt |1
< C el b | % a2y (5.150)
< OB G [l | % e

with g = min {s,k + 1}.
Then proceeding as for establishing Lemma and using the a priori error estimate
(5.14015.141)), we have

| N(G®, Gis ) | < CF Cyb = || G [Ifys g 1 Tn []] - (5.151)
The bound of | N(G®,Gy,; Iy9) | can be derived in the same way as Eq. (4.166]) as reported
in Appendix [C.9]
Finally, using Lemma [2.4.6] Eq. (2.23), remembering [#] = 0 in €2, we deduce that

Tt (1| <[l Tnp =2 [[ls + [l 9 lll2
< s || 9 Il + 119 i) (5.152)
< C(hs + 1) 19 [z, -

Combining Eqgs. (5.15015.152)), Eq. (5.149|) becomes, for u > 3
e 20, < CBE (14 1 G lhrgan) | G° lhrcon 19 iy (5153)

with ¢ = min {s,k + 1}, or using Eq. (5.145]), the final result for k > 2

| e llLz,) =< Ck”Cth I G lla=(y) - (5.154)

This result demonstrates the optimal convergence rate of the method with the mesh-size for
cases in which k > 2, (so that p > 3).

5.5 Numerical results

In this section the following numerical tests are performed: the 2D pipe for the conver-
gence verification of Electro-Thermo-Elasticity problem, and the 3D cell of polymer rein-
forced by carbon fibers, where the behavior of that composite material is studied when it is
driven by applying electric current. All the simulations are performed using polynomial of
second degree and stabilization parameter of value g = 100.
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5.5.1 2-D study of convergence order

The same quarter of the pipe as in Chapter [3|is considered for the convergence study. The
material parameters are reported in Table and the boundary conditions are presented in
Fig. and completed by a plane strain condition. The initial value for the temperature is
Ty = 20 [°C] and Vo = 0 [V] for the electric potential. The same mesh as shown in Fig.
is considered. At the inner boundary, the value of the electric potential is 0.05 [V], Fig.
The resulting electric potential distribution is shown in Fig. (a) and causes a gradual
increase in temperature from 20 [°C| at the inner face to 145.7 [°C] at the outer face, as
shown in Fig. (b) Consequently, an expansion of the pipe of 6.35 x10~* [cm] at the
outer radius is observed.

Table 5.1: Material parameters

Parameter ‘ Value ‘
Poisson ratio[—] 0.33
Young’s modulus E [Pa] 50 x 107
Thermal expansion ayy, [1/K] diag(2x1079)
Thermal conductivity k [W/(K -m)] | diag(1.612)
Seebeck coefficient « [S/m] 1.941 x 1074
Electrical conductivity 1 [V /K] diag(8.422 x 10%)
B
B
B

<~ r=0.03 [m]

«—— r,=0.04 [m] ——

Figure 5.1: The boundary conditions for a quarter of a pipe

The convergence of the DGFEM has been investigated on uniform meshes for the quadratic
polynomial degree k = 2. In Fig. [5.3|a) the error measured in the energy norm || e || is
plotted against the mesh size hs. The observed rate is quadratic. This optimal result agrees
with our theoretical estimate in Section [5.4.4]

A refinement of the mesh, together with the use of second order-degree polynomial, leads
to the L2-norm to converge with a rate h? as this can be seen in Fig. (b) The theoretical
result of Section is consequently validated.

5.5.2 3-D unit cell simulation

The same test as in Chapter [4] is applied. The boundary conditions are illustrated in
Fig. where the electric potential difference is applied on the transverse direction (a)
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Electric potential [V] Temperature [°C]
0 0.025 0.05 20 82.8 145.7
B ] I

(a) (b)

Figure 5.2: The distribution along the radius of (a) the electric potential and (b) the tem-
perature

and on the longitudinal direction (b). The displacement is constrained along three faces as
follows: the nodes in the XY-plane are fixed in the Z-direction, the nodes in the YZ-plane
are fixed in the X-direction, and the nodes in the XZ-plane are fixed in the Y-direction,
while the other three faces are restrained in order to get a uniform deformation, the top
face is restrained in the Z direction, the infront face is restrained in the Y direction and the
right face is restrained in the X direction. Finally the initial values for the temperature and
electric potential are Top = 5 [°C] and Vi = 0 [V] respectively. The material properties of
the polymers and carbon fibers are presented respectively in Tables and It should
be noted that the considered constitutive equations of the carbon fiber and shape memory
polymer, are presented in the following Chapter. The temperatures for the tests presented
in this Chapter remain lower than the glass transition temperature. However more tests
that involve SMP behavior above and below glass transition temperature will be presented
in the next Chapter.

For the transverse case, Fig. [5.4{(a), the distribution of electric potential and temperature
are given in Figs. When an electric potential of 11 [V] is applied the temperature in-
creases from 5 [°C] to 35 [°C] on the unconstrained face, where the temperature is restrained
on this right face to get uniform distribution for the temperature. The displacement is mea-
sured with respect to the right side of the cell, and the cell expansion due to the electric
potential increase is plotted in Fig. a).

The same test is performed with an electric potential applied in the longitudinal direction.
The boundary conditions are shown in Fig. [5.4(b). It can be seen that in order to get an
increase in temperature close to the one of the previous test, from 5 [°C] to 36.4 [°C], an
electric potential of 0.16 [V] has been applied, as shown in Fig. where a constrain is



5.6 Conclusions 113
-3 -
10 10°
107} f 10%%
? =
£ 10°—e—k=2 1 8 10° —e— k=2
= i}
10°F 1 10°F
AZ 3
1 1
10_7 -2 : ‘*1 = 1077 -2 ‘—1
10 10 1d 10 10 10

Figure 5.3: Error with respect to the mesh size.
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(a) The energy error, and (b) The error of

V =0.16 [V]
T =5[]

Figure 5.4: Boundary conditions applied in (a) the transversal direction, and (b) the longi-

tudinal direction

applied on the infront face to get a uniform temperature distribution on that face. This is
lower than the previous test. The strain/electric potential dependency is depicted in Fig.

p.7(b).

5.6 Conclusions

Throughout this chapter, the DG method has been studied for a coupled Electro-Thermo-
Mechanical problem. We have established the stability and uniqueness of the DG analytical
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Temperature [°C]
5 15 35
 ——
(a) (b)

Figure 5.5: The distribution of the unit cell of (a) the electric potential, and (b) the tem-
perature, for an electric potential difference applied on the transversal direction

Electric potential [V] Temperature [°C]
0 0.075 0.15 5 15.7

36.4
B

(a) (b)

Figure 5.6: The distribution of the unit cell of (a) the electric potential, and (b) the tem-
perature, for an electric potential difference applied on the longitudinal direction

approximated solution, as well as the optimal convergence order in both H'-and L2-norms
for small deformation problems and have verified these properties through numerical sim-
ulations. A micromechanical model of unidirectional carbon fibers embedded in a polymer
matrix is formulated considering the interaction of electrical, thermal, and mechanical fields.
The applicability of the DG method to coupled ETM problems is therefore verified, thus
making possible to predict the carbon fiber reinforced polymers behavior.
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Chapter 6

The constitutive laws of smart
composite materials

6.1 Introduction

Nowadays, most of the material surrounding us are made of different components to im-
prove the physical properties of the resulting material, for example carbon fiber reinforced
polymer composites which have increasingly become important due to their unique proper-
ties, as they combine the favorite characteristics of the both materials. In the construction
of fiber reinforced composite material, the high strength and stiffness of the carbon fibers
are combined with a low density stable matrix to create a combined material with desirable
material properties. Our choice for the fiber and the polymers, as discussed in Chapter 1,
is shape memory polymers reinforced by carbon fiber (SMPC).

The two most common uses for carbon fiber are in applications where high strength to
weight and high stiffness to weight ratios are desirable. These include aerospace structures,
wind turbines, military structures, robotics, manufacturing fixtures, sports equipment, and
many others. Certain applications also exploit carbon fiber electrical conductivity, as well
as their high thermal conductivity in the case of specialized carbon fiber.

Shape memory polymer is polymer having the ability to return from a deformed state to
its original shape, in other word, to remember the original shape. Starting from its primary
shape, deforming it into a temporary shape, it memorizes a macroscopic shape and returns
into its primary shape upon applying a particular stimulus such as temperature, electric
field, magnetic field, light, water or solvent. This ability of the material reverting back from
its temporary shape to its permanent shape is known as shape memory effect (SME). In this
work, we are interested in the thermal activation mechanism. These polymers take advantage
of a property change at the glass transition temperature T, such that the material can be
deformed with minimal force at temperatures above their T, (hysteretic rubber state), where
the polymers are considered as viscous materials. Once cooled below the T, (glassy state)
the SMPs become rigid again and the polymers are considered as elastic materials. As a
result they can maintain the shape that were given to them in their viscous states as long as
the temperature remains lower than their glass transition. The typical Thermo-Mechanical
cycle for SMP consists of the following steps as shown in Fig.

1. Deforming the polymer at temperature above the glass transition Tj.

117
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Figure 6.1: Thermo-Mechanical cycle of a Shape Memory Polymer

2. Fixing the polymer at constant deformation by cooling it to a temperature below Ty

3. Releasing the constraint upon the completion of cooling, to obtain the temporary
pre-deformed shape. The polymer will hold this temporary shape as long as the tem-
perature remains lower than the glass transition temperature.

4. Heating back the deformed structure above Ty, to recover the original shape

The objective of this chapter is to implement, modify and develop large deformation
constitutive theories and a numerical FE model able to model the response of Shape Memory
Polymers (SMPs) and Shape Memory Polymers composites (SMPC) subjected to a variety
of Thermo-Mechanical and Electro-Thermo-Mechanical histories.

The composite material system is obtained by defining two separate models, one for
carbon fiber and another one for shape memory polymers. For carbon fiber the transversely
isotropic hyperelastic model is considered while an elasto-visco-plastic model is considered
for the shape memory polymers.

The Thermo-Mechanical behaviors of shape memory polymer depend on the temper-
ature and time rate. Auxiliary studies have examined the numerical Thermo-Mechanical
constitutive modeling [7},8,10,44.61.68,71] of shape memory polymers. The aforementioned
fundamental studies have been instrumental in understanding and quantifying the response
of unreinforced shape memory polymers. The constitutive model proposed by Srivastava et
al. [68] is based on the glass transition concept. The material is assumed to be softer in the
rubber regime above T, and to be harder in the glassy polymer regime below Tg. During the
phase transition, part of the material is in the glassy state and the other is in the rubbery
state. Internal variables and constrains have been used to prescribe the transition between
the two phases. This constitutive theory is discussed for application to amorphous polymers
which are called amorphous thermosets that are chemically crosslinked shape memory poly-
mers, which have more desirable properties in comparison with thermoplastic when they
are physically crossklinked. This constitutive model is able to reproduce the fundamental
features of the macroscopic stress-strain response of the material in the two phases.
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In addition this formulation is able to predict the nonlinear history and strain rate
dependence at large strain.

The current chapter is organized in the following sections. In Section 6.2 the constitutive
equation proposed in [11] of carbon fiber is presented and extended to Thermo-Elasticity, and
in Section 6.3 the constitutive equation for SMP is derived following the model of Srivastava
et al. [68]. Afterward, numerical tests are carried out in Section 6.4 to show the capabilities of
the constitutive laws in predicting the shape memory polymers and shape memory polymer
composites behaviors. The two uniaxial compression tests of shape memory polymer are
performed, one with free recovery and the other with constrained recovery. Then the third
uniaxial compression test shows the different responses of SMP in terms of temperature and
strain rate changes, and the model predictions are compared with the available numerical and
experimental results. Finally, other compression and bending tests are applied to simulate
the behavior of a structure made of conductive SMPC behavior in the large-deformation
regime, in which the shape memory effect is triggered by applying an indirect heat (by
means of a low electric field).

6.2 Material model of carbon fiber

Carbon fiber is a transversely isotropic material and subsequently the number of me-
chanical constants are reduced to 5 because of the in-plane isotropy.

T L TT TL
E :E1:E2§£E3:E, 14 :V12:V217£V13:V23:V

6.1
G = Gi3 = Gog = G = GI. (6.1)
The missing in-plane shear modulus G*7 is obtained from v™T and ET, with
ET
T _Gp=— . 6.2
G Gz 20+ /TT) (6.2)

In the previous relation, the subscript 3 or the superscript L refers to the fiber direction and
1, 2, or T is a direction transverse to the fiber direction. Along the longitudinal direction
the Poisson ratios are not symmetric but instead satisfy E—‘j = %‘

In order to model the carbon fiber, we have considered the equation proposed by Bonet
et al. [11], which describes the isotropic hyperelastic solids in the large strain regime. In
addition, we have added the thermal contribution, characterized by the thermal expansion
term ayp. In this formulation, the strain energy density v consists of an isotropic component
Y™ and of an orthotropic transversely isotropic component ¥ such that 1) = ¢! +'. The
Neo-Hookean equation is used to model the isotropic part, such that

P = %GTT(trC —3) = G™(InJ — 304, (T — Ty)) + %A(an —30un(T — Tp))?,  (6.3)

where this energy density function has been defined by C. Miehe in [54]. In this equation,
the deformation gradient F, with J = detF = v/detC, its Jaccobian.

The orthotropic transversely isotropic component is obtained from a generalization of
the model proposed by Bonet et al. [11], with some modifications proposed by Wu et al. [75],
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as the original formulation considered that vTF = vTT which is wrong for carbon fibers.

After the addition of the thermal contribution, one thus has
P = [a"™ + 28" (InJ — Baen (T — To)) + 7" (I — 1)] (Is = 1) — %atm(h -1), (6.4)
where 14 and I5 denote the two new pseudo invariants of C expressed as [664/67],
I;,=A-C-A and Iy=A-C?.A, (6.5)

where the unit vector A defines the main direction of orthotropy (fiber direction) in the
undeformed configuration.
The parameters of the model Eq. 1’ A, GTT o™ g% and 4* are obtained from the

measured properties Eqgs. (6.1} as
_ ET(VTT + nVTL2) _— ET
m(1+TT) 7’ 2(1 + 1Ty’
atr _ GTT o GLT

B ET [nI/TL(l 4 I/TT _ I/TL) _ I/TT]

tr
" = 4m(1 + vTT) ’ (6.6)
,Ytr _ ET(l o VTT) B )\+ 2GTT N Oztr B Btr
Sm 8 2 ’
EL
mzl—I/TT—QnyTTQ, n=_—=.
E

The second Piola-Kirchhoff stress tensor can be obtained by differentiating the free energy
in terms of the right Cauchy-Green strain tensor S = 2% leading to

S =8 18, (6.7)

S = AnJC! + G (I - C™Y) — 3\ (T — Tp)C L, (6.8)
where I is the identity tensor, and with

S =28"(Iy — 1)C™ ! + 2 [a" + 28" (InJ — 3oy (T — To)) + 29" (1s — 1) A® A

6.9
—a"(C-AQA+A®C-A). (6.9)

Then the first Piola-Kirchhoff stress tensor is evaluated from the second Piola-Kirchhoff
stress tensor as

P =FS. (6.10)
The stiffness is computed in detail in Appendix

6.3 Constitutive equations of shape memory polymer

In this Section, we summarize the work of Srivastava et al. [68] to model the shape
memory polymer behavior above and below glass transition.
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6.3.1 Kinematics

We consider a homogeneous body €2y identified by the region of space it occupies in a
fixed reference configuration, and denote by X an arbitrary material point of 3. A motion
of )y is then a smooth one-to-one mapping

x=x(X, t), (6.11)

with the deformation gradient
F =Vux. (6.12)

To model the inelastic response of the amorphous polymeric materials, we assume that the
deformation gradient F may be multiplicatively decomposed into elastic and plastic parts

F = F°(®) . FP(®) with detF*®) > 0 and detF?®) > 0, (6.13)

where Fe(@) is the elastic distortion with
Je(@) = detFe® = J > 0, (6.14)

and FP(®) is the inelastic distortion with
JP(@) = detFP(®) = 1 with initial value FP(® (X, 0) = 1. (6.15)

In these equations we have considered the possibility to account for several mechanisms
a = 1,2,3. Moreover, the elastic decomposition of the deformation gradient can be written
as

Fe(@) = Re(@) . ygele) (6.16)

leading to
Ce(a) _ Ue(oz)2 —_ Fe(a)T . Fe(a)’ (617)

where C®(®) is the elastic right Cauchy-Green strain tensor, and to

Be(a) _ Fe(a) . Fe(a)T’ (618)

where B¢(®) is the elastic left Cauchy-Green strain tensor.

6.3.2 Elasto-visco-plasticity

The material may be idealized to be isotropic. Accordingly, all constitutive functions are
presumed to be isotropic in character.
Let us assume that the free energy has the separable form

VR = Lo ¥ (Bge(), T), (6.19)

where @) represents a list of the principle invariants of C¢® and T is the temperature.
The Cauchy stress is decomposed in terms of the mechanisms

o= Za(o‘) , (@ =T (6.20)
(a)
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with

FS@ FT

F <2 O (Dge(an T)) FT

oC

(o) e
_lp <26¢ (Pge@), T) | 9C )FT (6.21)

J oCe 7o)

1 pppe)-1 (28¢e(a)(@0e<a>,T)> FP(e)-TRT

~J aCe
_ 1 pe(a) ge(a) pe(e)T
J 9y

where 8¢(®) is the symmetric elastic second Piola-Kirchhoff stress

0 (Do), T)

ela) _
S 50 (6.22)
Moreover, the first Piola-Kirchhoff stress tensor can be computed from the following equation
P@ — Jgp-T = Jl Fe(@) ge(@) pe()T p—T
J (6.23)

— Fel@) ge(@) pp(a)-T _ g pr(@)—1 ge(@) pp(a)-T
The driving stress of the plastic flow is the symmetric Mandel stress, which is defined as
Me(a) -] Re(a)To.(a)Re(a)
=] Re(a)TFe(a)Fe(a)—10.(04)Fe(o¢)—TFe(a)TRe(a) (624)
_ Ue(a)se(a)Ue(a) _ Ce(oz)se(oz)7
where M@ is the elastic Mandel stress, R%® is the rotation matrix, if C*® and S
permute. The corresponding equivalent shear stress is given by

1
) — M@ 6.25
\/§| 0 |7 ( )

where Mg(a) is the deviatoric part of the Mandel stress

Flo

Mg(oa) _ Me(a) +pl , p= —%trMe(a). (626)

Moreover ]Mg(a)| is the norm of the deviatoric part of the Mandel stress with

’M(e)(oa) = Mg(a) : Mg(a). (6.27)

The plastic flow reads
FP — prlprle) (6.28)
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where each FP(@) is to be regarded as an internal variable of the theory and which is defined
as a solution of the differential equation

Mg(a)

DP(@) = ¢pla)(
270

) (6.29)

where DP is the plastic stretching tensor, and ¢P(@) ig an equivalent plastic shear strain rate
Pl = \/2DP(@)], (6.30)

In order to account for the major strain-hardening and softening characteristics of poly-
meric materials observed during visco-plastic deformation, we introduce macroscopic internal
variables to represent important aspects of the microstructural resistance to plastic flow. The
list of m scalar internal state-variables reads

€)= (67,6765, .. 60). (6.31)
Besides, let
A = (cel@) BP(@) ¢l@) T) (6.32)

denotes a list of constitutive variables. Then for a given 7(®) and A(®), the equivalent plastic
shear strain rate é?(® is obtained by solving a scalar strength relation such as

7@ = @) (p@) ¢pla)) (6.33)

where the strength function Y(@)(A(®) ¢P(@)) is an isotropic function of its arguments.

6.3.3 Partial differential governing equations

The partial differential equation for the deformation is obtained in the absence of body
force, as shown in Chapter 5, Eq. (5.1]), from the following expression,

Vo-PT =0, (6.34)
where P denotes the first Piola Kirchhoff stress, which is defined as
P=JoF T (6.35)

The partial differential equation for the temperature is obtained by the balance on energy,
from Eq. (5.9) after neglecting the electrical contribution, as

Vo Q= —pocy T+ F, (6.36)

where the thermal flux is governed by the Fourrier law Q = —K - V(T and F denotes all the
body sources of heat and is expressed as

82¢e(a)

@
eemar G (6.37)

F=Q+ 3 #@a@ 41

where Q, is the scalar heat supply measured per unit reference volume and the last term of
the right hand side is the thermo-elastic damping term which is neglected. Instead we assume
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that only a fraction v of the rate of the plastic dissipation contributes to the temperature
change

F=Q +v) 7@l (6.38)

where 0 < v < 1 is fraction of the rate of plastic dissipation contribution to the temperature
change. The volumetric heat capacity per unit mass is a function of the glass transition
temperature, and is defined as follows

Cv:{ co—c(T—Ty) T <T, (6.39)

co if T > T,

The theory with three micromechanisms M=3 as shown in Fig. [6.2]is considered. These
three micromechanisms are intended to represent the following underlying physical phenom-
ena:

L J L J
T T

Intermolecular Moclecular
resistance resistance

Figure 6.2: A spring-dashpot schematic of the constitutive law

1. The first micromechanism (« = 1) represents an elastic resistance due to intermolecular
energetic bond-stretching. The dashpot represents thermally-activated plastic flow due
to inelastic mechanisms, such as chain segment rotation and relative slippage of the
polymer chains between neighboring cross-linkage points.

2. The second micromechanism (« = 2) represents the molecular chains between mechan-
ical crosslinks. At temperatures below T the polymer exhibits a significant amount of
mechanical crosslinking which disintegrates when the temperature is increased above
T,.

g

3. The third micromechanism (o = 3) introduces the molecular chains between chemical
crosslinks. The nonlinear springs represent resistances due to changes in the free energy
upon stretching of the molecular chains between the crosslinks.

The used strategy to model the response of the material as the temperature traverses Ty
(glass transition) is as follows
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e For T < T we do not allow any plastic flow in the dashpot associated with micromech-
anism o = 2. Thus since the springs in @ = 2 and o« = 3 are in parallel, the three
micromechanism model reduces to a simpler two micromechanism model.

e For T > T, only mechanisms a = 1 and a = 3 contribute to the macroscopic stress.

The glass transition in amorphous polymers depends on the strain rate to which the material
is subjected.

¢ = V2|Dy, (6.40)

where € is the equivalent shear strain rate, and Dy denotes the total deviatoric stretching
tensor

Dy = symy(FF~1). (6.41)

In this equation, sym, denotes the symmetric deviatoric part. This symmetric part is ob-
tained as D computed by the following equation

1 .. .
D= _(FF '+ FIE), (6.42)
and the symmetric deviatoric stretching tensor thus reads
1
Dy=D - gtrD I (6.43)
Eventually, the glass transition Ty is calculated from the following expression

T, ife <e,

T, = (6.44)

Tr+nlog(£) it € > e,

€r

where T is the reference glass transition temperature at low strain rate, ¢ is the shear strain
rate, and €, is the reference strain rate.

6.3.4 Definition of the micromechanisms
6.3.4.1 The first micromechanism (a = 1) of Shape-Memory Polymers (SMP)

The non-linear spring represents an elastic resistance due to intermolecular energetic
bond-stretching. The dashpot represents thermally activated plastic flow due to inelastic
mechanisms.

At the first we need to calculate the Cauchy stress o(!) using

o) = JmIRepNeReMT (6.45)

where Me() is the symmetric Mandel stress which is symmetric by definition, and R¢() is
the rotation matrix. The Mandel stress reads

Oy BV, T)

e(1)
M 9B

(6.46)



126 Constitutive law of smart composite

E¢() denotes the logarithmic elastic strain, which is evaluated using the eigenvalue decom-
position of C°) with

3 3
CcM =3 ") g @er, B =) I e, (6.47)
i=1 i=1
where A, A5, \§ are the positive eigenvalues of U¢, and r{,r§,r§ are the orthonormal eigen-
vectors of C® and U®. The relation (6.46) is derived from Eq. (6.24) as

e(1 e(1 e(1 e(1 e(1)
Me(l) _ QCe(l) 81/} ( )(E ( )7T) _ QCe(l) 81/} ( )(E ( ),T) OE
oCe™ OEe() oCe() (6.48)
= oW MW e = M),

if C*M and MM permute. Permutation of C*") and M¢() is directly obtained from the
eigenvectors decomposition Eq. , as C¢() E¢(M) and M) have the same basis iy @r.
It should be noted that in this work E¢() is computed by using a Taylor series approxi-
mation of Eq. , and not through the eigenvalue decomposition.
The following simple generalization of the classical strain energy function of infinitesimal
isotropic elasticity is considered, which uses a logarithmic measure of finite strain [4]|I|, then
the form of the elastic free energy is

1 2 N
v = GEE§VP + 5K (trEe(1)> _3K (trEe(1)> am(T — To) + H(T). (6.49)

This relation of free energy allows the stress to be determined via the strain relation, where
the deviatoric part of strain is denoted by Eg, and f(T) is an entropic contribution to the free
energy related to the temperature dependent specific heat of the material, and where the
temperature dependent parameters G(T), K(T), at,(T) are respectively the shear modulus,
bulk modulus, and the coefficient of thermal expansion. Substituting Eq. in Eq.

1' as !E8(1)|: ES(I) : Eg(l) one can get directly Me() as
M) = 2GESY + K (trEe(l)) I — 3Kaw (T — To)L. (6.50)
Moreover, one can get

_ 1 e(l — 1 e e(1 (] N
I St R VL R S (21

where P is the normal pressure which has negative value for hydrostatic stress, 7' is the
equivalent shear stress, and Mg(l) is the deviatoric part of the Mandel stress. The tem-
perature dependence of the shear modulus may be approximated by the following function,
where it decrease significantly for polymers as the temperature increases through the glass
transition temperature of the material:

1 1 1

2 2 (T —Tg)) — M(T — Ty), (6.52)

! This free energy function is used for moderately large elastic stretches parameters
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where M = Mg if T < Ty, M = M;ifT > Ty, Gy, G; are the values of the shear modu-
lus in the glassy and rubbery regions, A is a parameter related to the temperature range
across which the glass transition occurs, and the parameter M represents the slope of the
temperature variation of G outside the transition region.

The coefficient of thermal expansion is taken to have a bilinear temperature dependence,
with the following contribution to the thermal expansion term 4, (T —Tp) in the free energy
relation. Four cases are considered for the coefficient of thermal expansion in terms of the
initial temperature Ty

Odgl(T - To) if T < Tg and TO < Tg,
B ) (T —=To) + (g — o) (T = Ty) if T < Tgand Ty > Ty,
(T = To) = ag(T —To) + (ay — ag)(T —Tg)  if T > Tgand T < Ty, (6.53)
ar (T —To) if T > Tyand Ty > T,.
The temperature dependence of Poisson ratio v(T) is given by
1 1 1
v(T) = 3 (Vg + 1) — §(l/g1 — ) tanh(Z(T —Ty)). (6.54)

The temperature dependence of the bulk modulus K(T) is then obtained by using the stan-
dard relation for isotropic materials

2(1+v(T))

K(T) = 6D 515, i1y

(6.55)

Moreover, the evaluation equation for FP) follows Egs. (6.28 ) which are rewritten

Fp(l) _ Dp(l)Fp(1)7 (656)
With (1)
M;
Dr) = 0 Mo (6.57)

The thermally-activated relation for the equivalent plastic strain rate in the specific form
reads

0 if 7. <0,

Pl — 1 T ey
& eXp(_)eXp(_?{ng))[Sm K T

£
where é?() is the plastic strain rate, the parameter eb(l) is a pre-exponential factor with
units of 1/time, Kp is Boltzmann’s constant, V is an activation volume, m® is the sensitive
parameter for the strain rate and 7¢(!) denotes a net shear stress for the thermally activated
flow

6.58
Um0, (6.58)

¢ =7 (S, + S}, + apD), (6.59)

with ap > 0 a parameter introduced to account for the pressure sensitivity. The term

1
exp (—=) in Eq. (6.58|) represents a concentration of flow defects, with
3

] &a it T <T,,

a { Ea +d(T-Tg) if T>T,. (6.60)
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Finally Q(T) is the temperature dependence of the activation energy with

QT) = 5 (Qu+Q) ~ (Qq — Q) tanh( 5 (T~ Ty)) (6.61)

A

N | =

which takes the value, Qg in the glassy regime and Q, in the rubbery regime.

6.3.4.2 Equations for internal variables

Typical initial conditions presume that the body is initially (at time t=0) in a virgin
state, leading to
FO(X,0) =FP)(X,0)=I= F(X, 0)=1I, (6.62)

gl.(“) (X,0) = fi(a)(: constant). (6.63)

For the first micromechanism, the list ¢! of internal variables consists of three positive
scalars, such that

‘fl = (SO, Sav Sb): (664)

where the variable ¢ > 0 and S, > 0 are introduced to model the yield peak which is observed
in the intrinsic stress-strain response of glassy polymers and Sy, > 0 is introduced to model
the isotropic hardening at high strain. In details, the three internal variables correspond to

e The high order parameter ¢ is introduced to represent material disorder with the
microscale dilatation induced by plastic deformation;

e The resistance S, represents the disorder of the material which causes a transient
change in the stress as the a result of plastic deformation proceeding;

e The resistance Sy, > 0 is introduced to model a dissipative resistance to the plastic
flow;

The evolutions of S, and ¢ are governed by
S. = ha(S% — S.)éPM)  with initial value S, = S, (6.65)
¢ = g(¢* — )PV with initial value p = @g. (6.66)
In these equations, we have introduced
Sz =ble" — ), (6.67)

which controls the extent of the stress, and ¢* as

T ep(1)
z ((1 — )t hg> (—)®  if (T < Tg) and (¢?(M) > 0),
4,0* (ép(l)’ T) = ép(l) g €r (6.68)
zhg ( s if (T > Tg) and (¢?(V) > 0),
€r

which represents the temperature and strain rate dependency of ¢, where z, r, hy, and s
are taken to be constants. In particular hg is introduced to get a small value for ¢* when
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T > Tg, instead of 0 in order to improve the convergence of numerical model. Then the
evolution of Sy, is governed by

Sy, = Spo + Hp(A — 1), A = /trC/3, (6.69)

where ) is an effective stretch which increases or decreases as the overall stretch increases
or decreases, and the hardening parameter Hy, is temperature dependent, with

1 1 1
Hy(T) = §(Hg1 +H,) — i(Hgl —H,) tanh(Z(T —Ty)) — L(T — Ty), (6.70)
where Hg and H, are the values in glassy and rubbery regions, and where L represents the
slope of the temperature variation of Hy, and takes the value of L = LgifT < T, and
L =L, ifT > T,.

