
Université de Liège
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Université de Liège - Computational & Multiscale Mechanics of Materials (CM3)- Bât.
B52/3

Quartier Polytech 1, Allée de la Découverte 9, B-4000 Liège 1, Belgique
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Chapter 1

Introduction

Shape Memory Polymers (SMP) are those unique materials that have the ability to
memorize a macroscopic shape, in other words, to change shape and to recover the original
shape. SMP can fix a temporary deformed configuration and recover their initial shape upon
application of a stimulus such as temperature [36], light [38], electric field [18], magnetic
field [65], water [31] and solvent [49]. Additional information about the different kinds of
stimuli can be found in [9, 52]. These polymers take advantage of a property change at the
glass transition temperature Tg. Below Tg, the movement of the polymer segments are frozen
and the polymers are considered to be in a glassy state. Once they are heated above Tg the
chains become weak and the polymers are considered to be in a rubbery state, such that
the materials can be deformed with minimal force. Shape Memory Polymers are capable of
large deformations (high recovery strain), which are essential for applications where storage
space is critical. Structures can be folded in a compact phase and then they can recover
their shape, because of an external stimulus. In addition they have other advantages such
as low density, low cost, and easy processability.

However, SMP have the drawback of low strength and stiffness when they are used
for structural applications. This drawback can be overcome by disperesing (distributing)
continuous or discontinuous reinforcements throughout a polymer matrix, leading to Shape
Memory Polymer Composites (SMPC). Meng et al. [53] have clarified that the aim of SMPC
is to improve the shape memory recovery stress and the mechanical properties in addition
to act as triggering mechanisms under light, moisture, electricity, or magnetic field, but
also to tune the transition temperature. In particular, the kinds of reinforcement that we
are interested in are nanowires, carbon nanotubes, and continuous carbon fibers dispersed
throughout a shape memory polymer which results in composite materials with high stiff-
ness and strength to weight ratios. The polymer matrix indeed avoids catastrophic failure
due to fiber breaking, and the existence of the carbon fibers enhances strength and stiffness.
Moreover, carbon fibers exhibit conductivity which can be exploited as a shape memory
triggering mechanism. The range of composite material electrical conductivity can be con-
trolled by the amount of carbon fibers, and the increase of temperature required to trigger
the Shape Memory effect is obtained through Joule effect by applying an electric current,
which makes them favorable and meet the particular requirements for many applications
in which applying an external heat is difficult. Henceforth SMPC are the prime candidate
materials for the area of deployable space structures (intelligent structures). A review con-
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10 Introduction

cerning polymer composites and conductive polymers under the scope of a thermoelectric
application and the evaluation of their figure of merit along the last years have been re-
ported by Culebras et al. [15], in which the improvement of the thermoelectric properties
of polymers mixed with graphite/graphene, carbon nanotubes, or inorganic thermoelectric
nanoparticles has been studied. Characterization, fabrication, and modeling of SMP and
SMPC, in addition to their potential applications across a wide variety of fields from outer
space to automobile actuators have been extensively described by Leng et al. [39], see Pilate
at al. [59] as well for more applications. In particular, Yu et al. [78] have suggested to incor-
porate shape memory polymer with carbon nanotubes and short carbon fibers, because the
existence of carbon nanotubes alone could decrease the elastic modulus and the stretch of the
materials. They have shown experimentally the enhancement of the electrical, thermal, and
shape memory properties of the conductive SMP composites, as the addition of the short
carbon fibers has increased the electrical conductivity by 1000 times in comparison with
carbon nanotubes alone when the same amount of the fillers are used. Besides, they have
shown that this kind of SMPC is able to recover 98% in comparison to its original shape. It
should be noted that continuous carbon fiber reinforced SMP shows an improvement in the
mechanical properties related to stiffness and strength and this makes them good candidates
for applications where structural stiffness is required, contrarily to particles or short fibers
reinforced composites [35,40].

The aforementioned studies and many other ones [19,41,53,78] have shown the potential
of SMP reinforced by fibers to be used for the spacecraft self-deployment devices such as
antennas, hinge, trusses, boom, reflector, solar array, morphing skin, and vibration control
devices. A good example is the prototype of solar array deployed by means of a SMPC
hinge proposed by Lan et al. [35]. This panel can be compacted on earth, stored in a
compacted shape, and then self deployed in space. The hinge is heated above glass transition
temperature Tg by applying an electric potential of 20 [V], then it is bent to 90◦ by applying
an external force at soft state, cooled while constrained to a room temperature, afterward
reheated by applying the same electric potential again which causes the deployment of the
prototype of the solar array, as shown in Fig. 1.1.

Many experimental studies for conductive shape memory polymer composites actuated
by Joule heating have been explored by many researchers [18,35,42,45,46,47,48]. However,
the Electro-Thermo-Mechanical coupled large deformation constitutive theory and numerical
simulations for such behaviors are not wide spread, although it is useful to reduce the number
of expensive experimental tests. In this work, a multi-field coupling resolution strategy
is used for the resolution of electrical, energy, and momentum conservation equations by
means of the Discontinuous Galerkin Finite Element Method (DGFEM) to solve the various
interacting physics and coupled simulations.

The main idea of the Discontinuous Galerkin (DG) formalism is to constrain weakly
the compatibility between elements, on the contrary to classical FEM. In this case, the
solution is approximated by piece-wise continuous polynomial functions, which allows using
discontinuous polynomial spaces of high degree and facilitate handling elements of different
types and dynamic mesh modifications. Indeed, the possibility of using irregular and non
conforming meshes in an algorithm makes it suitable for time dependent transient problems.
They also allow having hanging nodes and different polynomial degrees at the interface,
with a view to hp-adaptivity. In addition, since the DG method allows discontinuities of
the physical unknowns within the interior of the problem domain, it is a natural approach
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Figure 1.1: Shape recovery process of a prototype of solar array actuated by SMPC hinge [35]

to capture the jumps across the material interface in coupled problems. Above all, DG
methods are also characterized by their flexibility in terms of mesh design while keeping
their high order accuracy [29] and their high scalability in parallel simulations while optimal
convergence rates are still achieved.

However, if not correctly formulated, discontinuous methods can exhibit instabilities,
and the numerical results fail to approximate the exact solution. It is, therefore, important
to have methods available which lead to reliable results for a wide variety of problems. By
using an adequate inter element flux definition combined to stabilization techniques, the
shortcomings of non-stabilized DG methods can be overcome [56,60,63].

Since the seminal work of Reed et al. [62], DG methods have been developed to solve
hyperbolic, parabolic, and elliptic problems. The state of the art of DG methods and their
developments can be found in [14]. Most of DG methods for elliptic and parabolic problems
rely on the Interior Penalty (IP) method. The main principle of IP, as introduced in [16,74],
is to constrain weakly the compatibility instead of building it into the finite element which
enables the use of discontinuous polynomial spaces of high degree. The interest in the
symmetric interior penalty (SIPG) methods, which will be considered in this work, has
been renewed by Wheeler [74] due to demands for optimality of convergence rates with the
mesh size hs (i.e., the rates of the convergence is k in the H1-norm and k + 1 in the L2-
norm, where k is the polynomial approximation degree). However there exist other possible
choices of traces and numerical fluxes as discussed by Arnold et al. [5], who have provided
an analysis of a large class of discontinuous methods for second order elliptic problems with
different numerical fluxes, and demonstrated that correctly formulated IP, NIPG (Non-
Symmetric Interior Penalty), LDG (Local discontinuous Galerkin), and other DG methods
are consistent and stables methods. In particular Arnold et al. [5] have proposed a framework
for dealing with linear elliptic problems by means of DG methods and demonstrated that
DG methods which are completely consistent and stable achieve optimal error estimates, and
that the inconsistent DG methods like the pure penalty methods can still achieve optimal
error estimates provided they are super-penalized. Besides, Georgoulis [21] has derived
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anisotropic hp-error bounds for linear second order elliptic diffusion convection reaction
using Discontinuous Galerkin finite element method (SIPG and NIPG), on shape-regular and
anisotropic elements, and for isotropic and anisotropic polynomial degrees for the element
bases. He has also observed optimal order of convergence in the L2-norm for the SIPG
formulation when a uniform mesh size refinement for different values of k is employed.
Moreover, he has shown that the solution of the adjoint problem suffers from sub-optimal
rates of convergence when a NIPG formulation is used. Yadav et al. [76] have extended
the DG methods from a linear self-adjoint elliptic problem to a second order nonlinear
elliptic problem. The nonlinear system resulting from DG methods is then analyzed based
on a fixed point argument. They have also shown that the error estimate in the L2-norm
for piece-wise polynomials of degree k ≥ 1 is k + 1. They have also provided numerical
results to illustrate the theoretical results. Gudi [24] has proposed an analysis for the most
popular DG schemes such as SIPG, NIPG, and LDG methods for one dimension linear and
nonlinear elliptic problems, and the error estimate has been studied for each of these methods
by reformulating the problems in a fixed point form. In addition, according to Gudi [24],
optimal errors in the H1-norm and in L2-norm are proved for SIPG for polynomial degrees
larger or equal to 2, and a loss in the optimality in the L2-norm is observed for NIPG and
LDG. In that work a deterioration in the order of convergence in the mesh size hs is noted
when linear polynomials are used.

Recently, DG has been used to solve coupled problems. For instance Wheeler and Sun [69]
have proposed a primal DG method with interior penalty (IP) terms to solve coupled reactive
transport in porous media. In that work, a cut-off operator is used in the DG scheme to
treat the coupling and achieve convergence. They have declared that optimal convergence
rates for both flow and transport terms can be achieved if the same polynomial degree of
approximation is used. However if they are different, the behavior for the coupled system is
controlled by the part with the lowest degree of approximation, and the error estimate in the
L2(H1)-norm is nearly optimal in k with a loss of 1

2 when polynomials with different degrees
are used. Furthermore, Zheng et al. [79] have proposed a DG method to solve thermo-elastic
coupled problems due to temperature and pressure dependent thermal contact resistance.
In that work the DG method is used to simulate the temperature jump, and the mechanical
sub-problem is solved by the DG finite element method with a penalty function.

The main aim of this work is to derive a consistent and stable Discontinuous Galerkin
(DG) method for Electro-Thermo-Mechanical coupling analyzes, which to the authors knowl-
edge, has not been introduced yet. The constitutive equations governing Electro-Thermo-
Mehanical coupling can be formulated as a function of the displacement uuu, the electric
potential V and the temperature T, in particular under the form f(uuu, −V

T , 1
T). Such a

formulation for Electro-Thermal coupling, without the mechanical contribution has been
considered in the literature, e.g. Mahan [51], Yang et al. [77], Liu [43], in order to obtain
a conjugated pair of fluxes and fields gradient. Mahan [51] has provided a comparison be-
tween the different energy fluxes that have been developed and used by different researchers
and concluded that all these different treatments result in the same equation. We have
extended this energy consistent formulation to Electro-Thermo-Mechanics and by this way
we are able to derive a consistent Discontinuous Galerkin (DG) method and its numerical
properties for Electro-Thermo-Elasticity. The main advantage of this work is the aptitude
to deal with arbitrary geometry and the capability of the formulation to capture the Electro-
Thermo-Mechanical behavior for composite materials with high contrast: one phase has a
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high electric conductivity (e.g., carbon fiber) and other is a resistible material (e.g., poly-
mers). Moreover, another objective of this study is to investigated the response of carbon
fiber reinforced shape memory polymer composites when an electric power is applied. For
that a micromechanical model of unidirectional carbon fibers embedded in a shape memory
polymer matrix is formulated considering the interaction of electrical, thermal, and mechan-
ical fields. It is then solved using the DG method to determine the time dependent response
of the Electro-Thermo-Mechanical shape memory polymer composites and to determine the
effective properties and quantify the variation of the fields in the large deformation regime,
when they are actuated by a low electric power.

This work is structured as follows

• Chapter 2, general properties of the finite element method and Hilbert spaces, describes
the general properties that will be needed for deriving the numerical properties of DG
formulation in the following three chapters, and defines the function spaces and the
norms that will be considered.

• Chapter 3, a coupled Linear Thermo-Elasticity Discontinuous Galerkin method, fo-
cuses on the governing equations of Linear Thermo-Elasticty coupling and the deriva-
tion of a Discontinuous Galerkin (DG) finite element method. Next some theoretical
results on the stability and uniqueness of the solution for this problem are presented,
followed by the error analysis and numerical tests verification of the theoretical study.

• Chapter 4, a coupled Electro-Thermal Discontinuous Galerkin method, introduces
Electro-Thermal coupling and its application. Then the chapter describes the gov-
erning equations of Electro-Thermal materials. An alternative weak form in terms
of energetically conjugated fields gradients and fluxes is proposed. This weak form
is then discretized using the Discontinuous Galerkin method, resulting in a particu-
lar choice of the test functions (δfT = δ( 1

T), δfV = δ(−V
T )) and of the trial functions

(fT = 1
T , fV = −V

T ), where T is the temperature and V is the electric potential. This al-
lows us to develop a DG formulation for nonlinear Electro-Thermo coupled problems.
The numerical properties of the DG method are demonstrated, based on rewriting
the nonlinear formulation in a fixed point form [34]. The numerical properties of the
nonlinear elliptic problem, i.e. the consistency and the uniqueness of the solution are
demonstrated, and the prior error estimates are shown to be optimal in the mesh size
for polynomial approximation degrees k > 1 for the energy-norm and L2-norm (re-
spectively in order k and k + 1). Eventually several examples of applications in one,
two, and three dimensions are provided for homogeneous and composite materials, in
order to verify the accuracy and effectiveness of the Electro-Thermal DG formulation
and to illustrate the algorithm properties.

• Chapter 5, a coupled Electro-Thermo-Mechanical Discontinuous Galerkin method, is
developed considering the interaction of electrical, thermal, and mechanical fields. The
DG method is formulated in finite deformations and finite fields variations, resulting
into a set of non-linear equations. The DG method is implemented within a three-
dimensional finite element code. Afterwards, the uniqueness and optimal numerical
properties are derived for Electro-Thermo-Elasticity stated in a small deformation
setting. In particular, the convergence rates of the error in both the energy and L2-
norms are shown to be optimal with respect to the mesh size in terms of the polynomial
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degree approximation k (respectively in order k and k + 1). This chapter concludes
with some numerical tests supporting the developed theory. Moreover a unit cell of
composite microstructures corresponding to periodically distributed carbon fibers in
a polymer matrix is considered to clarify the Electro-Thermo-Mechanical behavior of
composite materials.

• Chapter 6, the constitutive law of composite materials, presents details of two models
that are used to describe the carbon fiber and shape memory polymer behaviors. A
simple transversely isotropic hyperelastic formulation is used to model carbon fiber
in the fully nonlinear range, and an Elasto-viscoplastic large deformation constitutive
model is used for the shape memory polymers. These constitutive models are applied
in simulating the behavior of SMPC unit cells in the large deformation regime, when
it is actuated by a direct heat or low electric power.

• Chapter 7, the conclusions with future perspectives, contains some final comments
regarding this work and some possible future directions of research.

The publications related to the thesis are

• L. Homsi, C. Geuzaine, L. Noels. Numerical properties of a discontinuous Galerkin
fomulation for electro-thermal coupled problems. Proceedings of the 7th European
Congress on Computational Methods in Applied Sciences and Engineering. Volume 2,
2016, 2558-2565.

• L. Homsi, C. Geuzaine, L. Noels, A coupled electro-thermal discontinuous Galerkin
method. Journal of Computational Physics, 2017. (Minor revision)

• L. Homsi, L. Noels. A discontinuous Galerkin method for non-linear electro-thermo-
mechanical problems; application to shape memory composite materials, Meccanica,
submitted, 2017



Chapter 2

General properties of the finite
element method and Hilbert spaces

2.1 Introduction

In this chapter, short introductions about the Sobolev space and Hilbert space in addition
to the definitions of the norms and the main approximation properties, which will be used
in the error analysis of the Discontinuous Galerkin Finite element method for linear and
non-linear coupled problems, are presented without proofs.

2.2 Finite element partition

Let the body Ω ∈ Rd, with d = 2 or 3 the space dimension, be approximated by a
discretized body Ωh such that Ω ≈ Ωh = ∪eΩ

e, where a finite element in Ωh is denoted by
Ωe. The boundary ∂Ωh is decomposed into a region of Dirichlet boundary ∂DΩh, and a region
of Neumann boundary ∂NΩh. The intersecting boundary of the finite elements is denoted
by ∂IΩh = ∪e∂Ωe \ ∂Ωh as shown in the Fig. 2.1, with ∂NΩh = ∪e∂NΩe, ∂DΩh = ∪e∂DΩe,
∂Ωh ∪ ∂IΩh = ∪e∂Ωe, and ∂IΩ

e = ∂Ωe
⋂
∂IΩh.

Within this finite element discretization, an interior face (∂IΩ)s = ∂Ωe+∩∂Ωe− is shared
by elements Ωe+ and Ωe−, and nnn− is the unit normal vector pointing from element Ωe− toward
element Ωe+, see Fig. 2.1. Similarly, an exterior Neumann edge (∂NΩ)s = ∂Ωe ∩∂NΩh is the
intersection between the boundary of the element Ωe, an exterior Dirichlet edge (∂DΩ)s =
∂Ωe ∩∂DΩh is the intersection between the boundary of the element Ωe and (∂DIΩ)sis a face
either on ∂IΩh or on ∂DΩh, with

∑
s (∂DIΩ)s = ∂IΩh ∪ ∂DΩh. Finally nnn− = nnn is used to

represent the outward unit normal vector of the external boundary ∂Ωh.
In this work, we assume a constant mesh size on the elements, but the theory can be gen-

eralized by considering bounded element sizes such as in [24]. We assume the discretization

is shaped with a regular mesh of size hs defined as |Ωe|
|∂Ωe| . We also assume shape regularity

of Ωh so that there exist constants c1, c2, c3 and c4, independent of hs, such that

c1 diam ((∂IΩ)s) ≤ hs ≤ c2 diam ((∂IΩ)s), and

c3 diam (Ωe) ≤ hs ≤ c4 diam (Ωe),
(2.1)

where (∂IΩ)s is a face between elements.

15
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Figure 2.1: interface between two elements (Ωe+) and (Ωe−)

2.3 Discontinuous Finite Element spaces

Let us define a vector OOO =


O1

.

.
On

 of size n, then let us now recall the Sobolev space

Ws
r(Ω), with s a non-negative integer and r ∈ [1,∞[, the subspace of all functions from the

norm Lr(Ω) whose generalized derivatives up to order s exist and belong to Lr(Ω), which is
defined as

Ws
r(Ω) = {OOO ∈ (Lr(Ω))n , ∂αOOO ∈ (Lr(Ω))n ; ∀ | α |≤ s, s ≥ 1} . (2.2)

When r = 2, the spaces are Hilbert spaces: Ws
2(Ω) = (Hs(Ω))n, and for s = 0, the space is

the L2 space:
(
H0(Ω)

)n
= (L2(Ω))n.

Furthermore in order to account for the discontinuity in OOO, we can define the associated
norm of the standard broken Sobolev space Ws

r(Ωh) of order s and exponent r with 1 ≤ r <
∞. Starting from the Sobolev space norm and semi norm‖OOO ‖Ws

r(Ω
e) =

(∑
|α|≤s

∫
Ωe
‖ [∂αO1] (xxx) ‖r dxxx + ...+

∑
|α|≤s

∫
Ωe
‖ [∂αOn] (xxx) ‖r dxxx

) 1
r
,

|OOO |Ws
r(Ω

e) =
(∫

Ωe
‖ [∂sO1] (xxx) ‖r dxxx + ...+

∫
Ωe
‖ [∂sOn] (xxx) ‖r dxxx

) 1
r
,

(2.3)

the norm and semi norm of the broken Sobolev space read‖OOO ‖Ws
r(Ωh) =

(∑
e ‖OOO ‖rWs

r(Ω
e)

) 1
r
,

|OOO |Ws
r(Ωh) =

(∑
e |OOO |rWs

r(Ω
e)

) 1
r
.

(2.4)

For the case r =∞, the norm is defined as

‖OOO ‖Ws
∞(Ωh)= maxe ‖OOO ‖Ws

∞(Ωe) . (2.5)
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As the finite element space consists of discontinuous elements, the unknown field OOO does not
belong to Hs(Ωh) but in the following piecewise broken Sobolev space

Xs =
{

OOO ∈
(
L2(Ωh)

)n |OOO|Ωe∈(Hs(Ωe))n ∀Ωe∈Ωh

}
. (2.6)

We can now define the following broken Sobolev spaces X, particularized for s = 2, by

X =
{

OOO ∈
(
L2(Ωh)

)n |OOO|Ωe∈(H2(Ωe))
n ∀Ωe∈Ωh

}
, (2.7)

and

YYY =
{
∇OOO ∈

(
(L2(Ωh))d

)n
|∇OOO|Ωe∈(Hs−1(Ωe))

n ∀Ωe∈Ωh

}
. (2.8)

We define the discontinuous manifolds on the polynomial approximation by

Xk =
{

OOOh ∈
(
L2(Ωh)

)n |OOOh|Ωe∈(Pk(Ωe))
n ∀Ωe∈Ωh

}
, (2.9)

where Pk(Ωe) is the space of polynomial functions of order up to k.

At the interface between two elements, Fig. 2.1, each interior edge (∂IΩ)s is shared by
two elements − and +, where (∂IΩ)s ⊂ ∂IΩ

e− and (∂IΩ)s ⊂ ∂IΩ
e+

. We can thus define two
useful operators, the jump operator J·K = [•+ − •−] that computes the discontinuity between
the elements and the average operators 〈·〉 = 1

2 (•+ + •−) which is the mean between two
element values. Those two operators can be extended on the Dirichlet boundary ∂DΩh as
〈•〉 = •, J•K = (−•).

Let us define the mesh dependent norms, which will be considered in the following
analysis, for OOO ∈ X

|‖OOO ‖|2∗ =
∑

e

‖∇OOO‖2
L2(Ωe)

+
∑

e

h−1
s ‖ JOOOnnnK ‖2

L2(∂Ωe)
, (2.10)

|‖OOO ‖|2 =
∑

e

‖OOO‖2
H1(Ωe)

+
∑

e

h−1
s ‖ JOOOnnnK ‖2

L2(∂Ωe)
, (2.11)

and

|‖ OOO ‖|21 =
∑

e

‖OOO‖2
H1(Ωe)

+
∑

e

hs ‖OOO ‖2
H1(∂Ωe)

+
∑

e

h−1
s ‖ JOOOnnnK ‖2

L2(∂Ωe)
, (2.12)

with ∂Ωe = ∂IΩ
e ∪ ∂DΩe and OOOnnn =


nnn− 000...000

.

.
000 000...nnn−


3n×n

OOO.

2.4 Finite element properties

First we discuss some inequalities for future use.
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Lemma 2.4.1 (Interpolant inequality). For all OOO ∈ (Hs(Ωe))n there exists a sequence OOOh ∈(
Pk(Ωe)

)n
and a positive constant Ck

D depending on s and k but independent of OOO and hs,
such that

1. for any 0 ≤ n ≤ s

‖ OOO−OOOh ‖Hn(Ωe)≤ Ck
Dhµ−ns ‖ OOO ‖Hs(Ωe), (2.13)

2. for any 0 ≤ n ≤ s− 1 + 2
r

‖ OOO−OOOh ‖Wn
r (Ωe)≤ Ck

Dh
µ−n−1+ 2

r
s ‖ OOO ‖Hs(Ωe) if d = 2, (2.14)

3. for any s > n + 1
2

‖ OOO−OOOh ‖Hn(∂Ωe)≤ Ck
Dh

µ−n− 1
2

s ‖ OOO ‖Hs(Ωe), (2.15)

where µ = min {s, k + 1}.
The proof of the first and third properties can be found in [6], then by the use of the properties
(1) and (3) in Lemma 1 of [2] and the scaling argument in [3], the second property can be
derived in the particular case of d = 2 as demonstrated in [24].
Remarks
i) The approximation property in (2) is still valid for r =∞, see [50].
ii) For OOO ∈ Xs, let us define the interpolant IhOOO ∈ Xk by IhOOO|Ωe = OOOh(OOO|Ωe), which means
IhOOO satisfies the interpolant inequality property provided in Lemma 2.4.1 on Ωh, see [30].

Lemma 2.4.2 (Trace inequality). For all OOO ∈
(
Hs+1(Ωe)

)n
, there exists a positive constant

CT , such that

‖ OOO ‖rWs
r(∂Ωe)≤ CT

(
1

hs
‖ OOO ‖rWs

r(Ω
e) + ‖ OOO ‖r−1

Ws
2r−2(Ωe)‖ ∇

s+1OOO ‖L2(Ωe)

)
, (2.16)

where s = 0, 1 and r = 2, 4, or in other words

‖ OOO ‖2
L2(∂Ωe)

≤ CT

(
1

hs
‖ OOO ‖2

L2(Ωe)
+ ‖ OOO ‖L2(Ωe)‖ ∇OOO ‖L2(Ωe)

)
,

‖ OOO ‖4
L4(∂Ωe)

≤ CT

(
1

hs
‖ OOO ‖4

L4(Ωe)
+ ‖ OOO ‖3

L6(Ωe)
‖ ∇OOO ‖L2(Ωe)

)
.

(2.17)

The first equation, s = 0 and r = 2, is proved in [60], and the second one, r = 4 and s = 0,
is proved in [24].

Lemma 2.4.3 (Trace inequality on the finite element space). For all OOOh ∈
(
Pk(Ωe)

)n
there

exists a constant Ck
K > 0 depending on k, such that

‖ ∇lOOOh ‖L2(∂Ωe)≤ Ck
Kh
− 1

2
s ‖ ∇lOOOh ‖L2(Ωe) l = 0, 1, (2.18)

where Ck
K = supυ∈PK(Ωe)

hs‖∇OOOh‖2L2(∂Ωe)

‖∇OOOh‖2L2(Ωe)

is a constant which depends on the degree of the

polynomial approximation only with hs = |Ωe|
|∂Ωe| , see [27] for more details.
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Lemma 2.4.4 (Inverse inequality). For OOOh ∈
(
Pk(Ωe)

)n
and r ≥ 2, there exists Ck

I > 0,
such that

‖ OOOh ‖Lr(Ωe)≤ Ck
Ih

d
r
− d

2
s ‖ OOOh ‖L2(Ωe), (2.19)

‖ OOOh ‖Lr(∂Ωe)≤ Ck
Ih

d−1
r
− d−1

2
s ‖ OOOh ‖L2(∂Ωe), (2.20)

‖ ∇OOOh ‖L2(Ωe)≤ Ck
Ih−1

s ‖ OOOh ‖L2(Ωe) . (2.21)

The proof of the first two properties can be found in [24] and the last one in [60]. Note that
Eqs. (2.19, 2.20) involve the space dimension d = 2

Lemma 2.4.5 (Relation between energy norms on the finite element space). From [74], for
OOOh ∈ Xk, there exists a positive constant Ck, depending on k, such that

|‖ OOOh ‖|1≤ Ck |‖ OOOh ‖| . (2.22)

The demonstration directly follows by bounding the extra terms
∑

e hs ‖ OOO ‖2
H1(∂Ωe)

of the

norm defined by Eq. (2.12), in comparison to the norm defined by Eq. (2.11), using succes-
sively the trace inequality, Eq. (2.17), and the inverse inequality, Eq. (2.21), for the first
term, and the trace inequality on the finite element space, Eq. (2.18), for the second term.
The demonstration is reported in Appendix A.1.

Lemma 2.4.6 (Energy bound of interpolant error). Let OOOe ∈ Xs, s ≥ 2, and let IhOOO ∈ Xk,
be its interpolant. Therefore, there is a constant Ck > 0 independent of hs, such that

|‖ OOOe − IhOOO ‖|1≤ Ckhµ−1 ‖ OOOe ‖Hs(Ωh), (2.23)

with µ = min {s, k + 1}. The proof follows from Lemma 2.4.1, Eq. (2.13), and Eq. (2.15),
applied on the mesh dependent norm (2.12) and is given in Appendix A.2.

Lemma 2.4.7 ((Generalized) Hölder’s Inequality). Let 1 ≤ p, q, <∞ be such that 1
p + 1

q = 1
and D ∈ Rn. Suppose that Φ ∈ Lp(D) and Ψ ∈ Lq(D), then the Hölder’s inequality reads [37],

|
∫
D

ΨΦdx| ≤
(∫

D
|Ψ|pdx

) 1
p
(∫

D
|Φ|qdx

) 1
q

. (2.24)

Let 1 ≤ p, q, r < ∞ be such that 1
p + 1

q + 1
r = 1 and D ∈ Rn. Suppose that Φ ∈ Lp(D),Ψ ∈

Lq(D) and µ ∈ Lr(D), then the generalized Hölder’s inequality is stated as [37]

|
∫
D

ΨΦµdx| ≤
(∫

D
|Ψ|pdx

) 1
p
(∫

D
|Φ|qdx

) 1
q
(∫

D
|µ|rdx

) 1
r

. (2.25)

Lemma 2.4.8 ((Generalized) Cauchy-Schwarz’ inequality). Let 1 ≤ p, q <∞ be such that
1
p + 1

q = 1. Suppose that ai and bi are two sequences of n positive real numbers, then the
Cauchy-Schwartz’ inequality reads [60](

n∑
i=1

aibi

)
≤

(
n∑

i=1

api

) 1
p
(

n∑
i=1

bqi

) 1
q

. (2.26)
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Let 1 ≤ p, q, r <∞ be such that 1
p + 1

q + 1
r = 1. Suppose that ai, bi, and ci are three sequences

of n positive real numbers, then the generalized Cauchy-Schwartz’ inequality reads [60](
n∑

i=1

aibici

)
≤

(
n∑

i=1

api

) 1
p
(

n∑
i=1

bqi

) 1
q
(

n∑
i=1

cri

) 1
r

. (2.27)

2.5 Conclusions

Within this chapter, we have presented all the general definitions and space properties,
that will be used in the following three chapters in the purpose of proving the uniqueness,
the stability, and the optimal order of the convergence rate of the DG approximated solution
for many kinds of non-linear coupled problems.



Chapter 3

A coupled Linear
Thermo-Elasticity Discontinuous
Galerkin method

3.1 Introduction

In this Chapter an illustration of DG for linear coupled problem is presented, such
as linear Thermo-Elastic coupled problems. Many researchers have dealt with Thermo-
Elasticity problems using different FE methods [1, 70], or Discontinuous Galerkin (DG)
methods [28].

In the general cases of 2-way coupling between thermal loading and mechanical pro-
cess, either a change of the stress causes a change on the temperature, or a change of the
temperature causes a thermal stress. In the elasticity case, the effect of the mechanical
deformation on the temperature variation can be neglected when not seeking the Thermo-
Elastic damping. Henceforth, the thermal flux and temperature can be computed without
the consideration of mechanical stresses, as it will be shown later.

This chapter consists of five sections after this introduction. The constitutive equations
that govern Thermo-Elasticity are derived in Section 3.2. In Section 3.3 the DG formulation
is developed. In Section 3.4 the numerical properties, such as the consistency, the upper
and lower bounds, and the solution uniqueness are derived. The optimal error bounds are
theoretically estimated and numerically verified in Section 3.5 using the Thermo-Elastic
model. The conclusions is given in Section 3.6.

3.2 Governing equations for Thermo-Elasticity

In this section, the governing equations for linear Thermo-Elasticity with small displace-
ments over the domain Ω and its boundary dΩ, are presented. First the conservation of the
momentum balance is reduced into the following equation after neglecting the contribution
of the body force and inertial forces as

∇ · σσσ = 0 ,with σσσ =HHH : εεε−HHH : αααth(T− T0), (3.1)

21
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where σσσ [N/m2] is the Cauchy stress tensor, T0 [K] is the initial temperature, αααth = αthIII

is the thermal expansion coefficient [1/K], with III is the identity tensor, HHH = ∂2ψ
∂εεε∂εεε is the

elasticity tensor [N/m2], with ψ is the strain energy density per unit volume and εεε is the
strain tensor which is defined for small displacements as εεε = 1

2

(
∇uuu + (∇uuu)T

)
.

Furthermore, the second governing equation is the balance of energy, which is given by

−∇ · qqq + f̄ = ρcvṪ,with qqq = −kkk · ∇T, (3.2)

where the dot denotes the time derivative, qqq [W/m2] is the thermal flux vector, kkk [W/(K ·m)]
is the thermal conductivity tensor, cv is the volumetric heat capacity per unit mass [J/(K ·
Kg)], and f̄ represents all the body sources of heat and could depend on both the space and
time. Here for Thermo-Elasticity f̄ is defined as f̄ = −HHH : αααthT∂εεε

∂t .
These two equations are completed with the boundary conditions. First the natural

(Neumann) boundary conditions, which constrain the secondary variables like forces and
traction

σσσ · nnn = t̄tt , qqq · nnn = q̄ ∀ xxx ∈ ∂NΩ, (3.3)

where t̄tt and q̄ are respectively the traction and heat flux per unit reference surface. Second
the essential (Dirichlet) or geometric boundary conditions, which constrain the primary
variables like displacements and temperature

uuu = ūuu , T = T̄ ∀ xxx ∈ ∂DΩ, (3.4)

where ūuu and T̄ are the prescribed displacement and temperature respectively.

Let us define a (d + 1)× 1-vector of the unknown fields EEE =

(
uuu

T− T0

)
, where uuu is the

displacement vector, uuu =

 ux

uy

uz

. In addition, let us introduce a vector ccc of size (4d−3)×1

as ccc = www∇EEE, where www is a coefficients matrix of size (4d − 3) × (4d − 3), www =

(
CCC 000
000 kkk

)
,

with CCC the matrix form of the material tensor HHH. Besides, ∇EEE is written using Voigt rules
for the mechanical contribution, in other words the stress and strain are transformed into
vectors, such that ∇EEE is a vector of size (4d− 3)× 1 and defined for d = 3 as

∇EEE =



εxx

εyy

εzz

2εxy

2εxz

2εyz
∂T
∂x
∂T
∂y
∂T
∂z


=



∂
∂x 0 0 0

0 ∂
∂y 0 0

0 0 ∂
∂z 0

∂
∂y

∂
∂x 0 0

∂
∂z 0 ∂

∂x 0

0 ∂
∂z

∂
∂y 0

0 0 0 ∂
∂x

0 0 0 ∂
∂y

0 0 0 ∂
∂z




ux

uy

uz

T− T0

 . (3.5)

Then the partial differential equations (3.1) and (3.2) of the linear Thermo-Elastic coupling
problem, after neglecting the Thermo-Elastic damping, are rewritten under the form

∇T(ccc(∇EEE))−∇T(rrrEEE) = fff ĖEE in Ω, (3.6)
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where fff is of size (d+1)×(d+1) with fff =

(
000 000
000 ρcv

)
and rrr is a matrix of size (4d−3)×(d+1)

with

rrr =

(
000 CCCαααthc

000 000

)
, with αααT

thc =
(
αth αth αth 0 0 0

)
, such that CCCαααthc is a (3d − 3) ×

1 vector and given for d = 3 by (CCCαααthc)
T =

(
3Kαth 3Kαth 3Kαth 0 0 0

)
for isotropic

materials, where K is the bulk modulus.
This equation is completed by the BCs

n̄nnT(ccc− rrrEEE) = c̄cc ∀ x ∈ ∂NΩ, (3.7)

EEE = ĒEE ∀ x ∈ ∂DΩ, (3.8)

which result from the boundary condition Eqs. (3.3) and (3.4), and where

c̄cc =

(
t̄tt
−q̄

)
, n̄nn =



nx 0 0 0
0 ny 0 0
0 0 nz 0
ny nx 0 0
nz 0 nx 0
0 nz ny 0
0 0 0 nx

0 0 0 ny

0 0 0 nz


. (3.9)

In this part, we assume that ∂NΩ and ∂DΩ are the same for both fields uuu and T.

3.3 Discontinuous Galerkin formulation for linear Thermo-
Elasticity

3.3.1 Weak form

The DG weak formulation for linear Thermo-Elastic coupling is derived from the two
governing equations (3.3) and (3.4) separately, then they are combined together in the matrix
form.

Starting from the first governing Eq. (3.1) and multiplying it by the test function δuuu ∈[
ΠeH

1(Ωe)
]d

leads to ∑
e

∫
Ωe

(∇ · σσσ) · δuuudΩ = 0 ∀δuuu ∈
[
ΠeH

1(Ωe)
]d
. (3.10)

Then by performing a volume integral and using the divergence theorem on each element
Ωe, we reduce the order of the differential equation, so the weak form is stated as∑

e

∫
∂Ωe

δuuu · (∇uuu :HHH) · nnndS−
∑

e

∫
∂Ωe

δuuu · (HHH : αααth(T− T0)) · nnndS

=
∑

e

∫
Ωe

∇uuu :HHH : ∇δuuudΩ−
∑

e

∫
Ωe

(HHH : αααth(T− T0)) : ∇δuuudΩ,

(3.11)
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where

∫
∂Ωe

δuuu · σσσ · nnndS =

∫
∂NΩe

δuuu · σσσ · nnndS +

∫
∂IΩe∪∂DΩe

δuuu · σσσ · nnndS. (3.12)

Different versions of the discontinuous Galerkin finite element methodology can be obtained
by using different numerical flux coefficients [13]. In the present research, the arithmetic
average of the two field gradient values at the boundary is employed. At the interface
between two elements, Fig. 2.1, each interior edge (∂IΩ)s, shared by two elements − and +,
is integrated over twice in Eq. (3.11), since (∂IΩ)s ⊂ ∂IΩ

e− and (∂IΩ)s ⊂ ∂IΩ
e+

. By recalling
the two useful operators, the jump J·K and the average 〈·〉 operators, which are defined in
Section 2.3, Eq. (3.12) can be rewritten using

∑
e

∫
∂IΩe

δuuu · σσσ · nnndS = −
∫
∂IΩh

(
δuuu · σσσ+ − δuuu− · σσσ−

)
· nnn−dS

= −
∫
∂IΩh

Jδuuu · σσσK · nnn−dS,

(3.13)

∑
e

∫
∂DΩe

δuuu · σσσ · nnndS = −
∫
∂DΩh

Jδuuu · σσσK · nnndS and nnn− = nnn, (3.14)

where nnn− is defined as the outward unit normal of the minus element Ωe− , whereas nnn+ is
the outward unit normal of its neighboring element, nnn+ = −nnn−.

Eventually, using Eq. (3.3), Eq. (3.11) is rewritten

∫
∂NΩh

δuuu · t̄ttdS =

∫
Ωh

σσσ : ∇δuuudΩ +

∫
∂IΩh∪∂DΩh

Jδuuu · σσσK · nnn−dS ∀δuuu ∈
[
ΠeH

1
c(Ωe)

]d
. (3.15)

For DG formulations, the jumps are commonly replaced by fluxes, which must be consis-
tent. Thereafter, applying the mathematical identity JabK = JaK 〈b〉 + JbK 〈a〉 on ∂IΩh and
neglecting the second term because the exact stress is continuous, the flux related to Eq.
(3.15) becomes Jδuuu · σσσK = JδuuuK · 〈σσσ〉.

Due to the discontinuous nature of the trial and test functions, in the DG weak form,
the interelement discontinuity is allowed, so the continuity of unknown variables is enforced
weakly by using symmetrization and stabilization terms at the interior elements boundary
interfaces ∂IΩh. The BC (3.4) is also enforced weakly on the Dirichlet boundary. In order to
remain general, and to ensure the optimal convergence rate, we consider the compatibility
term as JuuuK · 〈HHH : ∇δuuu〉 − γ Jαααth :HHHTK · 〈δuuu〉, where γ is a constant that will be determined
later in order to achieve the optimal convergence rate.

Therefore, the SIPG formulation for the mechanical contribution is defined as finding
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uuu× T ∈
[
ΠeH

1(Ωe)
]d ×ΠeH

1(Ωe), such that:∫
∂NΩh

δuuu · t̄ttdS−
∫
∂DΩh

ūuu · (HHH : ∇δuuu) · nnndS +

∫
∂DΩh

ūuu⊗ nnn :
HHHB
hs

: δuuu⊗ nnndS

+ γ

∫
∂DΩh

δuuu · (αααth :HHHT̄) · nnndS =

∫
Ωh

σσσ : ∇δuuudΩ +

∫
∂IΩh∪∂DΩh

JδuuuK · 〈σσσ〉 · nnn−dS

+

∫
∂IΩh∪∂DΩh

JuuuK · 〈HHH : ∇δuuu〉 · nnn−dS +

∫
∂IΩh∪∂DΩh

JuuuK⊗ nnn− :

〈
HHHB
hs

〉
: JδuuuK⊗ nnn−dS

− γ
∫
∂IΩh∪∂DΩh

〈δuuu〉 · Jαααth :HHHTK · nnn−dS ∀δuuu ∈
[
ΠeH

1(Ωe)
]d
.

(3.16)

In this DG formulation B is the stability parameter which has to be sufficiently high to
guarantee stability as it will be shown later, HHH is the constant elastic tensor and hs is a
measure of the mesh fineness.

In the same spirit, if Thermo-Elastic damping is neglected, the weak formulation for the
second governing equation (3.2), can be derived by multiplying it with the test function
δT ∈ ΠeH

1(Ωe), leading to

−
∑

e

∫
Ωe

∇ · qqqδTdΩ =
∑

e

∫
Ωe

ρcvṪ δTdΩ ∀δT ∈ ΠeH
1(Ωe). (3.17)

As for the mechanical equation, by using the divergence theorem, introducing the jump
operator, and using the boundary condition Eqs. (3.3) and (3.4), this last equation becomes∫

∂NΩh

δTqqq · nnn dS +

∫
Ωh

ρcvṪ δTdΩ =

∫
Ωh

qqq · ∇δTdΩ +

∫
∂IΩh

⋃
∂DΩh

JδTqqqK · nnn−dS. (3.18)

The consistent and stable weak form is obtained by considering the numerical thermal flux
〈qqq〉 = 1

2(qqq+ + qqq−), then using the virtual heat flux δqqq = −kkk · ∇δT, and adding stability
and symmetrization terms. The DG formulation of the thermal governing equation is then
stated as finding T ∈ ΠeH

1(Ωe), such that

−
∫
∂NΩh

δThq̄dΩ−
∫

Ωh

ρcvṪ δTdΩ−
∫
∂DΩh

(kkk · ∇δT) · nnn T̄ dS

+

∫
∂DΩh

δTnnn · k
kkB
hs
· nnnT̄ dS =

∫
Ωh

∇T · kkk · ∇δTdΩ

+

∫
∂IΩh∪∂DΩh

JδTKnnn− · 〈kkk · ∇T〉dS +

∫
∂IΩh∪∂DΩh

JTKnnn− · 〈kkk · ∇δT〉dS

+

∫
∂IΩh∪∂DΩh

JδTKnnn− ·
〈
B
hs

kkk

〉
· nnn− JTK dS ∀δT ∈ ΠeH

1(Ωe).

(3.19)

Thereafter, the two parts of the DG formulation can be combined in terms of the nota-
tions www, rrr, andfff resulting in a stabilized DG formulation for linear Thermo-Elastic coupling.
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The weak form is stated as finding EEE ∈
[
ΠeH

1(Ωe)
]3 ×ΠeH

1(Ωe) such that∫
∂NΩh

δEEETc̄ccdS−
∫

Ωh

δEEETfff ĖEEdΩ−
∫
∂DΩh

ĒEE
T
nnn www∇δEEE dS +

∫
∂DΩh

ĒEE
T
nnn

wwwB
hs
δEEEnnn dS

+ γ

∫
∂DΩh

δEEET
nnn rrrĒEEdS =

∫
Ωh

(∇δEEE)Twww∇EEEdΩ−
∫

Ωh

(∇δEEE)TrrrEEEdΩ

+

∫
∂IΩh∪∂DΩh

r
δEEET

nnn

z
〈www∇EEE〉 dS−

∫
∂IΩh∪∂DΩh

r
δEEET

nnn

z
〈rrrEEE〉 dS

+

∫
∂IΩh∪∂DΩh

r
EEET

nnn

z
〈www∇δEEE〉 dS− γ

∫
∂IΩh∪∂DΩh

〈
δEEET

nnn

〉
JrrrEEEK dS

+

∫
∂IΩh∪∂DΩh

r
EEET

nnn

z〈wwwB
hs

〉
JδEEEnnnK dS ∀δEEE ∈

[
ΠeH

1(Ωe)
]d ×ΠeH

1(Ωe),

(3.20)

where EEEnnn is a 9× 1 vector

EEEnnn =



uxn−x
uyn−y
uzn
−
z

uxn−y + uyn−x
uxn−z + uzn

−
x

uzn
−
y + uyn−z
Tn−x
Tn−y
Tn−z


=



n−x 0 0 0
0 n−y 0 0

0 0 n−z 0
n−y n−x 0 0

n−z 0 n−x 0
0 n−z n−y 0

0 0 0 n−x
0 0 0 n−y
0 0 0 n−z




ux

uy

uz

T− T0

 , (3.21)

and ĒEEnnn is defined in the same way as EEEnnn after replacing nnn− by nnn and EEE by ĒEE in Eq. (3.21).
The last fifth terms presented in Eq. (3.20) are the interfaces terms, which correspond

to:

1. The first two terms ensure consistency, they result directly from the discontinuity of
the test function δEEE between two elements, and involve the consistent numerical flux
which is here the traditional average flux.

2. The third and forth terms ensure compatibility of the weak form and the symmetry of
the stiffness matrix after FE discretization. They also ensure the optimal convergence
rate in the L2-norm.

3. The last term ensures stability, as it is well known that the discontinuous formulation
of elliptic problems requires quadratic terms. The stabilization terms depend on a
stability parameter required to be large enough, which is independent of mesh size and
material properties, as it will be shown in Section 3.4.

4. The contributions on ∂DΩh ensure that the Dirichlet boundary condition (3.8) is weakly
enforced.

Let us recall the definition of the discontinuous FE space, Eq. (2.6), and rewrite it for the
case of linear Thermo-Elasticity

Xs =
{

EEE ∈
[
L2(Ωh)

]d × L2(Ωh) |EEE|Ωe∈[Hs(Ωe)]d×Hs(Ωe) ∀Ωe∈Ωh

}
, (3.22)
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we denote X2 by X. It should be noted that the test functions in the previous equations of

the weak formulation belong to
[
H1(Ωe)

]d×H1(Ωe), however for the numerical analysis, we

will need to be in
[
H2(Ωe)

]d × H2(Ωe). Therefore, Eq. (3.20) can be rewritten under the
form of finding EEE ∈ X such that

a(EEE, δEEE) = b(δEEE)−
∫

Ωh

δEEETfff ĖEEdΩ, ∀δEEE ∈ X, (3.23)

with

a(EEE, δEEE) =

∫
Ωh

(∇δEEE)Twww∇EEEdΩ−
∫

Ωh

(∇δEEE)TrrrEEEdΩ +

∫
∂IΩh∪∂DΩh

r
δEEET

nnn

z
〈www∇EEE〉dS

+

∫
∂IΩh∪∂DΩh

r
EEET

nnn

z
〈www∇δEEE〉 dS +

∫
∂IΩh∪∂DΩh

r
EEET

nnn

z〈wwwB
hs

〉
JδEEEnnnK dS

−
∫
∂IΩh∪∂DΩh

r
δEEET

nnn

z
〈rrrEEE〉 dS− γ

∫
∂IΩh∪∂DΩh

〈
δEEET

nnn

〉
JrrrEEEK dS,

(3.24)

b(δEEE) =

∫
∂NΩh

δEEETc̄cc dS−
∫
∂DΩh

ĒEE
T
nnn www∇δEEE dS +

∫
∂DΩh

ĒEE
T
nnn

wwwB
hs
δEEEnnn dS

+ γ

∫
∂DΩh

δEEET
nnn rrrĒEEdS.

(3.25)

Note that∫
Ωh

(∇δEEE)TrrrEEEdΩ =
∑

e

∫
Ωe

(∇δEEE)TrrrEEEdΩ

= −
∑

e

∫
Ωe

δEEET∇T(rrrEEE)dΩ +
∑

e

∫
∂Ωe

δEEET
nnn (rrrEEE)dS

= −
∫

Ωh

δEEET∇T(rrrEEE)dΩ−
∫
∂IΩh

r
δEEET

nnn rrrEEE
z

dS +

∫
∂NΩh

δEEETn̄nnTrrrEEEdS +

∫
∂DΩh

δEEET
nnn rrrEEEdS

= −
∫

Ωh

δEEET∇T(rrrEEE)dΩ−
∫
∂IΩh

r
δEEET

nnn

z
〈rrrEEE〉 dS−

∫
∂IΩh∪∂DΩh

〈
δEEET

nnn

〉
JrrrEEEK dS

+

∫
∂NΩh

δEEETn̄nnTrrrEEEdS.

(3.26)

For future use, it can been noted that the gradient of (rrrEEE) consists of zero components and
of the gradient of αααth :HHHT, which is αααth :HHH∇T. Henceforth the matrix rrr can be rearranged
in a new form r̃rr of size (d + 1)× (4d− 3) and by this way ∇T(rrrEEE) can be replaced for d = 3
by r̃rr∇EEE, with

r̃rr(EEE)∇EEE =


0 0 0 0 0 0 3Kαth 0 0
0 0 0 0 0 0 0 3Kαth 0
0 0 0 0 0 0 0 0 3Kαth

0 0 0 0 0 0 0 0 0





εxx

εyy

εzz

2εxy

2εxz

2εyz
∂fT
∂x
∂fT
∂y
∂fT
∂z


. (3.27)
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Moreover, the following equality is also useful

∇T(r̃rrTδEEE) = rrrT∇δEEE =


0
0
0

3Kαthδεxx + 3Kαthδεyy + 3Kαthδεzz

 . (3.28)

Therefore, using Eq. (3.26), Eq. (3.23) can be rewritten as

a′(EEE, δEEE) = b′(δEEE)−
∫

Ωh

δEEETfff ĖEEdΩ, ∀δEEE ∈ X, (3.29)

with

a′(EEE, δEEE) =

∫
Ωh

(∇δEEE)Twww∇EEEdΩ +

∫
Ωh

δEEET∇T(rrrEEE)dΩ +

∫
∂IΩh∪∂DΩh

r
δEEET

nnn

z
〈www∇EEE〉dS

+

∫
∂IΩh∪∂DΩh

r
EEET

nnn

z
〈www∇δEEE〉dS +

∫
∂IΩh∪∂DΩh

r
EEET

nnn

z〈wwwB
hs

〉
JδEEEnnnK dS

+ (1− γ)

∫
∂IΩh∪∂DΩh

〈
δEEET

nnn

〉
JrrrEEEK dS−

∫
∂NΩh

δEEETn̄nnT(rrrEEE)dS−
∫
∂DΩh

r
δEEET

nnn

z
〈rrrEEE〉 dS,

(3.30)

b′(δEEE) =

∫
∂NΩh

δEEETc̄cc dS−
∫
∂DΩh

ĒEE
T
nnn www∇δEEE dS +

∫
∂DΩh

ĒEE
T
nnn

wwwB
hs
δEEEnnn dS

+ γ

∫
∂DΩh

δEEET
nnn rrrĒEEdS.

(3.31)

In comparison with the 1D DG formulation proposed by Gudi et al. [24] for elliptic problems,
Eq. (3.29) has additional terms on the Dirichlet and Neumann boundary parts related to
the term rrr. This is due to the fact that as the stress tensor is directly integrated in a
FE model, we prefer to have the term in

∫
Ωh

(∇δEEE)TrrrEEEdΩ in Eq. (3.23) instead of the term∫
Ωh
δEEET∇T(rrrEEE)dΩ of Eq. (3.29), as dealt with by Gudi et al. [24]. Therefore, the integration

by parts Eq. (3.26) yields these two extra terms.

3.3.2 Finite element discritization

Let us recall the polynomial space, Eq. (2.9), which becomes for the Linear Thermo-
Elastic problems

Xk =
{

EEEh ∈
[
L2(Ωh)

]d × L2(Ωh) |EEEh|Ωe∈[Pk(Ωe)]d×Pk(Ωe) ∀Ωe∈Ωh

}
, (3.32)

where Pk is a piecewise polynomial function of degree ≤ k. Let EEEh =

(
uuuh

Th − T0

)
be the

discrete approximation of EEE, where the displacement vector uuuh and the temperature Th, and
the corresponding test functions δuuuh and δTh respectively are approximated by the same
shape functions Na at node a, which are defined piecewise on the elements, we thus have

δuuuh = Na
uuu δuuu

a , δTh = Na
T δTa, and (3.33)
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uuuh = Na
uuu uuua , Th = Na

T Ta, (3.34)

where uuua denotes the nodal values of uuuh at node a and Ta denotes the nodal values of Th at
node a.

Likewise, the gradients of the fields can be deduced from

∇δuuuh = δuuua ⊗∇Na
uuu , ∇δTh = ∇Na

T δTb, and (3.35)

∇uuuh = uuua ⊗∇Na
uuu , ∇Th = ∇Na

TTa, (3.36)

where ∇Na
uuu and ∇Na

T are the gradients of the shape functions at node a.