6.3.4.3 The second micromechanism (a = 2) of Shape-Memory Polymers (SMP)

The second mechanism represents the molecular chains between mechanical-crosslinks.
The nonlinear spring in this mechanism represents resistances due to changes in the free
energy upon stretching of the molecular chains between the crosslinks and the dashpot corre-
sponds to the thermally-activated plastic flow resulting from a phenomenon of disintegrating
of the mechanical cross-links for T > Tj.

Defining

e(2)

FO = J73Fe@ detF*® = 1, (6.71)

Ce(2) _ Fe(Q)TFe(Q) _ J_%CG(Q), (672)

where C°® denotes the distrotional (or volume preserving) right Cauchy strain tensor, we
can define a free energy function in form

@ = @@ 1) (6.73)

which is an isotropic function of its argument, the volumetric elastic energies for ¢y or 1)(3)
are not needed as it has been already accounted for a volumetric elastic energy in ™).
Employing the simple phenomenological form for the free energy function ¢ proposed by
Gent [20], one has

_ 1 trce(2) -3
D = -3 Iu(2)II(§) In(1 — I(72)), (6.74)

where 1) is the rubbery shear modulus. The experimental results indicate that it is tem-
perature dependent and decreases with increasing temperature such as

1 = prgexp(~N(T — Ty)), (6.75)

where fig is the value of ,u(Q) at the glass transition temperature, and N is a parameter that

represents the slope of temperature variation on a logarithmic scale. The parameter L(ﬁ) is
taken to be temperature constant.
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Using the free energy Eq. 1} yields the corresponding second Piola stress S¢2) as
n - ~e(2
) _y 2 B e aC (2)

2 trC°? _ 3 1, e\ Ae(2)-1 ‘
=J5uP0 - = - Z(C*C ).
12 3
Then Eq. (6.21)) gives the contribution to the Cauchy stress ¢ as
0(2) _ J—lFe(Z)Se(Q)Fe(2)T
~e(2) _ (6.77)
=5 0 - TR )
1

with ~ o )

Be(2) — Fe(?)Fe(Z)T — J_5B6(2), (678)

where B8(2) =B — %trCe(Q)I is the deviatoric part of B¢2) the left Cauchy Green strain
tensor, and where trC = trB.
Also from Eq. (6.24) and Eq. (6.76) the corresponding Mandel stress reads

tr(_je(z) -3
12

m

M@ — Cedge® — (1 _ )y~iee®, (6.79)

where (_)8(2) —C¥ %tr@eml is the deviatoric part of C¢) the right Cauchy Green tensor.
2)

Clearly, as C*® and Ce@ permute, M¢2) and ce® permute as well.
The equivalent shear stress of the plastic flow is given by

_ T2 re
72 = E|M @), (6.80)
The plastic flow is based on
£ = pr@FP@) (6.81)
with the plastic stretching DP(2) obtained by
Me2)
DP?) — (p(2) =@ (6.82)

where the equivalent shear strain rate reads:
(@ = \/2DP?)|. (6.83)

For the second mechanism, we consider the equivalent plastic strain rate

(2) 1
p(2) — (2T
€ €0 (S(z)) ) (6'84)

(2)

where €, is a reference plastic shear strain rate, m® is the positive valued strain rate
sensitivity parameter, S@ isa temperature dependent parameter, which can be determined
by

1
A
where SS) and SIEQ) denote respectively the glass and rubbery sensitivities and Ay is a
parameter related to the temperature range across which the glass transition occurs.

1 1
SP(T) = 5(Sy) +5) = 5(Sy7) — ) tamh( (T — Ty)), (6.85)
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6.3.4.4 The third micromechanism (a = 3) of Shape Memory Polymers (SMP)

The micromechanism o = 3 represents chemically-crosslinked backbone of the thermoset
polymer in which the crosslinks do not slip. The nonlinear spring in this mechanism repre-
sents resistances due to changes in the free energy upon stretching of the molecular chains
between the crosslinks.

Accordingly we do not use a dashpot for this micromechanism, and we set FP(3) =1, so
that Fe®) = F, with

F = J3F, detF = 1. (6.86)
Then right Cauchy Green strain tensor is defined as follows
C=F'F=J3C. (6.87)

The free energy is a function of C, and is defined similar to mechanisms o = 2, and is given
by a deviatoric Gent form [20]

0 = @) = — L O 1 - TC=3) (6.88)
2 IS{)
where the material constant M(S) > ( is assumed to be temperature-independent.
Using -
oC 1 1= ~_1
— =—T--CxC 6.89
R Lt L] (659
the free energy Eq. 1) yields the corresponding second Piola stress S®) as
3 _
S®) = 28¢E ) : ¢
oC 0C
> trC — 3 1 (6.90)
_2 — 3. _ A A—1
=J 531 - IT) - 5(trC)C ]

Furthermore, by the use of Eq. l} the contribution to the Cauchy stress ® reads
0¥ = J7'FSBIFT

trC — _ 6.91
=07 - S0 ey, oo
1)
where Bg =B — %trCI is the deviatoric part of left Cauchy Green strain tensor
B=FF =] 3B, (6.92)

with B the left Cauchy Green strain tensor.

6.3.5 Finite increment form of the Shape Memory Polymer constitutive
law

In this section we present the finite increment form of the theory developed previously.
The resolution of the system follows the predictor-corrector scheme during the time interval
[tn; tn+1], where we use the subscript n for the previous time t, and n + 1 for the current
time ty41. The formulation can be summarized as follows:
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e Prediction step: The plastic deformation gradient is initialized to the value at the

previous step FI&ES) = Fzg)a), and the elastic deformation follows
e(a o)t
F(fl +)1) — F(n+1)Ff(’1§)) , (6.93)

leading to the right Cauchy strain elastic predictor

e(e) _ pp(@)-TpT p(e)—1

Con =Fon  FarnFanFen (6-94)

e Correction step: In this step we solve the system of equations that has been developed
in Section to extract the plastic increment using the evaluation equation of the
plastic deformation gradient during the time step between the configurations n and
n+1, with

FP\)) = exp(ADP)FP. (6.95)

Then the elastic deformation tensor is obtained from

FO) = FuynFr) " (exp(ADP) 2, (6.96)

(n+1) = (n)
By Eq. (6.82), one can have

ADP) = (€p(a) - e?(?‘))Me(a) - Aep(a)(Me(a)

(n+1) 27—-(a) 27—-(a) )’ (697)

and the expression of the elastic deformation tensor can be rewritten under the form

(M)

-1 6.98
ORI (6.98)

() _ ()7t
Fiin = FarnFly expl(Ae®)
As the plastic flow is independent from the rotation tensor, the plastic correction can
be computed in an unrotated configuration.

More details about the predictor-corrector algorithm and the stiffness computation can be
found in Appendix

6.4 Numerical simulations

The constitutive equations for SMP and carbon fiber that were presented in the previous
sections have been implemented in a DGFEM software, i.e. GMSH [22], to model Shape
Memory Polymer and Shape Memory Polymer composite behaviors. The numerical results
are compared with some experimental tests performed by [68].

All material parameters of the SMP which have been used in the simulations are reported
in Table where the thermo-mechanical parameters have been calibrated by Srivastava et
al. [68] to fit the experimental data of tert-butyl acrylate (90% by weight) with crosslinking
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Table 6.1: Shape memory polymers parameters

’ Parameter ‘ Value H Parameter ‘ Value
eV [1/s] 1.73 x 108 || p [Kg/m?] 1020
& 52x 107 | &P [1/3] 5.2 x 10~
ag [1/K] 13x107° o [1/K] 25 x 1077
T, [K] 310 n [K] 2.1
Gg [Pa] 156 x 10° G, [Pa] 13.4 x 108
M, [Pa/K] 7.4 x 10° M, [Pa/K] 0.168 x 10°
Qg [J] 14 x1079 || Q, [J] 0.2 x 1072
H, [Pa/K] 1.56 x 10° H, [Pa/K] 0.76 x 10°
Ly [Pa/K] 0.44 x 10° L, [Pa/K] 0.006 x 10°
Vel 0.35 vy 0.49
A 2.6 m(D) 0.17
h, 230 g 5.8
z 0.083 r 1.3
s 0.005 a 0.5
d [1/K] 0.015 Cal 0.14
SaO [Pa] 0 Sbo [Pa] 0
V [m?] 2.16 x 1027 || 1Y 6.3
ayp 0.058 o) 0
3 0.5 h, 230
Sg1 [Pa] 58 x 10° S: [Pa] 3 x 10?
N [1/K] 0.045 pg [Pal 1.38 x 10°
1Y 5 m(?) 0.19
13 [Pa] 0.75 x 106 W 0.7
co [J/(Kg-K)] | 1710 c1[J/Kg] 4.
h 1076 a [V/K] [s/m] | 3 x 1077
b [Pa] 5850 x 10°
k [W/(K-m)] | diag(0.2) 1 [V/K] | diag(0.1) |

agent poly (ethylene glycol) dimethacrylate (10% by weight). The parameters related to
the conductivity are assumed to correspond to nano-composites and consist of values of the

order of magnitude that can be found in [72].

The composite cell models of carbon fiber reinforced SMP are studied using the carbon
fiber material parameters reported in Table which are given in Wu et al. paper [75],
while the approximated electrical and thermal parameters are taken from [32,33}/12,73].

6.4.1 3-D Shape memory polymers tests

Three tests have been considered to show the ability of the model to recover SMP be-

havior on a cube of size 1 x 1 x 1[mm

’]

, meshed with quadratic elements, and using a

stabilization parameter of value f=100. In the first one, the different responses of SMP at
different temperatures are extracted and compared to experimental data, then in the sec-
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Table 6.2: Carbon fiber properties

Parameter ‘ Value
Density p [Kg/m?] 1750
Longitudinal Young’s modulus Ej, [GPa] 230
Transverse Young’s modulus Er [GPa] 40
Transverse Poisson ratio vpr [—] 0.2
Longitudinal-transverse Poisson ratio vy [—] | 0.256
Transverse shear modulus Gpr [GPa] 16.7
Longitudinal shear modulus Gyr [GPa] 24
Thermal expansion ayy [1/K] 2x107°
Thermal conductivity k [W/(K - m)] diag(40)
Seebeck coefficient a [V /K] 3x1076
Electrical conductivity 1 o [S/m)] diag(10) x 10*
Heat capacity cy [J/(kg - K)] 712

ond one the sample is subjected to constrained recovery, and in the third one the sample is
subjected to free recovery.

6.4.1.1 Uniaxial compression tests

In these tests, we consider a single quadratic element. The tests are performed at constant
temperatures of 22 [°C], 40 [°C], and 50 [°C], and are subjected to strain control up to true
strain ~ 100 % at a rates of 0.1 [s~!], and 0.001 [s~!]. Fig. [6.3|shows the different behaviors
of the SMP above and below glass transition temperature and at different strain rates.
At temperature below glass transition, T = 22 [°C], Fig. (a), the yield peak appears
followed by strain softening, then strain hardening. Since the temperature is lower than
Ty, permanent plastic deformation can be seen. At temperature above glass transition, at
T =65 [°C], Fig. [6.3|(c), the stiffness is clearly lower and as the constrain is removed, SMP
recovers its original shape. A distinct behavior is observed near glass transition temperature,
T =40 [°C], Fig. (b), where at high strain rate 0.1 [s~!], it behaves as a glassy polymer,
while at low strain rate 0.001 [s™!] it behaves as hysteretic rubber. In these figures, it can
be noted that at high strain rates the generated stress is higher and the glass transition
temperature is not constant, it increases with the increase of the strain rate. Our results
agree with the experimental results reported by Srivastava et al. [6§].

6.4.1.2 A shape memory polymer constrained recovery tests

In these tests, the mesh is composed of 8 quadratic bricks. The cube is subjected to the
following Thermo-Mechanical cycle under a constrained recovery

e At temperature above glass transition a compressive strain of 15 % is applied.

e The temperature is decreased below the glass transition to room temperature 25 [°C]
under a constrained strain.
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Figure 6.3: Stress-strain curves at strain rates 0.1 [s7!] and 0.001 [s7!], and at different
temperatures 22 [°C], 40 [°C], and 65 [°C] and experimental results reported in [68]

e The temperature is increased back above glass transition 58 [°C] under the compression

constrain.

The engineering strain and temperature histories are plotted in Fig. and the force versus
time curve is plotted in Fig. [6.5] where the effect of material hardening in the force during
the deformation above T is shown, then during the cooling the effect of material softening
is also seen. In the same figure the same test is performed a second time but without
considering mechanism 2, and it is clear that the two curves agree well.

In order to highlight the time dependency behavior of SMP, the same test is performed
with an increase in the strain rate from 0.0015 s~! of the previous test to 0.015 s™! as
presented in Fig. The resulting curve when the 3 mechanisms are used still agrees
very well with the curve with two mechanisms, i.e. when the second mechanisms is not

considered.
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Figure 6.4: The temperature and displacement histories of the constrained recovery test
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Figure 6.5: The force versus time curve for small strain rate of the constrained recovery test

6.4.1.3 A shape memory polymer free recovery tests

In these tests, the mesh is composed of 8 quadratic bricks. The applied pressure and
heating-cooling cycle for the free recovery test are presented in Fig. the specimen was
subjected to the following Thermo-Mechanical cycle

e Apply a pressure of 9 x 10° [N/m?] on the cube at temperature above glass transition
60 [°C].

e Cool it down to 21 [°C] under the compression pressure.
e Remove the constrain at 21 [°C].

e Reheat it again above glass transition to 60 [°C] allowing to recover freely the original
shape.
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Figure 6.6: The force versus time curve for high strain rate of the constrained recovery test
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Figure 6.7: The pressure and temperature versus time of the free recovery test

The engineering strain versus temperature histories are plotted in Fig. and the
shape recovery is showed. We have the same result when the same test is applied without
considering the second mechanism, as displayed in the same figure. Henceforth from the
previous two tests, the constrained and the free recovery tests, we can conclude that the
Thermo-Mechanical properties of SMP can be reproduced without considering the second
mechanism. Eventually the following tests will be performed without considering the second
mechanism, since the resolution of mechanism 2 is time consuming as compared to the other
two ones.
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Figure 6.8: The strain versus temperature curve of the free recovery test

6.4.2 3-D Electro-Thermo-Mechanical coupling compression test applied
on Shape memory polymers reinforced by carbon fibers (SMPC)

The following test focuses in applying the proposed composite model to simulate the
conductive SMPC behavior at large-deformation regime, when triggered by Joule effect. The
geometry is illustrated in Fig. and the applied boundary conditions are the following:
the displacement is constrained along three perpendicular faces as follows: the nodes in the
XY-plane are fixed along the Z-direction, the nodes in the YZ-plane are fixed along the
X-direction, and the nodes in the XZ-plane are fixed along the Y-direction, while the other
three faces are restrained in order to get a uniform deformation, the top face is restrained
in the Z-direction, the infront face is restrained in the Y-direction and the right face is
restrained in the X-direction. It should be noted that the temperature is restrained on the
Shape Memory Polymer volume to get a uniform distribution of the temperature. The initial
value of the electric potential is 0 [V] and the initial value of the temperature is 21 [°C].
The material parameters are provided in Tables and A finite element mesh of 79
quadratic bricks is considered and the value of stabilization parameter is = 100. The test
is implemented with displacement control as shown in Fig. [6.11] and the applied electric
potential on the back face is given in the same figure, while on the infront face is 0 [V].

The unit cell of SMPC is subjected to indirect heating by applying electric potential
with the following Electro-Thermo-Mechanical history:

e Apply an electric field of 0.28 [V] in order to heat the cell above the glass transition
temperature of 37 [°C].

e Compress the sample above glass transition.

e Reduce the electric field to 0 [V], in order to cool the cell down to room temperature,
while the cell is still under a constrained strain.
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Figure 6.9: Unit cell of SMPC used for the compression test

e Increase the electric field back to 0.28 [V], which causes increase in the temperature of
the sample to a temperature above the glass transition, and maintain the deformation
constant until the cell reaches a value above the glass transition temperature of 37
[°C], then unload the material in order to recover the original shape.

The resulting temperature of the SMP volume versus time is plotted in Fig. [6.12

The particular behavior of SMPC is illustrated through the average stress shown in Fig.
6.13] Deformed shapes of the SMPC unit cell and the corresponding stress distribution
along the compression direction are illustrated in Fig. [6.10] It appears that the force starts
to increase (in absolute value) during the heating by Joule effect due to thermal dilation,
and a sudden drop can be observed once the temperature reaches the glass transition tem-
perature T,. Then the force increases due to the cell deformation above the glass transition
temperature T,. Afterward, there is an increase of the force during the constrained cooling
as the deformation constraint is still applied. When the temperature is minimal, the force
has almost vanished, which represent a fixation of the deformation, , see also the limited
stress distribution in Fig. Then, the force decreases dramatically and changes the
sign when it is reaches the glass transition temperature T, which means that it tends to
recover the original shape, see the important stress distribution in Fig. once the
displacement constrain is removed above T, the force reaches a zero value as the cell recover
its original shape above the glass transition temperature T, around 1200 [s], see Fig.

6.4.3 3-D Electro-Thermo-Mechanical coupling bending test applied on
Shape memory polymers reinforced by carbon fibers (SMPC)

The aim of the following test is to apply the free recovery test on carbon fiber reinforced
shape memory polymer.

The unit cell of SMPC is subjected to indirect heating by applying electric potential.
This cell is similar to the one illustrated in Fig. but with different dimensions: the
length of the unit cell is 1.7 [mm], the width is 0.0425 [mm], the height is 0.0614 [mm)], and
the CF radius is 0.01 [mm], as shown in Fig. to achieve proper bending conditions.
The back side of the cell is fixed along all the directions, the temperature is fixed on that
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Figure 6.10: Snapshots of the SMPC unit-cell under compression test during the Electro-
Thermo-Mechanical cycle. #1 (¢t = 750 s): after compression above the glass transition
temperature. #2 (t = 900 s): after having released the voltage difference. #3 (¢t = 1135 s):
after having applied again a voltage difference to reheat above the glass transition temper-
ature with partial compression. #4 (¢t = 1500 s): after having removed the compression
above the glass transition temperature.
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Figure 6.11: The displacement and temperature versus time of SMPC unit cell

face and on the infront side as well, while differences in the electric potentials are applied
on those faces, see Fig. One more condition is to restrain the side faces along the
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Figure 6.13: The force versus time

X-direction, in order to get a uniform deformation. The initial value of the temperature is
25 [°C] and the initial value of the electric potential is 0 [V]. A finite element mesh of 90
linear bricks is considered, and the value of the stabilization parameter is 5 = 100.

The applied boundary condition for the force and electric potential versus time are
illustrated in Fig with the following Electro-Thermo-Mechanical history

e Apply an electric field of 0.35 [V], which generates heat and increases the temperature.

e Apply perpendicular force on the free infront face.

e Reduce the electric field to 0 [V], in order to cool the cell down under a constrained
strain.

e Remove the force at 25 [°C].

e Increase the electric field back to 0.35 [V], which causes an increase in the temperature

of the composite cell to recover freely the original shape.
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Figure 6.14: Unit cell of SMPC beam for the bending test
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Figure 6.15: Boundary condition of SMPC beam for the bending test

The resulting temperature history is evaluated at the mid-length of the beam and is

shown in Fig. and the electric potential and temperature distribution along the beam
length at time t=>500 [s] are illustrated in Fig. When an electric potential of 0.35 [V]
is applied, the temperature increases inside the beam and reaches 59.7 [°C], which is above

the glass transition temperature, at the beam mid-length. The distribution of the electric
potential is close to linear but the distribution of the temperature is almost quadratic with a
maximum value of 59.7 [°C]. Therefore, only a part of the beam has a shape memory effect

that can be triggered during the test.
The displacement history of the beam extremity is illustrated in Fig. and the

successive configurations are reported in Fig. It can be noticed that the cell recovers
part of the deformation as the force is removed. Indeed, only part of the deformation can

be recovered since, on the one hand the carbon fibers remain elastic, and on the other hand
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Figure 6.16: The evolution of the applied electric potential difference on the beam extremities
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Figure 6.18: Shape Memory recovery via the temperature generated by Joule effect
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Figure 6.19: Snapshots of the SMPC beam simulation during the FKElectro-Thermo-
Mechanical cycle of the free recovery bending test. #1: after applying an electric potential
of 0.35 [V] to heat the beam above the glass transition temperature. #2: after applying the
load to bend the beam. #3: after removing the load at 0 [V] of electric potential. #4: after
reapplying an electric potential of 0.35 [V] to recover the initial configuration.

only one part of the beam reaches a value higher than the glass transition.

6.5 Conclusions

The main focus of this chapter is to apply the presented constitutive models in simulating
the conductive SMPC behavior in the large-deformation regime, when it is actuated by
joule effect, in addition to simulate non conductive SMP. Several numerical simulations
are reported for simple and complicated geometries in the large-deformation regime. The
presented models are able to predict the behavior of carbon fiber reinforced Shape Memory
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Polymers for free recovery and constrained recovery.






Chapter 7

Conclusions and perspectives

In this thesis the DG method has been extended to simulate linear and nonlinear coupled
problems, in particular Thermo-Elastic, Electro-Thermal, and Electro-Thermo-Mechanical
coupled problems. Starting from the first principles of solid mechanics, and electrical and
thermal field theories as the basic tools, the DG method has been derived as a consistent
and stable weak form to solve the various interacting physics in the coupled simulations
for non-composite and composite materials, in particular, for carbon fiber reinforced Shape
Memory Polymer Composites (SMPC).

In Chapter 3, the DG for Thermo-Elastic problems has been analyzed, then it has
been extended to nonlinear Electro-Thermal elliptic problems in Chapter 4, and to Electro-
Thermo-Mechanics in Chapter 5. The Electro-Thermal coupling equations were formulated
in terms of energetically conjugated pairs of fluxes and fields gradient. Indeed, the use of
energetically consistent pairs allowed us writing the strong form in a matrix form suitable
to the derivation of a stable SIPG weak form. Particular attention was paid in proving
the uniqueness, consistency, and stability of the discrete solution for the Thermo-Elasticity,
Electro-Thermal, and Electro-Thermo-Elasticity coupling problems (the latter one being
formulated in a small deformation setting). In addition, the optimal error estimate in the
L2-and H'-norms were proved under the assumption of the use of a polynomial degree of
approximation k > 2. Moreover, numerical simulations were carried out to illustrate the per-
formance of the DGFEM applied on linear elliptic problems and non-linear elliptic problems
in order to confirm the theoretical results.

In Chapter 6, the constitutive equations that govern the behaviors of carbon fiber and
shape memory polymer have been presented. Numerical simulations were performed for
composite and non-composite SMP. It was shown that the constitutive model of SMP is
able to predict the characteristic behavior of SMPs above and below the glass transition
temperature. The numerical results were compared with some experimental results presented
in the literature, showing good agreements. A micromechanical model of unidirectional
carbon fibers embedded in a shape memory polymer matrix was formulated by considering
the interaction of electrical, thermal, and mechanical fields. When the mechanical and
electrical loads were applied, the heat induced due to the Joule effect triggered the shape
memory behavior.

In this work the DG method was used to solve linear and nonlinear elliptic coupled
problems and the theoretical results were derived. It would be worthwhile to extend the

147
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study of DG methods to time dependent problems. Moreover, in the future, the multiphysics
framework will serve as a basis toward the formulation of multi-scale analyzes for smart
composite materials.
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Appendix A

Annexes related to chapter

A.1 Bounds of the norms

For O), € XX, the two extra terms of the norm defined by Eq. |i in comparison to
the norm defined by Eq. (2.11) can be linked with the other terms. First, using the trace
inequality, Eq. (2.17)) and the inverse inequality, Eq. (2.21]), we have

Zhs | On ||i2(39e) < ZCT (|| On ||iz(ge) +h* || On ”LQ(Qe)H VO HL2(Qe)>

. ) (A1)
<3 Cr(CE 1) [0 [Py
e
Then by Eq. , we have
Zhs H VO |’i2(8Qe)§ ZCII(C H VO ”i?(Qe) . (AQ)
Therefore the norm ||| Oy, |1, Eq. (2.12)), can be bounded by
110w 37 ((1+ Cr(CE+1) 10 g +(Ck +1) 1 ¥ o
(A.3)
17 [Om, ] 122 p0e) )
This leads to complete the proof of Lemma that
I1On [l < C* []] O |, (A.4)

with C* = max (1 + C7(C% + 1), (Ck + 1)).

A.2 Energy bound

Using the definition of the mesh dependent norm, Eq. (2.12)), withn = 0° —1,0 € X in
Xy, where IO is the interpolant of O¢ in X* we have

||| n H‘%: Z H77H12_11(Qe) + ZthﬂH%p(aQe) + Zhs_lH [[nn]] HiZ(aQe)- (A.5)
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For the first term of the right hand side, using the interpolation inequality, Eq. (2.13)), leads
to

2 k27 2p—2 2
S 2 ey < CEB22 S 0 - (A.6)
(] e
with ¢ = min(s,k + 1), s > 1. Then, applying Lemma Eq. (2.15), yields

2 — e
Y bl a0 < O (1247%) D 110°fegqe)- (A7)

Now for the last interface term in Eq. (A.5)), as the interior edge (91Q2)® is shared by the
element + and —, using (a — b)? < 2a2 + 2b?, we have

S [t el 1 as
- Jooe
<t S (2 mPasee [ pmPase [ mlPas) o (a
S orQe arQe Ape
<4 / hyt || g |12 dS.
S IRENEY

Therefore, using Lemma 1, Eq. (2.15)) leads to

_ _ 2 9 e
Zhs 1” [7n] Hi?(age) < 4Zhs 1||"7H”§10(39e) < 4CkD Zhg“ 2”0 H%IS(QQ)' (A.9)

e

By combining the above results, the proof of Lemma [2.4.6] is completed as

2

lm s < Gt (Z ||oe||%s<ge>> = B0+ (A.10)

with g = min(s,k + 1).



Appendix B

Annexes related to chapter

B.1 Stiffness matrix for Thermo-Elastic coupling

First Kyy, the derivative of the displacement contributions with respect to u, is computed

using Eq. (5.15)

umt Z / yNpde =Y ) VN2 .3 . VNBAQ. (B.1)

Similarly, for the interface contributionﬂ Egs. (4.75) and , from Eqgs. (3.47)),

(3.48), and (3.49) one can get

)
St =52 /(a Q)S(iNii)n_ -HE - VNR*AS, (B.2)
s 1
Fa:l:
%gf: Z / (ENPF)VNGE - HF -n~ (B.3)
(o192)°
OF % _HB
augf: Z /M)b +NP*)n T n~ (£N2*)ds, (B.4)

where the symbol =+ refers to the node a* (4 for node a* and - for node a™).
The stiffness matrix of the mechanical forces with respect to T, Ky is evaluated from

OF%.

aTmbm = - Z/e Niag, : H - VNGO, (B.5)
OF: 1 a -
8T]11)Ii =3 Z/&Q)S@Nui)afi :HT -0 NGEdS. (B.6)
aTléIﬁ = Z / Natad :HE(FNY) -n~dS, (B.7)

'The contributions on dpQ can be directly deduced by removing the factor (1/2) accordingly to the
definition of the average flux on the Dirichlet boundary.
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The derivatives of the thermal contributions with respect to fp, Kpr, for the volume term
is obtained from Eq. (3.51])

% I § / @ . dQ E / VN2 VN 40
oTP e OT T aVT
a a b
E o anch TNT dQ = E VNT -k - VN7.dQ (B.8)

or
+ — pcy Np NG d€,
Ze: e OTVTT

and the derivatives of the interface forces are computed by calling Eqgs. (3.53)), , and

(3.55) leading to

OFf, 1 TN R
_ - Ny 94\t p-gg
T 2 ZS:/(aIQ)S(qE )T m S

1 oq*t _

- N2+ .VNPE ) .n—ds )
+2§S:/(6Ims(¢ T)(avTi \% T) n (B.9)
_1 aty (1L.£ . onbE) -

_ QZS:/(BIQ)S(:ENT ) (k- ONEE) moas,

Fai
ZTTbe = EZ / (£NPF)k* - VNAF .n~dS, and (B.10)
aQ)°
OFaT, at kB
Sphe = Z o N7 —n (£N75)dS. (B.11)
i S

B.2 Lower bound for Thermo-Elastic coupling

In order to derive the lower bound of the Thermo-Elastic DG formulation, let us first

use 0Ey, as Ey, in Eq. (3.24)), yielding

a(6Ey, 6Ey) = / (VOE)fwVOELdQ — [ SE[rTVIELIQ
Qh Qh

+2 / HaE;f]] (WVEy, ) dS + / HéEEﬂﬂ <
O12,U0p Q2 012,Udp

- / [[JEE]] (6Ep) dS — / <5Egn> [roE,] dS.
012, U0p Qy QL Up QY

whi

> [0Es, ] dS

(B.12)
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Using Eqgs. (3.59) and (3.60), Eq. (B.12) becomes

(01 0B1) 2 37 (Co | VOB 3 gr) ~C | VOB lgz(onll 9B lg2(an)

—220 |/ [0Bw,] (VOEY,) dS|
(B.13)
149) Zc |/ (6B, ] (9E) dS|

(0p1©2)®

The third and fourth terms of the right hand side in Eq. (B.13) can be bounded using
Cauchy-Schwartz’ inequality, Eq. (2.26)),

203 /( oy B ] (VOB S [ 414 2)C 3| /( 1y, 9B (0B a5

1

1
2

SIS

1
= (Zh | [6En,] 132((8]319)5)) (Zhs | (§VEy) !\iz((amg)S)>
S S%
+(1+9)C (Z | [0En,] HL2 (Op19)° ) (Zh | (OEn) HL2 (Op1)* )) (B.14)
1 1
1
S 2CX (Z hi H [[6Ehn]:| ’iQ((aDIQ)S)> |:<Z hs || <V5Eh> ||%42((8D1Q)5)>

N

2

1
2
" (Zhs | (SE) ’imalﬂ)s)) ] |

assuming v < 1.