The Discontinuous Galerkin Finite Element discretization of linear Thermo-Elastic cou-
pled problems is stated as finding the approximated solution EEEh in Xk, such that

a(EEEh, δEEEh) = b(δEEEh)−
∫

Ωh

δEEET
h fff ĖEEhdΩ, ∀δEEEh ∈ Xk, (3.37)

with a(EEEh, δEEEh) and b(δEEEh) defined by Eqs. (3.24, 3.25).

3.3.3 The system resolution

The set of Eqs. (3.16) and (3.19) can be rewritten under the form:

FFFa
ext

(
EEEb
)

= FFFa
int

(
EEEb
)

+ FFFa
I

(
EEEb
)
, (3.38)

where EEEb is the (4× 1) vector of the unknown fields at node b.

The nonlinear Eqs. (3.38) are linearized by means of an implicit formulation and solved
using the Newton Raphson scheme using an initial guess of the last solution. To this end,
the forces are written in a residual form. The predictor at iteration 0, reads EEEb = EEEb0, and
the residual at iteration i reads

FFFa
ext

(
EEEbi
)
−FFFa

int

(
EEEbi
)
−FFFa

I

(
EEEbi
)

= RRRa(EEEbi), (3.39)

and at iteration i, the first order Taylor development yields the system to be solved, i.e.

(
∂FFFa

ext

∂EEEb
− ∂FFFa

int

∂EEEb
−
∂FFFa

I

∂EEEb

)
|EEE=EEEci ∆EEEb = −RRRa(EEEci). (3.40)

Let us define the tangent matrix of the coupled Thermo-Mechanical system KKKab
EEE =

∂FFFa
ext

∂EEEb −
∂FFFa

int

∂EEEb −
∂FFFa

I

∂EEEb , and ∆EEEb =
(
EEEb −EEEbi

)
, then we have

(
KKKuuuuuu KKKuuuT

KKKTuuu KKKTT

)(
∆uuu
∆T

)
= −

(
RRRuuu(uuu,T)
RT(uuu,T)

)
. (3.41)

The new solution is given by EEEi+1 = EEEi + ∆EEE, and the iterations continue until the
convergence is obtained, that is ‖ RRR ‖< tol.
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The formula of the forces can be derived from Eqs. (3.16) and (3.19), which lead at each
node a to:

FFFa
uuuext = FFFa

uuuint + FFFa
uuuI, (3.42)

Fa
Text = Fa

Tint + Fa
TI. (3.43)

First, the mechanical contribution, Eq. (3.42), reads

FFFa
uuuext =

∫
∂NΩh

Na
uuut̄tt dS−

∫
∂DΩh

ūuu · (HHH · ∇Na
uuu) · nnndS +

∫
∂DΩh

ūuu⊗ nnn : (
HHHB
hs

) · nnnNa
uuudS

+ γ

∫
∂DΩh

Na
uuu(αααth :HHHT̄) · nnn dS,

(3.44)

FFFa
uuuint =

∑
s

∫
Ωe

σσσ · ∇Na
uuudΩ, (3.45)

FFFa±
uuuI = FFFa±

uuuI1 + FFFa±
uuuI2 + FFFa±

uuuI3, (3.46)

with the three mechanical contributions to the interface forces1

FFFa±
uuuI1 =

∑
s

∫
(∂IΩ)s

(±Na±
uuu ) 〈σσσ〉 · nnn−dS, (3.47)

FFFa±
uuuI2 =

1

2

∑
s

∫
(∂IΩ)s

JuuuhK · (HHH± · ∇Na±
uuu ) · nnn−dS

− γ

2

∑
s

∫
(∂IΩ)s

Na±
uuu Jαααth :HHHThK · nnn−dS,

(3.48)

FFFa±
uuuI3 =

∑
s

∫
(∂IΩ)s

(JuuuhK⊗ nnn−) :

〈
HHHB
hs

〉
· nnn−

(
±Na±

uuu

)
dS. (3.49)

In these equations the symbol ± refers to the node a± (+ for node a+ and − for node a−).
By the same way, the thermal contributions read

Fa
Text = −

∫
∂NΩh

Na
Tq̄ dS−

∫
∂DΩh

(kkk · ∇Na
T) · nnn T̄ dS +

∫
∂DΩh

Na
Tnnn · k

kkB
hs
· nnnT̄dS, (3.50)

Fa
Tint = −

∑
e

∫
Ωe

qqq · ∇Na
TdΩ +

∑
e

∫
Ωe

ρcvṪNa
TdΩ, (3.51)

Fa±
TI = Fa±

TI1 + Fa±
TI2 + Fa±

TI3, (3.52)

where the three thermal contributions to the interface forces read

Fa±
TI1 =

∑
s

∫
(∂IΩ)s

(∓Na±
T ) 〈qqq〉 · nnn−dS, (3.53)

1The contributions on ∂DΩh can be directly deduced by removing the factor (1/2) accordingly to the
definition of the average flux on the Dirichlet boundary.
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Fa±
TI2 =

1

2

∑
s

∫
(∂IΩ)s

JThK
(
kkk± · ∇Na±

T

)
· nnn−dS, (3.54)

Fa±
TI3 =

∑
s

∫
(∂DIΩ)s

JThKnnn− ·
〈

kkk
B
hs

〉
· nnn−(±Na±

T )dS. (3.55)

The stiffness matrix, has been decomposed into four sub-matrices with respect to the dis-
cretization of the four independent fields variables (3 for displacement uuu and 1 for the
temperature T), see Appendix B.1 for the details.

3.4 Numerical properties of linear Thermo-Elastic DG for-
mulation

In order to prove the consistency and the stability of the DG formulation for linear
Thermo-Elastic formulations, we consider a steady state. Therefore the equation that gov-
erns the linear Thermo-Elastic coupling, Eq. (3.6), is rewritten in the following elliptic
form

−∇T(www∇EEE) +∇T(rrrEEE) = 0 , in Ω. (3.56)

More details about the analysis of such linear elliptic problem formulation have been dis-
cussed in [74] for the case of one-field formulation. For the sake of completeness, we report
the analysis for coupled problem here after. Henceforth, the weak DG formulation of the
problem becomes, find EEE ∈ X such that

a(EEE, δEEE) = b(δEEE) ∀δEEE ∈ X, (3.57)

with a(EEE, δEEE) and b(δEEE) defined by Eq. (3.24) and Eq. (3.25) respectively.

It should be noted that the norms defined in Chapter 2, Eqs. (2.10 -2.12), are considered
for the linear Thermo-Elastic coupling, with OOO ≡ EEE, which is a vector of size (d + 1)× 1.

Moreover, we have the following properties:

• The matrix www, is a symmetric real matrix of size (4d − 3) × (4d − 3) whose entries
are bounded, piecewise continuous real-valued functions defined on Ω̄, and for every
non-zero column vector ξξξ of 9 real numbers, one has

ξξξTwww(xxx)ξξξ > 0 ∀ ξ ∈ R4d−3, xxx ∈ Ω̄. (3.58)

Let λ be the minimum eigenvalue of the matrix www, then there is a positive constant
Cα such that

0 < Cα < λ. (3.59)

• There exists Cx such that

Cx = max
{
‖ www ‖L∞(Ω), ‖ rrr ‖L∞(Ω)

}
. (3.60)
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3.4.1 Consistency

To prove the consistency of the method, the exact solution EEEe ∈
[
H2(Ω)

]d × H2(Ω) of
the problem is considered. This implies JEEEeK = 0, 〈www∇EEEe〉 = www∇EEEe on ∂IΩh, and JEEEeK = −ĒEE
and 〈www∇EEEe〉 = www∇EEEe on ∂DΩh. Therefore, Eq. (3.23) becomes:∫

∂NΩh

δEEETc̄ccdS−
∫
∂DΩh

ĒEE
T
nnn www∇δEEEdS +

∫
∂DΩh

δEEET
nnn

(
B
hs

www

)
ĒEEnnndS

+ γ

∫
∂DΩh

δEEET
nnn rrrĒEEdS =

∫
Ωh

(∇δEEE)Twww∇EEEedΩ−
∫

Ωh

(∇δEEE)TrrrEEEedΩ

+

∫
∂IΩh

q
δEEET

nnn

y
www∇EEEedS−

∫
∂IΩh

q
δEEET

nnn

y
rrrEEEedS−

∫
∂DΩh

EEEeT

nnn www∇δEEEdS

−
∫
∂DΩh

δEEET
nnn www∇EEEedS +

∫
∂DΩh

δEEET
nnn

B
hs

wwwEEEe
nnndS + (1 + γ)

∫
∂DΩh

δEEET
nnn rrrEEEedS ∀δEEE ∈ X.

(3.61)

Integrating the first term of the right hand side by parts leads to∑
e

∫
Ωe

(∇δEEE)Twww∇EEEedΩ = −
∑

e

∫
Ωe

δEEET∇T(www∇EEEe)dΩ +
∑

e

∫
∂Ωe

δEEET
nnn www∇EEEedS. (3.62)

Similarly, we have∑
e

∫
Ωe

(∇δEEE)TrrrEEEedΩ = −
∑

e

∫
Ωe

δEEET∇T(rrrEEEe)dΩ +
∑

e

∫
∂Ωe

δEEET
nnn rrrEEEedS. (3.63)

Substituting Eqs. (3.62) and (3.63) in Eq. (3.61), yields∫
∂NΩh

δEEETc̄ccdS−
∫
∂DΩh

ĒEE
T
nnn (www∇δEEE) dS +

∫
∂DΩh

δEEET
nnn

(
B
hs

www

)
ĒEEnnndS

+ γ

∫
∂DΩh

δEEEnnnrrrĒEEdS = −
∫

Ωh

δEEET∇T(www∇EEEe)dΩ +

∫
∂NΩh

δEEET
nnn (www∇EEEe)dS

+

∫
Ωh

δEEET∇T(rrrEEEe)dΩ−
∫
∂NΩh

δEEET
nnn rrrEEEedS−

∫
∂DΩh

EEEeT

nnn www∇δEEEdS

+

∫
∂DΩh

δEEET
nnn

B
hs

wwwEEEe
nnndS + γ

∫
∂DΩh

δEEET
nnn rrrEEEedS.

(3.64)

The arbitrary nature of the test functions δEEE leads to recover the set of conservation laws,
Eq. (3.6), and the boundary conditions, Eqs. (3.8) and (3.7).

3.4.2 Solution uniqueness

In this part and in the following sections, we assume that ∂DΩh = ∂Ωh. This assumption
is not restrictive but simplifies the demonstrations.

Lemma 3.4.1 (Lower bound). For B larger than a constant, which depends on the polyno-
mial approximation only, there exist two positive constants Ck

1 and Ck
2, such that

a(δEEEh, δEEEh) ≥ Ck
1 |‖ δEEEh ‖|2∗ −Ck

2 ‖ δEEEh ‖2L2(Ω)
∀δEEEh ∈ Xk, (3.65)
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a(δEEEh, δEEEh) ≥ Ck
1 |‖ δEEEh ‖|2 −Ck

2 ‖ δEEEh ‖2L2(Ω)
∀δEEEh ∈ Xk, (3.66)

where the norms have been defined by Eqs. (2.10, 2.11).
Proceeding by using the bounds (3.59) and (3.60), the Cauchy-Schwartz’ inequality, Eq.

(3.60), the trace inequality on the finite element space (2.18), the trace inequality, Eq. (2.16),
and inverse inequality, Eq. (2.21), the ξ-inequality –ξ > 0 : |ab| ≤ ξ

4a2 + 1
ξ b2, as in

Wheeler et al. [74] and Prudhomme et al. [60] analysis with some modifications, yields to
prove this Lemma 3.4.1. The two positive constants Ck

1,C
k
2 are independent of the mesh

size, but do depend on k and B, for details, see Appendix B.2. In particular, for Ck to
be positive the following constrain on the stabilization parameter should be satisfied B >
C2

x
Cα

max(4CT (Ck
I+1), 4Ck2

K ). Therefore for the method to be stable, the stabilization parameter
should be large enough depending on the polynomial approximation under consideration for
Ck

1 to remain positive.

Lemma 3.4.2 (Upper bound). There exist C > 0 and Ck > 0 such that

| a(mmm, δEEE) | ≤ C |‖mmm ‖|1 |‖ δEEE ‖|1 ∀mmm , δEEE ∈ X, (3.67)

| a(mmm, δEEEh) | ≤ Ck |‖mmm ‖|1 |‖ δEEEh ‖| ∀mmm ∈ X , δEEEh ∈ Xk, (3.68)

| a(mmmh, δEEEh) | ≤ Ck |‖mmmh ‖| |‖ δEEEh ‖| ∀mmmh, δEEEh ∈ Xk, (3.69)

where the norms have been defined by Eqs. (2.10-2.12).
Applying the Hölder’s inequality, Eq. (2.24), and the bound (3.60) on each term of

a(mmm, δEEE) and then applying the Cauchy-Schwartz’ inequality, Eq. (2.27), lead to relation
(3.67). Therefore relations (3.68) and (3.69) are easily deduced from the relation between
energy norms on the finite element space, Eq. (2.22). The proof is presented in Appendix
B.3.

Using Lemma 3.4.1 and Lemma 3.4.2, the stability of the method is demonstrated using
the following Lemma.

Lemma 3.4.3 (Auxiliary problem). We consider the following auxiliary problem, with φφφ ∈[
L2(Ωh)

]d × L2(Ωh):

−∇T (www∇ψψψ) + r̃rr∇ψψψ = φφφ on Ωh,

ψψψ = 0 on ∂Ωh.
(3.70)

Assuming regular ellipticity of the operator, there is a unique solution ψψψ ∈
[
H2(Ωh)

]d ×
H2(Ωh) to the problem stated by Eq. (3.70) satisfying the elliptic property

‖ ψψψ ‖H2(Ωh)≤ C ‖ φφφ ‖L2(Ωh) . (3.71)

The proof for one field is given in [23], by combining [23, Theorem 8.3] to [23, Lemma 9.17].

Moreover, for a given ϕϕϕ ∈
[
L2(Ωh)

]d × L2(Ωh). There exists a unique φφφh ∈ Xk such that

a(δEEEh,φφφh) =
∑
e

∫
Ωe

ϕϕϕTδEEEhdΩ ∀δEEEh ∈ Xk, (3.72)
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and there is a constant Ck such that:

|‖ φφφh ‖|≤ Ck ‖ ϕϕϕ ‖L2(Ωh) . (3.73)

The proof follows from the use of Lemma 3.4.1 to bound |‖ φφφh ‖| in terms of ‖ ϕϕϕ ‖L2(Ωh)

and ‖ φφφh ‖L2(Ωh). ‖ φφφh ‖L2(Ωh) is then estimated by considering φφφ = φφφh ∈ Xk in Eq. (3.70),

multiplying the result by φφφh and integrating it by parts on Ωh yielding ‖ φφφh ‖2L2(Ωh)
= a(ψψψ,φφφh).

Inserting the interpolant Ihφφφ in these last terms, making successive use of Lemmata 3.4.2 and
2.4.6, and using the regular ellipticity Eq. (3.71) allows deriving the bound ‖ φφφh ‖L2(Ωh)≤
Ck ‖ ϕϕϕ ‖L2(Ωh), which results into the proof of (3.73). The proof is derived in details in
Appendix B.4.

The proof of the uniqueness can be derived directly using the auxiliary problem defined
in Lemma 3.4.3. Let us assume there exist two solutions EEEh1 , EEEh2 for the problem stated in
Eq. (3.57), such that we get

a(EEEh1 −EEEh2 , δEEEh) = 0 ∀δEEEh ∈ Xk, (3.74)

Let ννν = EEEh1 − EEEh2 , then by recalling the auxiliary problem defined in Lemma Eq. (3.72),
and setting ϕϕϕ = ννν and δEEEh = ννν

‖ ννν ‖2
L2(Ωh)

= a(ννν,φφφh) = a(EEEh1 −EEEh2 ,φφφh) = 0. (3.75)

Hence EEEh1 = EEEh2 and there exist a unique solution EEEh for the problem Eq. (3.57).

3.4.3 Error in the energy norm

Let us decompose the global error which is the difference between the exact solution and
the approximated solution eee = EEEe −EEEh by adding and subtracting the interpolation of the
exact solution IhEEE, such that we get eee = ξξξ−ηηη, with ξξξ = IhEEE−EEEh ∈ Xk and ηηη = EEEe−IhEEE ∈ X,
we thus obtain

|‖ eee ‖|1 =|‖ EEEe −EEEh ‖|1=|‖ ξξξ − ηηη ‖|1≤|‖ ξξξ ‖|1 + |‖ ηηη ‖|1 . (3.76)

By the use of the lower bound, Eq. (3.66), we have

Ck
1 |‖ ξξξ ‖|2 −Ck

2 ‖ ξξξ ‖2L2(Ωh)
≤ a(ξξξ, ξξξ) = a((IhEEE−EEEe) + (EEEe −EEEh), ξξξ). (3.77)

From the Galerkin orthogonality property, i.e. as both EEEe and EEEh satisfy the weak form Eq.
(3.23), a(EEEe −EEEh, δEEEh) = 0 ∀ δEEEh ∈ Xk, and

Ck
1 |‖ ξξξ ‖|2 −Ck

2 ‖ ξξξ ‖2L2(Ωh)
≤ a(−ηηη,ξξξ) ≤ Ck |‖ ηηη ‖|1|‖ ξξξ ‖|, (3.78)

where we have used the upper bound Eq. (3.68). Moreover, as ‖ ξξξ ‖L2(Ωh)<|‖ ξξξ ‖|, this last
relation becomes

|‖ ξξξ ‖| ≤ Ck |‖ ηηη ‖|1 +Ck
2 ‖ ξξξ ‖L2(Ωh) . (3.79)
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In order to bound ‖ ξξξ ‖L2(Ωh), using the property of Lemma 3.4.3 and stating ϕϕϕ = ξξξ, the
orthogonality relation, δEEEh = ξξξ, and the upper bound Eq. (3.68), leads to

‖ ξξξ ‖2 = a(ξξξ,φφφh) = a(−ηηη,φφφh) ≤ Ck |‖ ηηη ‖|1 |‖ φφφh ‖| . (3.80)

Then using Eq. (3.73), Eq. (3.80) is rewritten as

‖ ξξξ ‖≤ Ck |‖ ηηη ‖|1 . (3.81)

Substituting this result in Eq. (3.79), yields

|‖ ξξξ ‖|≤ Ck |‖ ηηη ‖|1, (3.82)

which leads to bound the error in term of ηηη, such that Eq. (3.76) becomes

|‖ eee ‖|1 ≤ Ck |‖ ηηη ‖|1 . (3.83)

Using the energy norm bound of the interpolant error, Lemma 2.4.6, Eq. (2.23), for hs small
enough, there exists a constant Ck such that

|‖ eee ‖|1 ≤ Ckhµ−1
s ‖ EEEe ‖Hs(Ωh), (3.84)

with µ = min {s, k + 1}.

3.4.4 Error estimate in the L2-norm

Since the linear problem is adjoint consistent, an optimal order of convergence in the
L2-norm is obtained by applying the duality argument.

To this end, let us consider the following dual problem

−∇T(www∇ψψψ + r̃rrTψψψ) = eee on Ωh,

ψψψ = ggg on ∂Ωh,
(3.85)

which is assumed to satisfy the elliptic regularity condition as www is positive definite with

ψψψ ∈
[
H2m(Ωh)

]d ×H2m(Ωh) for p ≥ 2m and

‖ ψψψ ‖Hp(Ωh)≤ C

(
‖ eee ‖

Hp−2m
(Ωh)

+ ‖ ggg ‖
H

p− 1
2

(∂Ωh)

)
, (3.86)

if eee ∈
[
Hp−2m(Ωh)

]d ×Hp−2m(Ωh).

Considering eee = EEEe −EEEh ⊂
[
L2(Ωh)

]d × L2(Ωh) be the error and ggg = 0, multiplying Eq.
(3.85) by eee, and integrating over Ωh∫

Ωh

[www∇ψψψ]T∇eeedΩ−
∫

Ωh

eeeT
[
∇T(r̃rrTψψψ)

]
dΩ−

∑
e

∫
∂Ωe

[www∇ψψψ]T eeennndS =‖ eee ‖2
L2(Ωh)

, (3.87)

with

‖ ψψψ ‖H2(Ωh)≤ C ‖ eee ‖L2(Ωh) . (3.88)
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However ∇T(r̃rrTψψψ) = rrrT∇ψψψ as shown in Eq. (3.28) and Eq. (3.87) becomes∫
Ωh

[www∇ψψψ]T∇eeedΩ +

∫
∂IΩh

[www∇ψψψ]T JeeennnK dS−
∫
∂DΩh

[www∇ψψψ]T eeennndS

−
∫

Ωh

[rrreee]T∇ψψψdΩ =‖ eee ‖L2(Ωh) .

(3.89)

Therefore since JψψψK = J∇ψψψK = 0 on ∂IΩh and ψψψ = 0 on ∂DΩh, and since www is symmetric, by
the comparison with Eq. (3.24), Eq. (3.89) reads for γ = 0,

‖ eee ‖2
L2(Ωh)

= a(eee,ψψψ). (3.90)

Considering Ihψψψ ∈ Xk, and using the orthogonality relation, Eq. (3.90) is rewritten

‖ eee ‖2
L2(Ωh)

= a(eee,ψψψ − Ihψψψ)− a(eee, Ihψψψ)

= a(eee,ψψψ − Ihψψψ)− a(EEEe, Ihψψψ) + a(EEEh, Ihψψψ)

= a(eee,ψψψ − Ihψψψ).

(3.91)

Using Lemma 3.4.2, Eq. (3.67), Lemma 2.4.6, Eq. (2.23), and Eq. (3.84), leads to

| a(eee,ψψψ − Ihψψψ) | ≤ Ck |‖ eee ‖|1 |‖ ψψψ − Ihψψψ ‖|1
≤ Ck |‖ eee ‖|1 hs ‖ ψψψ ‖H2(Ωh)

≤ Ckhs |‖ EEEe − IhEEE ‖|1 ‖ ψψψ ‖H2(Ωh)

≤ Ckhµs ‖ EEEe ‖Hs(Ωh)‖ ψψψ ‖H2(Ωh),

(3.92)

and using Eq. (3.88), this last reult becomes

| a(eee,ψψψ − Ihψψψ) | ≤ Ckhµs ‖ EEEe ‖Hs(Ωh)‖ eee ‖L2(Ωh) . (3.93)

Therefore, by substituting this last result into Eq. (3.91), the final result of the L2-norm
error estimate is thus

‖ eee ‖L2(Ωh)≤ Ckhµs ‖ EEEe ‖Hs(Ωh), (3.94)

with µ = min {s, k + 1}. This result demonstrates the optimal convergence rate in the L2-
norm of the method in terms of the mesh size hs, providing γ is equal to 0 in relation (3.20).
Indeed the convergence rate is k + 1 for s > k + 1.

3.5 Numerical results

In this section, a numerical model for a pipe made of steel subjected to temperature
differences is considered. Due to the symmetric nature of the problem, the study is restricted
to a quarter of the pipe, whose planar model in plane strain is depicted in Fig. 3.1. The
system’s parameters are given in Table 3.1. An example of the mesh that is used for the
numerical results is presented in Fig. 3.2.
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ro=0.04 [m]

ri=0.03 [m]

To= 20 [oC]

Ti= 100 [oC]

Figure 3.1: The boundary conditions for a quarter of a pipe

X

Y

Z

Figure 3.2: Mesh example

Table 3.1: Steel parameters

Parameter Value

Density ρ [Kg/m3] 7850

Young’s modulus E [Pa] 2× 1011

Poisson ratio ν [−] 0.3

Thermal expansion αααth [1/K] diag(1.2×10−5)

Thermal conductivity kkk [W/(K ·m)] diag(51.9)

The analytical solutions for the pipe in a plane strain state are given as follows. Consid-
ering To is the temperature at the outer radius ro, while Ti and ri denote the same respective
features, at the inner part, the analytical solution at any radius r is derived by following the
approach proposed in [26], leading to

T(r) = C

[
Ti +

To − Ti

ln( ro
ri

)
ln(

r

ri
)

]
, (3.95)
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σr(r) = C

 ln( ro
r )

ln( ro
ri

)
−

r2
o

r2 − 1
r2
o

r2
i
− 1

 , (3.96)

σΘ(r) = C

 ln( ro
r − 1)

ln( ro
ri

)
+

r2
o

r2 + 1
r2
o

r2
i
− 1

 , and (3.97)

σz(r) = ν(σr + σΘ)− αthTE, (3.98)

where C = −Eα(Ti−To)
2(1−ν) . The problem is solved numerically using the Finite Element imple-

mentation of the DG formulation Eq. (3.57), with γ = 0. Quadratic polynomial approxi-
mations and a stabilization parameter of value of 10 are considered. Figures 3.3, 3.4, 3.5,
and 3.6 present the respective analytical and DGFEM solutions to our problem. It can be
seen that the temperature distribution and the stress distribution agree very well with the
analytical solution. The resulting dilatation of the outer radius is 2.257×10−3 [cm].
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Figure 3.3: Analytical and numerical distributions of the temperature along the radius

The accuracy of the method is tested by analyzing the H1-norm and L2-norm. The error
measured in the H1-norm against the mesh size in the log-log scale is illustrated in Fig.
3.7(a), where the analytical solution is used as a reference solution. The optimal rate is
observed and matches the theoretical order of convergence obtained in Section 3.4.3. In Fig.
3.7(b), as a uniform mesh refinement for polynomial of second degree is applied, a third
order convergence rate in the L2-norm is observed which agrees with the theorem derived in
Section 3.4.4.

3.6 Conclusions

Throughout this chapter, the discontinuous Galerkin weak formulation for linear Thermo-
Elasticity coupled problem has been derived. The stability of the bilinear weak form has been
proved for stabilization parameter larger than a constant which depends on the polynomial
order only. The error estimates in the H1-and L2-norms were derived as being optimal which
has been verified through a numerical example.
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Figure 3.4: Analytical and numerical radial stress distributions
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Figure 3.5: Analytical and numerical hoop stress distributions
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Figure 3.6: Analytical and numerical out of plane stress distributions
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Figure 3.7: Error with respect to the mesh size. (a) The relative error in the energy-norm,
and (b) the relative error in the L2-norm



Chapter 4

A coupled Electro-Thermal
Discontinuous Galerkin method

4.1 Introduction

Electro-Thermal materials received a significant interest in recent years due to their
capability to convert electricity directly into heat and vice versa, which promises a wide
range of applications in energy and environment fields.

The main interest of this chapter is to derive a consistent and stable Discontinuous
Galerkin (DG) method for two-way Electro-Thermal coupling analyzes considering Electro-
Thermal effects such as Seebeck and Peltier effects, and also Joule heating. These effects
describe the direct conversion of the difference in electric potential into the temperature
difference within the system (Peltier effect), which we are interested in, and vice versa
(Seebeck effect). This is typical of thermo-electric cells which could work in two ways:
electric generations [17] and heat pumps which operate in cool or heat modes [57].