First, the term hg || (VSEy) [|?

L2((&r0)) A be bounded using the trace inequality on the
finite element space (2.18)), with

Zh H v5Eh> HL2 (Op19)° Zh H v5Eh> HL2 (019°) +Zh H V5Eh> ||L2 opQe)

< Zh | VOB (22500 < CK Z I VOEn [1F2 (e -

(B.15)
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Then using the trace inequality, Eq. (2.16)), and inverse inequality, Eq. (2.21]), we have

> b | OEw) 172000 = %Zhs | (OB} [1F2 000y + D1 I (OB) 25000
<> by || OB [IF2 00
<cry. (H OEn [[f2(gey +hs || 0En |2 (qe) || VOE, HL?(Q@))
<) Cr(CE+1) | 0B, IE2qe) -
e (B.16)

Therefore Eq. (B.14) is rewritten as

20, 3| / [6E1,] (VOB dS| + (1+7)C Y| / By, (1) |

s (0p12)® s (Op192)®

1
1 ’ 2 :
(B.17)

i -i ity — : < €24 1p2 = Ca
Finally, by the use of the {-inequality £ > 0 : [ab| < 3a +gb™=with{ o (40 (G 1) AT}

we arrive at

26,3 /(W 9] (V1) 41+ (1 + )0 3| | B eEas

(0p1£2)
Ca 2 Ci k I 1 2 (B.18)
< e Z | OEy ||H1(Qe) +C—maX(4C7-(CI +1),4Cx) Z e | [0En,] ||L2((31Q)S) .

For the second term of the right hand side of Eq. 1} by choosing £ = g—‘: and applying
the &-inequality, we find

Cy Cxé
2 Cx Il VOB llvz(@ey | 0B ey < = D 11 9Bn [a(qey += 2 I 9VER )
e e e
C)Z( 2 Ca 2
< > 0B 12 e+ D | VOB [22qe) -

(B.19)

If we substitute Eqgs. (B.18)) and (B.19)) in Eq. (B.13), we thus obtain the following result:

Co ;G
a(0En, 0Bp) > —* > I VOB [If2qe) — (c + 4) > B [1F2 e

) (B.20)

c2 -
+ [BCa - C—max(llCT(C% + 1),401,;2)] bty [Bna] [1F2 000 -
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This last relation can be rewritten as
a(aEhvéEh) > le [Z H VIEy ||iZ(QC) +h;1 Z || [[5Ehn]] ||1%2(an)]

— CX || 6By, P2, VOEm € Xk,

(B.21)

where C¥ = min (%,BCQ - g—imax(élCT(C%%— 1),4C22)), which is positive when B >
2 k K2 k_ CF | Ca
CﬁmaX(Z‘LCT(CI + 1),40& ), and CQ = @ + 4 > 0

Therefore, comparing with the definition of the mesh dependent norm, Eq. (2.10)), we
have

a(0Ey, 0Ey) > CX ||| 6By, |||2 —C5k || 0By, ”imzh) V 0E;, € XX (B.22)

2
Moreover, starting from Eq. (B.20)) and choosing C12( = % + S?TD‘, we rewrite the expression
in terms of the norm (2.11)) as

a(0Ey, 0Ey) > CX ||| 6y, |||* —Ck || 0By P2,y ¥ OEn€ Xk, (B.23)

Hence, this shows that the stability of the method is conditioned by the constant B, which
should be large enough.

B.3 Upper bound for Thermo-Elastic coupling

We prove herein that our DG formulation for Thermo-Elastic is upper bounded. First
the upper bound of the bi-linear form Eq. (3.24)), for E, 0E € X is obtained by

|a(E,0E)| < | [ (VE)"™wVSEdQ| + | [ ETrTVsEdQ|

Qp Qp
+ SET ]] (WVE) dS| + | [[E,T ]] (WVE) dS|

hQLUOp Q2 QL UOD Q1

) W8 (B.24)

+ 5] (52 ) BBl as) + ) (L) kE] as

OQLUop 2, S 012, U0 2,
+ / '5E,Tﬂ (E) dS|.

QL UOp QL +

Then let us bound every term in the right hand side using the Holder’s inequality, Eq. (2.24)),
and the bound Eq. (3.60). The bound of the first term reads

| [ VETwVEdQ| < ( / IVETwVIE|dQ)
Qn e Qe

(B.25)
< sz | VOE ”LQ(Qe) | VE HLQ(Qe)a

likewise, for the second term, we have

| [ ETrTVOEAQ| <) / IETrTVOE|dQ)
o e T (B.26)
< Cx Y |1 VOE [lr2 ey || B ll2ae),
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and for the third term we have

| oE]] (wVE) dS\<]—Z / [5E7] woE) as

O, UOD H

+ Z/ (5ET WVE dS| < Z H hQWVE HLQ 8Qc H h H(SEHH ||L2(6QC)

<Ce> | h?VE L2000 |l by ? [OEx] ll12(50) -

The same argument goes for the fourth, sixth, and seventh terms as follow

1 _1
| [EX] (wV0E) dS| < € || b VOE |l2a0e) | bs ? [Eal ll2(o0e)-
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In the same way, the fifth term becomes

| [E2] (5 ) 1nl as| < @Z/m [e2] (L) BBl as

o1 QL UOp 2,

o[ B
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(B.27)

(B.28)

(B.29)

(B.30)
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Therefore by combining the above results and assuming | v |< 1, we can rewrite Eq. (B.24)
as follows

| a(E,0E) | < C > || VE [lL2(0e) | VOE [l2(ge)
e
+C Y I E lliziaey | VOE [lp2(ge
‘ _1 _1
+BC: Y | s ® [En] [lr2(a0e) | hs 2 [0En] llr200e)
l 7l
+ sz | hs2VE [ 290e) || bs * [0En] [[12(50) (B.32)
1 1
+ sz | hs * [En] [IL2(00¢) || s VOE [ 250
1 1
+Cx Y [1h2E [lr290e) | hs 2 [6Ba] ll2(a0e)
e
l _l
+Cx ) [ 1s20E [|2(90e) || hs ® [Ea] llr2(a0e) -

Choosing C = max(Cy, C<B), the previous equation is rewritten as:

| a(E,0E) [ < CY || VE |li2(0¢) | VOE [[12(0e)
-
+ CZ | E [[12(0e) | VOE [|12(qe)
+C7 b ? [Bal fl2ome) [l e ? BBa] 200
-
+CY I VE [lone s ® [9Ba] o0 (B.33)
+ O b7 [Eal lloe | 02 VOE [[1200)
+C> |l h?E I2(a0e) I hy 2 [OEx] llr2(500)
+ O3 [ 10E [z goney | e ® [Ba] zone)
After some maths, this becomes

1
[ a(E,0B) | < CY || VE lzqae) + | E 2oy +(1)? | B lli2(ae)
e

1 1.1
+(he)2 || VE [lL2(900) +(3-)2 || [En] HL2(8Qe):|
1
X M VGE ([ 2(qe) + || 6E [l12(qe) +(hs)2 || OE {12500

1 1.1
+(00)% 1| VO lony +(0)% 1| BBl oo |

(B.34)
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Using the Cauchy-Schwartz’ inequality, Eq. 1 , and the property 2ab < a?+ b?, this last
equation becomes

1
|a(B,0B) [ < C* 3 [I VE iz + | E llagaey +(0)F |1 E llone)

e

2
)% 1 EBal ez

S

1
+(hs)2 || VE [| 2(50e) +(
1
Xy [H VOE |12 ey + || OB [[12(qery +(hs)2 [| 0B [l 2 5er)

1 1.1 ?
+(hs)2 || VOE [[12(00e, +(E)2 | [0En] IILz(agef)} (B.35)

< 402 Z [H VE ”i%ﬂe) + H E ||1%2(Qe) +hg H E H?}(age) +

e

b | VE (22000 15" | [En] [22(0g)] ¥

Z[H VOE |IF2(qery + | 8 [IF2 gy +hs | 6 [1F2 000,

el

e | VOB (22 00y +05" 1| [Ba] 22 0|

Considering 4 in C?, and using the definition of the mesh dependent norm, 1 , we get:

| a(E.0E) | < C || E | || E |, VE, 6E € X. (B.36)
Moreover, using Eq. , we obtain directly
| a(E, Ep) | < CY[|E |1 |ll 6Ex Il ¥ E €X, 0By € X¥, (B.37)
and again, using Eq. , we have
| a(Ey, 0Ey) | < C ||| E || || 0B ||| VEp, 6B, € X< (B.38)

B.4 Uniqueness of the solution for Thermo-Elastic coupling

Let us first show that for a given & € [LQ(Q)}d x L2(Q), there is a unique ¢}, € X* such
that

(0B ) =Y [ €70BLD VOB, € X (B.30)
e Sk

From Lemma Eq. (3.66), with 6E}, = ¢, € XX, 3Ck, C%, such that:
a(@n,én) > C5 [l dn 12 —C5 || 8 122, (B.40)
Using JE,, = ¢y, in Eq. (B.39)) thus yields

5 11l 112 —C5 || b 21y, < / €7 gy
' ’ L7 (0h) Z Q (B.41)

<[ € M2y I @n iz



B.4 Uniqueness of the solution for Thermo-Elastic coupling 165

or again
CE 11| éu IP<I1€ Izl @b 2o, +C5 1l én P20, - (B.42)

Using the definition (2.11) of the energy norm, we have that || ¢y [[12(q,) <[l ¢n [|[, and Eq.
(B.42|) becomes

CY ([l én I1P<I € izl én Il +C5 (1l én 1] én L2, - (B.43)

Hence, we have

Il én 1I1< C5 11 € N2, +C5 Nl #n N2 - (B.44)

In order to estimate || ¢y HL2(Qh)> we use the auxiliary problem stated by Eq. 1D with
¢ = ¢y. Then it follows from |23 Theorem 8.3 and Lemma 9.17] that there exists a unique

solution 9 € [HQ(Q)] 4y H2(Q) to the problem stated by Eq. 1’ and the solution satisfies

the elliptic property stated by Eq. (3.71]). Multiplying Eq. (3.70) by ¢y, integrating on €y,
and integrating by parts yield

> /Q ) WV VendQ - > /a W] " ¢y, dS

Qe

_ Z/ [I"Q,b]T V¢hdﬂ + Z/ [r¢]T by dS = / ¢g¢th :H o ||22 | (B.45)
e JQ° e J0Q° n o L2(0)

Asyp e [H2(Q)]d x H2(Q) implies [4] = [V¢] = 0 on 9Qy, and 1] = = = 0 on IpQy,, we
conclude that

{ Jo, WV Von + fo0 WV [$n,]dS + [ VT [¢1,] dS
T T T (B.46)
— Jo, E]" VndQ — [0 1] [80,1dS — [ o 1] [$,]dS = a(th, ).
leading to
| én ”iQ(Qh) = a(y, ¢n). (B.47)

Inserting Ia) the interpolant of ¢ in XX, as a(1, ¢y,) is a bilinear form, this can be rewritten
as

H ¢h ||iZ(Qh) = a’(¢ - Ih¢>¢h) + a(Ih¢7¢h)' (B48)

From Eq. (B.39), in the particular case of 0E;, = I%, we have for one solution ¢y,
a(Ine, én) Z/Q EnpdQ <[| € 120, I In¥ llr2(,) - (B.49)
h

Using Lemma Eq. (3.68)), and Lemma Eq. (2.23), we get

|a(th —Inp, én) | < CX [l % — Tut |1 ||| én |

- (B.50)
< CRE 4 =gl @n Il
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with g = min {s,k + 1}.
Substituting Eq. (B.49) and Eq. (B.50)), for s = 2, in Eq. (B.48)), yields

16 17200,y < Chs 1|9 Iz 10 1]+ 1€ 2y 1| 1% iz, (B.51)

whereas, for hs sufficient small, the term || In® [|;2(q) can be bounded using Lemma W,

B

[ I0% (L2, I T — % + 9 120,
<[ =¥ 2 + | @ 2SI ¥ =¥ I + [ ¥ w2, (B.52)
< C%s | 9 Iz, + 119 iz < CF 1L 9 llizqy) -

Eq. (B.51)) is thus rewritten for small hg as
I6n lIF2(q,) < C* |9 g2y (hs o Il + 1€ ”L?(Qh)> : (B.53)
By using the regular ellipticity Eq. (3.71)), we obtain
I én Iz, < Chs [l én Il +CF 1€ L2, < CC € Ly (B.54)

for small hy. Hence we complete the proof of Lemma by substituting Eq. (B.54)) in
Eq. (B44)

11 1< C 1€ llzqy) - (B.55)
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Annexes related to chapter

C.1 Stiffness matrix for Electro-Thermal coupling

For the stiffness matrix, we have four sub matrices with respect to the discretization with
the two independent variables. First part is the derivative of the electrical contributions with
respect to fy. From Eq. (4.73]), we have

fVlnt 819 b
& Ne dQ
8fb Z/e afv V de

% (C.1)
Nf, - oo - VNP dQ,
2 e VR OViy v
and for the interface terms GIQHF_-I, Eqgs. (4.75] [4.76] and |4.77)), we have
OFaE Ot
VI _ :l:Nai e —Nbids
i Z / oQ)° afi fv
B (C.2)
+2 Z / (+N8)n - 25 - UNpEas,
oFE o
pE =g / (2NE%) (11i “UNE) mas
oty Q)
(C.3)
+ = Z / e Jn” - % - VNEENRES,
OF, LB\
afbvf Z / iNai <h> - (£NPF)dS
vV o N)* s (04)

oF B +
§ PIai — 2 _PIb
/ ' Ofy; hs o N ] ds

!The contributions on 8pQy can be directly deduced by removing the factor 7(1 /72) accordingly to the
definition of the average flux on the Dirichlet boundary and 1, (fr), 12(fv, fT) and jy (fv, fT), which are constant
with respect to fy, , and fr, , instead of 1 (fr,), l2(fv,, fT,) and jy (fv,, fr,) -

167
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Similarly, the derivatives of the forces for the electrical contribution with respect to fr are

fth 8‘16
8fb Z / o Ofr o

N (C.5)
+y Je_ . UNE dQ,
e QC

Ng, - OVfr

OFg e
VIL Na:l: e Nb:l: n—dsS
ofbE Z / (1) 3f

+EZ / () % Nt . nmds
25 Jaor NV 0V T ’

) S _
ot =32 [ () (i 9neg) s

o)t . _
+ 3 Z/ (afi VijN'fDTi> ‘n~dS (C.7)

atnTbt —
4+ Z/ o [f7,] <afi VNg NfT>.n ds,

OFaE 1,8

7 fvis ai - b+
:l:N -n~ (ENF)dS
ofhE Z / ()" < hs > (ENe)

_IEB N
+22/ S[[fvh]]n -a—f_}th:-n NPE (ivai) ds (C.8)

+
+ = Z Nai - M B et [fr,] dS
fv 8% hs fr h .

The derivatives of the thermal contributions with respect to fr read, for the volume term
Eq. (4.79)

met a-]y a b a 8jy
- VNg N7dQ VNg - - VNP .dQ
aty b .
— o Np N dQ,
; . aiy e d
and for the interface forces Eq. (4.81} |4.82) and [4.83)
OFa=
T _ :l:Nai —Nbids
o =32 [ R o

ol _
ai b+
T3 Z/ Ny <avyf$ 'VNfT>'n a5
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OF:E  q ' i -
S d S [ () s

Z/ [[fTh]] (Jyl Na:I:Nb:I:> .n—dS (Cll)
(19)°

81i atnrbt -
+ - Z / fw] VNfT NpE ) -n7ds,

Wiy Z / (+N:)n <jy13 > 0~ (£NEF) as
afg‘i (@19 hs fr
Oiz1 B
+ 5 Z/ iN?Ti B aTyillT ‘0" Np* [fr, ] dS (C.12)

_ Oy B b at
+2ZS:/(319 [fy,]n afih n N (4N s,

The last part is the derivatives of the thermal contribution forces with respect to fy

f int a a
8f§ Z 5fv VNfTNdeQ+Z VNfT aw b a0 o
aty '
_ dQ
;/e 8fVN T ’
OFg. Ji .
=5 2 [, () g s
oty Nad v (C.14)
+ = Z / iNai : o5 . VNP£4s |
(O)° avg fyv )
) s

fr12 _} bt + at) . —
o = 22 /alms (N5 (1F - vNzF) -mas
+ 5 Z / ( i VN?fN}’j) ‘n~dS (C.15)
V
#530 fo
Z -
Fiflﬁis bi 128 — at
8fb:|: Z/&Q)b N < hs > ‘n (j:NfT ) ds
%G5 B
— f: - T T NPE (N dS C.16
+2§/<almshhﬂn R (+5) (C.16)
1 olF B
— f -2 2 . NPE (£N2E) gs.

All the tensor derivatives are explicitly given in Appendix

8li atnrb+ -
< - VNZENY > -n~dS,
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C.2 Derivatives

Let the derivative of the fluxes j(6 x 1) defined in Eq. (4.29] [5.17) with respect to the
fields vector M(2 x 1) be ju, which could be split into

0 S |
- fgf va
v = ( — 41 ~ 2011+ 251 ) ( Vir >’and (C.17)
T T T
jin = f?rl + f?rl Oéf?Fl . <Vf\/ ) (C.18)
T\ 22041 2K j6alyl-3a2i1-381 |\ Vir )
T T T T T T

and let the derivatives of the previous matrices with respect to the gradient of the unknown
fields be jmym which could be split into

1

0 51

i = T 1

A —2az1+2M1 |7 (6.19)

T T T

— 41 + 281 — 2041
+2¥1 — 2031 — 25 + 601 — 302 51— 31
T T T T T T

Then let jym be the derivative of jy, with respect to M, this consists of the four following

matrices
. 0 0 Vv
vaf\/ - ( O + %1 ) < va ) 9 (021)
0 + 2%1 \Véi
. f: Vv
- : C.22
vt ( 241 +681- 6%1 < Vir ) (C-22)
0 +241 v
. _ f v\ .
Jnty = ( +241 —|—6af%l+6f{¥1 ) ( Vir > = Jybr, and (C.23)
T T T
1 f 1
frfr 681460kl 6% —24alyl 12022141251 )\ Vir ) '
T T T T T T
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C.3 Lower bound for Electro-Thermal coupling

In order to prove Lemma let us first use Eq. (4.102) and Eq. (4.103), yielding
A(Me; 5Mh, 5Mh) + B(Me; 5Mh, 5Mh)
= / (VoMy,) Tjom (M) VoM, dQ
Qh

- / [6My. ] Gom(M®)VEM,) dS
O UODp Q1

[oM;. ] Gom(M®)VEM,,) dS
/MM T 1 (o (MS)VOM,) .

B,
+ / [oMy,, ] <hJVM(Me)> [oMy,, ] dS
0rQ,Uop Oy s

- / (VoMy,) Tip (M©, VM®)6M,,d€
Qp

_l’_

+ / [oML ] (M, VM®)6My,)dS VoM, € XX
01 2,U0p 2y

This equation can be rewritten as
A(M?®; My, 6My,) + B(M®; My, 0My,)

= [ (VM) T (M) TOM a0
Qp

+ / (VoMy) Tjm (M®, VM®) My, dQ
Qh

2
* 2/ [oMy, ] Gom(M®)VéMy,) dS (C.26)
QLU0 Ay
* / [oMy, ] Gm(M?, VM?)dMy,) dS
012,U0p Q2
B,
+ / [oMy, ] <hJVM(Me)> [6M;,. ] dS.
O, Uop Qy s
Using Eqgs. (4.88) and (4.93), Eq. (C.26) becomes
A(M?; 0My,, 0My) + B(M®; 6My,, 0My,)
> Z (ca | VOMy, (726 =Cy [| VM [[p2(e || 0M, HL2(QG)>
- 220 \ / _[oMy,, ] (VEMy,) dS| (C.27)
B
T2 O f g [Pl OM) 3|+ Cap I 8V Iy

where faIQh + faDQh =2 f(aDIQ)S'
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The third and fourth terms of the right hand side in Eq. (C.27) can be bounded using
Cauchy-Schwartz’ inequality, Eq. (2.26)),

20, !/
zs: (Op192)®
= (Zh I 1Mo ] 12 o0 )
1 2
o (3 [ TOM T Iz (o000

1
<20, (Z i I [OMy,] Hi?((@ﬂf))

[6M,, ] (VOMy) dS | +Cy 3 /( [PV (8M) 05

2

=

(Zh 1 (OVM) [IF2 (00,000 ))
(Z hs || (OMn) ”i%(amszf)) (C.28)
[(Z hs || (V6Mp) Hi?((ﬁmﬂ)ﬁ))

N
[SIE

1
2 2

1
2

1 ) 2
+§ (ZS: hs || (6Mp) ||L2((,3DIQ)S)> ] )

where the term hg || (VOMy,) ||ig((amﬂ)s)
finite element space (2.18|), with

S Zhs H V(SMh ”LQ(aQe)S C% Z H vaMh ”L2(Qe) :

can be bounded using the trace inequality on the

(C.29)
Then using the trace inequality, Eq. ([2.16)), and inverse inequality, Eq. (2-21)), we have

1
7Zh H 5Nlh) ||L2 (Op1)® Zh || 5Mh> ||L2 (8192°) ZZhS H 5Mh ||iQ(8DQe)
e

1
ZCTZ (H oMy, Hi%ﬂe) +hy [ My, 12| VOMy ||L2(Qe))
e

| /\

IN

Cr(Cs+1) 2
< §e A H 5Mh ||L2(Q
(C.30)
Therefore Eq. (C.28) is rewritten as

2Cyz /DIQ)s
<c, (Zh” M ] 2 )

(oM (VM) 5|+ C, D) [ oM (M) as

1
2 2

(Z max CT(CI-i- 1), 4Ck ) || oMy, ’%11(@3))
(C.31)
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. X . - . < é 2 l 2_ . _ Ca
Finally, by the use of the {-inequality £ > 0 : [ab| < ja +£b with £ o (O (T 1) 205

we arrive at

zeyz| / L, M (VM) as|+Cy 3| /@mm[th“]] (M) dS|

2 ) 2 , (C.32)
< Ca Z 1My |3 e TG, Y max(Cr(C¥ +1),4CK ) > o 1 10Mb, ] 112,00 -

S

For the second term of the right hand side of Eq. , choosing & = C—a and applying the
&-inequality, we find

> Cy | VoM, (200l My 2y < & Z | My, ”L2(Qe + Z | VM, ||L2(Qe

< C*Z S0 OMy 22+ 3 1 VoM [P
e ) (C.33)
If we substitute Eqs. (C.32)) and (C.33)) in Eq. , we thus obtain the following result:
A(M?; 6My, 0My,) + B(M®; 0My,, 6My,)

> o 5 vam, |2, —<02+C>ZH M |7,
2 Z @)~ \ @ L) (C.34)
C2 2
+ |BCa — Grmax(Cr(CE + 1), 4C% )] et D 1 10Mb,] (12 o0e) -

This last relation can be rewritten as

AM®; 6My, 6My,) + B(M®; My, 0My,) > C¥ [Z | VoM [IF2(ge) +h5" D 1 10Mb,] 11200,

e

— C5 || oMy, |22, VOM, € XE.

(Qh)
(C.35)

where le = min ( ,BCq max(CT(CI +1), 4(]k )), which is positive when

B> 02 maX(CT(CI +1),4CE), and C§ = C v 4 Ca > 0.
Therefore comparing with the definition of the mesh dependent norm, Eq. -, we
have

A(ME; My, 0My,) + B(M®; 6My,, 0My,) > CX ||| oMy, ||| —Ck || oMy, HLQ ) VoM € xk,
(C.36)

2
Moreover, starting from Eq. (C.34) and choosing C§ = 8— + %

in terms of the norm (2.11f) as
A(M®; My, My,) + B(M®; dMy, 6My) > CF ||| My, [||* —C5 || 0My, [[F2(q, ) ¥V OMy € X<,
(C.37)

Hence, this shows that the stability of the method is conditioned by the constant 5, which
should be large enough.

, we rewrite the expression
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C.4 Upper bound for Electro-Thermal coupling

The upper bound of the bi-linear form is determined by recalling Eq. (4.102) and Eq.

(4.103)), for u, M € X

A(M®;u, 0M) + B(M®; u, 6M) = / (VoM) Tjop (M) VudQ
Qh

+ (M) Goaa M)V a5 + [ [u2] Gon (M) VM) dS
ROREL N A UB (C.38)

+ / [oM!] <JVM(M6)> [un] dS + / (VoM) T (M®, VM®)ud(
012, U0p Q2 Qp

- / [eMa] Gim(M®, VM®)u) dS.
O UID O,

Every term in the right hand side of Eq. (C.38]) is bounded using the Hélder’s inequality,
Eq. (2.24)), and the bound (4.93)). This successively results in

/ (V&M)TjVM(Me)VudQ’ <> ( |(V5M)TjVM(Me)Vu|dQ>
n o MO (C.39)
< Cyz | VéM HL2(Qe) | Vu HLQ(Qe)a

/ (VoM) T (M, VMe)udQ’ <> ( |(VoM) Ty (M, VMe)ude)
o o MO (C.40)
<Cy ) I VM [l [0 [li20e)s

/aIQhuaDQh [*M.] <JVME\SW> [un] dS‘ Z/{m [oMg] <JVM > [un] dS

w32 I fualas) < B, 57 b M ooy | Bl e

op e
(C.41)
/ [un] Gom(M*)VoM) dS‘ Z / [ul] Gom(M®)VoM) dS
QL UID
+30 [ o] o) VaMas| < C 3B EVOM o | e + 7 ] ll2(one)
e D
(C.42)

/ [eMa] Gom(M®)Vu) dS‘
O, U0p 2y

Z/alg [IM1] Gom(M®)Vu) dS

l —_=
< Cy ) I hs2Vu [lzgae || s : [oMa] 2 (o0e);

(C.43)

+> / [oM1] jom (M) VudS
e opQe
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and

ing (M®, VM® _ |1 o
' /81 . [oML] Gm(M®, VM >u>ds’_'22 /(m [6MI] (iag(M€, YME)u) dS

+Z [oM. ] im (M, VM®)udS
Op2e

<C Z | h u [|290¢) || bs [[5Mn]] 2 o0) -
(C.44)

Therefore by combining the above results, we obtain:

| AM®;u, M) + B(M®;u, M) |
<Cy Y 1 Vullizige || VOM |2 00
+Cy Y a2 ey | VOM 200
‘ _1 _1
+ BCYZ | s * [un] [[12(50e) | hs * [IMa] [lp2(o0e)
(C.45)
+C Z | hy2Vu IL2(a00) || hs [[5Mn]] L2 00e)

1 1
+ Cyz | hs * [un] [l 2(00e) | b VOM [|1250e)

1 _1
+Cy ) b [lr2ga0e) [ hs 2 [Ma] l200e) -

Choosing C = max(Cy, CyB), the previous equation is rewritten as:

| AMME;u, 6M) + BME;u,6M) | < C S | T 200y || VOM |12
+C 1 flp2ie | VOM [|2(qge)
‘ _1 _1
+ CZ [ hs * [un] llr2(a0e) | hs * [VOM] [l 2 (o000
(C.46)
+ CZ | hy2Vu IL2(a00) || hs [[5Mn]] L2 00e)

1 1
+CY |1 hs ? [un] 200y | B2 VM 200

) _1
+CY [ hs?u |12 (a0ey I hs 2 [Ma] llr290e) -
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After some math, this becomes

| A(M®;u,6M) + B(M®;u, 6M) |

1
<C) [H V[ 2(0e) + [ 0 [lL2(0e) +he [0 (|12 (a0e)

1 _1
#8170 Iagey +1i 1 ] oo | (a7
1
X [H VM ([ 2(qe) + | M [[12(qe) +hs || M [12(90e)
1 _1
+0F | T8M ey +ic | Ml e |-

Using the Cauchy-Schwartz’ inequality, Eq. (2.26]), and the property 2ab < a? +b?, this last
equation becomes

| A(M®u, 6M) + B(M®;u, M) |?