Electro-Thermal continuum has extensively been developed in the literature [57,51,58,
43]. For example, as a non-exhaustive list, Ebling et al. [17] have implemented Thermo-
Electric elements into the finite element method and have validated it by analytical and
experimental results for the figure of merit values. Liu [43] has developed a continuum
theory of Thermo-Electric bodies. He has applied it to predict the effective properties of
thermo-electric composites. However he has considered that the temperature and voltage are
constant on a homogeneous thermo-electric body as their variations are small, which leads
to a linear system of partial differential equations. Pérez-Aparicio et al. [58] have proposed
an Electro-Thermal formulation for simple configurations and have provided a comparison
between analytical and numerical results.

The key point in being able to develop a stable DG method for Electro-Thermo coupling
is to formulate the non-linear equations in terms of energetically conjugated pairs of fluxes
and fields gradient. Indeed, the use of energetically consistent pairs allows writing the
strong form in a matrix form suitable to the derivation of a SIPG weak form as it will be
demonstrated in this chapter.

In this chapter we discuss the fundamental equations for the transport of electricity
and heat, in terms of macroscopic variables such as temperature and electric potential. A
fully coupled nonlinear weak formulation for Electro-Thermal problems is developed based

41
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on continuum mechanics equations which are discretized using the Discontinuous Galerkin
method.

The existence and uniqueness of the weak form solution are proved. The numerical prop-
erties of the nonlinear elliptic problem i.e., consistency and stability, are demonstrated under
specific conditions, i.e. use of a high enough stabilization parameter and at least quadratic
polynomial approximations. Moreover the prior error estimates in the H1-norm and in the
L2-norm are shown to be optimal in the mesh size with the polynomial approximation degree.

This chapter is organized as follows. Section 4.2 describes the governing equations of
Electro-Thermal materials. In order to develop the DG formulation, the weak form is for-
mulated in terms of a conjugated pair of fluxes and fields gradients, resulting in a par-
ticular choice of the test functions (δfT = δ( 1

T), δfV = δ(−V
T )) and of the trial functions

(fT = 1
T , fV = −V

T ), where T is the temperature and V is the electric potential, as proposed
by Liu [43]. A complete nonlinear coupled finite element algorithm for Electro-Thermal ma-
terials is then developed in Section 4.3 using the DG method to derive the weak form. This
results into a set of non-linear equations which is implemented within a three-dimensional
finite element code. Section 4.4 focuses on the demonstration of the numerical properties of
the DG method, based on rewriting the nonlinear formulation in a fixed point form [34]. The
numerical properties of the nonlinear elliptic problem, i.e. consistency and the uniqueness of
the solution, can then be demonstrated, and the prior error estimate is shown to be optimal
in the mesh size for polynomial approximation degrees k > 1. In Section 4.5, several exam-
ples of applications in one, two and three dimensions are provided for single and composite
materials, in order to validate the accuracy and effectiveness of the Electro-Thermal DG
formulation and to illustrate the algorithmic properties. We end by some conclusions and
remarks in Section 4.6.
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4.2 Governing equations

In this section an overview of the basic equations that govern the Electro-Thermal phe-
nomena is presented for a structure characterized by a volume Ω whose external boundary is
∂Ω. In particular we discuss the choice of the conjugated pair of fluxes and fields gradients
that will be used to formulate the strong form in a matrix form.

4.2.1 Strong form

The first balance equation is the electrical charge conservation equation. When assuming
a steady state, the solution of the electrical problem consists in solving the following Poisson
type equation for the electrical potential

∇ · jjje = 0 ∀ xxx ∈ Ω , (4.1)

where jjje [A/m2] denotes the flow of electrical current density vector, which is defined as
the rate of charge carriers per unit area or the current per unit area. At zero temperature
gradient, the current density jjje is described by Ohm’s law which is the relationship between
the electric potential V [V] gradient and the electric current flux per unit area through the
electric conductivity lll [S/m], with

jjje = lll · (−∇V). (4.2)

However when T [K] varies inside the body, an electromotive force (∇V)s per unit length
appears, and reads

(∇V)s = −α∇T, (4.3)

where α [V/K] is the Seebeck coefficient which is in general temperature dependent and
defined as the derivative of the electric potential with respect to the temperature. By taking
in consideration the Seebeck effect, Eq. (4.3), and adding it to Ohm’s Law, Eq.(4.2), for
systems in which the particle density is homogeneous [51], the current density is rewritten
as

jjje = lll · (−∇V) + αlll · (−∇T). (4.4)

The second balance equation is the conservation of the energy flux, which is a combination
of the inter exchanges between the thermal and electric energies:

∇ · jjjy = −ρ∂ty ∀ xxx ∈ Ω. (4.5)

The right hand side of this equilibrium equation is the time derivative of the internal energy
density y [J/Kg]

y = y0 + cv T, (4.6)

which consists of the constant y0 independent of the temperature and of the electric potential,
and of the volumetric heat capacity per unit mass [J/(K · Kg)] multiplied by the absolute
temperature T. Moreover the energy flux jjjy is defined as

jjjy = qqq + Vjjje, (4.7)
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where qqq [W/m2] is the heat flux. On the one hand, at zero electric current density, jjje = 0
(open circuit), the heat flux is given by the Fourier ’s Law

qqq = kkk · (−∇T), (4.8)

in this equation kkk [W/(K ·m)] denotes the symmetric matrix of thermal conductivity coef-
ficients, which may depend on the temperature. On the other hand, at zero temperature
gradient, the heat flux is given by

qqq = βα jjje = αTjjje, (4.9)

where the coupling between the heat flux qqq and the electric current density jjje is governed
by the Peltier coefficient βα = αT. By superimposing the previous terms to the Fourier’s
Law, Eq. (4.8), the thermal flux can be rewritten as:

qqq = kkk · (−∇T) + αTjjje = (kkk + α2 Tlll) · (−∇T) + αTlll · (−∇V). (4.10)

The first term is due to the conduction and the second term corresponds to the joule heating
effect.

Therefore the conservation laws are written as finding V, T ∈ H2(Ω)×H2+
(Ω) such that

∇ · jjje = 0 ∀ xxx ∈ Ω, (4.11)

∇ · jjjy = ∇ · qqq + jjje · ∇V = −ρ∂ty ∀ xxx ∈ Ω, (4.12)

where T belongs to the manifold H2+
, in which T is always strictly positive.

These equations are completed by suitable boundary, where the boundary ∂Ω is de-
composed into a region of Dirichlet boundary ∂DΩ and Neumann boundary ∂NΩ (i.e.,
∂DΩ ∪ ∂NΩ = ∂Ω, and ∂DΩ ∩ ∂NΩ = 0). On the Dirichlet BC, one has

T = T̄ > 0 , V = V̄ ∀ xxx ∈ ∂DΩ, (4.13)

where T̄ and V̄ are the prescribed temperature and electric potential respectively. The nat-
ural Neumann boundary conditions are constraints on the secondary variables: the electric
current for the electric charge equation and the energy flux for the energy equation, i.e.

qqq · nnn = q̄ , jjje · nnn = j̄e , jjjy · nnn = j̄y ∀ xxx ∈ ∂NΩ, (4.14)

with nnn is the outward unit normal to the boundary ∂Ω. For simplicity we consider the same
boundary division into Neumann and Dirichlet parts for the both fields T and V. However
in the general case this could be different.

The set of Eqs. (4.11, 4.12) can be rewritten under a matrix form. First we rewrite Eqs.
(4.4, 4.7, 4.10) under the form

jjj =

(
jjje
jjjy

)
=

(
lll αlll

Vlll + αTlll kkk + αVlll + α2Tlll

)(
−∇V
−∇T

)
. (4.15)

The set of governing Eqs. (4.11, 4.12) thus becomes finding V, T ∈ H2(Ω) × H2+
(Ω) such

that

div (jjj) =

(
0

−ρ∂ty

)
= iii, (4.16)

where we have introduced iii =

(
0

−ρ∂ty

)
for a future use.
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4.2.2 The conjugated driving forces

First the weak form of the conservation of electric charge carriers, Eq. (4.1), is obtained
by taking the inner product of this equation with a suitable scalar test function δfV ∈ H1(Ω′)
over a sub-domain Ω′ ⊂ Ω, yielding∫

Ω′
∇ · jjjeδfVdΩ′ = 0 ∀δfV ∈ H1(Ω′). (4.17)

After a simple formal integration by parts and using the divergence theorem, we obtain

−
∫

Ω′
jjje · ∇δfV dΩ′ +

∫
∂Ω′

jjje · nnnδfV dS = 0 ∀δfV ∈ H1(Ω′). (4.18)

Secondly, taking the inner product of the second balance equation, Eq. (4.12), with the test

function δfT ∈ H1+
(Ω′), over the sub-domain Ω′ ⊂ Ω leads to∫

Ω′
∇ · qqqδfTdΩ′ +

∫
Ω′

jjje · ∇VδfTdΩ′ = −
∫

Ω′
ρ∂tyδfTdΩ′ ∀δfT ∈ H1(Ω′). (4.19)

Moreover by applying the divergence theorem, one obtains∫
Ω′

qqq · ∇δfTdΩ′ =

∫
∂Ω′

qqq · nnnδfTdS +

∫
Ω′
∇V · jjjeδfTdΩ′ +

∫
Ω′
ρ∂tyδfTdΩ′ ∀δfT ∈ H1(Ω′).

(4.20)

By substituting the internal energy, Eq. (4.6), and the thermal flux, Eq. (4.10), this last
equation reads∫

Ω′
(kkk · (−∇T) + αTjjje) · ∇δfTdΩ′ =

∫
Ω′
ρcv ∂tTδfTdΩ′ +

∫
Ω′
∇V · jjjeδfTdΩ′

+

∫
∂Ω′

(kkk · (−∇T) + αTjjje) · nnnδfTdS.

(4.21)

In order to define the conjugated forces, let us substitute δfV by −V
T in Eq. (4.18). This

results into ∫
∂Ω′

jjje · nnn(−V

T
)dS =

∫
Ω′

jjje · (−
∇V

T
+

V

T2∇T)dΩ′. (4.22)

Substituting δfT by 1
T in Eq. (4.21) leads to:∫

Ω′

(
(−∇T) · kkk · (−∇T)

T2 − αjjje
T
· ∇T

)
dΩ′ =

∫
Ω′

(ρ
cv

T
∂tT)dΩ′ +

∫
Ω
∇V · j

jje
T

dΩ′

+

∫
∂Ω′

(
kkk · (−∇T

T
) + αjjje

)
· nnndS.

(4.23)

By subtracting Eq. (4.22) from Eq. (4.23), one gets∫
Ω′

ρcv

T
∂tTdΩ′ +

∫
∂Ω′

(
kkk · (−∇T

T
) + αjjje + jjje(

V

T
)

)
· nnndS

=

∫
Ω′

(
−jjje ·

∇V

T
+ jjje ·

∇V

T
− jjje

V

T2 · ∇T

)
dΩ′

+

∫
Ω′

(
(−∇T) · kkk · (−∇T)

T2 − αjjje
T
· ∇T

)
dΩ′,

(4.24)
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or ∫
Ω′

1

T
(ρcv ∂tT)dΩ′ +

∫
∂Ω′

1

T
(qqq + jjjeV) · nnndS =

∫
Ω′

−∇T

T2 · (jjjeV− kkk · ∇T + αjjjeT) dΩ′.

(4.25)

Henceforth, as jjjy = qqq + jjjeV, this last result is rewritten∫
Ω′
∂tyδfTdΩ′ +

∫
∂Ω′

jjjy · nnnδfTdS =

∫
Ω′

jjjy · ∇δfTdΩ′. (4.26)

By this way we recover the conservation equation of the energy flux, Eq. (4.5), which shows
that jjje, jjjy and ∇(−V

T ),∇( 1
T) are conjugated pairs of fluxes and fields gradients as shown

in [43].
subsectionStrong form in terms of the conjugated pairs of fluxes and fields gradients

Let us define a 2 × 1 vector of the unknown fields MMM =

(
fV
fT

)
, with fV = −V

T and

fT = 1
T , then the gradients of the fields vector ∇MMM, a 2d× 1 vector in terms of (∇fV,∇fT),

is defined by(
∇MMM

)
=

(
∇fV
∇fT

)
=

(
∇(−V

T )
∇( 1

T)

)
=

(
− 1

TIII V
T2 III

000 − 1
T2 III

)(
∇V
∇T

)
, (4.27)

where III is the identity tensor. Hence, the fluxes defined by Eq. (4.15) can be expressed in
terms of fV, fT, yielding

jjj =

(
jjje
jjjy

)
=

(
lllT VTlll + αT2lll

VTlll + αT2lll T2kkk + 2αT2Vlll + α2T3lll + TV2lll

)(
∇fV
∇fT

)
. (4.28)

The 2d × 1 fluxes vector jjj is the product of the fields gradients vector ∇MMM, which derived
from the state variables (fV, fT), by a coefficients matrix ZZZ(V,T) of size 2d × 2d, which
is temperature and electric potential dependent. The conjugated pairs of fluxes and fields
gradients stated by Eq. (4.28) were proposed by Liu [43]. This formulation of the conjugated
forces leads to a symmetric coefficients matrix ZZZ(V,T) such that

jjj = ZZZ ∇MMM. (4.29)

From Eq. (4.28), the symmetric coefficients matrix ZZZ(V,T) is positive definite if ZZZ00 and ZZZ11

- ZZZT
10ZZZ
−1
00 ZZZ01 are positive definite. As ZZZ00 = lllT is positive definite, and ZZZ11 - ZZZT

10ZZZ
−1
00 ZZZ01 = kkkT2

is also positive definite, then ZZZ(V,T) is a positive definite matrix.
The coefficient matrix ZZZ(V,T) in Eq. (4.28) could also be rewritten in term of (fV, fT) =

(−V
T ,

1
T), as T = 1

fT
,V = − fV

fT
:

ZZZ(fV, fT) =

 1
fT

lll − fV
f2T

lll + α 1
f2T

lll

− fV
f2T

lll + α 1
f2T

lll kkk
f2T
− 2α fV

f3T
lll + α2 1

f3T
lll +

f2V
f3T

lll

 . (4.30)

As the coefficients matrix is positive definite, the energy can be defined by

∇MMMTjjj = ∇MMMTZZZ(fV, fT)∇MMM

=
(
∇fV ∇fT

) 1
fT

lll − fV
f2T

lll + α 1
f2T

lll

− fV
f2T

lll + α 1
f2T

lll kkk
f2T
− 2α fV

f3T
lll + α2 1

f3T
lll +

f2V
f3T

lll

( ∇fV
∇fT

)
≥ 0.

(4.31)
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Finally, the strong form (4.15, 4.16) can be expressed as
div(jjj) = iii ∀ xxx ∈ Ω,

MMM = M̄MM ∀ xxx ∈ ∂DΩ,

n̄nnT jjj = j̄jj ∀ xxx ∈ ∂NΩ,

(4.32)

where n̄nn =

(
nnn 0
0 nnn

)
, M̄MM ∈ L2(∂DΩ)× L2+

(∂DΩ), and j̄jj =

(
j̄e
j̄y

)
.

As explained by Liu [43], there is no unique choice of fluxes and fields gradients describing
the transport process, such that an arbitrary additive constant in the electrical potential V
should have no physical consequence. It can be shown that if (fV, fT) satisfies the conservation
law Eq. (4.32)

div
(
ZZZ(T,V + c)∇MMM

′
)

=

(
0
−∂ty

)
, ∇MMM

′
=

(
∇(fV)− c∇(fT)

∇(fT)

)
, (4.33)

showing that (f′V = fV − cfT, fT) also satisfies the conservation law.

4.3 Electro-Thermal analysis with the Discontinuous Galerkin
(DG) finite element method

4.3.1 Weak discontinuous form

The weak formulation of Eq. (4.11) is defined by multiplying it by a function δfV ∈
ΠeH

1(Ωe), performing a volume integral, and using the divergence theorem on each element

Ωe. This leads to state the problem as finding fV, fT ∈ ΠeH
1(Ωe)×ΠeH

1+
(Ωe) such that

−
∑

e

∫
Ωe

jjje(fV, fT) · ∇δfV dΩ +
∑

e

∫
∂Ωe

jjje(fV, fT) · nnnδfV dS = 0 ∀δfV ∈ ΠeH
1(Ωe). (4.34)

The surface integral of this last equation is rewritten as∑
e

∫
∂Ωe

jjje(fV, fT) · nnnδfV dS =
∑

e

∫
∂NΩe

jjje(fV, fT) · nnnδfV dS

+
∑

e

∫
∂IΩe∪∂DΩe

jjje(fV, fT) · nnnδfV dS,

(4.35)

where the subdivision ∂IΩ
e, ∂DΩe, and ∂NΩe have been defined in Section 2.2.

The second term of the right hand side of Eq. (4.35) can be rewritten using∑
e

∫
∂IΩe

jjje(fV, fT) · nnnδfVdS =

∫
∂IΩh

(jjj−e (fV, fT) · nnn−δf−V + jjj+e (fV, fT) · nnn+δf+V)dS

∑
e

∫
∂DΩe

jjje(fV, fT) · nnnδfVdS = −
∫
∂DΩh

(
−jjje(fV, fT) · nnn−δfV

)
dS,

(4.36)

where nnn− is the outward unit normal of the minus element Ωe− , whereas nnn+ is the outward
unit normal of its neighboring element, nnn+ = −nnn−, and nnn− = nnn on ∂DΩh. We can use trace
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operators introduced in Section 2.3 to manipulate the numerical flux and obtain the primal
formulation. As a reminder on ∂IΩh, the average 〈•〉 and the jump J•K operators are defined
as 〈•〉 = 1

2(•+ + •−), J K = (•+ − •−). The definition of these two trace operators can be
extended on the Dirichlet boundary ∂DΩh as 〈•〉 = •, J•K = (−•). Therefore, Eq. (4.35)
becomes

∑
e

∫
∂Ωe

jjje(fV, fTh
) · nnnδfVdS =

∫
∂NΩh

jjje(fV, fT) · nnnδfV dS

−
∫
∂IΩh∪∂DΩh

Jjjje(fV, fT)δfVK · nnn− dS.

(4.37)

Applying the boundary conditions specified in Eq. (4.14) and using this last result, allows

Eq. (4.34) to be rewritten as finding fV, fT ∈ ΠeH
1(Ωe)×ΠeH

1+
(Ωe) such that

∫
∂NΩh

j̄e δfV dS =

∫
Ωh

jjje(fV, fT) · ∇δfVdΩ +

∫
∂IΩh∪∂DΩh

Jjjje(fV, fT)δfVK · nnn−dS

∀δfV ∈ ΠeH
1(Ωe).

(4.38)

Applying the mathematical identity JabK = JaK 〈b〉 + JbK 〈a〉, and by neglecting the second
term because only consistency of the test functions needs to be enforced, then the consistent
flux related to Eq. (4.38) reads JδfvK 〈jjje(fV, fT)〉 · nnn−.

Moreover, on the one hand, due to the discontinuous nature of the trial functions in
the DG weak form, the inter-element discontinuity is allowed, so the continuity of unknown
variables is enforced weakly by using symmetrization and stabilization terms at the interior
elements boundary interface ∂IΩh. On the other hand, the Dirichlet boundary condition
(4.13) is also enforced in a weak sense by considering the same symmetrization and stabi-
lization terms at the Dirichlet elements boundary interface ∂DΩh. By using the definition of
the electric current density, Eq. (4.4), the virtual electric current density δjjje(fV, fT) reads

δjjje = lll · (−∇δV)− αlll · (−∇δT). (4.39)

Using the definition of the conjugated force, Eq. (4.28), this last relation is rewritten

δjjje(fV, fT) =
lll

fT
· ∇δfV + (− fVh

f2T
+ α

1

f2T
)lll · ∇δfT. (4.40)

Eq. (4.40) is rewritten in terms of lll1 = lll
fT

and lll2 = lll(− fV
f2T

+ α 1
f2T

) as:

δjjje(fV, fT) = lll1(fT) · ∇δfV + lll2(fV, fT) · ∇δfT. (4.41)

This last result allows formulating the symmetrization and quadratic stabilization terms so
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the weak form Eq .(4.38) becomes finding fV, fT ∈ ΠeH
1(Ωe)×ΠeH

1+
(Ωe) such that:∫

∂NΩh

j̄eδfV dS−
∫
∂DΩh

(
lll1(̄fT) · ∇δfV + lll2(̄fV, f̄T) · ∇δfT

)
· nnn̄fV dS

+

∫
∂DΩh

(
δfVnnn · l

ll1(̄fT)B
hs

+ δfTnnn · l
ll2(̄fV, f̄T)B

hs

)
· nnn̄fVdS =

∫
Ωh

jjje(fV, fT) · ∇δfVdΩ

+

∫
∂IΩh∪∂DΩh

JδfVK 〈jjje(fV, fT)〉 · nnn−dS +

∫
∂IΩh

JfVK 〈lll1(fT) · ∇δfV〉 · nnn−dS

+

∫
∂DΩh

JfVK
〈
lll1(f̄T) · ∇δfV

〉
· nnn−dS

+

∫
∂IΩh

JfVK 〈lll2(fV, fT) · ∇δfT〉 · nnn−dS

+

∫
∂DΩh

JfVK
〈
lll2(f̄V, f̄T) · ∇δfT

〉
· nnn−dS

+

∫
∂IΩh

JδfVKnnn− ·
〈

lll1(fT)B
hs

〉
· nnn− JfVK dS

+

∫
∂DΩh

JδfVKnnn− ·
〈

lll1(f̄T)B
hs

〉
· nnn− JfVK dS

+

∫
∂IΩh

JδfTKnnn− ·
〈

lll2(fV, fT)B
hs

〉
· nnn− JfVK dS

+

∫
∂DΩh

JδfTKnnn− ·
〈

lll2(f̄V, f̄T)B
hs

〉
· nnn− JfVK dS

∀δfV, δfT ∈ ΠeH
1(Ωe)×ΠeH

1(Ωe).

(4.42)

The last two terms of the left hand side of Eq. (4.42) make sure that the Dirichlet boundary
condition (4.13) is weakly enforced, as it will be shown in Section 4.4. Moreover, in this
equation B is the stability parameter which has to be sufficiently high to guarantee stability
as it will be shown in Section 4.4, and hs is the characteristic length of the mesh, which will
also be defined in Section 4.4.

In the same spirit, the weak formulation of the second governing Eq. (4.12) is derived
by multiplying it by kinematically admissible function δfT ∈ ΠeH

1(Ωe), integrating over the
whole domain, and applying the divergence theorem on each element, which lead to

−
∑

e

∫
Ωe

jjjy(fV, fT) · ∇δfTdΩ +
∑

e

∫
∂Ωe

jjjy(fV, fT) · nnnδfTdS

= −
∑

e

∫
Ωe

ρ∂tyδfTdΩ ∀δfT ∈ ΠeH
1(Ωe).

(4.43)

As for the electrical equation, by introducing the jump operator and the boundary condition
Eq. (4.14), this equation becomes∫

∂NΩh

δfTj̄y dS =

∫
Ωh

jjjy(fV, fT) · ∇δfTdΩ +

∫
∂IΩh∪∂DΩh

JδfT (jjjy(fV, fT))K · nnn−dS

−
∫

Ωh

ρ∂tyδfTdΩ ∀δfT ∈ ΠeH
1(Ωe).

(4.44)
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The consistent and stable weak form is obtained by considering the numerical energy flux
〈jjjy(fV, fT)〉, and by adding stability and symmetrization terms in a weak sense. Using the
definition of the conjugated force, Eq. (4.28), the virtual energy flux is expressed as

δjjjy(fV, fT) = (kkkT2 + 2αlllT2V + α2lllT3 + lllTV2) · ∇δfT + (αT2lll + lllTV) · ∇δfV

= (
kkk

f2T
− 2αlll

fV

f3T
+ α2lll

1

f3T
+ lll

f2V
f3T

) · ∇δfT + (αlll
1

f2T
− lll

fV

f2T
) · ∇δfV.

(4.45)

Let us define jjjy1(fV, fT) = kkk
f2T
− 2α fV

f3T
lll + α2 1

f3T
lll +

f2V
f3T

lll , allowing Eq. (4.45) to be rewritten in

terms of jjjy1,, lll2 as:

δjjjy(fV, fT) = jjjy1(fV, fT) · ∇δfT + lll2(fV, fT) · ∇δfV. (4.46)

Eventually, considering the Dirichlet boundary condition (4.13), the stabilized form can be

stated as finding fV, fT ∈ ΠeH
1(Ωe)×ΠeH

1+
(Ωe) such that∫

∂NΩh

δfTj̄y dS−
∫
∂DΩh

(
jjjy1(̄fV, f̄T) · ∇δfT + lll2(̄fV, f̄T) · ∇δfV

)
· nnn f̄T dS

+

∫
∂DΩh

(
δfTnnn · j

jjy1(̄fV, f̄T)B
hs

+ δfVnnn · l
ll2(̄fV, f̄T)B

hs

)
· nnn̄fTdS

=

∫
Ωh

jjjy(fV, fT) · ∇δfTdΩ−
∫

Ωh

ρ∂tyδfTdΩ

+

∫
∂IΩh∪∂DΩh

JδfTK 〈jjjy(fV, fT)〉 · nnn−dS +

∫
∂IΩh

JfTK 〈jjjy1(fV, fT) · ∇δfT〉 · nnn−dS

+

∫
∂DΩh

JfTK
〈
jjjy1(f̄V, f̄T) · ∇δfT

〉
· nnn−dS

+

∫
∂IΩh

JfTK 〈lll2(fV, fT) · ∇δfV〉 · nnn−dS

+

∫
∂DΩh

JfTK
〈
lll2(f̄V, f̄T) · ∇δfV

〉
· nnn−dS

+

∫
∂IΩh

JδfTKnnn− ·
〈

jjjy1(fV, fT)B
hs

〉
· nnn− JfTK dS

+

∫
∂DΩh

JδfTKnnn− ·
〈

jjjy1(f̄V, f̄T)B
hs

〉
· nnn− JfTK dS

+

∫
∂IΩh

JδfVKnnn− ·
〈

lll2(fV, fT)B
hs

〉
· nnn− JfTK dS

+

∫
∂DΩh

JδfVKnnn− ·
〈

lll2(f̄V, f̄T)B
hs

〉
· nnn− JfTK dS

∀δfV, δfT ∈ ΠeH
1(Ωe)×ΠeH

1(Ωe).

(4.47)

The last nine terms presented in Eq. (4.42, 4.47) are the interfaces terms, which ensure the
following characteristics and properties:

1. The consistency by the first term.
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2. The compatibility by the second till fifth terms.