9 1
<y [H Vi 2oy + 110 l2gey +hE [0 zo0e)

2
1 _1
0 || Vu fl2(0e) +2 7 || fun] Hmaﬂe)]

1
<3 [H VOM [ 2y + | M2y 02 1| OM ]2 00

el

1 1 2
L 1 C.48
+h3 || VOM |12 g0y +hs * || [(Ma] IILz(agef)] (C48)

<AC Y |1V ey + 0 gy s T 122 gy +

e

by || V|22 p0e) +07 | Ttn] 122 o] %
> VM (22 + 11 Mg +Bs | M 22 0

e/

—|—h H VoM HLQ age +h_1 H HdMn]] HL2 a0e’ :|

Considering 4 in C, and using the definition of the mesh dependent norm, Eq. (2.12)), we
get:

| AM®;u, 0M) + BM®u,6M) | < C|[[u ] ||| M |[li Vu, sM € X. (C.49)
Moreover, using Eq. , we obtain
| AM;u, 6My) + BM®u, 6My) | < CE[[u |y ||| My ||| ¥V u € X, 6M;, € XX, (C.50)
and again, using Eq. , we have

| A(M®;uy, 6My,) 4+ BM®;uy,, 0My) | < CX || uy ||| ||| oMy ||| YV uy, oMy, € X5 (C.51)
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C.5 Uniqueness of the solution for Electro-Thermal coupling

Let us first show that for a given & € L?(Q) x L2(Q), there is a unique ¢y, € X such that

AM?; 0My,, ¢y) + BM®; My, é,) = Z/Q @' oMy VoM, € X, (C.52)

From Lemma Eq. (4.108), with My, = ¢, € X*, 3CK, Ck, such that:
AM®; ¢y, d1) + BIMM; dn, dn) = CE [l 6 112 =C5 | dn 72, - (C.53)

Using 0M}, = ¢y, in Eq. (C.52) thus yields

[ n (12 —C5 || @n [2argy ) < / " $pdQ
e Z Q (C.54)

<l iz, [1n llizy):
or again
CY [l én [I1P<I @ Nzl 81 lezp) +C5 1 én 2, - (C.55)

Using the definition (2.11) of the energy norm, we have that || @y [[12(q,) <[l ¢n ||, and Eq.
(C.56)) becomes

CE Il éu [1P<1l @ L2yl Bn M1l +C5 11 d 1111] 1 ll2q,) - (C.56)

Hence, we have

[l én 1< C5 1l @ Mz, +C3 1l @l - (C.57)

In order to estimate || ¢y ||L2(Qh)’ we use the auxiliary problem stated by Eq. (4.112)),
with @ = @,. Then it follows from [23, Theorem 8.3 and Lemma 9.17] that there exists
a unique solution ¥ € H?(Q) x H2+(Q) to the problem stated by Eq. (4.112), and the

solution satisfies the elliptic property stated by Eq. (4.113]). Multiplying Eq. (4.112)) by ¢y,
integrating on {2y, and integrating by parts yield

Z/Q vm(M®) Ve +jM(Me,VMe)¢]T VéndQ
e (C.58)
> /m o (M*)V4 + jar (M, VME)] ¢, dS = /Q 1 0nd2 = 6u |22, -

As 9 € H3(Q) x H3(Q) implies [¢] = [V¥] = 0 on 91Qy, and 1] = — = 0 on dp&y, we
conclude that

Jo, BomMO)VYIT Vn + [, o ivmM®) V] [¢,] dS
— Jona, ivm(M)VY]" @1, dS = AM®; 9, 61)
Jo, lim(Me, VMO)P]T VidQ + [, [im(M°, VM)$]" [y, ] dS
— Jope, iM(M®, VM)9] T @1, dS = B(M®; 9, é1),

(C.59)
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leading to
I én 1F2q,) = AME %, 61) + BMS; 9, 6). (C.60)
Inserting Inap the interpolant of 9 in XX, this can be rewritten as
I én [1F2(q,) = AMS Y — i, én) + BOM;9 — Tith, é,)
+ AM®; Intp, ¢n) + BM®; Intp, én).

From Eq. (C.52)) for ¢, in the particular case of IM}, = I%, we have for one of the possible
solutions ¢y,

(C.61)

e. e. = T
A i) + B i) = [ KAl (C.62)

<l ez, | ¥ 2@, -
Using Lemma Eq. (4.110), and Lemma [2.4.6{ Eq. (2.23)), we get

| AMS; 9 — Tyth, ) + BM®;9p — Tngp, ) | < C* (|| 9 — T |1 || on |
< CDE 4 (sl 60 I,

(C.63)
with g = min {s,k + 1}.
Substituting Eq. (C.62) and Eq. (C.63), for s = 2, in Eq. (C.61)), yields
16 17200,y < Chs 119 a2, 10 I+ 11 @ ez, I % lli2q,): (C.64)
whereas, for hs sufficient small, the term || In® [|;2(q) can be bounded using Lemma W,

Eq. , by
[ In% 2 <l Th¥ =¥ + 9 (|20,
<H I =9 N2 + 19 ez < =¥ [l + | ¥ [l2,)  (C.65)
< Crh || 9 Iz + 19 a2, < CH 9 a2 (0) -
Equation is thus rewritten for small hg

6 1200y < C 1 Ty (Bs 16 1+ 1@ agayy) - (C.66)
By using the regular ellipticity Eq. (4.113]), we obtain
| 0 20,y < Chs [l 1l +C 1 @ [lr2(0,) < C @ 2y (C.67)

for small hs. Hence we complete the proof of Lemma by substituting Eq. (C.67)) in
Eq. (C.57)

Il on lll< C< Nl @ Iz, - (C.68)

The existence of the solution ¢y, to the problem stated by Eq. (C.52)) follows from its
uniqueness, which follows trivially from Eq. (C.68)). Indeed for @1, @2 € L%(Q) x L%(Q), we
have

b1, = ého 2, < CF o1 = 92 2, (C.69)

and @, = ¢, if o1 = po.
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C.6 The bound in the ball

We need to show that j(x;y, Vy), My, Vy), imm(*;¥, Vy), jvm(x;¥), jmvm(x;y) are
bounded for x € Q, y € O, (I,M).

To this end, we first show that y and Vy are bounded, by considering the ball O, (I,M)
with radius o = hy® ||| M® —IM |||1, 0 < € < 1. Therefore, we have

1y =M |l @) <Ily = InM [l (o) + [ M =M€ [lyy1 ) - (C.70)
The first term of the right hand side of Eq. can be bounded using the inverse
inequality , yielding
[y =M [l ) =y = M [[Le@) + [| V(y — IhM) [lL= (o)
< Cihyt |y - IhM li2(@) +Cihs ' || V(y — M) 20 (C.71)
< Cih! |y - LM HHI(Q)S Cins ' [y — InM |1 .
Using the interpolant inequality , the definition of the ball , and Eq.

for k > 2 to bound the second term of the right hand side of Eq. (C.70|), we have for hg
small enough

Iy =M i () < CEht [y = InM [[1 + | InM = M® [l (q

< Oy [ M° LM [l +CbhE || M° HHQ(Q )

< cchhg M ] 5 +th2 M ] 5
< cchhs | Me ||H%(Qh) if k> 2.

Hence, for small hs, || y [[wi o)< (14 07) [ M® [[w1 (), where 0 < 0" <1, for k > 2. If

M° € H3 (Q) x H (), the value y(x) € [(1 — 0*)km, (1 + 0*)Kpy] is considered to derive the
bounds, where 0 < ¢* < 1, ky = min {M°(x) :x € Q} and Ky = max {M°(x) :x € Q}.
Similarly, we consider the value of g){l (x) € [(1 = o")kym, (1 + 0*)Kym], such that kyy =
min { VM®(x) :x € Q} and Kym = max {VM®(x) :x € Q}ﬂ

Since the nonlinear functions jum, jMM, JyM, JMvM are continuous, they map the compact
set [(1 —o*)km, (1 +0")Km] X [(1 — c*)kom, (1 + 0%)Kym] into a compact set, hence the
nonlinear term j(x;y, Vy) and its derivatives jm(x;y, Vy), imm(X;y, Vy),
jum(x:y¥), jmym(x;y) are bounded in a ball around M® € W._(Q) x WL (Q).

C.7 Intermediate bounds derivation

The purpose of this section is to derive the bound of the nonlinear term A
First the term || ¢ [l 2(qe) is bounded by using its decomposition as ¢ = 1 + &, where
n=M°®—1)M and £ = [}M —y, which gives

ST ¢ o <2 (Z I 2oy + 0 11 € uime)) . (C.73)
e e e

2By abuse of notations, in this context the min and max operator applied on vectors, mean we retain
respectively the minimum and maximum value for each component.
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Using the interpolation inequality (2.14)) leads to
2 k%1 2 2 _ k%5 2 :
S ey < OB S M = 1SS MY 2y k=2 ()
e e e

An application of the norm definition, Eq. (2.12), and the definition of the ball, Eqs. (4.119
4.120)), give

S 1€ e < Ch 11 € < Cho?

' (C.75)
< C%hg(u—l—s) Z | M® ||%{S(Qe): CZh3—2% Z | M® ||?{%(Qe) ifk > 2.

Combining Eq. (C.74] |C.75)), gives for hy small enough
2
STC s < CF0
e
k2 —-1- e k2?1 3— e :
< R0 3 [ M = O S0 IME 2 ik 2
(C.76)

Similarly, one can get

Z H ( ||i4(Qe) < 4 (Z || n ||i4(ﬂe) +Z ” € ”i4(ge)) . (0'77)
e e e
Using the interpolation inequality leads to
_1 .
19 ey < OB (M [lsiony = Ch2 || M® |5 o ifk =2 (C.78)

Next, || € Hi‘l(ﬂe) is bounded by applying, the inverse inequality (2.19)), the definition of the
norm ([2.12)), and the definition of the ball, Eqs. (4.119} [4.120]), which yields

4,1
STE Iy < CF (1P 1€ oy

2
a1 . .
<Ci ()’ (Z I€ Ilizme)> < L2 (| € 1t K%t (CT9)
s e
k4 4(u—§—€) e 4 o k4 4(1_) e 4 .
S CI hs 2 H M ”Hb(Qh)— CI hs € || M ”H%(Qh) ifk Z 2.

Combining Eqgs. (C.78]|C.79)), gives for hg small enough

4. _
Z H C Hi‘l(ge) < Ck hs 204
e (C.80)

K4y 4(u—35—¢) e |4 _ ~kid(1—e) e (4 .
< OB M g, = OB M itk 2
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Proceeding by the same way, > || V{ ||i2(Q can be estimated by applying the interpolation

inequality (2.13)), the definition of the norm (2.12)), and the definition of the ball, Eqs. (4.119
4.120)), as

PIRYS IP2(qe) < 2 (Z IV 12 e +> 0 11vE IIiz(Qe)>
< ORI M ey +2 11 € I}
e
< CERZ2 D | M® [} o) +207 (C.81)
< RIS M [y + 15 5 M [
< ok*2E0) Ze: | M® ”;%(QC) ifk > 2.
Using the trace inequality we have

19 000y = ©7 (05 1 ey + 10 15 gy | 2 i) - (C.82)

Calling the interpolation inequality (2.14]) gives

4 4( 7l) e
17 Iyo ey < Chhs ™2 | M [[fs ey, and (C.83)
3. 3(u—2)
1 1000y < BT I ME [ e (C.84)

Also, by the use of the interpolation inequality (2.13) one has
190 20y <l e < CHRE™ | M [l (qe) - (C.85)
Combining the last three equations results into

1 _3 1 7
17 |l p00)< CFCHRE * || M® | < CEChhd | M© 8 ey K> 2. (C.86)

H3 (Q°)

Likewise, applying the trace inequality (2.16|) and the interpolation inequality (2.14)), leads
to

190 000y < Cr (057199 sy + 1 99 5 | 920 i ) - (C.87)
with
4 4(pu—2 o
19 141 ey < 0™ | ME [l o), (C.88)
3 3( 7§) e
19 131 ey < CH B I M® |[Fe e, (C.89)

I V20 20y <1 lwz ooy < CHRE™ | M® [l qe) - (C.90)
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Combining the last three equations gives
7
| 90 lls o0y € CHOBBE™ | M® [gsae)= C h4uhﬁ|1 L ifk>2. (Co1)

Next, the bound of || € || 4(gqe) is estimated by applying the trace mequahty and the
inverse inequality, Eqs. * 2.21)), leading to

1€ 1174900 < CT <hs_1 1€ Loy + 1 € o)l VE ||L2(Qe)> ; (C.92)
with
1€ 174 (o)< CF B 1€ [1T2 (e, (C.93)
1€ 17600y < CE'h? | € 122 (e (C.94)
I V€ 2009 < Cohs™ 1€ llr2(ae) - (C.95)

Combining the last three equations, then applying the definition of the norm ([2.12)) and the
definition of the ball, Eqs. (4.119} 4.120), result into

Z 1€ 174000 <Crckh 32 1€ 1122 (e < CrCY Chh? [ € It

< OrCKcs h—3o—4
< CrCE b it Me 4 o = OO ebnt T e itk > 2
. I M° iy = O 1M g it
(C.96)

Then, using the inverse inequality (2.20)), Lemma Eq. (2.18), the definition of the
norm ([2.12)), and the definition of the ball, Eqs. (4.119] 4.120)), yields

4
Z ” V€ HL4(aQe < CI - Z ” Vé‘ HL2(8Q8 Ck 32 ” V€ HLQ(Qe

4 4
< C¥ Cin 3!H§H|4<CzCkh i

< CE ORI | M = 5 ORI M I8, TR > 2
h
(C.97)
Moreover, || ¢ || 1(sqe) can be bounded by the dominant term of its component as
a4
Z ” C HL4 a0e) < Ck hs 304
(C.98)

Kk 4p—T—e) e (|14 _ okt 4(§-e) e (|4 .
S C hS 4 H M ||HS(Qh)_ C hS 4 || M ||H%(Qh) lfk Z 2.

By the same way, the bound of || V( |49y is the dominant term of its component (C.91]
C.97)), yielding

4. _
Z H VC Hiﬂage) < Ck hs 304
e (C.99)

< OB M = O My itk 2
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Now the bound of || [¢] ||* can be evaluated from

L4(9Q°)

DT Iapne < 4 (Z 1D s oqe) + > I €] \\i4(3ge)> : (C.100)
Using Eq. , we have
Dol apan <2 111 o
< CrCHBI ™ Y I M e (C.101)
< C7CENT | Mh s 0y 1K > 2.

Then, applying the inverse inequality (2.20)), the definition of the norm (2.12), and the
definition of the ball, Egs. (4.119} [4.120)), yields

Z | 1] £ p0e) < C5 D 12 | 1D l1f2 000y < C% s Z | e ® €] 12 000

SC Phs H’€|H1§CICP
< CK LR | Ve Cres chndG = Mo t, ik > 2
HS(Qh) T H%(Qh) 1 = 4.
(C.102)

Combining Eqgs. (C.101] and [C.102)), gives

4
Z ” [[C]] HL4 aQe) < Ck th4

" (C.103)
< BT M [,y = C0lT e I, TR > 2
h
Finally, by the use of the inverse inequality (2.19)), we get Eq. (4.134)), as
_1
I 8My 10y < Cohie ® | OMy g2 0o, (C.104)
_1
| VoM, HL4(QE) < C%hs > | VoM, ”L2(Qe)a (C.105)
which implies
l
o 1

| 0My lwiey < Czh || oMy, ”H1 Qe) -
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C.8 The bound of the nonlinear term N (M° y: iMy,)

The first term of N(M® y;My,), defined in Eq. (4.101), can be expanded using Eq.

as
T, = /Q (VOM); R; (¢, V¢)dQ = Z / (VOMy) (CFiam (3, Vy)¢)dO
2 [ O (tyvean (G107
= I11 + 2745.

The first term of the right hand side of Eq. (C.107) is bounded by using the generalized
Holder inequality (2.25)), the generalized Cauchy-Schwartz’ inequality (2.27)), the definition

of Cy in Eq. (4.93), and the bounds (4.122} [4.123] and |4.134)) as
1T =13 | (VM) (el V9)6) 49

< Cy > 1€ sl € lleziel VoM [lpage
: (C.108)

1

(Z 1€ Mgy ) (Z 1€ 1oy ) (Z | VoM, [ )i

< CRCyhl ™0 | My g1 o | M® [lme(c2y) -

For the second term of the right hand side of Eq. (C.107)), the generalized Holder inequality

(2.25), the generalized Cauchy-Schwartz’ inequality (2.27)), and the bounds (4.123] |4.124
and 4.134)), imply that

T2 | =S [ (90M)T (¢ ) 7€) d |

< Cy D 1€ luaaell V€ llizae | VoM [laqe

) (C.109)
L 1
(Z 1 M ) (Z | V¢ Hiz(ge)> (Z | VOMy 14 e )
< CKCyht 2 ¢0 | OMy, )l M® s (qy) -
Combining the above result leads to
| Ty | < C*Cyhy ™50 | My, [ ) | M llie(a,)
(C.110)

1_
< CRCyCMh2 "o | My, [y (g, ifk > 2.
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The second term of N'(M® y; {My,), defined in Eq. (4.101]), becomes by using Eq. (4.91]),

O R A KT
012,U0p 2y

= ;Z /8 - [oML ] (¢Timm(y. Vy)¢) dS + Z /QDQC [oME ] (¢ Tiam(y. Vy)¢) dS
T2

#30 [ IME](Chae)V0as 237 [ IML] (et V)

~~

Io2

(C.111)

The first term of the right hand side of Eq. (C.111) is estimated by using the generalized
Holder inequality (2.25)), the generalized Cauchy-Schwartz’ inequality (2.27]), the definition

of Cy in Eq. (4.93)), and the bound (4.131))

Tl <X [T €y V) a8
<€ 3 [0 aone (h 1 IOME iz |

1
. 3
< Cyh? (Z ¢ 1 o0 ) (Zh‘1 I [oMy, ] ||i2(aQe)> (C.112)

3 2

1 3
< Cyhs C'hs o <Zh U [OMn,] [1F2 o0 )

[N

< CRCy || M® [y hE* 0 (Z bt (oM, lli2<aae>>

The second term of the right hand side of Eq. ((C.111]) is bounded by applying the generalized
Holder inequality (2.25), the generalized Cauchy-Schwartz’ inequality (2.27)), the definition
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of Cy in Eq. (4.93), and the bounds (4.131} [4.133), yielding

| Zaa | < QZ | / [oMy, ] (¢Timom () VE) dS |

<20, 3 [hs 19¢ usioem | € lscon (h 5| [OME] 2 aae))]
< 26y h2 (Z 1< HL4 e > (Z V¢ ”i‘*(aﬂe ) <Zh ' | [[5M ]] HL2 899))

1
1 _3 :
< Cyhs2 Ckhs 202 <Z hs_l || [[5Mhn]] ||i2(6ﬂe))
e

1
2

N|=

< CECy | M® |lpgs(q,) b C0 (Z bt || [OMy,,] ||12ﬁ(aﬂc)>
(C.113)

We now substitute Eqs. (C.112} |C.113]) in Eq. (C.111)), to obtain the final bound of the
second term of N/ (M€ y; dMy) as

Jun

2
| Z2 | < CkCy | M* HHS(Qh) héL_Q_éo' ( - Z H 5MT ||i2(age)>
(C.114)

N|=

1_
< (BkC]\/[hS2 50' (Z h;l H [[6Mhn]] Hi%am)) ifk > 2.

Furthermore, for the third term of N'(M® y;0M}) as decomposed in Eq. (4.101]), using
Taylor series (4.8974.91)), the generalized Holder inequality ([2.25)), the generalized Cauchy-

Schwartz’ inequality (2.27)), the definition of Cy in Eq. (4.93), and the bounds (4.131} [4.132)),
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leads to

7 1=15 30 [ P i et sty VoM
< Z |/ [¢a] (¢Tivmm(y) VOMy,) dS |

<cy2{ 1T e 1€ ey (el VM o)

< Cyhy (Z 11T 11 dge> <Z 1€ 124 a0 ) (Zh | VoMy, |17 am)

_1 _3 1 2
< Cyhg 2C¥hg *ohdo hs | My |21 90
y H* (092°)

[SIE

2

2
< CyC* | M [|gs () b0 (Z hs | 6Mp, |%{1(8Qe)>

2

1_
< C*CyCyhE o (Z hy | My, \%1(898)> if k> 2.
(C.115)

Likewise, the fourth term of A(M® y;dMy) defined in Eq. (4.101) is bounded using
Taylor series (4.89H4.91)), the generalized Holder inequality (2.25)), the generalized Cauchy-

Schwartz’ inequality (2.27)), the definition of Cy in Eq. (4.93)), and the bounds (4.131} 4.132])
leading to

s 53 [ ] (o) et M T
< Z | /319 [¢al <hSCTjVMM(Y)> [6My,, ] dS |

_1 1
<¢, ) [hs 1€ ooy I € ooy (57 1) [9Ma,] \iQ(me))Q]

<Z 11T 124 e ) (Z 1€ 174 o0 > (Zh bl (oM, ] 1172 396>

2

2

_1 1 _3
< Cyhg 2C*hdohg to (Zhs_l | [oMp,] Hi?(aﬂe)>

NI

< CFCy | M [l B0 [ Dbt | [6Mi, ] 112 g0
(692)

1 2
< C*C,CuhE o <Z ho' | [oMn,] IIigme)) if k> 2.

(C.116)
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Combining all the terms of N'(M®, y;dMy,), Egs. (C.110} [C.114] |C.115] [C.116)), yields

2

| N (M, y;0My) | < C*Cy || M [lis(y) BE™% %0 || 8My, g1, + (Z hs | oMy, 12{1(3Qe)> +

)
2
(} b | [0My,] ||izme)> .
]

(C.117)
C.9 The bound of A used for L*-norm convergence rate deriva-
tion

The purpose of this section is to derive the bound of the nonlinear term A, which is
needed for the error estimation in the L2-norm.

C.9.1 Intermediate bounds for the L?*-norm

The bounds of some terms, which will be used in the following analysis, are first estab-
lished in this Appendix.

First the term || ¢ HL2(Qe) is bounded by using its decomposition { = n + &, where
n=M°—I;M and £ = ;M — My,, which gives

ST ¢ e < 2 (2 TITTES T uime)> . (C.118)
Using the interpolation inequality (2.14]), leads to
2 k21 2 e 12
Dol ge < CHRI Y I ME [[Feqe) - (C.119)

An application of the definition of the norm (2.12)), Eq. (4.155), and Lemma Eq.
(2.23)), gives

12 e
Yo IE 2 < Ch € NI CHCET ||| TM — M® ||If

N ) (C.120)
< GO 3 M ey
Combining Egs. (C.119} |C.120) leads to
2 72 _ e
> € I ey <2 (CF + CHC7) 272 3 | ME [ g
‘ ° (C.121)

2 — (€]
< CRF Y M e -
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Similarly, one can get

STC e < 4 (Z TIPS - uime)> . (C.122)
e e e

Using the interpolation inequality ([2.14]) leads to
_1
17 2 ey < Clhe ™2 || Me s (e - (C.123)

Next, || & Hi4 @) is bounded by applying the inverse inequality 1' the definition of the
norm (2.12)), and the a priori error estimate (4.155H4.156|), which yields

L[ 1\2 2 [ 1\?
S € e <O (1) 1€M@=t (1) Nent
< CF (C) 00 | MC [[f(q) -
Combining Eq. (C.123]|C.124)), gives for hg small enough

4 4 ’ _ e ” _ e
D€ Iy <4 (Ch + CF (C) ) = || M® [[fe(g,)< (C)Y 30 || ME [ -
e

(C.125)

(C.124)

By the same way ) . || V¢ ||]2J2 (e Can be estimated by applying the interpolation

inequality, Eq. (2.14)), the definition of the norm (2.12)), the a priori error estimate (4.155
4.150)), as

Do IVE e <2 (Z IV 112 0oy + > 11 V& Hi?(ﬂe))

2 _ / e
<9 (c%hSM 257 My ey +(C)2 ]| LM — M Hﬁ)
e (C.126)
k21 2u—2 e (|2 k'\21,2u—2 2
<2 (CD hgt ; M HH%(QQ) +(C*)"he* Ee: | M* ||HS(Qe)>
<(C)R2F 2N I ME oy -
Then, using the trace inequality (2.16) yields
19 ooy O (5 10 gy + 1 ool 90 lhzee)) - (C20)
Calling the interpolation inequality (2.14)) gives
4 4(p—3) e
19 g0y Co1E ) | M [y, and (C.128)
3. 3(u—2)
10 g0y 5SS I ME ey (C.129)
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Also by the use of the interpolation inequality (2.13]), one has
190 20 < oo < CHRE™ | M [l (qe) - (C.130)
Combining the last three equations results into
19 l4000) < C7 CDh“ i | M® [l () - (C.131)

Likewise, the bound of || V7 | i4 90¢) is obtained by applying the trace inequality (D and
the interpolation inequality (2.14)), leading to

IV L4900 < CT (h IV gy + 1V s el V20 HLQ(QE)) : (C.132)
with
4 4
19 %2 ey < CH D Me s (e (C.133)
3 3( 75) e
19 3y 00y < CHBs ™3 [ M® [lfeqey. (C.134)
I V20 200y <1 lwz ey < CHRE™ || M® [l (qe) - (C.135)

Combining the last three equation gives

'V 12900 < C7 th“ i I M® (=) - (C.136)

Next, the bound of || & HL4 aQe is estimated by applying the trace inequality 1) and the
inverse inequalities (2.19| D leading to

H é Hi‘l(aﬂe)g CT <h;1 H 6 Hi‘l(Qe) + H 5 HiG(Qe)H V§ ”LQ(Qe)) 5 (C137>
with
H '3 Hi‘l(ge)_ 2 H 3 HLQ Q) (C.138)
|| f ||iG(Qe)S C h_2 ” E ”L2 Qe (C139)
| V€ ll12(00)< Cihy ' |1 € 120y - (C.140)

Combining the last three equations, then applying the definition of the norm ([2.12]), the a
priori error estimate (4.155H4.156f), result into

Z 1€ 5a 900 < CrCh 32 1€ N7z < Crck Cph® ||| € |1t

< CrCE CP(Ck )*he? || TM — M® ||I{

4 / (C.141)
< CrCs Ch(C YT || M® [l

K4 _
< CR T M [l -
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Then, using the inverse inequality (2.20]), Lemma Eq. (2.18), the definition of the
norm, Eq. (2.12), and the a priori error estimate (4.155H4.156]), yields

_ 4 k4 —
Z I V€ Il s a0 < Gah 12 I V€ |If2 900 < CF CiE b BZ I V& 117200

4 ki — / 4 e C.142
sc%c%hfwem% (C¥)tCk' ci'n B\HIhM—M e (©142)
/ 4 4 _ e
< (CR)'CE OB T | M [l g, -

Using these last result, || ¢ [[;4(90ey can be bounded by the dominant of its component
as

a4 4 / _ e
STC s goe < ACTCE S 1 C7CE CAICK ') | M® (g,

(C.143)
< (C) T M s,
and similarly for the bound of || V¢ || 4(gqe) by
/ 4 e
S IVE a0 < AUCTCE + (CK)ACE CEOT | M® [[fe(q,)
. (C.144)

< (CK)'ne T | Me ”il{S(Qh)

Now the bound of || [{] HL4 can be computed as

00°)

Z 1TED N1Tap0e) < 4 (Z I In] 15000 +Z I TED 12 e ) : (C.145)
Using Eq. (C.131)), we have
Z I In] lga 00y < 22 I 1900 < CTCH SB[ ME ([ e - (C.146)

Then, applying the inverse inequality (2.20]), the definition of the norm ([2.12)), and and the

a priori error estimate (4.15574.156|), yields
4 _1
Z H [[ﬂ] ||i4(agze) < C - Z || [[6]] HL2 a9Qe) < C% hsz ” h * [[6]] ”i%age)

e C.147
< Oy []) € [[14< Oy [ T,M — M@ || (C.147)
4 / _ e
< OB (CK YIS | ME [y -
Combining Eqs. (C.146]) and (C.147)), gives
ST sy < (CF Y33 | M gy (C.148)
[S]

Finally, by the use of the inverse inequality |i we directly deduce

I Tn® Iy < Chs 2 H I [l2(qe)s (C.149)
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_1
| VIn [[pagey < Cths ® || VI [l2qe), (C.150)

which implies

1
o —1
{ I lwiey < Czhs ? | Ind | ey, (C.151)

_1
1% lwiey < Cihs 2 || Ind g1 (o) -

C.9.2 Bound of N(M® My;1,,%)

The first term of N'(M® My; I4), developed in Eq. (4.101]), can now be expanded using
Eq. (&91) as

T = A VI 'R;(¢, V¢)dQ = Z /Q . VI " (¢Tinm (Mn, VM)E)dQ

F20 /Q VI (¢ ivwm (M) VC) dQ (C.152)

=T+ Ty9,
with ¢ = M® — M,,.