3. The stability by the last four terms, which is ensured by a stability parameter inde-
pendent of mesh size and material properties, as it will be shown in Section 4.4.

4. The contributions on ∂DΩh ensure that the Dirichlet boundary condition (4.13) is
weakly enforced.

The weak form (4.42, 4.47) is thus summarized as finding fV, fT ∈ ΠeH
1(Ωe)×ΠeH

1+
(Ωe)

such that:

a1(fV, fT, δfV, δfT) = b1(δfV, δfT) ∀δfV, δfT ∈ ΠeH
1(Ωe)×ΠeH

1(Ωe), (4.48)

a2(fV, fT, δfV, δfT) = b2(δfV, δfT) + (ρ
∂y

∂t
, δfT) ∀δfV, δfT ∈ ΠeH

1(Ωe)×ΠeH
1(Ωe), (4.49)

with

a1(fV, fT, δfV, δfT) =

∫
Ωh

∇fV · lll1(fT) · ∇δfVdΩ +

∫
Ωh

∇fT · lll2(fV, fT) · ∇δfVdΩ

+

∫
∂IΩh∪∂DΩh

JδfVK 〈lll1(fT) · ∇fV〉 · nnn−dS

+

∫
∂IΩh∪∂DΩh

JδfVK 〈lll2(fV, fT) · ∇fT〉 · nnn−dS

+

∫
∂IΩh

JfVK 〈lll1(fT) · ∇δfV〉 · nnn−dS +

∫
∂DΩh

JfVK
〈
lll1(f̄T) · ∇δfV

〉
· nnn−dS

+

∫
∂IΩh

JfVK 〈lll2(fV, fT) · ∇δfT〉 · nnn−dS +

∫
∂DΩh

JfVK
〈
lll2(f̄V, f̄T) · ∇δfT

〉
· nnn−dS

+

∫
∂IΩh

JδfVKnnn− ·
〈

lll1(fT)B
hs

〉
· nnn− JfVK dS

+

∫
∂DΩh

JδfVKnnn− ·
〈

lll1(f̄T)B
hs

〉
· nnn− JfVK dS

+

∫
∂IΩh

JδfTKnnn− ·
〈

lll2(fV, fT)B
hs

〉
· nnn− JfVK dS

+

∫
∂DΩh

JδfTKnnn− ·
〈

lll2(f̄V, f̄T)B
hs

〉
· nnn− JfVK dS,

(4.50)



52 Electro-Thermal DG coupling

a2(fV, fT, δfV, δfT) =

∫
Ωh

∇fT · jjjy1(fV, fT) · ∇δfTdΩ +

∫
Ωh

∇fV · lll2(fV, fT) · ∇δfTdΩ

+

∫
∂IΩh∪∂DΩh

JδfTK 〈jjjy1(fV, fT) · ∇fT〉 · nnn−dS

+

∫
∂IΩh∪∂DΩh

JδfTK 〈lll2(fV, fT) · ∇fV〉 · nnn−dS

+

∫
∂IΩh

JfTK 〈jjjy1(fV, fT) · ∇δfT〉 · nnn−dS +

∫
∂DΩh

JfTK
〈
jjjy1(f̄V, f̄T) · ∇δfT

〉
· nnn−dS

+

∫
∂IΩh

JfTK 〈lll2(fV, fT) · ∇δfV〉 · nnn−dS +

∫
∂DΩh

JfTK
〈
lll2(f̄V, f̄T) · ∇δfV

〉
· nnn−dS

+

∫
∂IΩh

JδfTKnnn− ·
〈

jjjy1(fV, fT)B
hs

〉
· nnn− JfTK dS

+

∫
∂DΩh

JδfTKnnn− ·
〈

jjjy1(f̄V, f̄T)B
hs

〉
· nnn− JfTK dS

+

∫
∂IΩh

JδfVKnnn− ·
〈

lll2(fV, fT)B
hs

〉
· nnn− JfTK dS

+

∫
∂DΩh

JδfVKnnn− ·
〈

lll2(f̄V, f̄T)B
hs

〉
· nnn− JfTK dS,

(4.51)

b1(δfV, δfT) =

∫
∂NΩh

j̄e δfV dS

−
∫
∂DΩh

(
lll1(̄fT) · ∇δfV + lll2(̄fV, f̄T) · ∇δfT

)
· nnn̄fV dS

+

∫
∂DΩh

(
δfVnnn · l

ll1(̄fT)B
hs

+ δfTnnn · l
ll2(̄fV, f̄T)B

hs

)
· nnn̄fVdS,

(4.52)

b2(δfV, δfT) =

∫
∂NΩh

j̄y δfT dS

−
∫
∂DΩh

(
jjjy1(̄fV, f̄T) · ∇δfT + lll2(̄fV, f̄T) · ∇δfV

)
· nnn f̄T dS

+

∫
∂DΩh

(
δfTnnn · j

jjy1(̄fV, f̄T)B
hs

+ δfVnnn · l
ll2(̄fV, f̄T)B

hs

)
· nnn̄fTdS,

(4.53)

and

(
∂y

∂t
, δfT) =

∫
Ωh

ρ
∂

∂t
(y0 + cvT) δfT dΩ. (4.54)

The weak form stated by the set of Eqs. (4.48-4.49) can be rewritten in a matrix form by
considering a two-field coupled problem as in Section 4.2.2. We can now recall the broken
Sobolev spaces, Eq. (2.7), with1

X(+)
s =

{
MMM ∈ L2(Ωh)× L2(+)

(Ωh) |
MMM|Ωe∈Hs(Ωe)×Hs(+)

(Ωe) ∀Ωe∈Ωh

}
. (4.55)

1By abuse of notations, the (+) superscript means either usual H2-space or the space H2+
of strictly

positive values.
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For future use, we define X(+) as X
(+)
2 and X+ the manifold such that fT > 0, while X is the

manifold for which fT Q 0, with X+ ⊂ X.

Eq. (2.9) becomes

YYY =
{
∇MMM ∈ (L2(Ωh))d × (L2(Ωh))3 |∇MMM|Ωe∈H1(Ωe)×H1(Ωe) ∀Ωe∈Ωh

}
. (4.56)

It should be noted that the test functions in the previous equations of the weak formulation
belong to H1(Ωe) × H1+

(Ωe), however for the numerical analysis, we will need to be in

H2(Ωe)×H2+
(Ωe), in order to be able to consider s = 2 in Eq. (2.7).

Using the notations considered to state the strong form (4.32), the weak form stated by
Eqs. (4.48, 4.49) can be reformulated as finding MMM ∈ X+ such that

a3(MMM, δMMM) = b3(δMMM)−
∫

Ωh

δMMMTiiidΩ ∀δMMM ∈ X. (4.57)

For simplicity we introduce the vector MMMnnn =

(
nnn− 0
0 nnn−

)
MMM and M̄MMnnn =

(
nnn 0
0 nnn

)
M̄MM , which

allows defining the different terms of the weak discontinuous formulation as

a3(MMM, δMMM) =

∫
Ωh

(∇δMMM)Tjjj(MMM,∇MMM)dΩ +

∫
∂IΩh∪∂DΩh

q
δMMMT

nnn

y
〈jjj(MMM,∇MMM)〉dS

+

∫
∂IΩh

q
MMMT

nnn

y
〈ZZZ(MMM)∇δMMM〉dS +

∫
∂DΩh

q
MMMT

nnn

y 〈
ZZZ(M̄MM)∇δMMM

〉
dS

+

∫
∂IΩh

q
δMMMT

nnn

y〈 B
hs

ZZZ(MMM)

〉
JMMMnnnK dS +

∫
∂DΩh

q
δMMMT

nnn

y〈 B
hs

ZZZ(M̄MM)

〉
JMMMnnnK dS,

(4.58)

and

b3(δMMM) =

∫
∂NΩh

δMMMTj̄jjdS−
∫
∂DΩh

M̄MM
T
nnn

(
ZZZ(M̄MM)∇δMMM

)
dS

+

∫
∂DΩh

δMMMT
nnn

(
B
hs

ZZZ(M̄MM)

)
M̄MMnnndS.

(4.59)

4.3.2 Finite element discretization

In the finite element method, the functions fV and fT are approximated by fVh
and

fTh
, which are defined over a finite element Ωe using the interpolation concepts in terms of

standard shape function Na ∈ R at node a, see [81], yielding

fVh
= Na

fV
faV , fTh

= Na
fT

faT, (4.60)

where faV denotes the nodal value of fVh
at node a. This directly leads to

∇fVh
= ∇Na

fV
faV , ∇fTh

= ∇Na
fT

faT, (4.61)

where ∇Na is the gradient of the shape function at node a.
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In order to obtain a Galerkin formulation, the test functions are approximated using the
same interpolation, i.e.

δfVh = Na
fV
δfaV , δfTh = Na

fT
δfaT. (4.62)

∇δfVh
= ∇Na

fV
δfaV , ∇δfTh

= ∇Na
fT
δfaT, (4.63)

The finite discontinuous polynomial approximation MMMh =

(
fVh

fTh

)
∈ Xk+

of the solution

is thus defined in the following space according to Eq. (2.9)

Xk(+)

=
{

MMMh ∈ L2(Ωh)× L2(+)
(Ωh) |

MMMh|Ωe∈Pk(Ωe)×Pk(+)
(Ωe) ∀Ωe∈Ωh

}
, (4.64)

where Pk(Ωe) is the space of polynomial functions of order up to k and Pk+
means that

the polynomial approximation remains positive. As a result, the problem becomes finding
MMMh ∈ Xk+

such that

a3(MMMh, δMMMh) = b3(δMMMh)−
∫

Ωh

δMMMTiiidΩ ∀δMMMh ∈ Xk. (4.65)

The set of Eqs. (4.65) can be rewritten under the form:

FFFa
ext

(
MMMb
)

= FFFa
int

(
MMMb
)

+ FFFa
I

(
MMMb
)
, (4.66)

where MMMb is the vector of the unknown fields at node b

MMMb =

(
fbV
fbT

)
. (4.67)

The nonlinear Eqs. (4.66) are solved using the Newton Raphson scheme. To this end, the
forces are written in a residual form. The predictor, iteration 0, reads MMMb = MMMb0, the resid-
ual at iteration i reads

FFFa
ext

(
MMMbi

)
−FFFa

int

(
MMMbi

)
−FFFa

I

(
MMMbi

)
= RRRa

(
MMMbi

)
, (4.68)

and at iteration i, the first order Taylor development yields the system to be solved, i.e.(
∂FFFa

ext

∂MMMb
− ∂FFFa

int

∂MMMb
−
∂FFFa

I

∂MMMb

)
|MMM=MMMci

(
MMMb −MMMbi

)
= −RRRa

(
MMMci
)
. (4.69)

The formula of the forces can be derived from Eq. (4.48) and Eq. (4.49), after substi-
tuting Eq. (4.60-4.62), which leads at each node a to:

Fa
fVext

= Fa
fVint

+ Fa
fVI
, (4.70)

Fa
fText

= Fa
fTint

+ Fa
fTI
, (4.71)
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Fa
fVext

=
∑

s

∫
(∂NΩ)s

Na
fV

j̄edS−
∑

s

∫
(∂DΩ)s

f̄Vnnn · lll1(̄fT) · ∇Na
fV

dS

−
∑

s

∫
(∂DΩ)s

f̄Tnnn · lll2(̄fV, f̄T) · ∇Na
fV

dS +
∑

s

∫
(∂DΩ)s

f̄Vnnn ·
(

lll1(̄fT)
B
hs

)
· nnnNa

fV
dS

+
∑

s

∫
(∂DΩ)s

f̄Tnnn · lll2(̄fV, f̄T)
B
hs
· nnnNa

fV
dS,

(4.72)

with

Fa
fVint

=
∑

e

∫
Ωe

jjje(fVh
, fTh

) · ∇Na
fV

dΩ, (4.73)

Fa±
fVI

= Fa±
fVI1

+ Fa±
fVI2

+ Fa±
fVI3

, (4.74)

where the three contributions to the interface forces on ∂IΩh
2 are respectively

Fa±
fVI1

=
∑

s

∫
(∂IΩ)s

(
±Na±

fV

)
〈jjje(fVh

, fTh
)〉 · nnn−dS, (4.75)

Fa±
fVI2

=
1

2

∑
s

∫
(∂IΩ)s

JfVh
K
(
lll±1 (fTh

) · ∇Na±
fV

)
· nnn−dS

+
1

2

∑
s

∫
(∂IΩ)s

JfTh
K
(
lll±2 (fVh

, fTh
) · ∇Na±

fV

)
· nnn−dS,

(4.76)

Fa±
fVI3

=
∑

s

∫
(∂IΩ)s

JfVh
Knnn− ·

〈
lll1(fTh

)
B
hs

〉
· nnn−

(
±Na±

fV

)
dS

+
∑

s

∫
(∂IΩ)s

JfTh
Knnn− ·

〈
lll2(fVh

, fTh
)
B
hs

〉
· nnn−

(
±Na±

fV

)
dS.

(4.77)

Similarly, the thermal contributions read

Fa
fText

=
∑

s

∫
(∂NΩ)s

Na
fT

j̄y dS−
∑

s

∫
(∂DΩ)s

f̄Tnnn · jjjy1(̄fV, f̄T) · ∇Na
fT

dS

−
∑

s

∫
(∂DΩ)s

f̄Vnnn · lll2(̄fV, f̄T) · ∇Na
fT

dS +
∑

s

∫
(∂DΩ)s

f̄Tnnn · jjjy1(̄fV, f̄T)
B
hs
· nnnNa

fT
dS

+
∑

s

∫
(∂DΩ)s

f̄Vnnn · lll2(̄fV, f̄T)
B
hs
· nnnNa

fT
dS,

(4.78)

with

FfTint
=
∑

e

∫
Ωe

jjjy(fVh
, fTh

) · ∇Na
fT

dΩ−
∑

e

∫
Ωe

ρ∂tyNa
fT

dΩ, (4.79)

Fa±
fTI

= Fa±
fTI1

+ Fa±
fTI2

+ Fa±
fTI3

, (4.80)

2The contributions on ∂DΩh can be directly deduced by removing the factor (1/2) accordingly to the
definition of the average flux on the Dirichlet boundary and substituting lll1(f̄T), lll2(f̄V, f̄T) and jjjy(f̄V, f̄T),
which are constant with respect to fVh , and fTh , instead of lll1(fTh), lll2(fVh , fTh) and jjjy(fVh , fTh).
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where the three contributions to the interface forces are respectively

Fa±
fTI1

=
∑

s

∫
(∂IΩ)s

(
±Na±

fT

)
〈jjjy(fVh

, fTh
)〉 · nnn−dS, (4.81)

Fa±
fTI2

=
1

2

∑
s

∫
(∂IΩ)s

JfTh
K
(
jjj±y1(fVh

, fTh
) · ∇Na±

fT

)
· nnn−dS

+
1

2

∑
s

∫
(∂IΩ)s

JfVh
K
(
lll±2 (fVh

, fTh
) · ∇Na±

fT

)
· nnn−dS,

(4.82)

Fa±
fTI3

=
∑

s

∫
(∂IΩ)s

JfTh
Knnn− ·

〈
jjjy1(fVh

, fTh
)
B
hs

〉
· nnn−

(
±Na±

fT

)
dS

+
∑

s

∫
(∂IΩ)s

JfVh
Knnn− ·

〈
lll2(fVh

, fTh
)
B
hs

〉
· nnn−

(
±Na±

fT

)
dS.

(4.83)

In these equations the symbol ± refers to the node e± (+ for node e+ and - for node e−).

This system is solved by means of a Newton-Raphson method with the stiffness matrix
computed in Appendix C.1, where the iterations continue until the convergence to a specified
tolerance is achieved.

4.4 Numerical properties

In this section, the numerical properties of the weak formulation stated by Eq. (4.57)
are studied in steady state conditions (iii = 0), and under the assumption that d = 2.
It is demonstrated that the framework satisfies two fundamental properties of a numerical
method: consistency and stability. Moreover we show that the method possesses the optimal
convergence rate with respect to the mesh size.

4.4.1 Consistency

To prove the consistency of the method, the exact solution MMMe ∈ H2(Ω)×H2+
(Ω) of the

problem stated by Eq. (4.32) is considered. This implies JMMMeK = 0, 〈jjj〉 = jjj on ∂IΩh, and
JMMMeK = −M̄MM = MMMe, 〈jjj〉 = jjj = ZZZ(MMMe)∇MMMe, and ZZZ(MMM) = ZZZ(M̄MM) = ZZZ(MMMe) on ∂DΩh. Therefore,
Eq. (4.57) becomes:∫

∂NΩh

δMMMTj̄jjdS−
∫
∂DΩh

M̄MM
T
nnn

(
ZZZ(M̄MM)∇δMMM

)
dS +

∫
∂DΩh

δMMMT
nnn

(
B
hs

ZZZ(M̄MM)

)
M̄MMnnndS

=

∫
Ωh

(∇δMMM)Tjjj(MMMe,∇MMMe)dΩ +

∫
∂IΩh

q
δMMMT

nnn

y
jjj(MMMe,∇MMMe)dS

−
∫
∂DΩh

δMMMT
nnn jjj(MMMe,∇MMMe)dS−

∫
∂DΩh

MMMe
nnn

TZZZ(M̄MM)∇δMMMdS

+

∫
∂DΩh

δMMMT
nnn

B
hs

ZZZ(M̄MM)MMMe
nnndS ∀δMMM ∈ X.

(4.84)
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Integrating the first term of the right hand side by parts leads to

∑
e

∫
Ωe

(∇δMMM)Tjjj(MMMe,∇MMMe)dΩ = −
∑

e

∫
Ωe

δMMMT∇jjj(MMMe,∇MMMe)dΩ

+
∑

e

∫
∂Ωe

δMMMT
nnn jjj(MMMe,∇MMMe)dS,

(4.85)

and Eq. (4.84) becomes∫
∂NΩh

δMMMTj̄jjdS−
∫
∂DΩh

M̄MM
T
nnn

(
ZZZ(M̄MM)∇δMMM

)
dS +

∫
∂DΩh

δMMMT
nnn

(
B
hs

ZZZ(M̄MM)

)
M̄MMnnndS

= −
∑

e

∫
Ωe

δMMMT∇jjj(MMMe,∇MMMe)dΩ +

∫
∂NΩh

δMMMT
nnn jjj(MMMe,∇MMMe)dS

−
∫
∂DΩh

MMMe
nnn

TZZZ(M̄MM)∇δMMMdS +

∫
∂DΩh

δMMMT
nnn

B
hs

ZZZ(M̄MM)MMMe
nnndS ∀δMMM ∈ X.

(4.86)

The arbitrary nature of the test functions leads to recover the set of conservation laws, Eqs.
(4.11-4.12), and the boundary conditions, Eqs. (4.13-4.14).

4.4.2 Discontinuous space and finite element properties

In this part, we will assume that ∂DΩh = ∂Ωh. This assumption is not restrictive but
simplifies the demonstrations.

The main approximation properties and norm definitions, which will be used in the error
analysis of the Discontinuous Galerkin Finite element method, will first be recalled without
proofs.

The norms which have been defined in Chapter 2, Eqs. (2.10-2.12), will also be considered
for our subsequent analysis of Electro-Thermal coupling, with OOO = MMM, for MMM ∈ X2, where
the norm |‖MMM‖| = 0 is defined in such a way that it will be equal to zero only when
fV = cst and fT = cst on Ωh and are equal to 0 on ∂DΩh.

4.4.3 Second order non-self-adjoint elliptic problem

The demonstration of the stability follows closely the approach developed by [25,60,74,76]
for linear and nonlinear elliptic problems. As the problem is herein coupled, and as the
elliptic operator is different, we report and modify the main steps of the demonstrations
that were initially developed in [25,76] for d = 2.

The main idea to prove the solution uniqueness and to establish the prior error estimate
is to reformulate the nonlinear problem in a fixed point form which is the solution of the
linearized problem as proposed in [24,30,76].

Starting from the definition of matrix ZZZ(MMM), Eq. (4.30), which is a symmetric and
positive definite matrix, as we have proved in Section 4.2.2, let us define the minimum and
maximum eigenvalues of the matrix ZZZ(MMM) as λ(MMM) and Λ(MMM); then for all ξ ∈ R2d

0 one has

0 < λ(MMM)|ξ|2 ≤ ξiZZZ
ij(MMM)ξj ≤ Λ(MMM)|ξ|2. (4.87)
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Also by assuming that ‖MMM ‖W1
∞
≤ α, then there is a positive constant Cα such that

0 < Cα < λ(MMM). (4.88)

In the subsequent analysis, we use the following integral form of the Taylor’s expansions
of jjj, defined in Eq. (4.29), for (VVV,∇PPP) ∈ X×YYY in terms of (MMM,∇MMM) ∈ X×YYY:

jjj(VVV,∇PPP)− jjj(MMM,∇MMM) = −jjjMMM(MMM,∇MMM)(MMM−VVV)− jjj∇MMM(MMM,∇MMM)(∇MMM−∇PPP)

+ R̄RRjjj(MMM−VVV,∇MMM−∇PPP)

= −j̄jjMMM(MMM,∇MMM)(MMM−VVV)− j̄jj∇MMM(MMM,∇MMM)(∇MMM−∇PPP),

(4.89)

where jjjMMM is the partial derivative of jjj with respect to MMM, jjj∇MMM is the partial derivative of jjj with
respect to ∇MMM expressed in the matrix form, and R̄RRjjj is the residual. With VVVt = MMM+t(VVV−MMM),
∇PPPt = ∇MMM + t(∇PPP−∇MMM), we have

j̄jjMMM(MMM,∇MMM) =

∫ 1

0
jjjMMM(VVVt,∇PPPt)dt, j̄jj∇MMM(MMM,∇MMM) =

∫ 1

0
jjj∇MMM(VVVt,∇PPPt)dt, (4.90)

R̄jjj(MMM−VVV,∇MMM−∇PPP) = (MMM−VVV)Tj̄jjMMMMMM(VVV,∇PPP)(MMM−VVV)

+ (∇MMM−∇PPP)Tj̄jj∇MMM∇MMM(VVV,∇PPP)(∇MMM−∇PPP)

+ 2(MMM−VVV)Tj̄jjMMM∇MMM(VVV,∇PPP)(∇MMM−∇PPP),

(4.91)

and

j̄jjMMMMMM(VVV,∇PPP) =

∫ 1

0
(1− t)jjjMMMMMM(VVVt,∇PPPt)dt,

j̄jjMMM∇MMM(VVV,∇PPP) =

∫ 1

0
(1− t)jjjMMM∇MMM(VVVt,∇PPPt)dt,

j̄jj∇MMM∇MMM(VVV,∇PPP) =

∫ 1

0
(1− t)jjj∇MMM∇MMM(VVVt,∇PPPt)dt.

(4.92)

Using the definition Eq. (4.29) of jjj, we have jjjMMM = ∂ZZZ
∂MMM∇MMM, jjj∇MMM = ZZZ, jjjMMMMMM = ∂2ZZZ

∂MMM2∇MMM

jjjMMM∇MMM = jjj∇MMMMMM = ∂ZZZ
∂MMM , jjj∇MMM∇MMM = 0. If fT ≥ fT0 > 0, then j̄jjMMM, j̄jjMMMMMM ∈ LLL∞ (Ω×R×R+

0 ×Rd×Rd)
and j̄jj∇MMM, j̄jjMMM∇MMM, j̄jj∇MMMMMM ∈ LLL∞ (Ω × R × R+

0 ). The expressions of the derivatives are given in
C.2. Since jjj is a twice continuously differential function with all the derivatives through the
second order locally bounded in a ball around MMM ∈ R × R+

0 as it will be shown in Section
4.4.4, for d = 2, we denote by Cy

Cy = max
{
‖ jjj ‖W2

∞(Ω×R×R+
0 ×Rd×Rd), ‖ j̄jjMMM, j̄jj∇MMM, j̄jjMMMMMM, j̄jjMMM∇MMM, j̄jj∇MMMMMM ‖L∞(Ω×R×R+

0 )

}
. (4.93)

We can now study the weak form defined by Eq. (4.57) under the assumptions iii = 0 and j̄jj
independent of MMM. The problem thus reads as finding MMM ∈ X+ such that

a3(MMM, δMMM) = b3(δMMM) ∀δMMM ∈ X, (4.94)

with a3(MMM, δMMM) defined by Eq. (4.58) and b3(δMMM) by Eq. (4.59).
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4.4.3.1 Derivation of the non-self-adjoint linear elliptic problem

Let us define MMMe ∈ H2(Ω)×H2+
(Ω) the solution of the strong form stated by Eq. (4.32).

Thus as JMMMeK = 0 on ∂IΩ
e and as JMMMeK = −MMMe = −M̄MM on ∂DΩe, we have

a3(MMMe, δMMMe) =

∫
Ωh

(∇δMMMe)Tjjj(MMMe,∇MMMe)dΩ +

∫
∂IΩh

r
δMMMeT

nnn

z
〈jjj(MMMe,∇MMMe)〉dS

−
∫
∂DΩh

δMMMeT

nnn jjj(MMMe,∇MMMe)dS−
∫
∂DΩh

M̄MM
T
nnn ZZZ(MMMe)∇δMMMedS

+

∫
∂DΩh

δMMMeT

nnn

B
hs

ZZZ(MMMe)M̄MMnnndS = b3(δMMMe) ∀δMMMe ∈ X,

(4.95)

as the weak form stated by Eq. (4.57) is consistent, see Section 4.4.1.

Using the weak formulation (4.94), we state the Discontinuous Galerkin finite element

method for the problem as finding MMMh ∈ Xk+
, such that

a3(MMMh, δMMMh) = b3(δMMMh) ∀δMMMh ∈ Xk ⊂ X. (4.96)

Therefore, using δMMMe = δMMMh in Eq. (4.95) and subtracting it from the DG discretization
(4.96) yields

0 = a3(MMMe, δMMMh)− a3(MMMh, δMMMh) =

∫
Ωh

(∇δMMMh)Tjjj(MMMe,∇MMMe)dΩ

−
∫

Ωh

(∇δMMMh)Tjjj(MMMh,∇MMMh)dΩ +

∫
∂IΩh

q
δMMMT

hnnn

y
〈jjj(MMMe,∇MMMe)〉dS

−
∫
∂DΩh

δMMMT
hnnn

jjj(MMMe,∇MMMe)dS−
∫
∂DΩh

M̄MM
T
nnn jjj∇MMM(MMMe)∇δMMMhdS

+

∫
∂DΩh

δMMMT
hnnn

B
hs

jjj∇MMM(MMMe)M̄MMnnndS−
∫
∂IΩh∪∂DΩh

q
MMMT

hnnn

y
〈jjj∇MMM(MMMh)∇δMMMh〉dS

−
∫
∂IΩh∪∂DΩh

q
δMMMT

hnnn

y
〈jjj(MMMh,∇MMMh)〉 dS

−
∫
∂IΩh∪∂DΩh

q
MMMT

hnnn

y〈 B
hs

jjj∇MMM(MMMh)

〉
JδMMMhnnnK dS, ∀δMMMh ∈ Xk,

(4.97)

where ZZZ = jjj∇MMM.

By adding and subtracting successively
∫
∂IΩh

r
MMMeT

nnn −MMMT
hnnn

z
〈jjj∇MMM(MMMe)∇δMMMh〉dS

and
∫
∂IΩh

r
MMMeT

nnn −MMMT
hnnn

z〈
B
hs

jjj∇MMM(MMMe)
〉

JδMMMhnnnK dS to this last relation, and using JMMMe
nnnK = 0
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on ∂IΩh and JMMMe
nnnK = −MMMe

nnn = −M̄MMnnn on ∂DΩh, one gets

0 =

∫
Ωh

(∇δMMMh)T (jjj(MMMe,∇MMMe)− jjj(MMMh,∇MMMh)) dΩ

+

∫
∂IΩh∪∂DΩh

q
δMMMT

hnnn

y
〈jjj(MMMe,∇MMMe)− jjj(MMMh,∇MMMh)〉dS

+

∫
∂IΩh∪∂DΩh

r
MMMeT

nnn −MMMT
hnnn

z
〈jjj∇MMM(MMMe)∇δMMMh〉 dS

−
∫
∂IΩh

r
MMMeT

nnn −MMMT
hnnn

z
〈(jjj∇MMM(MMMe)− jjj∇MMM(MMMh))∇δMMMh〉 dS

+

∫
∂IΩh∪∂DΩh

r
MMMeT

nnn −MMMT
hnnn

z〈 B
hs

jjj∇MMM(MMMe)

〉
JδMMMhnnnK dS

−
∫
∂IΩh

r
MMMeT

nnn −MMMT
hnnn

z〈 B
hs

(jjj∇MMM(MMMe)− jjj∇MMM(MMMh))

〉
JδMMMhnnnK dS ∀δMMMh ∈ Xk.

(4.98)

Using the Taylor series defined in Eq. (4.89) to rewrite the differences, we successively have:

∫
Ωh

(∇δMMMh)T(jjj(MMMe,∇MMMe)− jjj(MMMh,∇MMMh))dΩ

=

∫
Ωh

(∇δMMMh)T(jjjMMM(MMMe,∇MMMe)(MMMe −MMMh))dΩ

+

∫
Ωh

(∇δMMMh)T(jjj∇MMM(MMMe)(∇MMMe −∇MMMh))dΩ

−
∫

Ωh

(∇δMMMh)T(R̄RRjjj(MMM
e −MMMh,∇MMMe −∇MMMh))dΩ,

(4.99)

and

∫
∂IΩh∪∂DΩh

q
δMMMT

hnnn

y
〈jjj(MMMe,∇MMMe)− jjj(MMMh,∇MMMh)〉dS

=

∫
∂IΩh∪∂DΩh

q
δMMMT

hnnn

y
〈jjjMMM(MMMe,∇MMMe)(MMMe −MMMh)〉dS

+

∫
∂IΩh∪∂DΩh

q
δMMMT

hnnn

y
〈jjj∇MMM(MMMe)(∇MMMe −∇MMMh)〉 dS

−
∫
∂IΩh∪∂DΩh

q
δMMMT

hnnn

y 〈
R̄RRjjj(MMM

e −MMMh,∇MMMe −∇MMMh)
〉

dS.

(4.100)
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We can now first define N (MMMe,MMMh; δMMMh) as follows

N (MMMe,MMMh; δMMMh) =

∫
Ωh

(∇δMMMh)T(R̄RRjjj(MMM
e −MMMh,∇MMMe −∇MMMh))dΩ

+

∫
∂IΩh∪∂DΩh

q
δMMMT

hnnn

y 〈
R̄RRjjj(MMM

e −MMMh,∇MMMe −∇MMMh)
〉

dS

+

∫
∂IΩh

r
MMMeT

nnn −MMMT
hnnn

z
〈(jjj∇MMM(MMMe)− jjj∇MMM(MMMh))∇δMMMh〉dS

+

∫
∂IΩh

r
MMMeT

nnn −MMMT
hnnn

z〈 B
hs

(jjj∇MMM(MMMe)− jjj∇MMM(MMMh))

〉
JδMMMhnnnK dS

= I1 + I2 + I3 + I4.

(4.101)

Moreover, for given ψψψ ∈ X+,ωωω ∈ X and δωωω ∈ X, we define the following forms:

A(ψψψ;ωωω, δωωω) =

∫
Ωh

(∇δωωω)Tjjj∇ψψψ(ψψψ)∇ωωωdΩ +

∫
∂IΩh∪∂DΩh

q
δωωωT

nnn

y 〈
jjj∇ψψψ (ψψψ)∇ωωω

〉
dS

+

∫
∂IΩh∪∂DΩh

q
ωωωT

nnn

y 〈
jjj∇ψψψ(ψψψ)∇δωωω

〉
dS +

∫
∂IΩh∪∂DΩh

q
ωωωT

nnn

y〈 B
hs

jjj∇ψψψ(ψψψ)

〉
JδωωωnnnK dS,

(4.102)

B(ψψψ;ωωω, δωωω) =

∫
Ωh

(∇δωωω)Tjjjψψψ(ψψψ,∇ψψψ)ωωωdΩ +

∫
∂IΩh∪∂DΩh

q
δωωωT

nnn

y 〈
jjjψψψ(ψψψ,∇ψψψ)ωωω

〉
dS. (4.103)

For fixed ψψψ, the form A(ψψψ; ., .) and the form B(ψψψ; ., .) are bi-linear. Therefore, using the
relations (4.99-4.100) and the definitions (4.101-4.103), the set of Eqs. (4.98) is rewritten as

finding MMMh ∈ Xk+
such that:

A(MMMe;MMMe −MMMh, δMMMh) + B(MMMe;MMMe −MMMh, δMMMh) = N (MMMe,MMMh; δMMMh) ∀δMMMh ∈ Xk. (4.104)

4.4.4 Solution uniqueness

Let us first define ηηη = IhMMM −MMMe ∈ X, with IhMMM ∈ Xk+
the interpolant of MMMe in Xk+

.
The last relation (4.104) thus becomes

A(MMMe; IhMMM−MMMh, δMMMh) + B(MMMe; IhMMM−MMMh, δMMMh)

= A(MMMe;ηηη, δMMMh) + B(MMMe;ηηη, δMMMh) +N (MMMe,MMMh; δMMMh) ∀δMMMh ∈ Xk.
(4.105)

Now in order to prove the existence of a solution MMMh of the problem stated by Eq. (4.98),
which corresponds to the DG finite element discretization (4.96), we state the problem in

the fixed point formulation and we define a map Sh : Xk+ → Xk+
as follows: for a given

yyy ∈ Xk+
, find Sh(yyy) = MMMyyy ∈ Xk+

, such that

A(MMMe; IhMMM−MMMyyy, δMMMh) + B(MMMe; IhMMM−MMMyyy, δMMMh)

= A(MMMe;ηηη,δMδMδMh) + B(MMMe;ηηη, δMMMh) +N (MMMe,yyy; δMMMh) ∀δMMMh ∈ Xk.
(4.106)

The existence of a fixed point of the map Sh is equivalent to the existence of a solution MMMh

of the discrete problem (4.96), see [24].
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For the following analysis, we denote by Ck, a positive generic constant which is indepen-
dent of the mesh size, but may depend on CT ,C

k
D,C

k
I ,C

k
K, and on k, so it can take different

values at different places.
To demonstrate the uniqueness, we have recourse to the following Lemmata.

Lemma 4.4.1 (Lower bound). For B larger than a constant, which depends on the polyno-
mial approximation only, there exist two constants Ck

1 and Ck
2, such that

A(MMMe; δMMMh, δMMMh) + B(MMMe; δMMMh, δMMMh) ≥ Ck
1 |‖ δMMMh ‖|2∗ −Ck

2 ‖ δMMMh ‖2L2(Ω)
∀δMMMh ∈ Xk,

(4.107)

A(MMMe; δMMMh, δMMMh) + B(MMMe; δMMMh, δMMMh) ≥ Ck
1 |‖ δMMMh ‖|2 −Ck

2 ‖ δMMMh ‖2L2(Ω)
∀δMMMh ∈ Xk,

(4.108)

where the norms have been defined by Eqs. (2.10) and (2.11). Proceeding by using the bounds
(4.88) and (4.93), the Cauchy-Schwartz’ inequality, Eq. (2.26), the trace inequality on the
finite element space (2.18), the trace inequality, Eq. (2.16), and the inverse inequality, Eq.
(2.21), the ξ-inequality –ξ > 0 : |ab| ≤ ξ

4a2 + 1
ξ b2, as in Wheeler et al. [74] and Prudhomme

et al. [60] analysis with some modifications, yields to prove this Lemma 4.4.1. The two
positive constants Ck

1,C
k
2 are independent of the mesh size, but do depend on k and B, for

details, see Appendix C.3. In particular, for Ck
1 to be positive the following constrain on

the stabilization parameter should be satisfied B > C2
y

C2
α

max(CT (Ck
I + 1), 4Ck2

K ). Therefore for

the method to be stable, the stabilization parameter should be large enough depending on the
polynomial approximation.

Lemma 4.4.2 (Upper bound). There exist C > 0 and Ck > 0 such that

| A(MMMe;uuu, δMMM) + B(MMMe;uuu, δMMM) | ≤ C |‖ uuu ‖|1 |‖ δMMM ‖|1 ∀uuu , δMMM ∈ X, (4.109)

| A(MMMe;uuu, δMMMh) + B(MMMe;uuu, δMMMh) | ≤ Ck |‖ uuu ‖|1 |‖ δMMMh ‖| ∀uuu ∈ X , δMMMh ∈ Xk, (4.110)

| A(MMMe;uuuh, δMMMh) + B(MMMe;uuuh, δMMMh) | ≤ Ck |‖ uuuh ‖| |‖ δMMMh ‖| ∀uuuh, δMMMh ∈ Xk, (4.111)

where the norms have been defined by Eqs. (2.11) and (2.12). Applying the Hölder’s inequal-
ity, Eq. (2.24), and the bound (4.93) on each term of A(MMMe;uuu, δMMM) +B(MMMe;uuu, δMMM) and then
applying the Cauchy-Schwartz’ inequality, Eq. (2.27), lead to relation (4.109). Therefore
relations (4.110) and (4.111) are easily deduced from the relation between energy norms on
the finite element space, Eq. (2.22). The proof is presented in Appendix C.4.

Lemma 4.4.3 (Auxiliary problem). We consider the following auxiliary problem, with φφφ ∈
L2(Ω):

−∇T (jjj∇MMM(MMMe)∇ψψψ + jjjMMM(MMMe,∇MMMe)ψψψ) = φφφ on Ω,

ψψψ = 0 on ∂Ω.
(4.112)

Assuming regular ellipticity of the operator, there is a unique solution ψψψ ∈ H2(Ω) × H2(Ω)
to the problem stated by Eq. (4.112) satisfying the elliptic property

‖ ψψψ ‖H2(Ωh)≤ C ‖ φφφ ‖L2(Ωh) . (4.113)
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The proof is given in [23], by combining [23, Theorem 8.3] to [23, Lemma 9.17].

Moreover, for a given ϕϕϕ ∈ L2(Ωh)× L2(Ωh) there exists a unique φφφh ∈ Xk such that

A(MMMe; δMMMh,φφφh) + B(MMMe; δMMMh,φφφh) =
∑
e

∫
Ωe

ϕϕϕTδMMMhdΩ ∀δMMMh ∈ Xk, (4.114)

and there is a constant Ck such that :

|‖ φφφh ‖|≤ Ck ‖ ϕϕϕ ‖L2(Ωh) . (4.115)

The proof follows from the use of Lemma 4.4.1 to bound |‖ φφφh ‖| in terms of ‖ ϕϕϕ ‖L2(Ωh)

and ‖ φφφh ‖L2(Ωh). ‖ φφφh ‖L2(Ωh) is then estimated by considering φφφ = φφφh ∈ Xk in Eq.

(4.112), multiplying the result by φφφh and integrating it by parts on Ωh yielding ‖ φφφh ‖2L2(Ωh)
=

A(MMMe;ψψψ,φφφh) + B(MMMe;ψψψ,φφφh). Inserting the interpolant Ihφφφ in these last terms, making suc-
cessive use of Lemmata 4.4.2 and 2.4.6, and using the regular ellipticity Eq. (4.113) allows
deriving the bound ‖ φφφh ‖L2(Ωh)≤ Ck ‖ ϕϕϕ ‖L2(Ωh), which shows that |‖ φφφh ‖| is bounded by
‖ ϕϕϕ ‖L2(Ωh)and results into the proof of (4.115). The proof is derived in detail in Appendix
C.5.

Now, to prove the existence of the solution of the discrete problem, it is enough to prove
that the map Sh has a fixed point. So in order to prove that the solution MMMyyy is unique for

a given yyy ∈ Xk+
, and that the solution is Sh(yyy) = MMMyyy, let us assume that there are two

distinct solutions MMMyyy1 , MMMyyy2 to the problem stated by Eq. (4.106), which results into

A(MMMe; IhMMM−MMMyyy1 , δMMMh) + B(MMMe; IhMMM−MMMyyy1 , δMMMh)

= A(MMMe; IhMMM−MMMyyy2 , δMMMh) + B(MMMe; IhMMM−MMMyyy2 , δMMMh) ∀ δMMMh ∈ Xk.
(4.116)

For fixed MMMe, A and B are bi-linear, therefore this last relation becomes

A(MMMe;MMMyyy1 −MMMyyy2 , δMMMh) + B(MMMe;MMMyyy1 −MMMyyy2 , δMMMh) = 0 ∀ δMMMh ∈ Xk. (4.117)

Using Lemma 4.4.3, with ϕϕϕ = δMMMh = MMMyyy1 −MMMyyy2 ∈ Xk results in stating that there is a
unique ΦΦΦh ∈ Xk solution of the problem Eq. (4.114), with for δMMMh = MMMyyy1 −MMMyyy2

A(MMMe;MMMyyy1 −MMMyyy2 ,ΦΦΦh) + B(MMMe;MMMyyy1 −MMMyyy2 ,ΦΦΦh) =‖MMMyyy1 −MMMyyy2 ‖2L2(Ωh)
, (4.118)

and that |‖ ΦΦΦh ‖|≤ Ck ‖ MMMyyy1 −MMMyyy2 ‖L2(Ωh). Choosing δMMMh as ΦΦΦh in Eq. (4.117), we have
‖MMMyyy1 −MMMyyy2 ‖L2(Ωh)= 0. Therefore, the solution Sh(yyy) = MMMyyy is unique.

We will now show that Sh maps from a ball Oσ(IhMMM) ⊂ Xk+
into itself and is continuous

in the ball. We define the ball Oσ with radius σ and centered at the interpolant IhMMM of MMMe

as

Oσ(IhMMM) =
{

yyy ∈ Xk+

such that |‖ IhMMM− yyy ‖|1≤ σ
}
,

with σ =
|‖ IhMMM−MMMe ‖|1

hεs
, 0 < ε <

1

4
.

(4.119)
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The idea is to work on a linearized problem in a ball Oσ(IhMMM) ⊂ Xk+
around an interpo-

lation IhMMM of MMMe so the nonlinear term jjj and its derivatives are locally bounded in the ball
Oσ(IhMMM) ⊂ Xk+

. We note that from Lemma 2.4.6, Eq. (2.23), one has

|‖ IhMMM−MMMe ‖|1 ≤ Ckhµ−1
s ‖MMMe ‖Hs(Ωh) and σ ≤ CkCMhµ−1−ε

s ‖MMMe ‖Hs(Ωh) if k ≥ 2.

(4.120)

Assuming MMMe ∈ H
5
2 (Ω)×H

5
2

+

(Ω), using the previous relation with s = 5
2 , CM =‖MMMe ‖

H
5
2 (Ωh)

,

and µ = 5
2 = s, then we have

|‖ IhMMM−MMMe ‖|1 ≤ Ckh
3
2
s ‖MMMe ‖

H
5
2 (Ωh)

and σ ≤ CkCMh
3
2
−ε

s if k ≥ 2. (4.121)

It is shown in Appendix C.6, that jjj(xxx;yyy,∇yyy), jjjMMM(xxx;yyy,∇yyy), jjjMMMMMM(xxx;yyy,∇yyy), jjj∇MMM(xxx;yyy),
jjjMMM∇MMM(xxx;yyy) are bounded for xxx ∈ Ω̄, yyy ∈ Oσ(IhMMM), by the same reasoning as in [76] for d = 2,
which justify Eq. (4.93).

We can now bound the nonlinear term N (MMMe,yyy; δMMMh) of Eq. (4.108). Let yyy ∈ Oσ(IhMMM)
and ζζζ = MMMe − yyy which can be expanded as ζζζ = ηηη + ξξξ with ηηη = MMMe − IhMMM ∈ X and
ξξξ = IhMMM − yyy ∈ Xk, where IhMMM is the interpolant of MMMe. Toward this end, let us begin by
computing the bounds of some terms which will be used in the following analysis.

Lemma 4.4.4 (Intermediate bounds). Let ξξξ = IhMMM− yyy, δMMMh ∈ Xk, ηηη = MMMe − IhMMM ∈ X and
ζζζ = ξξξ + ηηη, then by bounding successively the two contributions, we can derive(∑

e

‖ ζζζ ‖2
L2(Ωe)

) 1
2

≤ Ckσ

≤ Ckhµ−1−ε
s ‖MMMe ‖Hs(Ωh)= Ckh

3
2
−ε

s ‖MMMe ‖
H

5
2 (Ωh)

if k ≥ 2,

(4.122)

(∑
e

‖ ζζζ ‖4
L4(Ωe)

) 1
4

≤ Ckh
− 1

2
s σ

≤ Ckh
µ− 3

2
−ε

s ‖MMMe ‖Hs(Ωh)= Ckh1−ε
s ‖MMMe ‖

H
5
2 (Ωh)

if k ≥ 2,

(4.123)

(∑
e

‖ ∇ζζζ ‖2
L2(Ωe)

) 1
2

≤ Ckσ

≤ Ckhµ−1−ε
s ‖MMMe ‖Hs(Ωh)= Ckh

3
2
−ε

s ‖MMMe ‖
H

5
2 (Ωh)

if k ≥ 2,

(4.124)

‖ ηηη ‖L4(∂Ωe)≤ C
1
4
T Ck
Dh

µ− 3
4

s ‖MMMe ‖Hs(Ωe)= C
1
4
T Ck
Dh

7
4
s ‖MMMe ‖

H
5
2 (Ωe)

if k ≥ 2, (4.125)(∑
e

‖ JηηηK ‖4
L4(∂Ωe)

) 1
4

≤ C
1
4
T Ck
Dh

µ− 3
4

s ‖MMMe ‖Hs(Ωh) ≤ C
1
4
T Ck
Dh

7
4
s ‖MMMe ‖

H
5
2 (Ωe)

if k ≥ 2,

(4.126)

‖ ∇ηηη ‖L4(∂Ωe)≤ C
1
4
T Ck
Dh

µ− 7
4

s ‖MMMe ‖Hs(Ωe)= C
1
4
T Ck
Dh

3
4
s ‖MMMe ‖

H
5
2 (Ωe)

if k ≥ 2, (4.127)
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(∑
e

‖ ξξξ ‖4
L4(∂Ωe)

) 1
4

≤ C
1
4
T Ck
ICPh

− 3
4

s σ

≤ C
1
4
T Ck
ICPh

µ− 7
4
−ε

s ‖MMMe ‖Hs(Ωh)= C
1
4
T Ck
ICPh

3
4
−ε

s ‖MMMe ‖
H

5
2 (Ωh)

if k ≥ 2,

(4.128)(∑
e

‖ JξξξK ‖4
L4(∂Ωe)

) 1
4

≤ Ck
Ih

1
4
s σ ≤ Ck

Ih
µ− 3

4
−ε

s ‖MMMe ‖Hs(Ωh)= Ck
Ih

7
4
−ε

s ‖MMMe ‖
H

5
2 (Ωh)

if k ≥ 2,

(4.129)(∑
e

‖ ∇ξξξ ‖4
L4(∂Ωe)

) 1
4

≤ Ck
KCk
Ih
− 3

4
s σ

≤ Ck
KCk
Ih

µ− 7
4
−ε

s ‖MMMe ‖Hs(Ωh)= Ck
KCk
Ih

3
4
−ε

s ‖MMMe ‖
H

5
2 (Ωh)

if k ≥ 2,

(4.130)(∑
e

‖ ζζζ ‖4
L4(∂Ωe)

) 1
4

≤ Ckh
− 3

4
s σ

≤ Ckh
µ− 7

4
−ε

s ‖MMMe ‖Hs(Ωh)= Ckh
3
4
−ε

s ‖MMMe ‖
H

5
2 (Ωh)

if k ≥ 2,

(4.131)

(∑
e

‖ JζζζK ‖4
L4(∂Ωe)

) 1
4

≤ Ckh
1
4
s σ

≤ Ckh
µ− 3

4
−ε

s ‖MMMe ‖Hs(Ωh)= Ckh
7
4
−ε

s ‖MMMe ‖
H

5
2 (Ωh)

if k ≥ 2.

(4.132)

(∑
e

‖ ∇ζζζ ‖4
L4(∂Ωe)

) 1
4

≤ Ckh
− 3

4
s σ

≤ Ckh
µ− 7

4
−ε

s ‖MMMe ‖Hs(Ωh)= Ckh
3
4
−ε

s ‖MMMe ‖
H

5
2 (Ωh)

if k ≥ 2,

(4.133)

‖ δMMMh ‖W1
4(Ωe) ≤ Ck

Ih
− 1

2
s ‖ δMMMh ‖H1(Ωe),

| δMMMh |W1
4(Ωe) ≤ Ck

Ih
− 1

2
s | δMMMh |H1(Ωe),

(4.134)

with µ = min {s, k + 1}. Theses previous inequalities are derived in Appendix C.7 and only
the final results are reported here.

We have now the tool to bound the nonlinear term N (MMMe,yyy; δMMMh) of Eq. (4.106).

Lemma 4.4.5. Let yyy ∈ Oσ(IhMMM) and δMMMh ∈ Xk, then the nonlinear term N (MMMe,yyy; δMMMh)
defined in Eq. (4.101), is bounded by

| N (MMMe,yyy; δMMMh) | ≤ CkCy ‖MMMe ‖Hs(Ωh) hµ−2−ε
s σ

[
| δMMMh |H1(Ωh)

+

(∑
e

hs | δMMMh |2H1(∂Ωe)

) 1
2

+

(∑
e

h−1
s ‖ JδMMMhnnnK ‖2L2(∂Ωe)

) 1
2

 . (4.135)
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The bound follows from the use of Lemma 4.4.4,Taylor’s series (4.89-4.91), the generalized
Hölder’s inequality (2.25), the generalized Cauchy-Schwartz’ inequality (2.27), the definition
of Cy in Eq. (4.93), and is reported in Appendix C.8. Moreover, using the definition of the
energy norm (2.12), this relation becomes

| N (MMMe,yyy; δMMMh) | ≤ CkCy ‖MMMe ‖Hs(Ωh) hs
µ−2−εσ |‖ δMMMh ‖|1, (4.136)

which could be rewritten using Lemma 2.4.5 for the general case as

| N (MMMe,yyy; δMMMh) | ≤ CkCy ‖MMMe ‖Hs(Ωh) hs
µ−2−εσ |‖ δMMMh ‖|

≤ CkCyCMhs
1
2
−εσ |‖ δMMMh ‖| if k ≥ 2.

(4.137)

We now have the tools to demonstrate that Sh (i) maps from a ball Oσ(IhMMM) ⊂ Xk into
itself and (ii) is continuous in the ball.

Theorem 4.4.6 (Sh maps Oσ(IhMMM) into itself). Let 0 < hs < 1 and σ be defined by Eq.
(4.121). Then Sh maps the ball Oσ(IhMMM) into itself.

Let yyy ∈ Oσ(IhMMM) ∈ Xk and Sh(yyy) = MMMyyy be the solution of the problem given by Eq.
(4.106). Then using Lemma 4.4.1, Eq. (4.108), Lemma 4.4.2, Eq. (4.110), Lemma 4.4.5,
Eq. (4.136), and the definition of the ball (4.119), we successively find that

Ck
1 |‖ IhMMM−MMMyyy ‖|2 −Ck

2 ‖ IhMMM−MMMyyy ‖2L2(Ωh)

≤ A(MMMe; IhMMM−MMMyyy, IhMMM−MMMyyy) + B(MMMe; IhMMM−MMMyyy, IhMMM−MMMyyy)

≤ A(MMMe; IhMMM−MMMe, IhMMM−MMMyyy) + B(MMMe; IhMMM−MMMe, IhMMM−MMMyyy) +N (MMMe,yyy, IhMMM−MMMyyy)

≤ Ck |‖ IhMMM−MMMe ‖|1 |‖ IhMMM−MMMyyy ‖| +CkCy ‖MMMe ‖Hs(Ωh) hµ−2−ε
s σ |‖ IhMMM−MMMyyy ‖|

≤ (Ckhεs + CkCy ‖MMMe ‖Hs(Ωh) hµ−2−ε
s )σ |‖ IhMMM−MMMyyy ‖| .