The first term of the right hand side of Eq. (C.152)) is bounded using the generalized
Holder’s inequality (2.25)), the generalized Cauchy Schwartz’ inequality (2.27)), the definition

of Cy in BEq. [#.93), and Egs. (C.121} [C.125, [C.151))

T 121 Y [ V" (€ an(Mi TMG) 49 |

< Cy D 1€ uaaell € e iae |l VI lagge)

<G (Z ||¢\i4(ge>) (Z chizme)) (Z | Vg Hime)>

< CNCy | M (I, b2 | ¥ i) -

(C.153)

N

For the second term of the right hand side of Eq. (C.152)), the generalized Holder’s inequality
(2.25), the generalized Cauchy Schwartz’ inequality (2.27)), and Eqgs. (C.125] [C.126} |C.150)),
imply that

T =1 Y | V0" (a4 7C) a0

< Cy Y 11 aganll V€ liziael VIn llpage
¢ (C.154)

1
2 1

<Cy (Z ||<||i4(ge)> (Z I'v¢ ||iQ(Qe)> <Z | VIng ||§4(Qh)>

<CFCy | Me ”%{S(Qh) 7P | e i) -



C.9 The bound of N used for L?*-norm convergence rate derivation 193

Combining the above results, we have that
| T < C¥Cy M ) B2 11 T o) (C.155)

The second term of Eq. (4.101)) can be expanded by the use of Eq. (4.91) as:

12:/89 [l Ry V) as
! Z / [167] (¢ e (M, VM)C) dS + 3 /8 [T (€M VM) S

-~

I

* ; /&Qe [1%a ] (¢ imom (M) V) dS +2 ; /BDQe [ ] (¢TivomMn)VE) dS

Loo
(C.156)

The first term of the right hand side of Eq. (C.156]) is estimated by using the Holder’s
inequality ([2.25]), the generalized Cauchy Schwartz’ inequality (2.27)), the definition of Cy in

Eq. (4.93), and Eq. (C.143)), leading to
Tl <3 [ T0sE] (€ M. VMC) S |

1 9 _1 T
<0 Y [ 1€ By (0 1 I o) )]

) s L (C.157)
< C¥Cy | ME [, hhE" 2 (Zhs‘ I ] lliwm)

2

< CMCy || M® |[f g, 02" <Z b Dol ”iz(aﬂe)>

Now, applying the Holder’s inequality (2.25)), the generalized Cauchy Schwartz’ inequality

2.27), Eq. (4.93), and Eqgs. (C.143] |[C.144]), the second term of the right hand side of Eq.
C.156)) is bounded by

ETOME / 0T (e (M) VO) dS |

1 _1
<2Cy, ) [hg I ¢ llaaae | V€ llLaane (hs 2| [tn#a] ||L2(6S29)>:|
€

o 1 (C.158)
< O¥Cy | M° (g, b0 (Z b | ol Hi?me))

2

< CM'Cy | M® [[f g, D2 (Z b Dol ||i?(8ﬂe)>
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By combining Eqs. (C.157)) and Eq. (C.158)), we have

2

| Zo | < C¥'Cy || ME [[fys (o) h2#° (Z byt || [hba] ||iz(me)) . (C.159)

Furthermore, for the third term of N'(M®, My; I,%), Eq. (4.101)), employing Taylor series,
Eqgs. (4.89H4.91)), the generalized Holder’s inequality ([2.25)), the generalized Cauchy Schwartz

(2.27)), the definition of Cy in Eq. (4.93)), and Eqgs. (C.143} |C.148]), leads to

| Z3 | =

%Z /8199 [[MST - Mgh]] (GvmMy) — jomMy)) VI dS

= Z/ [ [T I (¢ iomm (M) VIng) | dS

_1 1
<€y b 1 ol € sy (14 11 VI B
) i i
_1
< Cyhs : (Z H [K]] ||i4(age)> <Z H C ”iﬂage)) (Z hg || VIh"/’ ||i2(age)>

1
2
< Oy M g 19 (z b |19 |2Hl(am) |
e

1
2

(C.160)

Likewise, the fourth term of N'(M® My; 1), Eq. (4.101)) is bounded using Taylor se-
ries, Eqs. (4.8944.91)), the generalized Holder’s inequality, the generalized Cauchy Schwartz’

inequality (2.27)), the definition of Cy in Eq. (4.93) and Egs. (C.143}[C.148) as

| Zy |=

;Ze: /Blﬂe [[ME;T - Mgh:” <li(jVM(Mh) —jVM(Mh))> [Muabn] dS

B
<3 [ VT 11 € Tioana) || Bl | a5

_1 _1
< 0 1T o1 € lisgone) (hs | [Tthal HLW))

< Cyh (Z I il ||i4(me)> (Z 1€ I e )

1
2
< cK'gy || Me [FAERL (Zh Y| [Ttpnl] IILz(aQe) :

N

(Z hgl H [[Ih'l)bn]] HiQ(aQe)>

e

(C.161)

By combining all the terms of N'(M® My;Ip9), Egs. (C.155] |C.159} [C.160] |C.161)), we
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have

1

2

| N M My Tih) | < O Cy | M [Py 02 | | 1) i) + (Z e | T |Ia1(me)>
€

I (Z hot || [Tutbn] ||i2(aQe))
(C.162)

Moreover, using the definition of the energy norm Eq. (2.12)), there exists a positive constant
independent of hg, such that

| NV (M, My; Tngp) | < CF'Cy [| MO || ) ™72 ||| T || 1, (C.163)

or again using Eq. (2.22))

| N (ME My i) | < CF'Cy | MC [y 02 1] T 1] (C.164)






Appendix D

Annexes related to chapter

D.1 Stiffness matrix for Electro-Thermo-Mechanical coupling

The stiffness matrix, has been decomposed into nine sub-matrices with respect to the
discretization of the five independent fields variables (3 for displacement u, one for fy and

one for fr).

D.1.1 Expression of the force derivations

First Kyy is the derivative of the displacement contributions with respect to u, is obtained

from Eq. (5.65))

OF3%,, op
o = Z/O b " VoNud

=> " [ VoNi-2C*VoNhdQy,
o JOg

(D.1)

oP

where C = IF and -2 and -* mean to apply the contraction on the second and forth
component of C.

Similarly, for the interface contributionE], from Eq. (5.67}|5.68 and [5.69)) one can get

%) A
AL =33 [ NN 2 v, (D2
s 0
%) | btyn— 29+ 4 axt
dub+ 252 (12 >s(iNu INTSHE Vol dSo, (D3)
s 0
8F3j% _ b+ - 2 HB 4 N— at
L _ES: /(6190)5&1\1“ N™ 2 (F2) NS (NS, (D.4)

'The contributions on dpQ can be directly deduced by removing the factor (1/2) accordingly to the
definition of the average flux on the Dirichlet boundary.
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Then stiffness matrix Ky, corresponding to the forces for the mechanical part with respect
to fy and reads

OF int oP N
oy = 2 oy TN g MR 3

Faitl ai aP —Arht
e = Z /alﬂ) N e N NER S (D.6)

The stiffness matrix corresponding to the forces for the mechanical part with respect to fp
is ]KufTEI and reads

OP
int

a?b Z VgNu- a1 NEd. (D.7)
OF i _ Z / (net) B N-NbE s, (D.8)
ofy* (0192)° o

Secondly, the derivative of the electrical contributions with respect to the displacement

u is K¢,y and derives from Egs. (5.70] [5.71))

6 fcht aLl(F}UfT) b a
Z/@]:)QO) BN ( OFb VoNu> VoRiydSo

. Oy (Fy, Ty, T
—Z/ frN - (2( v, fr) .VON};> - VoNE=dS,
(0p0)

OFb
OLy (Fy, f) B (D-9)
FOoN - (21T h T o NP2 ) NN d
X P (R TR )
OLy(Fy, fy, fr) p B
frN- | /22 Na -NNg d
e[ N (PR N ) N as,
OF? 03 .
—vint — N - — - VoNadQ D.1
Ou® Ze:/szgvo v gp  VoRNudo, (D.10)
and then using Eqgs. (5.73] [5.74] and [5.75)), we have
Pl _ Z / (£NE) 03 - VoNp* - N~dSg (D.11)
aubi (B:) )9F= u ’
at
2There is one more additional term in 881;;11 on the Dirichlet boundary, which is
T

om; : HNfT) .N~—dSo.

T

£ S 59) 2
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+

e 5 [ e g s
ou (Grfdo)” o= (D.12)
OLF ~ '

+ 2 Z / ] vON?j.mTft-voNﬁi).N ds,

oFg: o IN- LT B bt ) | N (LNt

Tt = Z o I N (G, Vol ) NP (ENR)dSo s,
D.13

. LT B _
+z Z/ (ENFF)N <8F2ihs : V0N3i> -N™ [fr, ] dSo.

Moreover, the derivative of the electrical contributions with respect to fy is K¢, f,, and from
Eq. (5.71]), we have for the volume term

f int
af\ﬁ Z/e oty - VoN, N, dQO+Z/ VoNg, - 8V f - VoNR,d,  (D.14)

and for the interface terms, by calling Eqgs. (5.73] and , we have

OFaE oI
VI _ Nai
R Z / (2190)° fi

. (D.15)
+ = Z / (ENFEN - We ¢ NpEdS
(O1%0)° 8V0fi 0 0y
8Fai 1
fry ,Z / (£NPF) (L - VoNg, ) -N~dSy
o> 257 oy (D.16)
+ = / f < -V NaiNbi> -N—dS,,
Z (6190)° [[ Th]] af:t 0
aFai
M Z / (ENEEN™ <L18 > N~ (£Np¥)dS,
o — - (D.17)

. 0Ly B\ =
+Z/ (ENEEN <fjh>.N NP [fr,] dSo.

IQO)b

Similarly, the derivatives of the forces for the electrical contribution with respect to fr give
K¢, ¢, and read

f int
8f¥) Z/e oty VOvaNdeQO+Z/ VoNg, - 8V f -VoNp.dQ,  (D.18)

then for the interface terms by recalling Eqs. (5.73] |5.74, and [5.75)), one can get

OFaE - A
fb\;il - Z / (=Ngy af
(01920)
53~ (D.19)
4= Nai e .V Nbids ’
Z (0120)° 8v0f% Ot 0
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ffgv} - Z / AR (ZI;: VoNEENp®) - N~dSg
+ 2 Z / I 8Li VoN?fN?f)-N*dSO (D.20)
+ 5 Z / (ENPE) (L7 - VoN&E) - N~ dS,
(010)°
Ffi% = Z /amo [fv, N a;ih -NTNPF(£NEF)dSo
+Z/algo (£NZE)N <Iﬁ:3>-N—(iN}>j)dso (D.21)

iy / NN e B gy 1
) - (19%0)° fyv 8fi h fp UTh 0-

The derivative of the thermal contributions with respect to the displacement u is Ky,

and is obtained from Eq. (5.76] [5.77)

(0pQ0)°

8ub OFb

. Oy (Fy, Ty, T
—Z/ fyN - (2( b fv, fr) -VONE;> - VN dSo
(0p0)*

OFb
03 (B, v Fr) B (D-22)
. y1\Lh, v, 1T . b\~ a
+Z /aDQO TN ( 55 VoNu> o NINE dS
i 8L2(Fha?V7fT) b B
+ / fyN - (-VON -NN2 dS,
g (0pS0)® OFP "
aF? in aJ b bnra
. Z . VoNi, - o - VoNy on+2 / P VoNuNfT o, (D.23)
and from Egs. (]5.79], .80} and [5.81))
8Ji
fTIl ai b+
— +N@ - VoNpgEdS, D.24
ubi Z / @ Qo)s fr aFi 0 0 ( )
OFg, 1 I .
Sab: — 3 Z / oy [, ] | VoNi - o5 - VoNg™ | - N7dS,
1) AL (D.25)
+ = Z / [fv, ] (VON?Ti-aFi-VONEi>-N‘dS()7
(01920)°
oF Zfiia’ :t 8'];:1 B b+
fd —_ a - ° B f
g Z /BIQO (£Ng Fen Vol N~ [fr,] dSo
(D.26)

+Z/ [fv, JN~ - Eﬁ.v NPE ) N~ (NS
9 — J(on00)° Vi OF* hs 0Nu fr 0-
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The derivatives of the thermal contributions with respect to fr is Ky ¢, read, for the volume

term Eq -

f int b a']
6f'T3 Z / e any VoN2 de90+§€: VoNk - G - VoNE dQg

aty aF b
— N & dQ —Np N dQ
Z/ pO fr o+ ; s Of fr-fr 0

and the derivatives of the interface forces are computed by calling Eqgs. (5.79 and
5.81)

(D.27)

aa:l:

f o a:t 8J b
bef - Z / ENE) S - NTNpEdS,
o) . (D.28)
’YZ aJ b\ N-dS
(1% )5 AV fdE frr 0
8F?Ti12 _ Z/ :l:ij: J:i: 'V()Na:t) N—dS,
af]["l)“i (01Q0)° ¥l fr
J*t
T3 Z/ ﬂle, ((%i VON?TiN'fDTi> -N—dSy (D.29)
Ly atnbt -
+ 52 (&1 [[fvh]] 8fj: VONfT NfT -N dSO,
S
and
8szj‘Tjig / 1B
= (ENEHN < Y > ~(£NPE)dS
8fl”}i Z (01Q0)°
1 + 1 B
+ 52 /( o )S<iN?f)N* g e -NTNp* [fr,] dSo (D.30)
S 13¢0

a T
1 oLT B
- § fy. I[N~ - —2 = . N~ NPE(£N2H)(S,.
i 2 s /(3190)5 [fv.] f% hy fr ( fr 450

The last part is the derivative of the thermal forces contribution with respect to fy is K¢ ¢,

fm y a b 8']
Tint Z/eé)fv VoNg Ni on—irZ VONT - VoNp S

afb OVofy
0,
— Z/ pO ty:N- T dQO,

and the derivatives of the interface forces are computed by recalling Eqs. (5.79) and
5.81))

(D.31)

OF ?i j: Ji b+
TI1 __ a; y —
ot Z/&QO i) g N NedSo
01+ (D.32)
+ = (+NF5N - VoNPEdSy,
Z (012)° 6V0fi 03¢y 0
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] [[fvh]] (

2

o120

D.1.2 Expression of the constitutive

. [[th]] N™-

+
O GoNEENE) NS,
8% fr “ 'y
)Ly - VoNiT) -N™dSo (D.33)
3in at bt -
o VoNEENPE) - N=dS,,
oJE B
vl — bt a
- b NN (NG, s
LyB
< ﬁ >-N_(iN?Ti)dSO (D.34)
S
8]’"2i B —n7b*t at
Ehis N N va (:thT )dS()

law derivations

oP
The derivative of first Piola-Kirchhoff with respect to the deformation gradient F and

to the temperature —

P OP
are given in Appendix and then ETm is computed as follows
T

oT
oP 0P OT OP oV
- = 4 D.35
Oofr 0T ofr OV ofr ( )
here 98 = —1 and OV = Iy 1 9 _ 0 as the El Mechanical coupling i
where zr- = 7 and gp- = 2 n our case v as the Electro-Mechanical coupling 1s

not considered.

The other derivatives related to the electrical and thermal contributions are give here.
First the derivative of the electrical current flow with respect to fy is obtained using (5.20))

03, 0Ly

OLg

= — - Vyf — - Vf D.36
ofy — ofy oft + oty olv, ( )
where the derivative of ?)TI;} and gTL\f are obtained using Eq. ([5.17)
JL,

— =0 D.37

JLo 1
— = —5L(F). D.38
or, ~ g") (D-3%)

The derivative of the electrical current flow with respect to fr is computed from ([5.20)

0J. oL,

ofr  Ofy

-Vofr + == - Vofy,

OLs
D.
Otr (D.39)
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where gTIg and gTLTz are computed by recalling Eq. 1D

0L, 1

- _ _L(F
8fT f% ( )7
0Ly fv 1
— =2-L(F) — 2a=L(F).

The derivative with respect to the gradient of f, and fr are

8, 8.
OVofy 1(F), OVofT

Ly(F).

The derivative of energy flux with respect to fr is obtained from:

oJy  dJy, OLg
Y SVofr 4+ ——2 . W f
oty — oty VO g Volve
oy, .
where L is computed from Eq. (5.17) as
Of
aly, 2 fy 53 3%
= —=K(F) + 6a—L(F) — o*—L(F) — —/—L(F
Moreover
oJy  ddy, OLg
Y Ve + 222 . Uf
oty ~ oty Ot g, Volv
where using Eq. (5.17)), we have
oJy, 1 2fy
= —2a—-L(F) + —L(F).
oty ~ ot + g LE)

The derivative of energy flux with respect to the gradient of f1 and fy are

ol _; 0l _
dVolr V" OVof,

2.

(D.40)

(D.41)

(D.42)

(D.43)

(D.44)

(D.45)

(D.46)

(D.47)

The derivative of the electric current flow with respect to the deformation gradient is obtained

from Eq. (5.20))

0J.  OLy 0L,
ogF ~ oF VOV TR Vo
where
oLy l@L(F)
OF  fpr OF
and
OLso fy 1 OL(F)

oF g T’ oF

(D.48)

(D.49)

(D.50)
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According to the definition of L(F) in Eq. (5.5)), its derivative with respect to the deformation
gradient is

OLk1,

= —F! Lnp — LnFy L + Ler PRl (D.51)
Similarly, we have
8J, 93y, Lo
_ . . D.52
F = oF Vofr + 5F Vofv, (D.52)

where

93y, 1 9K(F)

OF ~ £ OF

fv | ,1 £ 0L

f3. £} OF

o (D.53)
T

JL JK
where F is already computed in Eq. (D.51)), while oF can be computed using Eq. (5.12
as

OKxr,
6FNm

= —F !l Knp, — KenFrl + K Frl (D.54)

D.2 Lower bound for Electro-Thermo-Mechanical coupling

In order to prove Lemma let us first use Eq. (5.115)) and Eq. (5.116)), yielding

A(Ge; 0Gy,, (5Gh) + B(Ge; 0Gy,, (5Gh)
_ / (V6Gn) Twog (G)VEGLAD + / [6GE ] (wyg(GS)VoGy,) dS
O

012, UOp Q2

i / [6Gh, ] (Wya(G®)VaGy) dS
OrQ,U0p Oy

B
+ OGL <W G° > 0Gy,. 1 dS
/aIQhuaDQh[[ in] hg v6(G) ) [0Gn.] (D.55)

- / (VoG T'wg(Ge, VG©)6GLdQ + / [6Gy. ]| (wa(G®, VG®)dGy,) dS
Qp 012, U0p Oy

+ [ 0GLdye(G)VEGLAY + [ 6Gld(GC, VG®)§GLdAQ
Qh Qh

+ / [[mgndgc(ee)ﬂ (6Gy) dS VoG, € X,
012, U0p Q1
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This equation can be rewritten as

A(G® 0Gy,, 6Gy) + B(G% 0Gn, 6Gy) = [ (VOGh) "wya(G®)VEG,LAQ
Oy
+ [ (V6Gy) Twg(Ge, VG®)dGLAN
Qy
+ V5Gh (Ge)5Gh) dQ
Qh
+ [ 0Gldg (G, VG®)iGLAQ
o (D.56)
+2 [6Gy. ]| (Wya(G®)VGy) dS
01 2,U0p 2
4 / [6GT. ] (wa (G, VG®)5Gy) dS
012, UOp Q2
B
e ek pweal@) [G] as
A1, U hg
+ / 5GEnd"§G(Ge)]] (6Gy,) dS.
012, U0p
By Eqgs. and (5.118)), Eq. gives
A(G®; 6Gy, 6Gy) + B(G®; 6Gy, 6Gy,) >
ZCO‘ H V(;Gh H?f(ﬂe) +ZCQ H 5Gh ||i2(ge)
—-2C Z | VoG [lp2(qe)ll 0Gn llr2(qe
(D.57)

_220 |/ [6G1,] (V4G ds|

_QZC |/ 9G] (6G,) dS|+ZC s H [6Gh, ] 122 (o000

Where faIQh + faDQh = ZS f(aDIQ)S'

The fourth and fifth terms of the right hand side in Eq. (D.57)) can be estimated using
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Cauchy-Schwartz’ inequality, Eq. (2.26]),

20y2| / 19l (V6Gy) dS | +2C, Y| / [6Gn.] (6G) dS |

(0p1Q2)®

2

1

2
<§ h H V(SGh) ||L2 ((Op1Q)® ))
1
2

(Zh 1 0Gn) 17 2((9p502)° )> (D.58)
!(Z hy || (VOGn) ”i%(ammb‘))

<20, (Zh | [0Gn,] HL2 (Op19)® )

+2C, (Zh I [9Gna] 72 (o000 )
1

< QCy (Zhs ” HéGhnH |i2((8DIQ)S)>

%
+ (Z hs || (0Gn) Hiz((aDIQ)S)> ] ’

where the term hg || (VcSGh> ||L2( D)) A1 be bounded using the trace inequality on the
finite element space , with

1
Zhs H <V5Gh> Hi2((aDIQ)S) = 5 Zhs ” <V5Gh> Hi%a@e) +Zhs H v(SG'h Hi2(aDQc)

2

N |=

1
2

(D.59)

Then using the trace inequality, Eq. (2.16]), and inverse inequality, Eq. (2.21]), we observe
that

D2 140G Iy Zh I6C) [0y + 32 11 G 2000
< Zhs I 9Gn HLQ((?QC)
<O 3 (116G 22 gy +hs || 6Gn 12 )| TG [l )
<3 Cr(CE 4 1) [ G (22

(D.60)
Therefore Eq. (D.58) is rewritten as

20 Z| / 1961 (9361) as| +2¢, 3| / [5G, ] (9Gs) dS

Op1Q2
< C (Zh H HéGhn]] HL2 ((0p12)*) >

) 1

1 2

(Z max 4C7~(CI +1), 4Ck ) I 0Gn H?P(QE)) :
(D.61)
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. X . - . < é 2 l 2_ . _ Ca
Finally, by the use of the {-inequality £ > 0 : [ab| < ja +§b with £ oA (CE T AT

we arrive at

C
e X,

19611 (7961 381 + 20, S / [6G1,] (6Gy) dS|

(Op1§2
2

Ca 2 Cy k k2 1 2
< T Ze: H 0Gy, HHl(Qe) +€amax(4CT(CI+ 1)74CIC)§ h75 H [[6Ghn]] H]}((@DIQ)S) :

(D.62)

For the third term of the right hand side of Eq. 1} choosing ¢ = Qg—y‘* and applying the
¢-inequality, we find

2C 2C, &
D 2Cy || VG [lp2i00)ll 6Gn ll2(ge) < Ty > 116G [1F2 e +—- > VoG [1F2 g0

IN

C? Ca

(D.63)

If we substitute Eqgs. (D.62) and (D.63)) in Eq. (D.57)), we thus obtain the following result:

A(G®;6Gy, 0Gy) + B(G®; Gy, 6Gy,)
Ca
> > VG [T2ge) +Ca Y [l 6Gn 2 e
&, Ca (D.64)
o (CZ + 4) Z H 0Gn HiQ(Qe)

CQ
BCq — —Ymax(4Cr(C% + 1),4CK)

T = b S 106G T 1122 e
Therefore
A(GE:0G, 0Gy) + B(G: 5Gy, 0G) > 22 S || VoG, |2 €y | 5Ca 5G, |12
( ) h h) + ( ) h; h) = 72 ” h HL2(QE) - Cia + A Z H h HLQ(QG)

2

C
BCq — —Y max(4C7(C% + 1),4CK)

+ C..

b3 [ 1G] 22 0 -
(D.65)

This last relation can be rewritten as

A(G®;6Gy,, 0Gr) + B(GE; 3Gy, 6Gy,) > C) [Z | VG Iz ey +hs " D I [0Gh] Hi%aaw]

— O [ 0G (22, YOG € XX,

)
(D.66)
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2
where C¥ = min (%, BC, — g—imax(ZLCT(C% +1), 4022)), which is positive when
2 2
B> Srmax(4C7(Ck + 1),4CK), and C5 = ¢ + 5= > 0.
Therefore, comparing with the definition of the mesh dependent norm, Eq. | , We
have

A(G®;6Gy, 0Gy) + B(G®;6G, 0Gy) > Cf ||| 6Gy, [||2 —C5 || 6Gy, |22 V 6Gy € XK.

(D.67)

()

2
Moreover, starting from Eq. (D.64]) and choosing CIQ{ = gfz + 3%‘, we rewrite the expression
in terms of the norm (2.11)) as

A(G®; 8Gy,, 0Gy,) + B(G; 0Gy,, 0Gy) > CX ||| 6Gy, [||* —C5 || 6Gy, 132 V 6Gy, € XK.

(D.68)

(Qh)

Hence, this shows that the stability of the method is conditioned by the constant B, which
should be large enough.

D.3 Upper bound for Electro-Thermo-Mechanical coupling

The upper bound of the bi-linear form is determined, by recalling Eq. (5.115)) and Eq.
(5.116]), for m, 6G € X

A(G®%m, 0G) + B(G® m, iG) = / (V5G)vag(Ge)deQ
Qp

+/ [6Ga] (Wya(G®)Vm) dS +/ [m, ] (Wwya(G®)VG) dS
0rQ,U0p Oy A UdIDp

/B . . o
i /319hU<9DQh [6Gnﬂ <hSWVG(G )> [[mn]] s+ /Qh (V6G) WG(G , VG )mdQ (D.69)

+ / [6Ga] (wa(G®, VG®)m)dS + [ G (dg(G®, VG*)m)dQ
alglxuaDQl\ Qh

+ [ 66T [deg (GO Vm) dO + / [mfdlq(G%)] (5G) dS.
Qn 012, U0p Oy

Every term in the right hand side of Eq. is bounded using the Holder’s inequality,
Eq. (2.24)), and the bound (5.118)). This successively results in

/ (V&G)TWVG(GB)deQ‘ <3 ( ](V&G)vag(Ge)Vm\dQ>
Qn Qe
e (D.70)
< Cy Y 1IVOG 2y | Vim [lp2(ge),
/ (V6G) "wg (G, VGe)mdQ‘ <3 ( (V6G) "wg (G, vc;e)myd9>
o o MO (D.71)

< Cy ) I1VOG [|2(oe | m llpzgqe)s
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| 56T e mae] < Cy 310G Iz [ oo (.72)
h e

: 5GTdvg(Ge)deQ‘ < Cy ST 16G Iz (e | VI Iz (e, (D.73)
h e

‘/&szhuaDQh [9Ga] <WVG}<1$G'e) > [mma] dS’
> /8 I “’VGlf'e [ma] dS
o1 Z/(.me 5GT <WVG(G’)> [ma] dS

hy
1 1
<BYCy [ ™7 [0Ga] 12900 | 0™ [ma] [l12(000),

(D.74)

/ [m; | (Wwya(G®)VIG) dS‘
0192, U0 2,

ZAQQ [[m WVG V(5G>

<C Z | hy2 VG 2600 I s [[mn]] L2000

(D.75)

+Z / [m]] wya(G®)VsGdS

OpQ2e

/ [6Ga] (Wya(G®)Vm) dS‘
O UID

Z/alﬂc [6Ga] (Wya(G®)Vm) dS

l —_=
< Cy > | hs2Vm || 20500 | e : [6Ga] [IL200e)

(D.76)

+ Z / ﬂéGE]] wyg(G®)VmdS

Qe

/ [6GT] (we(G*, VG)m ‘ ‘ > [ 1563 v (G, VG m) as
oL UOp O, o12e

+Z / [6GE] wa (G, VG)mdS
OpQ2e

<Cy > | him IL2a0e) | by ? [6Ga] llr2(500):
e
(D.77)

and

[de G)] (6G)dS

/ [m,d3g(G®)] (5G) dS’
O UID o012

+Z / [mIdig(G)] (6G)dS

< Cyz | hZ6G L2 (a0e) | by ? [ma] L2 (a0e) -
(D.78)
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Thereby, in combining the above results, we thus obtain:
| A(G%;m, iG) + B(G*m, G) | < Cyz || Vm HLQ(QC) || VOG HLz(Qc)
+Cy ) 1 Vm 20 1| 6G lli2ae
+Cy Y Imfl2 ey | VOG 200
e
+Cy Y lIm [lp2ggey [ 6G 200
. _1 _1
+BCy > | s ® [ma] |12 (000 I hs 2 [6Gn] llr200e)
1 _1
+ Cyz | hs2Vm HL2(an) || hs * [0Gn] ”L2(an)
- 1 1
+Cy D [ ® [ma] llp2gage) | b2 VOG (|12 a0r)
1 1
+Cy D> [ hém [|2 00y [ hs 2 [6Gn] lr200e)
e

1 _1
+Cy D> 020G (12900 || hs 2 [ma] I290e) -

(D.79)

Choosing C = max(Cy, CyB), the previous equation is rewritten as:
| A(G%m, 6G) + B(G%m, 6G) [ < C || Vm [[12(qe) | VIG || 2000

OV sy 119G
+CY [l m 200l VOG 20
+C Y 1 20 9G [lp2qae)
+ CZ I h;% [ma] [Ir2 900 |l h;% [VOGn] [z 000 (D.80)
+ CZ I hy2 Vm L2900 hs_% [6Ga] ll12(50¢)
£ O 05 fma] lz(ooe) | b T0G 2
+ CZ | hy?m 2 (a0e) | hs_% [0Ga] llr2(o0e)

1 _1
+CY 136G [|r2(900) | hs * [ma] llr2(p0e) -
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After some maths, this becomes

1
| AG%m, 6G) + B(G*m,6G) | <C [H Vm [ 2qey + [ m |p2(ge) +he [ m [|p2(50

1 _1
0 || Vi f2pne) 2 ¥ || [ma] umme)]

1
x [H VOG 2oy + 110G 200 +12 1| 66 200

1 1
0 || VOG [lp2(p0e) +ho* | [5Ga] |1 me} |
(D.81)

Using the Cauchy-Schwartz’ inequality, Eq. 1 , and the property 2ab < a?+b?, this last
equation becomes

| A(G%m,0G) + B(G%m,sG) |?