(4.138)

Let us define Ck′(Ck,Cy,CM) a constant, that can depend on Ck, Cy and CM, then, as
0 < ε < 1

4 , the last expression can be rewritten for k ≥ 2:

Ck
1 |‖ IhMMM−MMMyyy ‖|2 −Ck

2 ‖ IhMMM−MMMyyy ‖2L2(Ωh)
≤ Ck′σhεs |‖ IhMMM−MMMyyy ‖| . (4.139)

Then, in order to estimate ‖ IhMMM−MMMyyy ‖L2(Ωh), we consider the auxiliary problem defined
in Lemma 4.4.3. Choosing ϕϕϕ = δMMMh = IhMMM−MMMyyy, there exists φφφh such that,
|‖ φφφh ‖|≤ Ck ‖ IhMMM−MMMyyy ‖L2(Ω) with

‖ IhMMM−MMMyyy ‖2L2(Ωh)
= A(MMMe; IhMMM−MMMyyy,φφφh) + B(MMMe; IhMMM−MMMyyy,φφφh)

≤ A(MMMe; IhMMM−MMMe,φφφh) + B(MMMe; IhMMM−MMMe,φφφh) +N (MMMe,yyy;φφφh)

≤ Ck |‖ IhMMM−MMMe ‖|1|‖ φφφh ‖| +CkCy ‖MMMe ‖Hs(Ωh) hµ−2−ε
s σ |‖ φφφh ‖|

≤ (Ckσhεs + CkCy ‖MMMe ‖Hs(Ωh) σhµ−2−ε
s ) ‖ IhMMM−MMMyyy ‖L2(Ωh)

≤ Ck′σhεs ‖ IhMMM−MMMyyy ‖L2(Ωh) if k ≥ 2,

(4.140)
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where we have used Lemma 4.4.2, Eq. (4.110), Lemma 4.4.5, Eq. (4.136), and the definition
of the ball (4.119). Substituting Eq. (4.140) in Eq. (4.139) gives

Ck
1 |‖ IhMMM−MMMyyy ‖|2 ≤ Ck′σhεs |‖ IhMMM−MMMyyy ‖| +Ck

2 ‖ IhMMM−MMMyyy ‖2L2(Ωh)

≤ Ck′σhεs |‖ IhMMM−MMMyyy ‖| +Ck
2Ck′σhεs ‖ IhMMM−MMMyyy ‖L2(Ωh)

≤ Ck′σhεs |‖ IhMMM−MMMyyy ‖| if k ≥ 2.

(4.141)

Hence, we get

|‖ IhMMM−MMMyyy ‖|≤ Ck′σhεs if k ≥ 2, (4.142)

and for a mesh size hs small enough and a given ball size σ, IhMMM−MMMyyy −→ 0, hence Sh maps
Oσ(IhMMM) to itself.

Theorem 4.4.7 (The continuity of the map Sh in the ball Oσ(IhMMM)). For yyy1, yyy2 ∈ Oσ(IhMMM),
let MMMyyy1 = Sh(yyy1), MMMyyy2 = Sh(yyy2) be solutions of Eq. (4.106). Then for 0 < hs < 1

|‖MMMyyy1 −MMMyyy2 ‖| ≤ CkCy ‖MMMe ‖Hs(Ωh) hµ−2−ε
s |‖ yyy1 − yyy2 ‖| . (4.143)

The solutions MMMyyy1 and MMMyyy2 of the linearized problem (4.106) satisfy

A(MMMe; IhMMM−MMMyyy1 , δMMMh) + B(MMMe; IhMMM−MMMyyy1 , δMMMh)

= A(MMMe;ηηη,δMδMδMh) + B(MMMe;ηηη, δMMMh) +N (MMMe,yyy1; δMMMh) ∀δMMMh ∈ Xk,
(4.144)

and

A(MMMe; IhMMM−MMMyyy2 , δMMMh) + B(MMMe; IhMMM−MMMyyy2 , δMMMh)

= A(MMMe;ηηη, δMMMh) + B(MMMe;ηηη, δMMMh) +N (MMMe,yyy2; δMMMh) ∀δMMMh ∈ Xk,
(4.145)

where ηηη = IhMMM−MMMe. By subtracting Eq. (4.144) from Eq. (4.145), we have

A(MMMe;MMMyyy2 −MMMyyy1 , δMMMh) + B(MMMe;MMMyyy2 −MMMyyy1 , δMMMh)

= N (MMMe,yyy2; δMMMh)−N (MMMe,yyy1; δMMMh).
(4.146)

Choosing ζζζ1 = MMMe − yyy1 ∈ X and ζζζ2 = MMMe − yyy2 ∈ X, the right hand side of Eq. (4.146) can
be rewritten as follows:

N (MMMe,yyy2; δMMMh)−N (MMMe,yyy1; δMMMh)

=

∫
Ωh

(∇δMMMh)T
(
R̄RRjjj(ζζζ2,∇ζζζ2)− R̄RRjjj(ζζζ1,∇ζζζ1)

)
dΩ

+

∫
∂IΩh∪∂DΩh

q
δMMMT

hnnn

y 〈
R̄RRjjj(ζζζ2,∇ζζζ2)− R̄RRjjj(ζζζ1,∇ζζζ1)

〉
dS

+

∫
∂IΩh

r
MMMeT − yyyT

2nnn

z
〈(jjj∇MMM(MMMe)− jjj∇MMM(yyy2))∇δMMMh〉 dS

−
∫
∂IΩh

r
MMMeT − yyyT

1nnn

z
〈(jjj∇MMM(MMMe)− jjj∇MMM(yyy1))∇δMMMh〉 dS

+

∫
∂IΩh

r
MMMeT − yyyT

2nnn

z〈 B
hs

(jjj∇MMM(MMMe)− jjj∇MMM(yyy2))

〉
JδMMMhnnnK dS

−
∫
∂IΩh

r
MMMeT − yyyT

1nnn

z〈 B
hs

(jjj∇MMM(MMMe)− jjj∇MMM(yyy1))

〉
JδMMMhnnnK dS.

(4.147)
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By applying Taylor series, Eqs. (4.89-4.92), to rewrite the right hand side, every term will
be either in yyy1 − yyy2 or in ∇(yyy1 − yyy2). For example, the bound of the first term is as follows∫

Ωh

(∇δMMMh)T
(
R̄RRjjj(ζζζ2,∇ζζζ2)− R̄RRjjj(ζζζ1,∇ζζζ1)

)
dΩ =∫

Ωh

(∇δMMMh)T (jjj(yyy2,∇yyy2)− jjj(MMMe,∇MMMe) + jjjMMM(MMMe,∇MMMe)(MMMe − yyy2)

+jjj∇MMM(MMMe,∇MMMe)(∇MMMe −∇yyy2)− jjj(yyy1,∇yyy1) + jjj(MMMe,∇MMMe)

−jjjMMM(MMMe,∇MMMe)(MMMe − yyy1)− jjj∇MMM(MMMe,∇MMMe)(∇MMMe −∇yyy1)) dΩ

=

∫
Ωh

(∇δMMMh)T (jjj(yyy2,∇yyy2)− jjj(yyy1,∇yyy1)− jjjMMM(MMMe,∇MMMe)(yyy2 − yyy1)

−jjj∇MMM(MMMe,∇MMMe)(∇yyy2 −∇yyy1)) dΩ

=

∫
Ωh

(∇δMMMh)T ((jjjMMM(yyy1,∇yyy1)− jjjMMM(MMMe,∇MMMe)) (yyy2 − yyy1)) dΩ

+

∫
Ωh

(∇δMMMh)T ((jjj∇MMM(yyy1)− jjj∇MMM(MMMe)) (∇yyy2 −∇yyy1)) dΩ

+

∫
Ωh

(∇δMMMh)T
(
R̄RRjjj(yyy1 − yyy2,∇yyy1 −∇yyy2)

)
dΩ.

(4.148)

The first term of the right hand side of Eq. (4.148) is bounded by using the generalized
Hölder’s inequality (2.25), the generalized Cauchy-Schwartz’ inequality (2.27), the definition
of Cy in Eq. (4.93), the inverse inequality (2.19), and the bounds (4.122, 4.124 and 4.134)
as

|
∫

Ωh

(∇δMMMh)T ((jjjMMM(yyy1,∇yyy1)− jjjMMM(MMMe,∇MMMe)) (yyy2 − yyy1)) dΩ |

≤|
∫

Ωh

(∇δMMMh)T
(
(yyy1 − yyy2)Tj̄jjMMMMMM(yyy1,∇yyy1)(MMMe − yyy1

)
dΩ |

+ |
∫

Ωh

(∇δMMMh)T
(
(yyy1 − yyy2)Tj̄jjMMM∇MMM(yyy1)(∇MMMe −∇yyy1)dΩ

)
|

≤ Cy

∑
e

‖ ∇δMMMh ‖L4(Ωe)‖MMMe − yyy1 ‖L2(Ωe)‖ yyy1 − yyy2 ‖L4(Ωe)

+ Cy

∑
e

‖ ∇δMMMh ‖L4(Ωe)‖ ∇MMMe −∇yyy1 ‖L2(Ωe)‖ yyy1 − yyy2 ‖L4(Ωe)

≤ Cy

(∑
e

| ∇δMMMh |4W1
4(Ωe)

) 1
4
(∑

e

‖ yyy1 − yyy2 ‖4L4(Ωe)

) 1
4

(∑
e

‖ ζζζ ‖2
L2(Ωe)

) 1
2

+

(∑
e

‖ ∇ζζζ ‖2
L2(Ωe)

) 1
2


≤ CkCyhµ−2−ε

s | δMMMh |H1(Ωh)‖ yyy1 − yyy2 ‖L2(Ωh)‖MMMe ‖Hs(Ωh) .

(4.149)

Similarly, the second and third term are bounded using the generalized Hölder inequality
(2.25), the generalized Cauchy-Schwartz’ inequality (2.27), the definition of Cy in Eq. (4.93)
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and other inequalities that are introduced in Lemma 4.4.4. Then the other terms in Eq.
(4.147) can be rewritten in a similar way to Eq. (4.148), see [24]. Therefore, we have

| N (MMMe,yyy2; δMMMh)−N (MMMe,yyy1; δMMMh) | ≤ CkCy ‖MMMe ‖Hs(Ωh) hµ−2−ε
s |‖ yyy1 − yyy2 ‖| |‖ δMMMh ‖| .

(4.150)

Choosing δMMMh = MMMyyy2 −MMMyyy1 , and using Eq. (4.108), Eq. (4.146) becomes:

Ck
1 |‖MMMyyy2 −MMMyyy1 ‖|2 −Ck

2 ‖MMMyyy2 −MMMyyy1 ‖2L2(Ωh)

≤ A(MMMe;MMMyyy2 −MMMyyy1 ,MMMyyy2 −MMMyyy1)

+ B(MMMe;MMMyyy2 −MMMyyy1 ,MMMyyy2 −MMMyyy1)

≤ N (MMMe,yyy2;MMMyyy2 −MMMyyy1)−N (MMMe,yyy1;MMMyyy2 −MMMyyy1).

(4.151)

Similarly, setting δMMMh = MMMyyy2 −MMMyyy1 in Eq. (4.150), Eq (4.151) becomes:

|‖MMMyyy2 −MMMyyy1 ‖|2 ≤ Ck
1Cy ‖MMMe ‖Hs(Ωh) hµ−2−ε

s |‖ yyy2 − yyy1 ‖| |‖MMMyyy2 −MMMyyy1 ‖|
+ Ck

2 ‖MMMyyy2 −MMMyyy1 ‖2L2(Ωh)
.

(4.152)

As ‖MMMyyy2 −MMMyyy1 ‖2L2(Ωh)
≤|‖MMMyyy2 −MMMyyy1 ‖| ‖MMMyyy2 −MMMyyy1 ‖L2(Ωh), this last relation becomes

|‖MMMyyy2 −MMMyyy1 ‖| ≤ Ck
1Cy ‖MMMe ‖Hs(Ωh) hµ−2−ε

s |‖ yyy2 − yyy1 ‖| +Ck
2 ‖MMMyyy2 −MMMyyy1 ‖L2(Ωh) .

(4.153)

In order to estimate ‖ MMMyyy2 −MMMyyy1 ‖2L2(Ωh)
, we consider ϕϕϕ = MMMyyy2 −MMMyyy1 in Lemma 4.4.3.

Therefore, there exists a unique φφφh satisfying Eq. (4.114) ∀δMMMh ∈ Xk. In particular for
δMMMh = MMMyyy2 −MMMyyy1 , this implies

‖MMMyyy2 −MMMyyy1 ‖2L2(Ωh)
= A(MMMe;MMMyyy2 −MMMyyy1 ,φφφh) + B(MMMe;MMMyyy2 −MMMyyy1 ,φφφh)

= N (MMMe,yyy2;φφφh)−N (MMMe,yyy1;φφφh)

≤ CkCy ‖MMMe ‖Hs(Ωh) hµ−2−ε
s |‖ yyy2 − yyy1 ‖||‖ φφφh ‖|

≤ CkCy ‖MMMe ‖Hs(Ωh) hµ−2−ε
s |‖ yyy2 − yyy1 ‖| ‖MMMyyy2 −MMMyyy1 ‖L2(Ωh),

(4.154)

where we have used Eq (4.146), Eq. (4.150), and Eq. (4.115). Substituting Eq. (4.154) in
Eq. (4.153) completes the proof of the theorem.

Using the Theorems 4.4.6 and 4.4.7 of the map Sh, we can conclude that for all 0 < hs < 1,
the maps Sh has a fixed point MMMh of the ball Oσ(IhMMM), which is the solution of the nonlinear
system of Eqs. (4.96).

4.4.5 A priori error estimates

As Sh maps a ball into itself, we can use MMMh instead of MMMyyy in Eq. (4.142), hence we have

|‖ IhMMM−MMMh ‖| ≤ Ck′σhεs = Ck′ |‖ IhMMM−MMMe ‖|1 . (4.155)
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Now using this last relation, Lemma 2.4.5, Eq. (2.22), Lemma 2.4.6, Eq. (2.23), and Eq.
(4.155) lead to

|‖MMMe −MMMh ‖|1 ≤|‖MMMe − IhMMM ‖|1 + |‖ IhMMM−MMMh ‖|1
≤|‖MMMe − IhMMM ‖|1 +Ck′ |‖ IhMMM−MMMe ‖|1
≤ (1 + Ck′) |‖MMMe − IhMMM ‖|1
≤ Ck′′hµ−1

s ‖MMMe ‖Hs(Ωh),

(4.156)

where µ = min {s, k + 1}, and Ck′′ = Ck(1 + Ck′). This shows that the error estimate is
optimal in hs.

4.4.6 Error estimate in the L2-norm

Since the linearized problem (4.106) is adjoint consistent, an optimal order of convergence
in the L2-norm is obtained by applying the duality argument.

To this end, let us consider the following dual problem

−∇T(jjj∇MMM(MMMe)∇ψψψ) + jjjTMMM(MMMe,∇MMMe)∇ψψψ = eee on Ω,

ψψψ = ggg on ∂Ω,
(4.157)

which is assumed to satisfy the elliptic regularity condition as jjj∇MMM is positive definite with
ψψψ ∈ H2m(Ωh)×H2m(Ωh) for p ≥ 2m and

‖ ψψψ ‖Hp(Ωh)≤ C

(
‖ eee ‖

Hp−2m
(Ωh)

+ ‖ ggg ‖
H

p− 1
2

(∂Ωh)

)
, (4.158)

if eee ∈ Hp−2m(Ωh)×Hp−2m(Ωh).
Considering eee = MMMe −MMMh ⊂ L2(Ωh) × L2(Ωh) be the error and ggg = 0, multiplying Eq.

(4.157) by eee, and integrating over Ωh, result in∫
Ωh

[jjj∇MMM(MMMe)∇ψψψ]T∇eeedΩ +

∫
Ωh

[
jjjTMMM(MMMe,∇MMMe)∇ψψψ

]T
eeedΩ

−
∑

e

∫
∂Ωe

[jjj∇MMM(MMMe)∇ψψψ]T eeennndS =‖ eee ‖2
L2(Ωh)

,
(4.159)

with

‖ ψψψ ‖H2(Ωh)≤ C ‖ eee ‖L2(Ωh) . (4.160)

As JψψψK = J∇ψψψK = 0 on ∂IΩh and JψψψK = −ψψψ = 0 on ∂DΩh, we have by comparison with Eqs.
(4.102-4.103), that{∫

Ωh
[jjj∇MMM(MMMe)∇ψψψ]T∇eeedΩ +

∫
∂IΩh∪∂DΩh

[jjj∇MMM(MMMe)∇ψψψ]T JeeennnK dS = A(MMMe; eee,ψψψ),∫
Ωh

[jjjMMM(MMMe,∇MMMe)eee]T∇ψψψdΩ = B(MMMe; eee,ψψψ),
(4.161)

as jjjMMM, jjj∇MMM are symmetric. Therefore, Eq. (4.159) reads

‖ eee ‖2
L2(Ωh)

= A(MMMe; eee,ψψψ) + B(MMMe; eee,ψψψ). (4.162)
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From Eq. (4.104), one has

A(MMMe;MMMe −MMMh, Ihψψψ) + B(MMMe;MMMe −MMMh, Ihψψψ) = N (MMMe,MMMh; Ihψψψ), (4.163)

as MMMe is the exact solution and Ihψψψ ∈ Xk, and Eq. (4.162) is rewritten

‖ eee ‖2
L2(Ωh)

= A(MMMe; eee,ψψψ − Ihψψψ) + B(MMMe; eee,ψψψ − Ihψψψ) +N (MMMe,MMMh; Ihψψψ). (4.164)

First, using Lemma 4.4.2, Eq. (4.109), Lemma 2.4.6, Eq. (2.23), and Eq. (4.156), leads
to

| A(MMMe; eee,ψψψ − Ihψψψ) + B(MMMe; eee,ψψψ − Ihψψψ) | ≤ CkCy |‖ eee ‖|1 |‖ ψψψ − Ihψψψ ‖|1
≤ Ck |‖ eee ‖|1 hs ‖ ψψψ ‖H2(Ωh)

≤ Ck′′hµs ‖MMMe ‖Hs(Ωh)‖ ψψψ ‖H2(Ωh),

(4.165)

with µ = min {s, k + 1}.
Then proceeding as for establishing Lemma 4.4.5 and using the a priori error estimate

(4.155-4.156), we have

| N (MMMe,MMMh; Ihψψψ) | ≤ Ck′′Cyh2µ−3
s ‖MMMe ‖2Hs(Ωh)|‖ Ihψψψ ‖| . (4.166)

The bound of | N (MMMe,MMMh; Ihψψψ) | is given in detail in Appendix C.9.
Finally, using Lemma 2.4.6, Eq. (2.23), remembering JψψψK = 0 in Ω, we deduce that

|‖ Ihψψψ ‖| ≤|‖ Ihψψψ −ψψψ ‖|1 + |‖ ψψψ ‖|1
≤ Ckhs ‖ ψψψ ‖H2(Ωh) + ‖ ψψψ ‖H1(Ωh)

≤ Ck(hs + 1) ‖ ψψψ ‖H2(Ωh) .

(4.167)

Combining Eqs. (4.165-4.167), Eq. (4.164) becomes, for µ ≥ 3

‖ eee ‖2
L2(Ωh)

≤ Ck′′hµs
(
1+ ‖MMMe ‖Hs(Ωh)

)
‖MMMe ‖Hs(Ωh)‖ ψψψ ‖H2(Ωh), (4.168)

with µ = min {s, k + 1}, or using Eq. (4.160), the final result for k ≥ 2

‖ eee ‖L2(Ωh)≤ Ck′′CMhµs ‖MMMe ‖Hs(Ωh) . (4.169)

This result demonstrates the optimal convergence rate of the method with the mesh-size for
cases in which k ≥ 2 (so that µ ≥ 3).

4.5 Numerical examples

We present 1-, 2-, and 3-dimensional simulations to verify the DG numerical properties
for Electro-Thermal problems on shape regular and shape irregular meshes. First the method
is compared to analytical results and a continuous Galerkin formulation on simple 1D-tests,
then the method is applied on 2D-tests to verify the optimal convergence rates. Finally, a
3D unit cell model is presented. In the applications, the Dirichlet boundary conditions have
been enforced strongly for simplicity.
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4.5.1 1-D example with one material

The first test is inspired from [58], where the boundary condition induces an electric
current density, with the temperature constrained on the two opposite faces, as shown in
Fig. 4.1. The target of this test is to find the distribution of the temperature, electric
potential and their corresponding fluxes, when considering the material properties, i.e. lll,kkk,
and α, as reported in Table 4.1. The simulation is performed using a quadratic polynomial
approximation, with 12 elements, and the value of stabilization parameter is B = 100.
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Figure 4.1: One-material Electro-Thermal problem and the boundary conditions

Table 4.1: Material parameter for Bismuth telluride

Parameter Value

Electrical conductivity lll [S/m] diag(8.422×104)

Thermal conductivity kkk [W/(K ·m)] diag(1.612)

Seebeck coefficient α [V/K] 1.941×10−4

As it can be seen in Fig. 4.2(a), the electric potential distribution is close to linear but
the temperature distribution is almost quadratic with a maximum value of 47 [◦C] due to
the volumetric Joule effect. This shows that this Electro-Thermal domain acts as a heat
pump. Then Fig. 4.2(b) presents the distribution of thermal flux which is almost linear
with an electric current of about 3.2 × 106 [A/m2]. The results of the present DG method
agree with the analytical approximation provided in [58] –the difference being due to the
approximations required to derive the analytical solution.

Then the same test is simulated with the same boundary conditions, polynomial degree
approximation, and value of B, but with successively 3, 9, and 21 elements. Figure 4.3
presents the comparison of the results obtained with a Continuous Galerkin (CG) and the
Discontinuous Galerkin (DG) formulations. As the distributions are almost parabolic, three
elements already capture the solution, which does not make this test fit to study the conver-
gence rate. Figure 4.4 illustrates the comparison of the thermal flux (one value per element
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Figure 4.2: (a) The distributions of the electrical potential and temperature in the Electro-
Thermal domain for one material, (b) the distribution of the thermal flux in the Electro-
Thermal domain for one material. Ref.-curves are from [58]
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(a) Discontinuous Galerkin
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(b) Continuous Galerkin

Figure 4.3: Comparison between the distributions of the temperature in the Electro-Thermal
composite domain for different numbers of elements between (a) the DG formulation, and
(b) the CG formulation

is reported) with different mesh sizes between the CG and DG formulations and shows that
the same thermal flux distribution is recovered. We also note from Figs. 4.3(a and b) and
Figs. 4.4(a and b), that the results of the present DG formulation are in agreement with
those obtained by the CG method.
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(a) Discontinuous Galerkin
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(b) Continuous Galerkin

Figure 4.4: Comparison between the distributions of the thermal flux in the Electro-Thermal
composite domain for different numbers of elements between (a) the DG formulation, and
(b) the CG formulation

4.5.2 1-D example with two materials

By applying the same kind of boundary conditions but for a combination of two materials
–matrix (i.e., polymer) which is a non-conductive material and conductive fillers (i.e., carbon
fiber)– as shown in Fig. 4.5, we can study the effect of the DG formulation in case of material
interfaces. The electrical and thermal material properties considered for the verification are
considered constant and reported in Table. 4.2, for the carbon fiber and the polymer matrix.
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Figure 4.5: Electro-Thermal composite domain and the boundary conditions

Second order polynomial approximations, 12 elements, and the value of B = 100, are
still considered in this test. An electric potential difference of 20 [V] is applied, which is
higher than in the previous test in order to reach a similar increase in temperature as for
the previous test. Figure 4.6(a) shows the distribution of the voltage and the temperature
in this Electro-Thermal composite domain, and Fig. 4.6(b) the distribution of the thermal
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Table 4.2: Composite material phases parameters

Parameter Carbon fiber Polymer

Electrical conductivity lll [S/m] diag(100000) diag(0.1)

Thermal conductivity kkk [W/(K ·m)] diag(40) diag(0.2)

Seebeck coefficient α [V/K] 3 ×10−6 3 ×10−7
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Figure 4.6: (a) The distributions of the electrical potential and temperature in the Electro-
Thermal composite domain, and (b) the distribution of the thermal flux in the Electro-
Thermal composite domain

flux. We can see that the temperature, electric potential, and thermal flux fields are almost
constant in the filler (the conductive material), as its electrical conductivity is high, and
transient gradually in the polymer matrix (non conductive material). The resulting electric
current is of about 1.96× 103 [A/m2].

Then, we carry out the study of the stabilization parameter effect on the quality of the
approximation in Fig. 4.7, where the internal energy per unit section is presented in terms
of the stabilization parameter. The test is simulated with different values of the stabilization
parameter B =1, 10, 25, 50, 100, 250, 500, 1000, and 5000. Although for the lower value
of the stability parameter, the energy is overestimated, sign of an instability, the energy
converges from below for stabilization parameters B ≥10, which proves that if B is large
enough, the method is stable.

Figure 4.8 compares the results obtained on the composite domain for different electrical
conductivity values of the matrix material, all the other parameters being the same as
before. This figure shows the difference in the maximum temperature reached when different
values of the electrical conductivity are applied. This result indicates that the present DG
formulation can be used for composite materials with high or low contrast.
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Figure 4.7: The internal energy of the Electro-Thermal composite domain for different values
of the stabilization parameter B
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Figure 4.8: The temperature distributions in the Electro-Thermal composite domain for
different values of electrical conductivity of the matrix material

4.5.3 1-D The variation of electric potential with temperature difference

The following test is motivated to convert heat energy into electricity, in the Bismuth
Telluride with the material parameters as presented in Table 4.1 and with the boundary
condition stated in Fig. 4.9

The result in Fig. 4.10 shows the relation between the electric potential and temperature
difference. It can be seen that the output electric potential, according to Seebeck coefficient,
increases as the temperature difference increases. This proves that our formulation is effective
and works in the two directions, production of electricity from temperature difference, as
showed on this test and production of temperature difference by applying electric current,
as showed in the previous examples.
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Figure 4.9: Electro-Thermal unit cell and boundary condition
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Figure 4.10: The variation of electric potential with temperature difference
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Figure 4.11: L-shaped Electro-Thermal problem and the boundary conditions
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(a) (b)

Figure 4.12: The distribution in the L-shaped Electro-Thermal problem of (a) the electrical
potential, and (b) the temperature

4.5.4 2-D study of convergence order

In order to generate 2D gradients, we consider an L-shaped domain with the boundary
condition illustrated in Fig. 4.11, and with the material properties reported in Table. 4.1. To
prove the optimal rate of convergence in the L2-norm and H1-norm, a uniform hs refinement
is considered. A second order polynomial approximation is considered with B = 100. The
resulting distributions of temperature and electrical potential are illustrated respectively in
Fig. 4.12(a) and in Fig. 4.12(b).

First the convergence rate of the energy error |‖MMMe−MMMh ‖| –error in the H1-norm– with
respect to the mesh size is reported in Fig. 4.13(a). The reference solution is obtained with
a refined mesh of hs/L = 1/32. It can be seen that as the mesh is refined, the error in the
energy decreases quadratically for quadratic elements, once the mesh size is small enough.
Thereby that confirms the prior error estimate derived in Section 4.4.5.

Second, the error in the L2-norm in terms of the mesh size hs is illustrated in Fig. 4.13(b).
The computed order of convergence of order k + 1 for k = 2 is optimal, once the mesh size
is small enough, in agreement with the theory predicted in Section 4.4.6.

4.5.5 3-D unit cell simulation

The third test illustrates the electrical thermal behavior of a composite material i.e.,
carbon fiber reinforced polymer matrix, which is heated by electric current. The studied unit
cell and the boundary conditions are illustrated in Fig. 4.14, and the materials properties
are reported in Table 4.2. A finite element mesh of 90 quadratic bricks is considered (the
test is thus run in 3D). The initial temperature of the cell is 25 [◦C].