1
<C?y [H v (|12 (ge) + [l m [|p2(ge) +hs [ m 200

e

2
1 _ 1
0 || Vm flzoge +hs | [ma] ||Lz(mc>]

1
3 [H VG [l 12qey + | 3G [l 200y +02 || 0G [lp2(a0e,

e/

1 1 2
1 1 D.82
+he | VOG |12 (90e) +hs * || [6Ga] ’LQ(aﬂe'):| ( )

<4237 (11 Vi 2 e + Il m 122y 1 1m0 |25 o) +

b || Vi 25 g +h3 " || [mal] 1152(896)} x
S 190G 122 g0y + 116G 122 oy +h 110G 11225001

e/

+hy || VG (172 poery +ht 1 10Ga] [1F2 500 ]

Considering 4 in C, and using the definition of the mesh dependent norm, Eq. (2.12]), we
get:

| A(G%m,0G) + B(G*m,0G) | <C||m||:i]] 6G ||y Vm, G e X. (D.83)
Moreover, using Eq. , we obtain
| A(G%m, 6Gy,) + B(G®m, 0Gy) | < CX||m ||| || 6GL ||| ¥V m € X, G}, € XX, (D.84)
and again, using Eq. , we have

| A(G®;my, 6Gy) + B(GSmy, 6Gy) | < CX || my ||| |[| 0Gn ||| ¥ mup, 6G, € XX, (D.85)
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D.4 Uniqueness of the solution for Electro-Thermo-Mechanical
coupling

Let us first show that for a given ¢ € [L?(Q)] 4% L2(Q) xL2(Q), there is a unique ¢, € X*
such that

A(G®;6Gy, ¢n) + B(G*; 6Gn, ¢1) = ) / ¢! 3GLdQ VGy, € XE. (D.86)

Lemma [5.4.1, Eq. (5.122), with G}, = ¢, € XX, implies that 3CY, Ck such that
A(G®; bn, dn) + B(G dn, dn) = C [l n 117 —C5 || dn 72, - (D.87)
Choosing 0Gy, = ¢y, in Eq. (D.86) thus yields

CH [l n 112 ~C5 1 i 22y < D /Q G <[ @ Iz 8 Iz (D8S)

or again
CY [l n I1P<I1 @ Nzl 61 Lz, +C5 1 én 2, - (D.89)
By the use of the the energy norm definition 1j we thus deduce || @y [|r2(q,) <[l én [l];
and Eq. becomes
CY [l én I1P<Il @ Iz Il én Il +C5 (1l én 1] én 2, - (D.90)

Hence, we have

Il 1< C5 11 ¢ Iz +C5 Il @0 llr2(qy) - (D.91)
The term || ¢y, ||L2(Qh) can be estimated as follows using the auxiliary problem stated by
Eq. (5.126]), with ¢ = ¢y,. Then it follows from [23, Theorem 8.3 and Lemma 9.17] that

there exists a unique solution 9 € [H2(Q)]d x H2(Q) x H3(Q) to the problem stated by Eq.

(5.126]), and the solution satisfies the elliptic property stated by Eq. (5.127)). Multiplying
Eq. (5.126)) by ¢y, then integrating on €2y, and integrating by parts, lead to

> [ oG + we(Ge VG Vi

- Z | WvG(G) VY +we (G, VG i, dS (D.92)

+Z/ [dye(G) VY] ¢th+Z/ 1" 6nd2 = én |72, -

Asy e [H2(Q)] x H2(Q) x H?(Q) implies [¢] = [V¥] = 0 on &y, and [$] = — = 0 on
OpQn, we conclude by comparing to Eqgs. that

Jo, 96 (GO)VH]" Vo1 + [0 [rva(G)V]" [4r,] dS

— Jopa, v (G VY] ¢, dS = A(G 9, én)

Jo, WG (G, VG VudQ + [0, Wa (G, VG )]" [#n,] dS (D.93)
~ Jope, WG (GS, VGW]T ¢1,dS + [, 41 dva(G*)VipdQ

+ Jo, 1 dc(G)pdQ = B(G® 9, én),
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leading to
161 1721q,) = AGS 9, 81) + B(G*:9, ). (D.94)
Inserting Inap the interpolant of 9 in XX, this can be rewritten as
| én Hiz(gh) = AG% Y — Iu,én) + B(G% 9 — Inp, én)
+ A(G®; 1ny, ¢n) + B(G®; 1ntp, én).
From Eq. , in the particular case of Gy, = I,%, assuming there are several solutions
to Eq. (D.86)), we have for one solution ¢y,

A(G In, én) + B(G; 11, én) 2/ plLpdQ
Qp (D.96)

<l lliz@, 1 n® Iz, -

Now an application of Lemma Eq. (5.124), with Lemma [2.4.6] Eq. (2.23)), yields
| A(G®; 9 — Int, én) + B(GS 9 — Intp, én) | < C5 || 9 — Intp |1 ] én |l

< CEH 9 [l [l @ I

(D.95)

(D.97)
with g = min {s,k + 1}.
Substituting Eq. and Eq. (D.97), for s = 2, in Eq. (D.95)), yields
16 l1F2(0,) < Chs 1|9 Iz, [0 I+ 11 @ Iz I ¥ lli2q,): (D.98)
whereas, for hg sufficient small, the term || In® [|;2(q) can be bounded using Lemma W,
Eq. (2.23), by
[ In% 2y I ¥ — ¥ + 9 (|20,
< =¥ iz + 1@ 2SI =9 (Il + | ¥ lnz@,)  (D.99)
< C%s | 9 [z + 119 ez < CF 119 li2qy) -
Eq. (D.98) is thus rewritten for small hq

60 2,y < C 19 lhzcayy (s 116 1+ 1@ lzay)) (D.100)
By using the regular ellipticity Eq. (5.127)), we obtain
16 Iz, < Chs [l n Il +C* | @ 20, < CE T @ N2y (D.101)

for small hg. Hence we complete the proof of Lemma by substituting Eq. (D.101)) in
Eq. (D.91)

Il én 1< CE Ml @ L2, - (D.102)

Indeed, the existence of the solution ¢y, to the problem stated by Eq. (D.86]) follows from
the uniqueness, which follows trivially from Eq. (D.102)). Indeed for ¢1, @2 € [LQ(Q)]3 X
L2(Q) x L?(Q), we have

I én, = bns 120y < C 101 = @2 120 (D.103)

and @y, = ¢, if o1 = po.
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D.5 The bound of the nonlinear term N (G°y; 0Gy,)

D.5.1 Bounds of different contributions

The bound of N (G®y;dGy) follows from the argumentation reported in [25] and the
bound of the nonlinear term N (G®,y; dGy) is nominated by the term with the largest bound.

Indeed the bound of the first forth terms of Eq. follow from the argumentation
reported in Chapter [ after replacing M®, dMy, j by G¢, Gy, w respectively. Henceforth,
only the final results are given for the first forth terms as

EAE /Q (V6G)" (Ru (€, V)2 |

(D.104)
< CCyLE 20 | 6G, [y ol G [l
|, | = [6GL] (Rw(¢, VC))dS |
QL UID
1 (D.105)
< CKCy || G [|s(q,) W40 <Z b || [0Gn,] Hi%aae)) ;
A / a” vl (woa(@) — wea(y)) VAGs) aS |
1 (D.106)
S Cka ” Ge ||HS(Qh) hg_2_€0- (Z hS | 5Gh |%{1(89e)> 9
el T B e
Tul= G —va] (- wea(@) —wea () ) [0Gn, ] dS |
01 S
(D.107)

2
< C*Cy || G° ey W50 (Z b | [9G, ] ”i%aﬂe)> :

1 1
It should be noted that all the intermediate bounds (Z Il ¢ HL4 o )4 (Z | V¢ ||L2(Qe )2 ,

(S 1 V€ Baige)) ™ (2 1€ o)+ (e 1T W)+ (e ¥ )
| 6Gn [lwi(qey, and | 6Gy |W}1(Qe) can be derived by the same spirit as in Lemma
after replacing M¢, IyM and dM}, by G¢, I;,G and 0Gy, respectively. We will use the boun S

(4.12244.134)) of Chapter {4 directly.
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Then the bound of the fifth term is derived as follows, using Eq. ([D.124))

| Z5 | = [(G® — Gi)T6&(Gh)(G® — Gy)] (3G, ) dS |
QL UID
<2Cy ) | / [(G® — Gn)T] I(G® — G1)dG, dS |
o~ Joeuapae (D.108)

+ c Z|/ [(G° — G| T[G® — Gu] [5Gy, ] dS |

<|Zs1 | + | Zs2 | -

Therefore, with { = G® — Gy, one has

Tl <20, 1 [ ]G a8 |

_1 1
<20, 3 [ ® BT ool € oy (e 119G IR

< QC h 2 (Z H [[C]] ||L4 a0e ) (Z H C ||L4 Qe ) <Zh H 5Gh HL2 oNe )

1
2

1
2

_1 _3 1
< 2Cyhg >Ckhy *ohdo (Z h || 0Gy ”i%am))

[NIE

< 2C,C* || G [lus(,) W20 [ D he | G [[F2 900 |
(0%2¢)
e
(D.109)

where we have used the generalized Holder’s inequality ([2.25), the generalized Cauchy-

Schwartz’ inequality (2.27)), the definition of Cy in Eq. (5.118), and the bounds (4.131



216 Annexes related to chapter

4.132)). Similarly we have the following bound for Zso

T <Oy D01 [ 1@ - GG - Gl G, TS|
1 T
<O X [ KT pGas |

1 1 a 1
< 50 3 [0 1160 s T oy (557 11 9G] I

1
1 1 ?
< é yh3 (Z I €D s o > (Z 1 E€T 150 ) (Z bt || [0Gw] Hiz(agc)>
. e
L 1 5oknd o d -1 2 ’
< SChiCihdohdo | 3 bt | [0Gn] [1E2 a0
e
%
éC CE || G® || (@) he (Z bt || [0Gu] Hi%age)) :
(D.110)
By combining Eqgs. (D.109] and [D.110]), we have
%
|I5 | < 2CyCk H G* ||HS(Qh) hg_z_ea (Z hs H dGy, ”?}(age))
e (D.111)

1
1 . . . ’
+ 3Gy [ Gl B0 (Z by || [6Ga] ”i%me))

Finally to bound the last term of the right hand side of Eq. (5.109]), we rewrite it using

Eq. as
To= [, 9GIRal¢. 9000 =3 [ 9GI(C"doly, Ty

+2Z 5Gh (¢Tdgvg(y)VE)dQ (D.112)

= Im + 2Z¢2.
The first part is bounded by

| Ze1 | <] Z/Q 0G (¢Tdaa(y, V¥)C) A2 [< Cy > 1€ el € liagaey | 0Gn ll2iae

Cy (Z ” C ||i4(ge)> (Z ” ( ||i4(ge)> (Z ” 5Gh ||i2(ge)>

< CKCyhE 250 || 6G, [lp2q,) Il G llre (o) -

1
2

(D.113)
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This bound is estimated by recalling the generalized Holder inequality (2.25)), the generalized
Cauchy-Schwartz’ inequality (2.27)), the definition of Cy in Eq. (5.118]), and the bound
(4.123).

The second part can be estimated in the same way using the generalized Hélder’s in-
equality (2.25)), the generalized Cauchy-Schwartz’ inequality (2.27)), the definition of Cy in

Eq. (5.118)), the bounds (4.123] 4.124]), and the inverse inequality of Lemma m

| Zsz | <| Z/Q G (¢Tdave ¥)VE) A2 1< Cy Y 1€ lusan | VE Izl 6Gn e

: }
Cy (Z || C Hi%ge)) <Z H VC HiQ(QE)> (Z || 5Gh Hi‘l(Qe))

< C*CyE %0 || 6G, [z | G llis ey

(D.114)
Substituting Eqs. (D.113] [D.114)) in Eq. (D.112)), we get
| Ty | < CRC, 220 || G, 2oy | G (e - (D.115)

Combining Eqgs. (D.104] [D.105] [D.106] [D.107}, [D.108, and [D.115)), yields the bound of
N(G®,y; 0G)

| N(GE,356G) | < CFCy || G [lis(o) 1270 [[| 0G [l11 (g

1
2

+ <Z hs || 5Gh H?Il(age)) <+Zhsl || [[5Ghn]] ”iQ(8QQ)>

2

(D.116)

D.5.2 Declaration related to the fifth term of N(G®,y;iGy},)

Using the identities [ab] = [a] (b) + (a) [b] and (a) (b) = (ab) — % [a] [b] on &1, the
term [(G® — Gp)T0(Gn)(G® — Gy)] (0G,) can be rewritten with an abuse of notations on
the product operator as

[(G* —Gi)"0g(Gh)(G* — Gn)] (3Gn,) = ((G° — Gn)"6g(Gn)) [G® — Gi] (6G,)
+ [(G° — Gn)"0g(Gn)] (G° — Gu) (4G, )
= ((G°-Gn)’o E(Gh>6Ghn> [G° ~ Gy
1 I(6° ~ G0 (G)] [6° — Gu] [5Gy, ]
+ [(G® — Gn)T0&(Gn)] (G — Gu) (3G, ) -
(D.117)

Now, we need to solve explicitly the term [(G® — Gy) o0& (Gn)], where 0§ (Gy) is equal by
analogy to Eq. (4.92)) to

og(Gy) = /01(1 —t)og (V*)dt, (D.118)



218 Annexes related to chapter

with V' = G® + t(Gy, — G®). As og only involves terms in f%, we compute @ the nonzero
T

component.

& = 3Kag, /01(1 -0 +t(f2T e (D.119)
For simplicity, let us define A as
! 2
A :/O (1= V) et (D.120)
Settinga=1—t,da= —dt, db = =23~ and b = -1 5, such that A

[+t (fp—15)] (fr—fp) [Fp+t(fr—f)]

can be rewritten as

t—1 ! 1 dt
A= [(fT “E)I + t(r —fw]o _/0 (fr — B + o(fr — )

1 1 !
T B [(fT “ )My + (i - f%)]]o
1 1 1
_ - - D.121
ot G- B P (B (D12
_ 1 v fiofny 1 1 1
(fr — )i (= fp)?" fofp © (b — )y (Fr —fp) frfp
I N St
(fr — f) fo%? foEFQ '

It can be noticed that to evaluate [(G® — Gp)"64(Gn)], we need A(f} — fr) which reads

1
T —fp) = fp—fr) = —(—— —
A(fp — fr) fo%Q(T T) feT(fT f%), (D.122)
and the jump of the last result is
1ol 111y 1 (i) _
A — fr)] = f?rl(f}* fr f;+f%1) f‘%(f}*f;) oty L frl on i€

ez = fp) = —— [fr — f7] ondpy

TIip TIip

(D.123)

Hence considering this equation in the matrix form, and then substituting it in Eq. (D.117)),
lead to
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| Z /8 QeudpQe [(Ge - Gh)Tag(Gh)(Ge - Gh)]] (0Gn, ) dS |
=1 Z/am —G1)"05(Gn)dGy, ) [G° — Gu] dS |

P10 [ € GTOB@] 16~ Cul 1561, 35|

312 /@ N 0§(G1)] (G° — Gu) (3G, ) S |
b /8 " 65(Gi) (GF — G1)0Gy, S | (D.124)
<> o (G® — G)TI[G® — G,] 6Gy, dS |

e

1 e e
[T -G - Gl las

+Z!/ [(G° — Gn) "] I(G® — G1,)0G, dS |

e orQe

+) / [(G® - G1) "] I(G® — G1,)0G,, dS |

e op e

where I is a matrix of unit norm and has the same size of 65.






Appendix E

Annexes related to chapter |6

E.1 Tangent of the carbon fiber

The first Piola-Kirchhoff is evaluated from the second Piola-Kirchhoff as
P =FSp :FXI(Sif] —FS%) (El)

The derivative of P with respect to the deformation gradient is computed components by
components

o8 A 1
9. = 500 Cict. — 5 (Mnd = G = 3ha (T = To))(CR(Cy. + Ci/Cp), (£:2)
o81 T(CAKA LAA TATAJAKA
WKL:% (CiyAkAL + C ATA)) + 47" ATAJAKAL (£3)
- IJKO[trAIAL — IIKOétrAJAL — 6tr(14 — 1)(01_1(1031} + CI_I}C;I%)
which result in
OP 3 . 8Sis oSt
X —T.(S* Str F, 1J U Iy F Ini Fur). E.4
OF,. k(Sy +SyL) + I(aCDN + 3CDN)( pLFiN + INnLFip) (E.4)
The derivative of P with respect to temperature reads
0Py 8Sif] oSy E
= b
ot~ Palgr T ) (E5)
with
asis B
8’%1 == —3)\OéthCU1, (EG)
and
8str
aTI‘J = —123"pArA;. (E.7)

221
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E.2 Predictor-corrector and stiffness computation for SMP

E.2.1 Predictor-corrector for the first mechanism (o =1)

In this step we will solve the system of equations that has to be developed.

E.2.1.1 Flow rule

The plastic part of the deformation gradient in the incremental form can be derived from
the continuous form Eq. (6.56) as

F?rfl)l) = exp(ADp(l))F?rE)l), (E.8)
where
1) — (1) 8(1)
p p M
ADPY = Ae (2%(1) ), (E.9)

and the elastic part of the deformation becomes

e(1)
1 1)1 M _
Fiily = Pl Fiy) exp[(Ac) Ty (E.10)

N

where Mg(l) is the deviatoric part of Mandel stress. Let us define the normal N as

e(1)
N = Ll (E.11)
Ve
Then FeM), Eq. 1} can be rewritten under the form
-1 -1
Fl) =FaFl) [exp(acND)| (E.12)
and we have
-T -1
iy = [t ol foorasn] @

where C?I()B = FI()IE;)_T Faﬂ) Fug Fl()rs)l)_l. In order to compute M) from Eq. (6.50)), we

need first to compute the elastic strain

e _ e(1)
EM =1ny/CTY, ), (E.14)
which becomes using Eq. (E.10)
1 _T e 1 —1
E(Zr(11+)1) =3 In { [exp(Aep(l)N(l))] C(r()r; [eXP(Aep(l)N(l))} } J (E.15)
The deviatoric part can thus be evaluated as
e(1 1 e(1
Eo( ) _ 5 (ln(c(érg)% — AN, (E.16)
and the volume part as
1
e(1) _ 1+ e(1)
aE) = Str (m(c(pr))) , (E.17)

where we have dropped the subscript (n + 1) for conciseness.



E.2 Predictor-corrector and stiffness computation for SMP 223

E.2.1.2 Mandel stress

Using Egs. (E.16) and (E.17]), then Mandel stress Eq. (6.50|) can be expressed as
e e(1 1 e(1
M) = G (m(C(;rg))o —2GACIND + “K tr (m(c(lgr;)) I — 3Kaw(T — To)I.  (E.18)
From this equation one can deduce

trMe() = gK tr <1n(Ca()3)) — 9Ky, (T — To), (E.19)
MY = G (1n(c§$))>0 — 2GAPOND), (E.20)
Thus, from Eq. (E.11) and Eq. (E.20]), one can conclude that:
e(1)
) (mc),
e(1) ’
V2| (m(ci)), |

Note that N is constant during the plastic corrections because of Eq. (E.21)).

N (E.21)

E.2.1.3 Shear stress
Let us compute Mg(l) : NO from Eq. 1’ we get
e(1 e(1 e(1
W _ MO( ) 3M0( ) _ |M0( )|
vaMst| V2

MW N =70, (E.22)

Moreover, starting from Eq. (E.20)
MY NOD = Gv2 | (m(cggﬂ)) INW N — 26A® ND . NO
0
_G e(1) ()
- 5| (n(cii)), |- Gae,
and combining Eq. (E.22) and Eq. (E.23|) gives the equivalent shear stress

G
() _ (V) | _ aap
=% (m(C ))0 | — GAPM), (E.24)

(E.23)

(pr)

Then the governing equation for the net shear stress of the thermally activated flow one has
successively the final expression of Eq. (E.35) as

G e —
7o) = il (m(c(lgg))o | — GALD — (S, + Sy, + app), (E.25)
where p = —%trMe(l), is obtained using Eq. 1} as
1 1
-+ e(1) _ |+ e(1) . .
pP= 3trM = [QK tr <ln(C(pr))) 3Kayn (T TO)] i (E.26)

Using the previous equation and Eq. (6.52) we may rewrite the evolution equation for

7 (E.25) as

o G e 1 .
7= 51 (), |- GAD + Sk (In(Ci) )

— 3apKoyun (T — To) — Sa — Sp.

(E.27)
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E.2.1.4 Internal variables

The time incremental form for internal variable for S,, can be derived from Eq. (6.65)
Sa(n+1) = Sa(n) + h, (S:(HJFB) - Sa(n+ﬁ))A€p(1), (E.QS)

where [ is a constant value between [0, 1] with

Sa(n+ﬁ) = /BSa(n+1) + (1 - 5)Sa(n)7 (E29>
Sam+8) = BSameny T (1 = B)Sim)- (E.30)
This last term is computed using Eq.
Pmt1) = Pm) + 8 (Plats) — Prs)) AW, (E.31)
as
Sa = b(¢" — o), (E.32)
with
T ¢p(1)
A1 ) +hg) () (T < Ty) and (20) > 0),
SO*(ép(l)’ T) = 'p(l)g €r (E33)
zhy(S— )¢ if (T >T,) and (M > 0).
€r

In this previous equation, (z,r,s,hg) are constant properties, in particular hg is introduced
to get small value of ¢* instead of 0 for T > Ty, and this in turn avoids the big slope of
AeP(M) between above and below glass transition temperature.

The incremental form of the plastic shear strain rate, Eq. is rewritten

0 if 7o <0,
AeP(D) — 1 e(1) 4 Vv (E.34)
(1) _t _ h(—F Y y/mo g e(D)
Ahey exp ( f) exp ( KBT)[Smh( SKp T )] if 7% >0,
where
70 =7 —(Syur1) + Sb(ur1) + WD), (E.35)

7¢(1) denotes a net shear stress for the thermally activated flow, and ap = 0 is a parameter
introduced to account for the pressure sensitivity, P is the normal pressure which has negative
value of hydrostatic stress, and 7' is the equivalent shear stress.

The evaluation of the internal variables follows from Eqs. (E.28{E.34]), where by com-

bining Egs. (E.29L E.30) in (E.28]), we have
Sa(n) + haﬁs:(nJrl) Aep(l) + ha(l - 6)( :(n) B Sa(n))Aﬁp(l)

Sa(n—i—l) = 15 ﬂhaAep(l) (E36)
In the same way, from Eq. (E.31]) we get
Py T 880041 AW + (1 = B)(¢f) — pm))Aer)
(n) (n+1) (n) (n) (E.37)

P(n+1) = 1+ BgAeP(l)
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The missing terms read

SZ(nH) = b(sf’?nﬂ) — P@+1)); (E.38)
with
T AeP(D)
2(1 - =) +hy) (———)°  if (T < Tg) and (M) > 0),
s T, Ate, (E.39)
Plnt1) = Aep(D) :
2(hg)" (R )’ if (T > Tg) and () > 0),
€r

and hence Eq. (E.37) becomes for T < T,

T Aer)
)y s (1) _ x (1)
Pn) + 80z ((1 Tg) +hg> ( ﬁter) AP +g(1 = B)(#fy) = Pm)) AP

@(n—i—l) = i ﬁgAep(l) )
(E.40)

Eq. (E.38) becomes for T < T,

T Aer()
_ )y s _ _ _ ko p(1)
S(n+1) = 1 I lBgAep(l) )
and Eq. (E.36]) becomes for T < T,

S o Sa(n) + ha(l - ﬁ)(s;(n) - Sa(n))Aﬁp(l)
a(n+1) — 1+ 6haA6p(1)

T Aer()
o r s _ o _ x (1) (1)
h,Bb (z <(1 ng) +hg> (Awe 2w =80 = B¢ = $w) A > AeP

(1 + BhaAeP(M)(1 + BgAer(D)

(E.42)
Similarly, for T > T, we have
S Sa(n) + ha(]- - ﬂ)(s;(n) — Sa(n))Aep(l)
a(n+1l) = 1+ Bh,Aer()
At (E.43)

ha3b <Z (hg) (R ) — P — 81 = B)(efy) — @(m)Aép(l)) Aerth)

* (1 + BhaAer) (1 + Bgher()

Finally Eq. becomes

Sy, = Spo + Hb(S\ — l)a, A= \/trC(l)/3, (E.44)

with Hy,(T) defined in Eq. (6.70).
Finally the glass transition temperature Ty, Eq. (6.44) is computed as

T, if € <ep,
Te= Y Toanlog(S)  ife>e, (E.45)
€r
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where ¢ is computed using Eq. (6.40)), which in turn is computed using Eq.(6.42)), thus one

has
1

-1 -1
Dix(sym) = TAt In (F(n—i-l)iA F(n)Ax + F(H)AiF(n—l-l)xA)- (E-46)

E.2.1.5 Non-linear system of equations

Thereafter the residual equation for the first micromechanisms can be defined from Eq.
(16.59)

QW = ¢ — (70— (3, + 8, + app<1>)) . (E.47)
From Eq. (E.34) let us define L(T) to simplify the equation
e'o(l)AteXp (—1)exp(—(§(1¥) if T < T,
L(T) = {al B (E.48)
e'o(l)At exp (— ) exp (—Q‘(T)) if T > T,
(€g1 +d(T = Ty)) KgT
where Q(T) is defined in Eq. (6.61)), and W(T) as
v
W(T) = KT (E.49)
which allow rewriting (E.34) as
: e m e e
A — ] L(T) [sinh (r*MW(T))] if 71 >0, (E.50)
0 if 7 < 0.
This equation can be rewritten
1 AeeM\™
e(1) — .
T W(T) arcsinh ( ) ) . (E.51)
So the residual defined by Eq. (E.47) becomes, using Eq. (E.27))
1 AeMW\™ G(T) .
O = ——_arcsinh — 220 (n(cs +G(T)AePW
W) ( L(T) > V2 | (), 1+ em (E£52)
1 e
— 5apK(T) tr (1n(c(f)3)> +3 apK(T)agn(T = To) + Sagns1)(T) + Sp(T).
For both cases (T < Ty) the associated Newton-Raphson (NR) scheme reads
o0
1, 20 p(1) _
Qv+ A |C:51>AA6 = 0. (E.53)

o0

This system is iteratively solved using the Jacobian, which is defined as j; (V) = ——— | 2e(1)
OAP () 'Cp,

leading to

AAePD) = — ;=1 o) (E.54)
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with the updated step

AP AP 1 AALD, (E.55)

The iterations continue until convergence until a specified tolerance is achieved.

Let us now compute the derivative of the components of Q) and let us start by com-
are)

OAeP()

puting by calling Eq. (E.51

ore) 9 1 - p()

oA ~ aaem | wer ety
o om 1 A" (E.56)
- L(T) '

By doing some calculations we can get the derivative of S,, Eq. (E.43), with respect to
AePM) for T < T,

8Sa(n+1) . ha(l - B)(SZ(H) - Sa(n )( + 5h Ael ) Bh ( + h ( B)(SZ(H) - Sa(n))Aep(l))

OAer() (1+ ﬁhaAep(l))
sh, b T, AP ) T, AP
Ater Z ((1 — ?g) + hg) ( Ater ) AG . haIBbZ <(1 - Tig) + hg> (Ter)
(1+ BhaAePM)(1 + pgAer(V) (1 + BhaAePM)(1 + fgAer(D)

hafb (8(1 = B) (&) — 2 AN 1aBb (9 + (1 B)(¢f,) - so(n))AeP(”)
(14 Bh,AeeM) (1 4 gAer(D) (1+ Bh,AerD)(1 4 BgAer()
| (B%ha(1 + FgA) + £%5(1 + haAcD)) (hab(ip(m) AcD)
(1+ BhaAePM)2(1 + BgAer(l))2
. (8%ha(1 + BgAPM) + 52g(1 + BhaAP)) (habg(1 — B) (], — ) AcPD) AcPll)
(1+ BhaAepD)2(1 + BgAer(l))?

Ate,

(1 + BhaAeP(M))2(1 + BgAer
(E.57)

(1)
(82ha(1 + BgAePD) + B2g(1 + BhyAce(M)) [ hyb(z ((1 — hg> <A€11)>s> Aer)
g
DE

)
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and for the second case T > Ty, from Eq. (E.43)

0Sary)  Dall = B)(Siw) — Saw)  Aha ( ) T ha(l = B)(Sym) — Sa(n))Aep(1)>

A (1 + BhyAer(D) (1 + BhyAcp(D)2
Shaﬁb AGp(l) s—1 p(1) A611)(1) S
N Ate, g ( Ate, A ha/3bzhg ( Ate, )
(1+ BhaAeM)(1 + fgherD) (1+Bh AeW)(1 + BgAerll))
h, b (w(n) +8(1 = B)(¢fny — Py AP >

(1 + BhaAePM)(1 + BgAeP )
1 (5= 9)(fy) — pw)) AV
(1 + BhaAePM)(1 + BgAer(D)
(8%ha(1 + BgAeM) + 52g(1 + Bha A1) hyb(p(y)) AePD)
’ (1+ BhaAer(M)Z(1 + fgher(D) >
+(ﬁ2ha(1+ﬂgA6p(”)+ﬁ2 g(1 4 ShaAe)) hyb(g(1 — B)
(14 BhaAePM)2(1 + BgAer(V))2
Ael(l)
Ate,

(Pfy = () AD) APt

(B%ha(1 + BgAePM) + B2g(1 + BhyAeP)) (hybzhg(
(1 + BhaAeP(D)2(1 + BgAer(1))2

)%)AeP(H)

(E.58)

By combining Eqgs. (E.56| and [E.57| or [E.58) we obtain the Jacobian and the system is
iteratively solved for T < T, using

m—1
j(l) _ 8@7(1)|7 0 = m 1 Aep(l) + G + asa(n"rl)
dAeP(1) 'Ci”  W(T)L(T) A 2" L(T) OAer()
€
( L(T) ) 1
(E.59)
E.2.1.6 Converged solution
Ay

The first Piola-Kirchhoff stress tensor, is given by P = 2F
Eq. (6.46)

can be derived from

o0C

opet) o 9ve) OBy aCy
QCNA N iN aE‘éi) 30%/([18) BCNA

P = oFix

=1 pe e 1y
:FiNFﬁ(M) KLMS o1 I/)x(s

aEKL (E.60)
pepe 0P opayr
1M KLMS SRS e(1)” SA

KL
e e e -T
:Fu&al )ﬁKLMsIVIK(i)FgEA1 : :
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Note that Me() ig computed from Eq - L€ in an approximated matrix for the deriva-
tive of Inv/Ce()) with respect to C®), such that £¢ = 281“\/6(()? = 81“CC<1).

The previous equation allows us to evaluate the first PlOla—KII"Cth% stress in terms of the
elastic and plastic parts of the deformation gradient. Then using these results, the derivative
of the Piola-Kirchhoff stress tensor with respect to the deformation can be evaluated as

P O LhnsMi FE )
OF;c OF;c

Ry (1) (1 Mt o)t
- aFM ‘C LMSMK(L)FS(A) +FIIE/[) KLMS 8FK(? %

e(1 0Ly, e(1
FllS/[) 8§\LMS MK(L)FSEX) + Fll\(/[) %(LMSMKL 8ch

The derivative of the inverse of the plastic deformation gradient is given by

8I§<(\1/) p(1)— 16IE(Z) p() 1 E
.62
OFc Fxe OF;c ¥ ' ( )

The derivative of the elastic deformation gradient with respect to the deformation gradient
reads

%Fl"‘i%) N 8(FK8}£‘§§A)1) = <5ijFIé(§1)l ~FicFAY ™ 18;;%) - ) . (E.63)
The derivative of L€ follows from
OLxrns _ OL%ims 305(\1/) aFE%)
T ooy ary) T o
oFl)

&C
KLMS (5 F‘E(\l,) i Fe(1)5 ) _
6CQ OF;c
To evaluate these three terms, the derivative of the plastic deformation gradient is obtained
from its definition Eq. (6.95), leading to

p(1)
OF (\ 1)Ez 8eXp(AD1(51Z))8AD81):’FP(1)

OF;c - 1) OF:c ()17
j O0ADyp j N (F.65)
_ 1) oAt p(1) 9YNop ONGp | @p(1)
= ZRIoP NOP aFjC + Ae aFjC F(n)IZ’

where Z is an approximated matrix for the derivative of exponential of C¢()) with respect

to C¢M) such that Z = 8?82;51). The derivative of the missing terms can be computed by

deriving the residual QW Eq. lb with respect to right Cauchy tensor Ce), yielding

o0 oQm gAer™)
aF |A5P(1) + 9Aer(1) 3ch =0, (E.66)
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APt Q)
— _(H-1Z

The derivative of the residual with respect to the deformation gradient tensor is obtained
from

oW o1 0QW oy 00
o Ay = (Fﬁgr;WHF{’;r}TV 56wy | Eivdwe + Fiwdve).  (B68)

Let us compute the derivative of the components of Q) given by Eq. 1} First one has

oo (nC)) o (n(C)) 0 (n(Co))

e(1) o e(1) e(1)
8C(pr)HT 9 (ln(C(pr)XO)) 8C(pr)HT

and then, one has

(1) 1 1
o (mC), o (nC )~ SrinCoe) e
- =L (prKLHT — §5Yzc(pr)YZHT5KL,

e(1) e(1)
aC(m)HT ac(pr)HT
(E.70)
onceh)
where L"Epr) (;;eéf)r). Now let us compute the derivative of N(U) by recalling Eq. (E.21).
(pr)

First one has

ol (n(C5™) 1 0y/n(C{ oo (n(C] oo

acepr)HT a(C pr))HT) ( |
E.71
V2 .
_fNOM OMHT — 3 N(ol1)v15YZ£YZHT5OM

:\/iNOM OMHT-

The derivative of glass transition temperature with respect to the deformation gradient is
obtained from Eq. (6.44), with

0 ife<e

T . - T

gF-g - Ei ifé>e (E.72)
ic ¢ OFic !

Using Eq. (6.40), one has

0é _ \/§|DO(sym)’
9F;0 Fic

2]:)ix(Osym) ‘DO(sym) |_1 (

(E.73)
8])1)((sym _ *(S 8Dyz sym)é
aFJC N 8F_]C ix |
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where using Eq. (E.46)), thus one has

-1 -1 -1 -1
ODi(symy 1 90 (F(n+1)iA FoatFu AiF(nJrl)xA) 9 (F(n+1)zB Fosy T F(n)BZF(nJrl)yB)

OFminjc 24t g (F(n+1)zB Fls, + F(_nl)BZF(nH)yB) OF (n11)j0
1

- P -1 -l
P (5ZJ Fiey T F (n)CZ> ’
(E.74)

where £ is the approximated matrix for the derivative of In (F(n+1) F(_nl) + F(_nl)F(nH)) with

respect to <F(n+1) F(_nl) + F(_nl)F(nH)).
The derivative of Poisson ratio with respect to the deformation gradient can be computed
by

ov(T)  ov(T) 0T,
OFic 9T, OFc

(E.75)

where the derivative of Poisson ratio with respect to glass transition temperature using Eq.

i
ov(T) 1

oT, 2A
Similarly, using Eq. (6.52)), the derivative of the shear modulus G reads

(v — o) (1 tanhQ(%(T _T,). (E.76)

oG 9G OT,

= , (E.77
OFjc 0Ty dFjc )
with
IG(T) _ [ 5x(Gg—Gi)(1 —tanh®(5(T —Ty)) + My if T < T, (E.78)
0Ty | 3x(Gg — Gy)(1 —tanh?(X(T —Ty)) + M,  if T > T,. '

By the same way, one can get the derivative of the bulk modulus Eq. (6.55]), with respect
to the deformation gradient as follows

oK 0K 0T,

OF,c T, oF (E.79)
ov ov
2 (1-2 41
OK(T)  OG(T) 2(1+v) T, L~ 2V Gr (L4
- G(T) (E.80)
OT, T, 3(1—2v) 31—2v)2
By the same way, using Eq. (6.70)), gives
OHL(T) [ [sk(Hg —H)(1 — tanh® (X (T = Ty))) + Ly] 5p5 T < Ty, -
OFjc (55 (Hgt — Ho) (1 — tanh®(§ (T = Ty))) + Lo] g% if T > Ty '
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By calling Eqgs. (E.42 , one has

rhySbzT T AeP)

0 2z ) ;A
a(n+1) — Tg Tg Ate, T < T (E82)
IT, (1+Bha AeP(D) (1+BgAce(D) = e
0 if T > Tg.

Now let us compute the derivative of ay, with respect to the glass transition temperature

by using Eq. (6.53):

8ath(T — T()) _ Bath(T — To) aTg

E.
OF;c 0T, IFic’ (E.83)
where
0 ifT <Tgand Ty < Ty,
6ath(T — To) . —Qg] =+ oy if T < Tg and To > Tg, (E 84)
0T, ") —art+ag T >Tgand Ty < Ty, '
0 if T > Tgand Ty > T.
L(T
Moreover, we need to compute aaFE ) by recalling Eq. (E.48
jC
oL(T) VAt 1 Q . 0Q |
=— - — fT<T E.
and
oL(T) VAt exp 1 Jesp (-2 )29
=— xp (— xp (—
F ¢ TKp 0V (€u+d(T—Ty) PV KT oF;c
(1) 1 Q d 0T, .
—e, ' Atexp (— exp (— if T > Ty,
0 Pl ram =) P KT (6g + d(T = Ty))? 9Fc 8
(E.86)
T
where %](? ) is computed, after recalling Eq. (6.61
oQ(T) 1 9,1 0T,
= |— — 1 —tanh*(—(T - T . E.
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Eventually, by gathering Eqgs. (E.75) , Eq. (E.68)) becomes

o) 2mKp T 1 OL(T)
Ay = (AL (L(T)) ™!
8F A% Aep(l) 2m aFJC
T +1
1 9G(T 1 OK(T)
_ (1) . e(1)
V2 OFic ( A) 1+ aFJC 2" oFe (mics)
8K( ) 8ath(T — TO) 8Sa(n+1)
+3 ap Fc - Lay(T — To) + 3 ap K(T) i + IF (E.88)
1 ]
- |-G(0) NG Lona ~ 5n(T) bz Loy
) (1) OHp(T) , /trC a
F(( )WHF}()pr)VX( ivowe + Fjwéve) + Fic (5 -1
trC 1
+gHb(T)( % - )a_lmtSWV(Fjvtgwc + Fyjwdve).

Therefore, Eq. (E.67)) becomes

OAeP() 1001

OFc 1 oFc laer: (E-89)
J

By the same way of the first term of Eq. (E.68), the derivative of N) Eq. (E.21) reads

1 1
ONGp NGy pP()—1 gp()-1

aCWV - 8Ce(1) (pr)WH™ (pr)VX
(pr)HX
L (e 1 o e (1)-1 pp()—1  (E.90)
= ﬁ < (pr)OPHX — 36YZ‘C(pr)YZHX60P> | <ln(Cpg"l))) ‘ 1Fppr WHF( r)VX
(1) e(1 -2 e(1) p(1) (1)—
~NGY | (m(cp(r >))0| (m(c(pr)op)) e FT R FR L,
which gives
oNW oNW

OF = —OF (Fjydwe + Fjwdve). (E.91)

OF;c  9Cwy

Combining Eqgs. (E.89) and (E.91)) in Eq. (E.65]) leads to the final expression of the derivative
of the equivalent plastic deformation.
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Furthermore, the derivative of Mandel stress can be computed using Eq. (E.18])

oMy oyl oMyl oCwy oMy oMy
- = Fivo F.wo
IFjc IFic T 9Cwv OFic OF;c + acwv( ivowao + Fiwdvc)

IS <ln(Ce(1) ))O_Q%Aepumg

OF;c (pr)KL OF;c
9K Oay (T — To) 1 9K e(1)
3 (T-T —3K———— 2aFg * U
38ch ain ( 0)0kL, — 3 OF . OkL + 2 OF;c tr ( n<C(pr))> Ok,
G(LS LSy le b JFP DL et Les e g FPU-L pR()-L
+la kunx — 50vaLSzx KL) (prywHE (p )VX+ SU &SUHXOKLE (pryWHT (pr)VX
(1)
1) 1) OALW ) Nyt
(Fiy/owe +Fiyéve) —2G 9F ¢ Nig7, — 2GAe" — L IFic

(E.92)

By combining Egs. (E.62| [E.63] [E.64] [E.65| [E.89] [E.91] and [E.92) in Eq. one gets
the final expression of the derivative of the Piola-Kirchhoff stress tensor with respect to the
deformation gradient.

In the following, the derivative of Piola-Kirchhoff stress tensor with respect of the tem-
perature for the first mechanisms 2 3T is developed

OP) _ OFNFRN LMy FE )
T T

oFR) !
aT

1)—1 aMe(l) 1)-T
Le LMSMK(L)FP(I) T—|—F FP() KLMS a?L FFS)(A) (E93)

=Fin

)—1 0L} 1)-T 1)— [5) ( )-T
+FanFRy A r MG FE T+ FanF Ry s M

The term related to the forth term of Eq. (E.93|) can be derived as

a[‘?(LMS _ 6£KLMS 8CQV 6F (1)
- e(l e(l
oT oC Q(V) aFE(U) aT

(E.94)
1)—1
O
oT 7’

:8£KLMS (JQUF e(1) +Fe(1)6VU> Frw
e(1)

where % is obtained from the logarithmic approximation. The derivative of the plastic
deformation gradient with respect to temperature reads

81:“](015-1-)1)EZ 8exp(AeP(1)N(1))EI

FP
oT oT (n)1Z
:aexp(Aep(l)N(l))EI d(AeeINU ))OPFp(l) (E.95)
H(ALOND)op oT (0)1Z

OAePD
=Zpi0PNop 50— o7 Ptz
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which immediately gives the derivative of the inverse of the plastic deformation:

1)—1
aFg)((Y) — —Fp(l)_ 1
XE

(1)
0P’ po(1)-1 (E.96)
oT e

oT

OAeP(D)
In order to get 8%’ the derivative of the residual Q)| Eq.(E.52), with respect to the

temperature should be computed

o0 90 gAe™)
aT ‘Aep(l) + aAeP(l) aT =0 (E97)

OAePM) o0 m
oT =—\n 1) W‘AEP(I)' (E~98)

We need to calculate the derivative of the residual Q1) with respect to the temperature T.

From Eq. (6.61]) one has

oQ(T 1 Lo
851“ ) - - 2A (Qg — Q)1 — tanhZ(—ﬁ( —Ty)). (E.99)
From Eq. (6.54)), one also has
ov(T 1 1
g(T ) T9A (Vg —w)(1 - tanhQ(T(I —Tg)), (E.100)

and from Egs. (6.52)), one has

OG(T) [ —35(Gg — Gy)(1 —tanh?(L(T — Ty)) — My if T < Ty,
oT —55(Ggl — Gy)(1 — tanh®(£ (T — Ty)) — M,  if T > T,.

The derivative of the bulk modulus, Eq. (6.55)), reads

ov ov
OK(T) _0G(T) 2(1+v) &) 2571 =2v) +4 55 (L +v)
oT oT 3(1-2v) 3(1—2v)2 J

(E.101)

(E.102)

and the derivative of the thermal strain Eq. (6.53)), reads

dam(T—To) _ [ ag TS TgandTo < Ty,
oT e if T < Tgand To > Ty

The derivative of The derivative of Eq. (E.48)), reads

OL(T 1 _8Q(T)
o =" A (- ) exp (i) (—

The derivative of Eq. reads
OL(T) (1) 1 Q(T) d
b el At _ _
O AP e am 1) P U KT v AT TP

aT
dQ(T
(g +d(T—Ty) " PV KT K3 T?

(E.103)

KpT + QKp
K%T?

) HT<T, (E.104)

telV Atexp (- ) T > T,

(E.105)
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Also, the derivative of Eq. (6.70)) is expressed as

OHy(T) _ —i(ﬂg1 - H,)(1- tanhz(%(T —Ty) —Lg HT<T, (E.106)
oT —5x (Hg — Hp)(1 — tanh*({ (T — Ty))) — L, if T > T,.
Eventually from Eqs. (E.42 [E.43]), we have
. thath T (Aep(l) ats
at) _ ) T T, T Ate, | .
oT %1+6haAe§<1))(1+ﬂgAep(1)) T < Tg, (£.107)
0 if T > Ty
After substituting Eqs. (E.99} [E.107), in Eq. (E.52), one has
000  2Kg AN omKg T 1 AL(T)
_— 1 — p(l) m —m-—1
5T v arcsinh L(T) v — (AeP)™(L(T)) 5T
AeP(D) .
Lm ) *
1 0G(T) e(1) 9G(T) \ py 1 OIK(T) e(1)
-5 (m(cpr ))0 [+ Al - o (m(cpr ))
By (T — To) DK (T)
+3 apK(T)(ta—T) +3 ap— o (T = To)
aI—Ib(T) 8Sa(n-i—l)
\/ — 1)+ ——.
+ T (/trC/3 )+ T
(E.108)

Therefore, the derivative of the plastic shear strain rate with respect to the temperature can

be evaluated from Eq. (E.98|). Finally by substituting Eq. (E.98) in Eq. (E.95) yields the

derivative of plastic deformation gradient.

Eventually, by using Eqs. (E.89] [E.101], [E.102] and [E.103)) we can evaluate the missing
term of Eq. (E.93) as

oMY HG(T . 9G(T oA
i 8(T ) (ID(C(IEBKI))O N Qc‘)(T)Aé)(l)Ngi — 2657 Ni
OK(T Oou, (T — T 1 0K(T e
-3 8(T )ath(T — To)dxr — 3K(T)th(aT0)5KL T3 8(T : B (111(0&)3)) Ot
(E.109)

Combining Egs. ([E.95] and [E.109) in Eq. (E.93) yields the final expression of the

derivative of the first Piola-Kirchhoff stress tensor with respect to the temperature.

E.2.2 Predictor-corrector for second mechanism (a = 2)

As explained in Section the second mechanism is purely deviatoric.

E.2.2.1 Flow rule

Let us define the normal direction as

Me2)
2= "
N® = NGIVETE (E.110)
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Then one can write the elastic deformation gradient Eq. (6.13) from the incremental form
of the plastic flow Eq. (6.28) as

-1

_ —=(2)

(2 _ p@pp2) " :(2) T aN®

F' =F7F) [exp(eo At(S(Q)(T)) N (E.111)
Therefore, the elastic right Cauchy tensor reads

e _ p@N@)] T @e@) PN@Y]

= |exp(AP@ON )} c [exp(Ae N )] , (E.112)

1 @¢(?) _ pr@)-T T p(2)-1
with G =F) ™ Fagn) Forn) Fo)

E.2.2.2 Mandel stress
Using Eq. (6.76]), one has

t - I, e
§e(® — 375,02 <1 _ 1”01(2)3> {I — 5(6C"?)

" " - (E.113)
At T \EN@Y| @e@)-T @ AT \In@
[exp(eo At(S(Q)(T)) N Co [exp(eo At(s(2)(T)) N'“)) }
Thereby, using Eq. (6.79)), yields
e _ @ ;_HC " =3 _Liee® @I ANG
M= =, (1 E) 3(trC I+ [exp(é At(S(Q)(T)) N&)
G | exp(e® At~ EN) B
(pr) 0 S(Z)(T) :
(E.114)
E.2.2.3 Shear strain
Combining Eq. (6.25)) with Eq. (E.114), yields
_ ~1 -T
1 rC? — 3 1 2
=2 - 1,2 (1 2__—° _z e(2) DAt VaN®
T ﬂ]u (1 © 3(trC )+ |exp(€; At(S(2)(T)> N'“))

-1
7(2)
~e(2) (2) T 1IN©2)
Cion [exp(eo At(S@)(T)) N )] }

(E.115)
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E.2.2.4 Non-linear system of equations

The Mandel stress is the solution of the system for the mechanism 2, which is stated as

Y= OIS = f(ALD Nl ;= fE Nl ey 5 = FM )] getr
(p (pr)’
(E.116)
Notice that (Cff) ) and (J) are constant during the resolution of the system. Using the

results here above, Eq. (E.116|) is written in the implicit residual form

~e(2) -
Q@ — M@ _ (1 — WT?’)_l {—1(trCe(2))I
I 3

M|

-T
e(2) e(2)
.(2) 1 M e .(2) M| 1
M@ 17! .
o) | (="

The associated Newton-Raphson scheme reads

(2)
Q@ 4 ;;Ze e ) AME®?) = (E.118)
o002
Let us define Jaccobian matrix as jo = M@ e | e(z) Bt which leads to
AM®) = ;71 Q@) (E.119)
The solution is then updated by
M) - M) 4 AMe(), (E.120)

and the iterations continue until convergence to a specified tolerance is achieved.
One has now to compute the Jacobian using Eq. (E.117)), leading to

898% 0 2 (2 tree® _3 N O s
0M‘é(]23) B aM‘é%) Myg" — 7 (1 = T) {—3tTC dus
-T
@ ng M| Me?)
+ [exp(éy” At( ﬂs(g)m) \/ine<2>|) (E.121)
-1
~o(2) D ng MO M)
Cwmma lexp(eo At(\/58(2)(1“)) \@|Me(2)|) o '

Let us successively compute the derivatives of the components of Q2. First one has

onC?  ouC'® acyy . aCyy)
o2 (2) Y2 o re(2)
ML, aCs? oM ML

(E.122)



E.2 Predictor-corrector and stiffness computation for SMP 239

with Eq. (E.112))

~e(2) e(2) e(2) -
o0y, 0 {lexp(ééz) A MLy M |)] e
YI

e(2) — oage2 2 e pr
MG oM s v |, O
B (E.123)
.2) |Me(2)| 1 Me®2)
exp(€y’ At m .
! @A asEm |,
(2) @) (=
Let us define y = G At Sm +(1T) , then one gets
V2w
0 [exp(y M@ M) o [exp(yMe) m‘“M‘f@)ﬂ 10 [exp(y Mo Me)
Y1 _ Y1 AB
e 1-m e
OMCp) O [exp(y M@ M) Oy IMe) M)
O(y[M®| = ML)
ML)
(E.124)
To evaluate this derivation, we use
T
9 [exp(y[Me®)| 5 Me) . _
) P (MM T e (v M) T ey
8 [exp(y|Me(2 ‘lmmMe(z)):| eXp y YB eXp y Al ’
AB
(E.125)
9 |exp(y M= = M=)
[ o) }AB = Z ABKL; (E.126)
O(yIMe®| ="M K1)
e(2) 2) . (2) e(2) .
oM \: OVMe?2) : Me :M A (E.127)
OMe(2) OMe(2) IMe(2)|
and
e(2 e 1-m e(2
A(y[Me) | =" (m) M) <a<|M <2>(|2 GBIV a(MKEg))
8MCD OM ¢y OM gy (E.128)

1 —1m 1—-3m lfim
—y (M MM + M T ).
where Zk1,cp %(JKD(SLC +0krdcp). Then by inserting Eqgs. (E.125-[E.128) in Eq. (E.124)
we have

m -T
9 |oxp(y/M=®)| =" M=(2)) 1T g 1T
0 b exp(y MO M@)| - exp(y M T M) |
oM YB

Al

13m

1 e e e 4—m
ZABKL Y <|Me S MEIMED) 4 Me®) IKLCD>.

(E.129)
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By the same way as to derive Eq. (E.124]), we can compute the following derivative

o) S5 Me@)] e(2) 'S M) e(2) 'S M)
0 |lexp(y M@ MA)| 9 exp(yMe@) | FIM®)| 0 exp(y M| T M) |

AB
OMC'p) O [exp(y M M)| Oy M) M)
1-m_ e
Oy M| = M)
e(2 :
oMY
(E.130)
By combining the above result, we have
acsy M@ =2 ey ] T M@ 52 ey ] T 2
)~ [exp<y| M| expyMe M) Z i
1 - 6(2) e M@ -
< m | CD MKL + ’M | IKLCD) C(pr 1J {GXP(Y| ) 17
T Je e e 1
—y[exp(y!Me M >>]YI Citu |ep(yM @ FMe®)|
[exp(y|Me(2)‘l mMe(Q)):| ZZABKL
1 m e € e i—m
(m‘Me 2)‘ =3 () (2)+]M ‘lm IKLCD>_
(E.131)

Combining Eqgs. (E.123] |E.131]) leads to the final expression of Eq. (E.121)), and the system
Eq. (E.119)) is iteratively solved using the Jaccobian matrix

02 @) G — 3 gt Ce? 1
J2 = IéS) =Zuyscp — M(2) (1- @ )~ ) {—U“C s
OM{ I I Mcp 3

+ |exp(y MO M) |

~e(2) ~e(2)
trC -3, ;| 1otC o N
- 7) [_381\/16(2)6US -y {exp(y\M ’ m M )}UB

]. m e e e 4—m
o ZABKL <|Me S MERMED) 4 Me@) IKLCD>

qe(2) @52 pe@ny] o(2)| 55 M el(2) €(2)
O g [exp (oM@ 5 M)~y [exp(a M) M) 6
[exp(y\Me |1m“‘1\/1e(2))}_1 [exp(y’Me(Q)’%Me(z))]_IZABKL

QA BS
1—m 9y 1=8m_ e(2) 1om
(M) S MM + M T ).

(E.132)
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E.2.2.5 Converged solution

Let us now compute the tangent for the second mechanism. From the first Piola-Kirchhoff
stress defined in Eq. (6.23), one can get its derivative with respect of the deformation
gradient as

P oFw FRY ' SpE PR )

OFic F ¢
1 e - OFp ! o -
= 8y0we Fiyp ' SpFhL  + Fiw PSR
iC
_ e me(2)
21 o2 OFpR 21080 OGN o)1
P FD " SpE o — + FawFip b e FRY
ic OF ic -
133
(-1 0877 OFel 01 (2)-T 210858 01 _po)- ( )
+FiWF€)VD DB q F%A + FiWFg\/D DB FP

‘91535\24) dJ OFc dJ OFjc BA

~ 082 9T ot
Fi FP(Q) 1 DB g
TEWEWD 5 e Ty T aT,  oFyc

_1 082 5s@(T) ot B
Fi Fp(z) 1 DB g FP(2) T
TEWEWD asm ) T, aFyo - PA

2)-T
i

where the derivative of plastic deformation gradient can be computed by using Eq. (6.81]
6.82)

p(2)
F ez aexp(ADp@))Esz@)

8FJC - 8FJC (n)1Z
:Bexp(Aep(2)N(2))EIFp(2)
9Fjc itz E.134
 Bexp(APRNG)) 8(A6p(1)N(2))0pr(2) (E.134)
T 9(A@N®@)op OF;c ()12
DAP?) ONG)

_z N®@ AeP(D) 2Y0P | gp(2)

EIOP OP aFjC + Ae aFjC (n)1Z

The derivatives of the inverse of the plastic deformation gradient FPA)~1 and of the elastic
deformation mapping F°? are obtained similarly to mechanism 1, Eq. 1j and Eq.
(E.63)) respectively. Therefore, the deviatoric part derivative reads

oF) L OFY
OF;c OFc

B B 8Fp(2) B
P <5qJFgﬁ> RGRYTIRIRG ). (Bas)
J
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Further, the derivative of the fourth term in Eq. (E.133)) is computed as follows

5@ gpe?) o1 — “Ce(f )‘3)*1
pB 9TaM _ | ;-2 (2) 1 _ L Ee@)yae@)-1
—e(2) = S —o(2) 6D (trC™")Cpg ]
oFcy, IFic OF N 3
~e(2) _ €(2)ge(2) -
N J_%,u@)(l _uC - 3)_1(_1/3) d(trC* (C) ) (E.136)

p(2)
1 p(2)— 2 F¢g
J 3 <6qJFCM +FqG6:F‘]C> .

Let us first compute

rCe(Z) _ _
o(3) __( - (3) me(2) V17 '
anM I 8FqM
Using
orC® a6 aCyy oFDFD) _ @)
e(2) 02 ~me(2) dpF e(2) =2Fqn s (E.138)
OF 8C 8FqM 8F
and inserting Eq. (E.138]) in Eq. (E.137)), yields
_ trC°® 3\ 1 —e
0T ) 2 wCP 3, (E.139)
( ) I (1 (2) ) FqM ’
8FqM m I
Then we can compute:
3(’51"@6(2)(3%(}23)71) B 8‘51"@6(2) ~e(2)—1 e(2) 06%(13)71
me(2) - =e(2) CDB +tI'C =e(2) ’ (E140)
6FqM 6FqM 8FqM
with
oChy O TFRY T OFRY o1 | e 1 0Py
@) @ 7 e T TFo — g
8FqM 8FqM BFqM 8FqM (E.141)
ae(2)—1xe(2)—1xe(2)—1 ~e(2)—1xe(2)—1xe(2)—1
T
8FD11< —1p-1 . .
= — . en using Egs. (E. . , .
3FqM FDqFMk Th E E.141} [E£.138]), the relation (E.140|) becomes

o(trC*P et
ne(2
R

) _ — R uee® (F%(i)_ll?“iﬁk) F T TR TR )
ae 2 ~e(2) —1~e(2)— e 2)—1
(E.142)
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As a result, Eq. (E.136) can easily be obtained

e(2) ~e(2) e(2)
asDB Fod 4 o2, tuCP -3 , o LG e anM
q
-1 __ trce(2)—3_ —c(2) Ae(2)—1 ~e(2) me(2)—1me(2)—1me(2)—1
?J l:u(2)(1 - 1(2) ) 1[2Fq§\/I)CD(B) —trC ( )(FD(q) Fl\/(lk) FB(k)
_ _ _ oF?)
2)—1me(2)—1me(2)—1 M
+F%(k) F%(q) Fi/([k) )] 81%@ .
(E.143)
Since
0J d(det F) T
= = JF: .
OFjc  OFjc e (E.144)
and since
e(2) _1e(2)
Pt _ OUTFn)  —1 cize) _ =1 ipe (E.145)
o] aJ 3 aM ™ 3 aM

The fifth term in Eq. (E.133]) is computed as follows, using Eqs. (E.143| |[E.144] and [E.145)

e me(2) ~e(2)
oShy Fou 9J 2 ) 2 €™ — 3. ome(2) L, e me@ -1 ime@)n T
— =—=J3u (1— ) F [(SDB—*(tI‘C )C ]F F;
8FZ§31) 8J  OFic 311(3) Ig) aM 3 DB aM tjC
+1_ -2 tr(_le(Q)— e(2 e(2)—1@e(2)—1me(2)—1
i e el i e 4
2)—1:e(2)—1me(2)—1\1me(2)m—
PR R T
(E.146)
Then for sixth term in Eq. (E.133)) is evaluated from Eq. (E.113]) and read
(2)
dSpg 0J ——fS(Q)F_T (E.147)
0J OF;c

The derivative of the glass transition temperature with respect to deformation, i.e. the
seventh term, is already performed in Eq. (E.72). Therefore from the definition of the first
Piola-Kirchhoff stress for the second mechanisms, Eq. (6.76]), we have

°2) 4 (2) ce®)
8S2DB op=(T) _ 28 I (M) (1 ue )
ou(T) OFjc o (T) 1% (E.148)

(2)
Bon — —(trC )CD?‘l]} M,

where

ou(T)®  ou®(T) 0T,
IF;c Ty OF;ic’

(E.149)
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Using Eq. (6.75)
op(T) 2) 2)
T oT. Npgexp(=N(T — Tg)) = Nu'=(T), (E.150)
g
which leads to @
OBpg  p®/(T) ITg _ \ge(2) Ty

= . E.151
8M(2)(T) 0T, OF;c DB OF;c (E.151)
By the same way, the eighth term follows from
trCe(z) 3\—1
OBpp 9SA(T) s (I - =) 1, ~e(2)\ ~e(2)-1
=J75 |u® i opp — = (trC")C
68(2) (T) 8FJC 1% 68(2) (T) [ DB 3( ) DB ]
~e(2) ~e(2) me(2)—1 (2)
Isn) oS (T) OF;c
(E.152)
We have
AeCCEY ™) orC™ e | e Chp
= Cpg +1trC
oS (T) aS®(T) oS (1) (£.153)
_onC™®? 21 ae@a@-15e-1_0Ckq
85(2)(T) DB DF GB 88(2)(T)7
also from Eq. (6.85)), we have
ISA(T) aTy, 1, (9 1 oT
= —g@y = 2(_ (p_ g
9T, OFo A (Sgl S;¥)(1 — tanh (A2 (T Tg))Och’ (E.154)
and the eighth term becomes
e(2) 2 e(2) e(2)
aSDB aS( )(T) aTg _ iJ_%M(z)(l trC — 3) 2 8trC [ — l(trce(z))ce(2)il]
aS®(T) 9Ty OFjc  \Im 1@ as®(T) 3 B
~1__» 2C® —3 | [oC® ooy @)A1 OCED
—li2 2 —1 e(2)—-1 e(2) me(2)—1~(2)—1 FG
3 I (1 @ ) OF Cps trC" " Cpr  Cgp 95@(T)
S?)(T) aT,
0T, OJFjc
(E.155)
Combining Eqs. (E.143] [E.143] [E.146] [E.147], and [E.155)) leads to the final expression of Eq.
E) p(2)
E.133). However, the following terms are missing: agﬁl_)m, Fgé.(,““). In order to get the
iX jC

missing derivatives, let us compute the derivative of the residual Eq. (E.118]

2 2 e(2
002 . o0 oM

=0. E.156
OF;c 8M%%) OF;c ( )
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Thereby
oM o, 0a?
= —120DUS —2) IMe@- (E.157)
2 2
OFy OF e

(2)
Let us now compute US from Eq. (BE.117]
OF;c

UL 0 ey g CP =3 1 e
ZTUS _ 1— == "\~ _ =
OFx  OFix Mys™ — @ ) { 5trC " ous

+ [ exp(ef” At(

M| Me@ -T
vasan)” Vaneey

—1

_ Me@)| 1 Me(?)

Clha [exp(e(())At(| |)m |)] }o.
Qs

(E.158)

Vase(T) " VIM®

(2)

The derivative of the terms dependent on C?pr) are obtained through the derivative with
respect to Cauchy strain tensor as

a 8 1 —1
Crn Fi i (E.159)
oC ~e(2) (pr)AH™ (pr)BT’
AB 8C(pr)HT
and reads
(2) p(2)—1  (2) p(2)—T
pe,6 = Fon) QMe(2> ,Coon Foy (E.160)

The derivative of C with respect to F is

oC
OF;x

= J_%IABWV(FjV(SWX + Fjwdvx), (E.161)

where we have used in the previous equation the following result

b _ - acﬁfg
aCHy Oy

QO\NJ

— J 5T anwy. (E.162)

|Me(2)| )L Me(2)

.(2
Let us define G = (6(() )At(\@S@)(T) \/§|Me(2)|

). Therefore, combining Eqs. (E.158
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1.160) yields

o trC°® 3
89% _pr@-1 | _ (2)8(1 1(2) )

L ~e - -
grn ~ Fam, |~ {300 8us + xp(@)Igh 6 g lexp(@IGh
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1.2
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( ) 1, e2 —T ~e(2 -
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(2) trce(2) -3, 3(—%‘@()6(2)) 9s(2) (T)

— (1= ) 8us
12 9S®(T)  OFix
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m

-1 2)
—T Ae(2) [a eXp(G)]QS %k <T)
+ [exp(G)lur Cpirq os@/(T)  OFjx

op(T) 9T, 0C" 3 1 e A -1
“TOT,  oFx 1— E) ) {—BtrC dus + [exp(G)]gr C RQ [exp(G)]QS} .
(E.163)

Let us calculate the required derivatives for the previous equation components. We have

otrC®  auC® acsy)

oDy OCH AC( )y (E.164)

= [exp(G)] i Zxu [exp(G)] iy »

e(2)
8(1 _ trC 3)

e B i(l B G — 3) , ot
868(2) N I 1(2) aC e(2)
(pr)HT m (pr)HT (E.165)
1 trC°® — 3 _ _ -
= (1= ) fexp(G)lxc Tivaer [exp(G) -
Me®)| 7 Me?)
Let us define W = (60 At(‘ 7 ) \/§\M6(2)|)’ which leads to
ac*® asd(1) 9 W (@] e® W (SO =] !
oS (T) OFjc  OFjc [GXP( (S(T)) = )}YI (pr)LJ [eXp( (ST(T) = )LZ '



E.2 Predictor-corrector and stiffness computation for SMP 247

and thus

2 -1,1°T
) [exp(WS( ()] ase)my

:8{ ( UR AB
0s®(T) OFjc a[exp(WS(Q)(T):nl)}AB WS (T) = ),
O(WS(T))ke 9S*(T)
oS (T)  IFjc

(E.167)
with
9 [expWs®(T)=)] o
oo JUR:—[exp(Ws“() )|, |leeWs@™)] L (@168)
0 [exp(WS®)(T) )}AB
ex @ (T) =
0 [exp(W(S ™ ), - 169
A(WS(T) = )L
OWS) (T) ™ )i, 05*(T) _ W 1 93P(T)
c’)s(?)( T) IF;c __E(S(T)(Q)) " TOFc (E-170)

Substituting Eqs. (E.167} [E.170) in Eq. (E.166f), leads to

9 |lexp(WS@(T) = -
PSODD] 080D 1 oim ] fenrs 12 2

88(2)(T) OF;c
1w 9SO (T

W sy == 8@

m OF;c

(E.171)

By the same way, we have

0 exp(WS(T):nl)](;; 88(2)(T)

B @y 2y ] @ myay]
= [exp(WS®(T) >]QB exp(WS® (1)) Zapkw

88(2)(T) OF;c
W 1w 9SPN(T)
W s@ )=
- (5PU(T) Fo

(E.172)
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Therefore, combining the previous equations gives the derivative Eq. (E.166)) as

acyy 98P(T) _ Wi @ ey =iy ] T @y =iy ] 7T
88(2)(T) OFic  m [eXp(W (8 (T))m)}YB [GXP(W (8 (T))m)}AI
—1m 9SP(T) R

@M=" e(2) @) (T)) =
Zasia S(T) S0 SO [exeW (SO(m) )]

-1

Wk [exp(W (S(z)(T))F)}_ ce® [exp(w (s(z)(T))?Tl)}

(pr)1J
71117111 88(2) (T)
OFc

+
JA

171
[exp(W (S@(T)7)]  Zapic, S(T)®
(E.173)
The combination of Eqgs. ([E.165| and [E.173|) enables the first derivative of the residual in

term of deformation gradient to be obtained as

89%2% p(2)—1 (2) 1 trce(z) — 3,9 -7
OF jx =Fam,, | ~H E(l - T) [exp(G)]nk

_ 1 ) _T ~€ _
T fexp(@)h { 500 Vb + [ @ ) Clg o (GG

pr)

~e(2)
trC " — 3, _ 1 - -
P (1 — 1(72)) 1 {(—3 [exp(G)|ai Zxut [exp(G)]iag 0us

+ [exp(G)]gp TrauT [exp(G)]q HFE(%? 5 %IABWV(FjV‘SWX + Fijwovx)

—M(Q)i(l _ tI‘Ce(Z) — ) 8(131‘0 ) 88 )( )
I 12 8S@(T)  OFjc
—ft s —T e 1
rC"8us + [exp(G)]h Clomna [exP((G)]gs
@1 - M)*l _;a(tr(‘)‘* ))us 952 (T) (E174)
8 1Y 3 9S(T)  OFjc
~e(2)
@ TC =3, ERE e
( @) |exp(WS(T) )] - |exp(WS(T)™)| | Zania
WKL (2) —l-m 88(2) (T) ~e(2) 1
- (S m i C(pr)RQ [exp(G)]QS

+ [exp(@)Iih Ciling [xpWSHT)T)] | [expWSH(D)T)]  Zpia

—e )
WKL (2) —1-—m 88(2) (T) . (2) 8Tg _ tI'C (2 -3 -1

[ 200 s + (O g xp(©h

Thereafter, by using the equation (E.157), one can evaluate the derivative of M®? with
respect to the deformation gradient.
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Next, the derivative of the plastic deformation increment can be computed from Eq.

EED as

gl=

)

OAL? 9 '(Q)At( M|
8ij N 8FJ'X \@S(Q)(T)
At oM@

= E.175
(VaSO(T)E P (5175)
1
.(2 e m —1-m
_ 6(() At M (2)‘ (S(2) (T)) = 0s® (T)
m V2 OFic
where we need to compute the following derivatives
oM & |Me e 0\/Mgp - M)
oFix (zaFJX (E.176)
1 1—2m aMe
Me®) CD Me(2) ,
| ‘ aFjX CD

das >()

is given by Eq. (E.154). Similarly, we can get the derivative of the normal with

respect to the deformation as
ONGL 9 M)
6ij N 8ij \/§|Me(2)|
2
oM
OFx

(E.177)
1

V2 OP "9Fx

e(2)
‘Me(2)’_1 o |Me(2)|—3Me(2) aMCD MC(D)] )

The derivative of the plastic deformation mapping is obtained from its definition Eq. (6.95)).
By combining Egs. (E.177|and |E.175)) in Eq. (E.134)) yields the derivative of plastic defor-
mation with respect to the deformation gradient

p(2)
Frsnin) _ 6DE(Z)FP(2)
OF;c OFc 12
OAeP(2) ONop 2
—Zimop | Nop g + AeP® 5 Fiy (E.178)
M2 HAP) ON
-z OoP P(2) OoP FP(Q)
TIEOP \/§|Me(2)\ 8ch + Ae 8Fc 1Z(n)’

_ OexpC
where Z = o

By substituting Eqs. (E.143] [E.143] [E.146| |E.147] [E.173| and [E.178) in Eq. (E.133)),
leads to the derivative of the first Piola-Kirchhof with respect to the deformation gradient
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as follows
P p(2)-1 qe(2)pp(2)—T OFRD " e p(2)-T p(2)-1 o2 OFRY "
aFJC —61] FCD SDB FBA +F1 8F S F +F F SDBW
~e(2)
p2)-1 | -1 (2) 2 trC™ — 3. _oze(2) 1 ~e(2)) me(2)-1
+FiwFwp {J M()Ig)(l_T) Fon 5DB—§(UC )Cpi
815‘:5\31) | @) - G — )1
oFc 3" N 12

me(2)
_ _ _ _ _ OF
e(2)— e(2 lFe 2 lFe 2)—1 e(2)—1pe(2)—1xe(2)—1 M 2)-T
|:2:E qM C -1 _ trC ( )(q) N(Ik) B(k) - FI)(k) FB(q) FM(k) ):| N } FpB(5 )

popp@-1 [ =22 oy € 23 ey 1 o) se@e@p T
+FiwFwp —yd (1 = ——5—) qM[DB—g(tT )Cps  F o F;

312 12 1
1. 2 trce(2)—3 _ —e(2) Ae(2 2)—lae(2)—1me(2)—1
R s

62 62 —15 62 —1 me(2)p— 2)-T

FopP?-1) 2122 () uC*® 3 g L oae@ge@ e | gp@)-T
—FiwFwp 3 (_T) [DB—g(tr )Cps  |Fic ¢ Fpa

T, 1. s G — 3 oG 1, ~e(2) me(2)-1
+FaFRD { ooy it e e )[JDB—:,,(trc())cLSB) |

m

—1__» £ C°? 3 8trée( ) _o(2) ~ aCce@ 1 as® (1) _
3,21 — -1 (2) I e(2) me(2)—1A(2)-1 FG Fr@-T
(E.179)

E.2.2.6 Derivation of first Piola-Kirchhoff strain with respect to temperature

The remaining part of the tangent is the derivative of the first Piola-Kirchhoff stress in
IP®@)
terms of the temperature ———, which can be deduced by computing the derivative of the

residual Eq. (E.118) with respect to the temperature :

P oFw PR SpE PR )

oT oT
) i 21088
:F'W WD S FP( )—T —|—F FP( )— DB FP 2)-T (E.180)
1 OT DB * BA oT

oT

The derivative of plastic deformation gradient with respect to the temperature is obtained
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by

p(2)
Kz _ dexp(AINC )y o)
oT OT 1Z(n)
MY aAe® ONop
_ AeP(2)
Zr10P VM@ OT + Ae aT

(E.181)

(2)
F?Z(n)’

which immediately gives the derivative of the inverse of plastic deformation gradient

(2)-1 (2)
OFyy — _pr@-1 OF gy FP2)-1 (E.182)
oT XEooo9T T

In order to get the derivative of the plastic deformation gradient in terms of the temperature,
we need to compute it from the residual defined in Eq. (E.117) as

angg‘ L0 My (E.183
Me(2) e(2 =Y, .
oT 8MC(D) oT
which yields
oMe?) - o0
= T%D =~ (2 Yepus Ti{s’Me@)‘ (E.184)

We need to calculate the derivative of the residual Q) with respect to the temperature T

898) 0 e(2) ) trCe(z) -3, 1 e
37 = 7 Mus’ 4 (1_T) {—3tTC dus
-7
.2) M) 1 Me(2)
+ |exp(éy At( 5@ (T)) \@Me@)’) . (E.185)
-1
~el(2) (@) ng M| M)




252 Annexes related to chapter |§I

P AtIMe@ [N
1

Let us define W =

, then we get

2m
09%2% 3u(2) trce(2)—3 _1 1, e
ot~ ot T 1@ ) {_3“0 bus
@] e @)y
# [enW SO ) )] | 6 oW sy )]
~e(2)
6(1—“0@ 3) 1 1
2) 1 Loae®
L 5T { 3trC dus
T*e(

(E.186)

. . URC?I()r;RQ [exp(W (3(2)(T))ﬁ1)} 08
B ) d |exp(W (3(2)(T))%) N
+ [exp(W (8(2) (T))F)}UR ?lgr)RQ [ oT }QS

Let us compute the derivative of the components. First let us recall equation (6.75)), yielding

ou?

o = ~NplPexp(—N(T — Ty)) = —Np. (E.187)
Also from Eq. (6.85)), we have
0SU(T) _ L e gy a2 L r1y) (E.188)
OT — 2A, e T Ay gl ‘

Let us start to compute the derivative of the components of 68(2)

")g;(z)zai{[exmw Ay, Cy  [eww <s<2><T>>;>E}. (E.189)
0 [exp(W (ST )] 9 [exp(W (SA(T) )]0 [exp(W (sO(1)F)]
ot ofew s@(r)w)| oW @)
oW (sP(m)=)] )
oT ’
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where
0 [exp(W (s ()] - .
| 2 1}“ =~ [expW (8P(m) )] (W (AT
0 |exp(W (SP(T) )]
(E.191)
also
9 |exp(W (SP(T)) =
[exp(W (s( ) >}AB:ZABKL’ 10
0w A=)
and
@) (T)) =
o[wsAm=] Wi o gy 5 (D)

aT m aT (E.193)
_ Wi
QmAg

Combining Eqgs. (E.125] [E.192| and [E.193)) in Eq. (E.190]) one gets

—1—m

SC)(T) 75" (S, — S )sech? <A12(T - Tg)> .

_11-T
o [expW (SO(T)T] - r
vi _ KL @) (T)) = 2) (rpyy =2
- L lexp(W (SAU(T) )] [exp(W (SA(T)F)]
(2)
(2) 71rr7m aS (T)
ZABKLS (T) T . ( )
E.194
By the same way of we can compute
@] @) =] 2) (rpyy =L
O lexp(W (SP(T)T)| 0 exp(W (S(T)T)] 0 [exp(W (SO(T)T)]
oT o [exp(W (sB(T) )] o [wEAm)E]
)(T)) 5
o (W (8@(T)) }KL
oT
(E.195)
So with reference to Eq. , one can get
~e(2)
8CYZ _WKL (2) -1 -T 2) —1 =T
oz = ZEL fep(W (SP(T) )] [exp(W (SP(T)™)]
_lrrTm 88(2) T) ze -1,.171
2 S0 BN, g s

n Wi,

ep(W (52(D) )]G [expW (sO(m) )]

(o 082(T)
aT

-1
[exp(W (s (T))F)] . ZapkL S(T)
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We thus have directly

otrC*®  oC® oc?) ace?
= =4 Y7 d E.1
o @ o1 i ar 0™ (E-197)
d(1 — 1O =8)1 e o)
12 _ i(l B trC — 3)_2 otrC (E.198)
aT L. 10 ar

Combining Egs. (E.194] [E.197 and [E.198)) leads to the final expression of derivative of
the residual with respect to temperature Eq. (E.186]) becomes

ag%% +NpPexp(=N(T — Tg))(1 ~ “(_36112_) ' {—trC dus
+ [exp(w (s@)(T))%)EE Coltha) [exp(W (8(2)(T))3)]Q;}
B /i) - trCeI((;)) 3y atgc;@) {_ % O
+ [eXp(W (S@(T ))J)};EC?(QRQ [eXp(W (8(2)(T));11)]Q;}
(- tf@j;;—?’)—l { ;ata('}r( )JUS (E.199)

-1

+ R foxp(W (S0 )] [exnW (891 7))

AR
—1=m §S)(T) _. -1
Zamia SO 7 BN expw (s2(1) )

-1

Qs
0 e (50 )] 6 [t (520 )]
~1. 71— —l-m @)
[eXP(W (S(Z)(T))“)} B; Z ke S(T) " 888T<T) } '

Hence, substituting Eq. (E.199) in Eq. (E.184) one has successively the final expression of

8Mé%)
oT
The components for the derivative of the plastic deformation gradient can be computed
as
085D _ 0 (o MLy,
oT oT \ 0 V283)(T)

_ASP(D) W o2 M ) 15 A(M@m)
(E.200)



E.2 Predictor-corrector and stiffness computation for SMP

255

where

8‘Me(2)|$ _ 1 ’M (2)|1 maVMC(D) Mec(%)
T  m

" o0,
= MU gt M.

Substituting Eq. (E.201)) in Eq. (E.200)), gives

oAP® DAL M@ 4 (2) gy =i S 2(T)

= — m

oT m 2 Toor

S OT

(2) e(2)
A

vfw (VaS(T) @

Moreover, one has

NG o (e ) o (aegaee
aT V2Me@)| | ~ aT V2

1 89( ) e e — e(2 89( )
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or® _ 1 oM Mgy L, 09
oT ~ V2 0T | |MeO)*epusTor

(E.201)

(E.202)

(E.203)
MC5 .

(E.204)

Combining Egs. (E.203|and [E.202)) in Eq. (E.181)) yields the derivative of plastic deformation

gradient with respect to the temperature

p(2)
Koz _ Mgy oA ()aNOP P

Me(2) Me(2 1 _
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\/§|Me(2) \/5 2mAs
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T
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F?Z(n) :

(E.205)



256 Annexes related to chapter |§I

The second term of Eq. (E.180]) is obtained as

e(2) ) ) ~e(2) B

oT A 1 )

(2) 1 — _ _
R gy — (G ) (5200
+ I3 (1 - %)*1(_})8(trée(2)6%é)_l)]
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arac GO | 2)309 . 5gT (E.207)
ICG
2 ~e(2
8tI"C el )C -1 ¢ Ce(2)c(2)—lc(2)— aCF(G)
oT DB DF GB oT ’
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OSp 2) 12 C® 1 e(2)—1
e = ~Npu I~ 3exp(—N(T — Ty))(1 — ey )~ [0pB — g(trC D)ehs
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(E.208)

We should calculate the derivatlves of trce(z) and 66(2) with respect to the temperature.

After defining for simplicity V = ﬁ, we have
\/5 m
o) {exp <V|Me(2)| Me(z))} - -1
3@163(123) B s@ (T )&; DRC exp (VMe(Q)lmmMe(Z))]
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(E.209)
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el? AtIMe@ [wN
1
V2

First we have, after using the definition of W =

o (WSO oo (DSAMR)] o[ (WSADF)]
A e ) ) (g
) (Ws<2> (T)%)
T ’

= ZNOKL. (E.212)

Using Eq. (6.85)) gives
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By combining Eqgs. (E.211} [E.212]and [E.213)) yields
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By the same way, we have

e (w211 1o o (W50 ey (st )5
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Altogether, we have
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Finally, we have
9S¢(2)

As a result, we get

which leads to the final expression of

oT oT
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3T thereafter, by combining Eqgs.
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(E.216)
acs?)
. E.21
5T (E.217)
E.205| [E.208) [E.216[ and [E.217)),

oP®@)

—, Eq.
aT’q

£.180)).

E.2.3 Predictor-corrector for third mechanism (a = 3)

As explained in Section only a nonlinear spring is used, accordingly we have
FP(3) =T, then F¢®) = F and we can directly use the relations Eq. and Eq. |D
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E.2.3.1 Piola-Kirchhoff stress

The first Piola-Kirchhoff stress tensor can be computed from Eq. by

3 3
SR
trC — 3. _
13

m

E.2.3.2 Converged solution

The derivative of the first Piola-Kirchhof stress tensor can be evaluated as

P} 0Py 0FwSL)  0Fi Se L F o8
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a8 oF o8
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the derivative of the second term of Eq. (E.219) can be computed as
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Then we can compute

~—1
6(tr(;CAB) . 8trC CAB I‘C 3CAB
OFo  OFqu OF
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with
~—1 m—1m-1
9Csp _ FaFpi _ 8FAkF LFL OF gy
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Usmg Eq. (E.226)) and Eq. (E.223|), the relation (E.225)) becomes
0(trCCrp)
OF o
Thus Eq. (E.221)) is rewritten as
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1
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The third term of Eq. (E.219) can be computed by using
0J  O(detF)
OFc  OFic

= JF; ' = JF¢/, (E.229)
as

)

_ _24®)p-T E.230
8] OFjc SABF ' (E.230)

Combining Egs. dE.228| and |E.230|) and replacing Fis by J %Fi A, leads to the final expression

of Eq. (E.219) as

OP;
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j
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E.2.3.3 Derivation with respect to temperature

Since the material parameters for this mechanisms are temperature independent, this
leads to

oP®3)

oT

— 0. (E.232)

E.2.4 Evaluation of the heat source

The derivative of the right side of Eq. (6.36]), which will be called w, with respect to the
deformation and temperature can be computed as follows,

. 1 1
= _ (WAPM _— 4 22 APR) _—
W pocv T +Q, +v (7‘ Ae AL + 7 Ae At) , (E.233)

where At is the time step. Now let us define the following variable for simplicity

1

A@ = (7@ Ap(@)y_—_ E.234
(7@ Aeble)) (E.234)
First we derive with respect to the deformation gradient
OW dcy A
- =" > posp T+ > 5" (E.235)
and ey ey OT
Cy Cy g
— = —2, E.2
OoF 0T, OF (E-236)
By calling Eq.(6.39), yields
8cv . C1 if T < Tg
T, { 0 if T > Tg. (E:237)
Then using Eq. (E.234]), one has
HA AP gF(e) 1
_ | = p(a) | =
9F (7’ 5F + F Ae At (E.238)
For the first mechanisms, we have
e e(1) e(1)
F(1) _ 1 |MO(1)| _ LMO(CD) 8MO(CD)
8ij \/§ 8ch \/i ’M8(1)| 8FJ‘X
(E.239)

e(1) e e
1 My (oM 1 oMY
TP 30AB R, 00 )

V2 M) -

AepD) o7

and

OF OF
in Eq. (E.238) one has the derivative of the term related to plasticity with respect to

deformation.

and aAg;(l) have been evaluated in Eq. (E.89)). Upon substitution of
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By the same way of mechanism 1, we compute the derivative of A® with respect to the

deformation. o
NS oA 97 1
— (7@ AeP@ | — E.24
F (T oF T oF 07 | At (E.240)
The derivative of 8A€p ! has been computed in Eq. (E.200) . As we know 7 \[]Me ),
we have
@1 M| 1 MEY aMEY)
OFx 2 Fjc 2 M| OF,
— L MCD ‘72—1 aQUS
\/§|Me( | CDUSaF
(2)
where 8FUS has been computed in Eq. (E.174). By substituting Egs. (E.241f) and (E.175
X

in the previous equation ([E.240)), one has its solution.
Secondly, the derivative of the thermal source is

acv dAL)
==> p P T->"p 0 o7 v (E.242)
where 5
Jey | —c if T < T,
oT { 0 if T > Ty, (E.243)
and "
OA DA @) or@\ 1
— [ 7@ p(@) ) =
T < T + Ae 9T | At (E.244)
For the first mechanism, we have
oA dAeP() 8T< )
3T (7 3T 5T Ae )At (E.245)

where 8A6 D has been already computed in Eq. 1} then 8;; " is computed by using
Eq. (E.22)
e e(1) e(1)
o7 _ L‘MO(I)’ _ LMO( )8M 0(CD)
oT V2 0T V2 |M0 | oT

e(1) e(1) e(1)
1 Mycn) (Micp) 1 M)
CD

vz e | er 3T T

By substituting Eq. in Eq. , we can get the derivative of the term related
to placticity with respect to temperature.

By the same way the derivative of A with respect to temperature for the second mecha-
nism is computed as

(E.246)

aA(2) 7(2) 8A6p(2) p(2) 77'(2) 1
=T €

or — T o A G )an

(E.247)
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where ‘9%6;(2) has been computed in Eq. (E.158)), and

or® 1 M@ MY oMy

oT 2 OT Me®| OT
(2) (2)
oM oo
|Me(2)‘ CDUS oT

By substituting Eq. (E.203) and Eq. (E.248]) in the previous equation (E.247]), one can get

its expression.

(E.248)



	Introduction 
	General properties of the finite element method and Hilbert spaces
	Introduction
	Finite element partition
	Discontinuous Finite Element spaces
	Finite element properties
	Conclusions

	A coupled Linear Thermo-Elasticity Discontinuous Galerkin method
	Introduction
	 Governing equations for Thermo-Elasticity
	 Discontinuous Galerkin formulation for linear Thermo-Elasticity
	Weak form
	Finite element discritization
	The system resolution

	Numerical properties of linear Thermo-Elastic DG formulation
	Consistency
	Solution uniqueness
	Error in the energy norm
	Error estimate in the L2-norm

	Numerical results
	Conclusions

	A coupled Electro-Thermal Discontinuous Galerkin method
	Introduction
	Governing equations
	Strong form
	The conjugated driving forces

	Electro-Thermal analysis with the Discontinuous Galerkin (DG) finite element method
	Weak discontinuous form 
	Finite element discretization

	Numerical properties
	Consistency
	Discontinuous space and finite element properties
	Second order non-self-adjoint elliptic problem
	Solution uniqueness
	A priori error estimates
	Error estimate in the L2-norm

	Numerical examples
	1-D example with one material
	1-D example with two materials
	1-D The variation of electric potential with temperature difference
	2-D study of convergence order
	3-D unit cell simulation

	Conclusions

	A coupled Electro-Thermo-Mechanical Discontinuous Galerkin method
	Introduction
	 Governing equations for Electro-Thermo-Mechanical coupling
	The Discontinuous Galerkin formulation for Electro-Thermo-Mechanical bodies
	The Discontinuous Galerkin weak form
	The Finite element discretization of the coupled problem
	The system resolution

	Numerical properties in a small deformation setting
	Consistency
	Second order non-self-adjoint elliptic problem
	Solution uniqueness
	A priori error estimates
	Error estimate in the L2-norm

	Numerical results
	2-D study of convergence order
	3-D unit cell simulation

	Conclusions

	The constitutive laws of smart composite materials
	Introduction
	 Material model of carbon fiber
	Constitutive equations of shape memory polymer
	Kinematics
	Elasto-visco-plasticity
	Partial differential governing equations
	Definition of the micromechanisms
	Finite increment form of the Shape Memory Polymer constitutive law

	Numerical simulations
	3-D Shape memory polymers tests
	3-D Electro-Thermo-Mechanical coupling compression test applied on Shape memory polymers reinforced by carbon fibers (SMPC)
	3-D Electro-Thermo-Mechanical coupling bending test applied on Shape memory polymers reinforced by carbon fibers (SMPC)

	Conclusions

	Conclusions and perspectives
	Annexes related to chapter 2
	Bounds of the norms
	Energy bound

	Annexes related to chapter 3
	Stiffness matrix for Thermo-Elastic coupling
	Lower bound for Thermo-Elastic coupling
	Upper bound for Thermo-Elastic coupling
	Uniqueness of the solution for Thermo-Elastic coupling

	Annexes related to chapter 4
	Stiffness matrix for Electro-Thermal coupling
	Derivatives
	Lower bound for Electro-Thermal coupling
	Upper bound for Electro-Thermal coupling
	Uniqueness of the solution for Electro-Thermal coupling
	The bound in the ball
	Intermediate bounds derivation
	The bound of the nonlinear term  N(M-.4e,y-.4;M-.4h)
	The bound of N used for L2-norm convergence rate derivation
	Intermediate bounds for the L2-norm
	Bound of  N(M-.4e,M-.4h;Ih-.4)


	Annexes related to chapter 5
	Stiffness matrix for Electro-Thermo-Mechanical coupling
	Expression of the force derivations
	Expression of the constitutive law derivations

	Lower bound for Electro-Thermo-Mechanical coupling
	Upper bound for Electro-Thermo-Mechanical coupling
	Uniqueness of the solution for Electro-Thermo-Mechanical coupling
	The bound of the nonlinear term  N(G-.4e,y-.4;G-.4h)
	Bounds of different contributions
	Declaration related to the fifth term of N(G-.4e,y-.4;G-.4h)


	Annexes related to chapter 6
	Tangent of the carbon fiber
	Predictor-corrector and stiffness computation for SMP
	Predictor-corrector for the first mechanism (=1)
	Predictor-corrector for second mechanism (=2)
	Predictor-corrector for third mechanism (=3)
	Evaluation of the heat source