Figure 4.15 presents the distributions of the temperature and the electric potential in
the unit cell. When the electric potential of 10 [V] is applied on one side, the temperature of
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Figure 4.13: Error with respect to the mesh size. (a) Error in the H1 norm, (b) Error in the
L2 norm
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Figure 4.14: Electro-Thermal unit cell and boundary condition

the other side increases from 25 [◦C] to 50 [◦C]. This shows the applicability of the present
formulation when different (irregular) mesh sizes are used simultaneously.

4.6 Conclusions

In this chapter, starting from the continuum theory for Electro-Thermal coupled prob-
lems, based on continuum mechanics and thermodynamic laws, a weak discontinuous Galerkin
(DG) form has been formulated using conjugated fluxes and fields gradients.

As the weak discontinuous form is derived in terms of those energy conjugated fluxes
and fields gradients, the resulting DG finite element method is consistent and stable. The
numerical properties of the DG method for nonlinear elliptic problems, such as the consis-
tency and uniqueness of the solution have been analyzed by reformulating the problem in
a linearized fixed point form, following the methodology set by previous works [76, 25] for
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(a) (b)

Figure 4.15: The distributions in the unit cell of (a) the electrical potential, and (b) the
temperature

non-linear elliptic problems, but adapted for thermo-electrical problems.
The numerical verification has been undertaken to demonstrate the theoretical results.

In particular, the convergence rates in the L2-norm and the H1-norm with respect to the
mesh size are optimal and agree with the error analysis that was derived in the theory.

Finally, a unit cell problem has been solved numerically to illustrate the capability of
the algorithm.



Chapter 5

A coupled
Electro-Thermo-Mechanical
Discontinuous Galerkin method

5.1 Introduction

When an electrically conducting phase is dispersed in sufficient quantity in a matrix of
polymer, conductive polymer composites are formed.

Conductive polymer composites can be extended for application in various fields: heaters
with distributed heat-emission and self-regulated heaters, shieldings for electromagnetic pro-
tection, contact buttons in computers and media technics, current-limiting devices, con-
ductive adhesives, electronic applications, actuation of hybrid conductive shape memory
polymers SMPs, and many others.

Carbon fiber reinforced polymer composites consist of at least two components, a poly-
mer matrix (generally dielectric) and electrically conductive fillers. This combination results
in multifunctional composites, both structural and conductive. The existence of the polymer
matrix will avoid catastrophic failure due to fiber breaking because of its viscoelastic char-
acteristic especially at high temperature, and the existence of the carbon fibers will enhance
strength and stiffness on one hand, and will exhibit conductivity under an Electro-Thermal
coupling effect on the other hand.

With a view to the modeling of such structures, a multi-field coupling resolution strategy
is developed for the solution of electrical, energy, and momentum conservation equations by
means of Discontinuous Galerkin finite element method. There have been many studies on
Electro-Thermo-Mechanical coupling, e.g., Muliana et al. [55] have studied the time depen-
dent response of active piezoelectric fiber and polymer composite. They have illustrated
that time dependent response in the composites depends not only on the properties of the
components but also on the prescribed boundary. In addition they have concluded that the
study in a steady state of active composite fibers can lead to false detection of localized
failure as the variation in field variables in the composite are not considered.

Rothe et al. [64] have considered the three-field problem of small strain for Electro-
Thermal-Elasticity, where they have focused on the numerical treatment of the monolithic
approach, with one dimensional analytical solution in the purpose of code verification. In

81
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particular Zhupanska et al. [80] have discussed the governing equations describing electro-
magnetic, thermal, and mechanical field interactions. However the magnetic contribution
was neglected for the current magnitude below 40 [A], this in turn results in solving Electro-
Thermo-Mechanical coupling problem. In that paper, they have concluded that an applica-
tion of an electric current to the unidirectional carbon fiber polymer matrix plates leads to
1D thermal field, which is constant in the direction transverse to the fiber direction.

A state of art report about Thermo-Electric polymers and figure of merits have been
reviewed in [15]. Moreover the improvement of the thermoelectric efficiency has been dis-
cussed in that paper, and it was shown that it can be achieved by using materials either
with high electrical conductivity or with high Seebeck coefficient.

In this chapter, a problem of electric current induced heating and the associated stresses
in the conducting polymers composites are considered. When an electrical current is applied
and heating is produced by the joule effect in conductive faces, and the material dilates.

This chapter is organized as follows. Section 5.2 describes the governing equations of
Electro-Thermo-Mechanical materials. In this chapter the Electro-Mechanical coupling has
been disregarded, as this coupling is out of the scope of our interest and the Thermo-
Elastic damping has been disregarded as well, since the heating occurs slowly. The theory
that is considered in the previous chapter has been extended for large deformation and the
Discontinuous Galerkin formulation for Electro-Thermo-Mechanical bodies is developed in
Section 5.3 with appropriate choice of trial functions (uuu, fV = −V

T , fT = 1
T), where uuu is the

displacement, T is the temperature, and V is the electric potential, which results into a
set of non-linear equations which is implemented within a three-dimensional finite element
code. In Section 5.4 the stability, the uniqueness, and the convergence rate of the error in
both the energy and L2-norms have been derived in the particular case of small deformation.
Afterwards, in Section 5.5 a volume element of carbon fibers embedded in a polymer matrix
is considered to illustrate the Electro-Thermo-Mechanical behavior of composite materials,
in addition to another numerical tests which support the theory that is developed in this
chapter.

5.2 Governing equations for Electro-Thermo-Mechanical cou-
pling

In this section an overview of the basic equations that govern the Electro-Thermo-
Mechanical coupled phenomena is presented, where an Electro-Thermo-Mechanical body
in its reference configuration Ω0 ∈ Rd is considered, where d is the spatial dimension, whose
Dirichlet boundary ∂DΩ0 and Neumann boundary ∂NΩ0 are the outer boundaries ∂Ω0 of the
domain.

The material properties may in general depend on the position. The first balance equa-
tion is the equation of motion which is the balance of linear momentum in the absence of
body force with respect to the reference frame

∇0 ·PPPT = 0 ∀ XXX ∈ Ω0, (5.1)

where PPP is the first Piola-Kirchhoff tensor and ∇0 = ∂
∂XXX is the gradient with respect to the

reference configuration.
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The second balance equation is the electrical contribution which is the conservation of
the electric current density flow with respect to the current frame Ω. Recalling Eq. (4.1)
from the second chapter and in order to transfer it into the reference configuration the
formulation of Nanson is used such that∫

S
jjje · nnndS =

∫
S0

(jjje ·FFF−T) ·NNNJdS0, (5.2)

where J = det(FFF) is the determinate of the deformation tensor FFF = ∂xxx
∂XXX , jjje is the flow of

electric current density, JJJe = jjje · FFF−TJ is the current density with respect to the reference
surface, and NNN is the outward normal in the reference configuration. Hence the conservation
of the electric current density flow with respect to the reference frame is

0 =

∫
Ω
∇ · jjjedΩ =

∫
Ω0

∇0 · (jjje ·FFF−TJ)dΩ0 =

∫
Ω0

∇0 · JJJedΩ0. (5.3)

The flow of electric current density which is mapped into the reference configuration reads
after recalling its definition from Eq. (4.4)

JJJe(FFF,T,V) = jjje ·FFF−T J = FFF−1 · lll ·FFF−T ·
(
−∂V

∂XXX

)
J + αFFF−1 · lll ·FFF−T ·

(
−∂T

∂XXX

)
J. (5.4)

Let us define the electrical conductivity in the reference configuration LLL(FFF) as

LLL(FFF) = FFF−1 · lll ·FFF−T J. (5.5)

Then Eq. (5.4) can be simplified as

JJJe(FFF,T,V) = LLL(FFF) · (−∇0V) + αLLL(FFF) · (−∇0T). (5.6)

The third balance equation is the conservation of the energy flux Eq. (4.5). Let us first
compute the divergence of the energy flux in the reference configuration using the formulation
of Nanson which reads∫

S
jjjy · nnndS =

∫
S0

(jjjy ·FFF−T) ·NNNJdS0 =

∫
S0

JJJy ·NNNJdS0, (5.7)

and leads to ∫
Ω
∇ · jjjydΩ =

∫
Ω0

∇0 · (jjjy ·FFF−TJ)dΩ0 =

∫
Ω0

∇0 · JJJydΩ0, (5.8)

where JJJy is the energy flux per unit surface in the reference configuration. Then the conser-
vation of the energy flux in the reference configuration is stated as∫

Ω0

∇0 · JJJydΩ0 = −
∫

Ω0

ρ0
∂y

∂t
dΩ0 +

∫
Ω0

F̄dΩ0 ∀ XXX ∈ Ω0. (5.9)

The right hand side of this equilibrium equation is the time derivative of the internal energy
density y and is given in Eq. (4.6) multiplied by the density ρ0 = ρJ and F̄ represents all
the body energy sources per unit reference volume.
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Moreover, the left hand side of Eq. (5.9) involves the energy flux JJJy in the reference
configuration, which is defined as

JJJy(FFF,T,V) = jjjy ·FFF−T J = QQQ + VJJJe, (5.10)

where QQQ is the heat flux per unit surface in the reference configuration, which is defined
after recalling Eq. (4.10) as

QQQ(FFF,T,V) = KKK · (−∇0T) + αTJJJe. (5.11)

In this last relation, we have defined the heat conductivity in the reference configuration
KKK(FFF) as

KKK(FFF) = FFF−1 · kkk ·FFF−T J, (5.12)

and by substituting Eqs. (5.5, 5.11, and 5.12) in Eq. (5.10), we have

JJJy(FFF,V,T) = (VLLL(FFF) + αTLLL(FFF)) · (−∇0V) + (KKK(FFF) + αVLLL(FFF) + α2TLLL(FFF)) · (−∇0T).

(5.13)

The set of equations (5.6, 5.13) can be rewritten under a matrix form as

JJJ =

(
JJJe

JJJy

)
=

(
LLL(FFF) αLLL(FFF)

VLLL(FFF) + αTLLL(FFF) KKK(FFF) + αVLLL(FFF) + α2TLLL(FFF)

)(
−∇0V
−∇0T

)
. (5.14)

The set of governing equations (5.3, 5.9) thus becomes

∇T
0 (JJJ) =

(
0

−ρ0∂ty + F̄

)
= IIIi, (5.15)

where ∇0 is a vector operator in the reference configuration and IIIi represents the internal
energy rate and the body energy sources.

Let us recall from Chapter 4 the vector of the unknown fields MMM =

(
fV
fT

)
, with fV = −V

T

and fT = 1
T , then the gradients of the fields vector in the reference frame ∇0MMM, a 2d × 1

vector in terms of (∇0fV,∇0fT) are defined by

(
∇0MMM

)
=

(
∇0fV
∇0fT

)
=

(
∇0(−V

T )
∇0( 1

T)

)
=

(
− 1

TIII V
T2 III

0 − 1
T2 III

)(
∇0V
∇0T

)
. (5.16)

Furthermore, the fluxes defined by Eq. (5.14) can be expressed in terms of fV, fT, and Eq.
(5.14) is rewritten in terms of (fV, fT) = (−V

T ,
1
T), as T = 1

fT
,V = − fV

fT
in the reference

configuration as:

JJJ =

 1
fT

LLL(FFF) − fV
f2T

LLL(FFF) + α 1
f2T

LLL(FFF)

− fV
f2T

LLL(FFF) + α 1
f2T

LLL(FFF) 1
f2T

KKK(FFF)− 2α fV
f3T

LLL(FFF) + α2 1
f3T

LLL(FFF) +
f2V
f3T

LLL(FFF)

( ∇0fV
∇0fT

)
= ZZZ0(FFF, fV, fT)∇0MMM.

(5.17)
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Similarly to Chapter 4, we have defined energetically conjugated pair of fluxes and field gra-
dients in the reference configuration, in term of a symmetric and positive definite coefficient
matrix ZZZ0, whose its contents are in the reference configuration. By this way Eq. (5.17) has
the new expression of the electric current density flow and energy flux in term of fV, fT in
the reference configuration. For the future use, and from the last equations, one can define
LLL1(FFF, fT), LLL2(FFF, fV, fT) as

LLL1(FFF, fT) =
1

fT
LLL(FFF) , LLL2(FFF, fV, fT) = (− fV

f2T
+ α

1

f2T
)LLL(FFF), (5.18)

and JJJy1(FFF, fV, fT) as

JJJy1(FFF, fV, fT) =
1

f2T
KKK(FFF)− 2α

fV

f3T
LLL(FFF) + α2 1

f3T
LLL(FFF) +

f2V
f3T

LLL(FFF). (5.19)

Therefore, Eq. (5.17) can be rewritten as

JJJ =

(
LLL1(FFF, fT) LLL2(FFF, fT, fT)

LLL2(FFF, fT, fT) JJJy1(FFF, fV, fT)

)(
∇0fV
∇0fT

)
. (5.20)

To summarize, the conservation laws for Electro-Thermo-Mechanical coupling are rewritten

in the reference configuration as finding uuu, fV, fT ∈
[
H2(Ω0)

]d×H2(Ω0)×H2+
(Ω0) such that

∇0 ·PPPT = 0 , PPP = P(FFF, ḞFF, fV, fT, ξξξ(ξ < t)) ∀ XXX ∈ Ω0, (5.21)

∇0 · JJJe = 0 , JJJe = Je(FFF, fV, fT) ∀ XXX ∈ Ω0, (5.22)

∇0 · JJJy = −ρ0∂ty + F̄ , JJJy = Jy(FFF, fV, fT) ∀ XXX ∈ Ω0 (5.23)

uuu = ūuu , fT = f̄T , fV = f̄V ∀ XXX ∈ ∂DΩ0, (5.24)

PPP ·NNN = T̄TT , JJJy ·NNN = J̄y , JJJe ·NNN = J̄e ∀ XXX ∈ ∂NΩ0. (5.25)

In these relations, we have expressed the governing equations P, Je, and Jy in a general
way and in terms of the internal variables ξξξ. The definition of P will be specified in the
next Chapter, while the definition of Je and Jy follow Eq. (5.20). NNN is the outward unit
normal to the boundary ∂Ω0 in the reference configuration, and T̄TT, J̄y, J̄e represent the
outward traction, energy flux and electric current density respectively. Finally ūuu, f̄T, f̄V are
the prescribed uuu, fT, fV respectively.

5.3 The Discontinuous Galerkin formulation for Electro-Thermo-
Mechanical bodies

5.3.1 The Discontinuous Galerkin weak form

Let Ω0h be a shape regular family of triangulation of Ω0, such that Ω0 = ∪eΩ
e
0, with

hs = maxΩe
0∈Ω0h

diam(Ωe
0) for Ωe

0 ∈ Ω0h with ∂Ωe
0 = ∂NΩe

0∪∂DΩe
0∪∂IΩ

e
0, and where ∂IΩ0h =

∪e∂IΩ
e
0 \ ∂Ω0h, is the intersecting boundary of the finite elements. Finally (∂DIΩ0)s is a face

either on ∂IΩ0h or on ∂DΩ0h, with
∑

s (∂DIΩ0)s = ∂IΩ0h ∪ ∂DΩ0h.
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The discontinuous Galerkin finite element method results from the integration by parts
on the finite element of the governing equations multiplied by discontinuous test functions.
Let us multiply the first governing equation (5.21) by the virtual displacement δuuu, and
integrate on Ω0h, yielding∑

e

∫
Ωe

0

(PPP(FFF, fV, fT) · ∇0) · δuuudΩ0 = 0 ∀δuuu ∈
[
H1(Ωe

0)
]d
. (5.26)

Using the divergence theorem and integration by parts we reduce the order of the differential,
and the weak form is then reduced to the following problem∑

e

∫
∂Ωe

0

δuuu ·PPP(FFF, fV, fT) ·NNNdS0 −
∑

e

∫
Ωe

0

PPP(FFF, fV, fT) : ∇0δuuudΩ0 = 0, (5.27)

where ∫
∂Ωe

0

δuuu ·PPP(FFF, fV, fT) ·NNNdS0 =

∫
∂NΩe

0

δuuu ·PPP(FFF, fV, fT) ·NNNdS0

+

∫
∂IΩ

e
0∪∂DΩ0h

δuuu ·PPP(FFF, fV, fT) ·NNNdS0,

(5.28)

and ∑
e

∫
∂IΩ

e
0

δuuu ·PPP(FFF, fV, fT) ·NNNdS0 =

∫
∂IΩ0h

(
δuuu− ·PPP−(FFF, fV, fT) ·NNN−dS0

+δuuu+ ·PPP+(FFF, fV, fT) ·NNN+dS0

)
,

(5.29)

where NNN− is defined as the reference outward unit normal of the minus element Ωe−
0 , whereas

NNN+ is the reference outward unit normal of its neighboring element, NNN+ = −NNN−.
Using the two useful operators defined previously in Chapter 3, the jump and average

operators, at the interface terms and at the Dirichlet boundary as it will be enforced weakly
as well, we have

∑
e

∫
∂IΩ

e
0

δuuu ·PPP(FFF, fV, fT) ·NNNdS0 = −
∫
∂IΩ0h

(
δuuu+ ·PPP+(FFF, fV, fT)− δuuu− ·PPP−(FFF, fV, fT)

)
·NNN−dS0

= −
∫
∂IΩ0h

Jδuuu ·PPP(FFF, fV, fT)K ·NNN−dS0, and

(5.30)∑
e

∫
∂DΩe

0

δuuu ·PPP(FFF, fV, fT) ·NNNdS0 = −
∫
∂DΩ0h

Jδuuu ·PPP(FFF, fV, fT)K ·NNN−dS0 and NNN− = NNN.

(5.31)

Eventually using Eq. (5.25), Eq. (5.27) is rewritten∫
∂NΩ0h

δuuu · T̄TTdS0 =

∫
Ω0h

PPP(FFF, fV, fT) : ∇0δuuudΩ0 +

∫
∂IΩ0h∪∂DΩ0h

Jδuuu ·PPP(FFF, fV, fT)K ·NNN−dS0

∀δuuu ∈
[
H1(Ωe

0)
]d
.

(5.32)
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As the consistency due to the jump of the test functions needs to be enforced, then the flux
related to Eq. (5.32) becomes Jδuuu ·PPP(FFF, fV, fT)K = JδuuuK · 〈PPP(FFF, fV, fT)〉

Then by considering the virtual Piola stress for a linearized problem expressed as δPPP =
HHH : ∇δuuu, where for simplicity we consider HHH as constant, we can add the compatibility and
stabilization terms at the interior elements boundary interfaces ∂IΩ0h and at the Dirichlet
elements boundary interface ∂DΩh in a similar way to what has done in Chapters 3 and
4. Note that when writing the SIPG, we do not have a contribution on δfT to ensure
optimal convergence rate in L2-norm as discussed in Chapter 3. Altogether, we seek to find

uuu, fT ∈ Πe

[
H1(Ωe

0)
]d ×ΠeH

1+
(Ωe

0), such that:

∫
∂NΩ0h

δuuu · T̄TTdS0 −
∫
∂DΩ0h

ūuu · (HHH : ∇0δuuu) ·NNNdS0

+

∫
∂DΩ0h

ūuu⊗NNN : (
HHHB
hs

) : δuuu⊗NNNdS0 +

∫
∂DΩ0h

δuuu · (−α
ααth :HHH

f̄
2
T

f̄T +
αααth :HHH

f2T0

fT0) ·NNNdS0

=

∫
Ω0h

PPP(FFF, fV, fT) : ∇0δuuudΩ0 +

∫
∂IΩ0h∪∂DΩ0h

JδuuuK · 〈PPP(FFF, fV, fT)〉 ·NNN−dS0

+

∫
∂IΩ0h∪∂DΩ0h

JuuuK · 〈HHH : ∇0δuuu〉 ·NNN−dS0

+

∫
∂IΩ0h∪∂DΩ0h

JuuuK⊗NNN− :

〈
HHHB
hs

〉
: JδuuuK⊗NNN−dS0

−
∫
∂DΩ0h

JδuuuK · (−α
ααth :HHH

f2T
fT +

αααth :HHH
f2T0

fT0) ·NNN−dS0 ∀δuuu ∈
[
ΠeH

1(Ωe
0)
]d
,

(5.33)

where fT0 is the initial value of fT, which is extracted from fT0 = 1
T0

, B is the stability
parameter which has to be sufficiently high to guarantee stability, HHH is a constant tangent
and hs is a measure of the mesh fineness. The term in αααth :HHH on ∂DΩ0h is used to constrain
weakly the variable fT on the Dirichlet BC.

Secondly let us multiply the second balance electrical equation Eq. (5.22) by a virtual
potential δfV = δ

(−V
T

)
and let us integrate over Ω0, yielding∑

e

∫
Ωe

0

∇0 · JJJe(FFF, fV, fT)δfVdΩ0 = 0 ∀δfV ∈ ΠeH
1(Ωe

0), (5.34)

where JJJe is the electric current density in the reference configuration. Using the divergence
theorem and the notations introduced before for the average and the jump operators, since
the test function δfV is discontinuous, Eq. (5.34) becomes

∑
e

∫
Ωe

0

JJJe(FFF, fV, fTh
) · ∇0δfVdS0 =

∫
∂NΩ0h

J̄eδfV dS0

−
∫
∂IΩ0h∪∂DΩ0h

JJJJe(FFF, fV, fT)δfVK ·NNN− dS0.

(5.35)

Similar to what has been done for the mechanical equation, a consistent interface flux re-
lated to Eq. (5.35) is considered and we choose JδfvK 〈JJJe(FFF, fV, fT)〉 · NNN−. According to
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the definitions of LLL1(FFF, fT), LLL2(FFF, fV, fT), in Eq. (5.18), the virtual electric current density
δJJJe(FFF, fV, fT) is written as

δJJJe(FFF, fV, fT) = LLL1(FFF, fT) · ∇0δfV + LLL2(FFF, fV, fT) · ∇0δfT. (5.36)

This last result allows formulating the compatibility and quadratic stabilization terms so the

weak form Eq. (5.35) is stated as finding uuu, fV, fT ∈ Πe

[
H1(Ωe

0)
]d×ΠeH

1(Ωe
0)×ΠeH

1+
(Ωe

0)
such that:∫

∂NΩ0h

J̄eδfV dS0 −
∫
∂DΩ0h

(
LLL1(FFF, f̄T) · ∇0δfV + LLL2(FFF, f̄V, f̄T) · ∇0δfT

)
·NNNf̄V dS0

+

∫
∂DΩ0h

(
δfVnnn · L

LL1(FFF, f̄T)B
hs

+ δfTNNN · L
LL2(FFF, f̄V, f̄T)B

hs

)
·NNNf̄V dS0

=

∫
Ω0h

JJJe(FFF, fV, fT) · ∇0δfVdΩ0 +

∫
∂IΩ0h∪∂DΩ0h

JδfVK 〈JJJe(FFF, fV, fT)〉 ·NNN−dS0

+

∫
∂IΩ0h

JfVK 〈LLL1(FFF, fT) · ∇0δfV〉 ·NNN−dS0

+

∫
∂DΩ0h

JfVK
〈
LLL1(FFF, f̄T) · ∇0δfV

〉
·NNN−dS0

+

∫
∂IΩ0h

JfVK 〈LLL2(FFF, fV, fT) · ∇0δfT〉 ·NNN−dS0

+

∫
∂DΩ0h

JfVK
〈
LLL2(FFF, f̄V, f̄T) · ∇0δfT

〉
·NNN−dS0

+

∫
∂IΩ0h

JδfVKNNN− ·
〈

LLL1(FFF, fT)B
hs

〉
·NNN− JfVK dS0

+

∫
∂DΩ0h

JδfVKNNN− ·
〈

LLL1(FFF, f̄T)B
hs

〉
·NNN− JfVK dS0

+

∫
∂IΩ0h

JδfTKNNN− ·
〈

LLL2(FFF, fV, fT)B
hs

〉
·NNN− JfVK dS0

+

∫
∂DΩ0h

JδfTKNNN− ·
〈

LLL2(FFF, f̄V, f̄T)B
hs

〉
·NNN− JfVK dS0

∀δfV, δfT ∈ ΠeH
1(Ωe

0)×ΠeH
1(Ωe

0).

(5.37)

Thirdly, like for the electrical solution, an IP discontinuous Galerkin finite element formu-
lation is used to discretize the thermal equation. Let us multiply the third balance thermal
equation Eq. (5.23), by the test function δfT = δ( 1

T), and integrate over Ω0, yielding

∑
e

∫
Ωe

0

∇0 · JJJy(FFF, fV, fT)δfTdΩ0 = −
∑

e

∫
Ωe

0

ρ0∂tyδfTdΩ0+
∑

e

∫
Ωe

0

F̄ δfTdΩ0

∀δfT ∈ ΠeH
1(Ωe

0).

(5.38)

As for the electrical equation, by using the divergence theorem and introducing the jump
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operator and the boundary condition Eqs. (5.24, 5.25), this last equation becomes∫
∂NΩ0h

δfTJ̄y dS0 =

∫
Ω0h

JJJy(FFF, fV, fT) · ∇0δfTdΩ0 −
∫

Ω0h

ρ0∂tyδfTdΩ0

+

∫
∂IΩ0h∪∂DΩ0h

JδfTJJJy (FFF, fV, fT)K ·NNN−dS0 +

∫
Ω0h

F̄ δfTdΩ0 ∀δfT ∈ ΠeH
1(Ωe

0).

(5.39)

The consistent and stable weak form is obtained by considering the numerical energy flux,
and by adding stability and compatibility terms.

The virtual energy flux is expressed from Eq. (5.17) in terms of JJJy1(FFF, fV, fT), LLL2(FFF, fV, fT)
from Eqs. (5.19, 5.18), leading to

δJJJy(FFF, fV, fT) = JJJy1(FFF, fV, fT) · ∇0δfT + LLL2(FFF, fV, fT) · ∇0δfV. (5.40)

Eventually the stabilized form of Eq. (5.38) can be stated as finding uuu, fV, fT ∈ Πe

[
H1(Ωe

0)
]d×

ΠeH
1(Ωe

0)×ΠeH
1+

(Ωe
0) such that∫

∂NΩ0h

δfTJ̄y dS0 −
∫
∂DΩ0h

(
JJJy1(FFF, f̄V, f̄T) · ∇0δfT + LLL2(FFF, f̄V, f̄T) · ∇0δfV

)
·NNN f̄T dS0

+

∫
∂DΩ0h

(
δfTNNN · J

JJy1(FFF, f̄V, f̄T)B
hs

+ δfVNNN · L
LL2(FFF, f̄V, f̄T)B

hs

)
·NNNf̄T dS0

=

∫
Ω0h

JJJy(FFF, fV, fT) · ∇0δfTdΩ0 −
∫

Ω0h

ρ0∂tyδfTdΩ0 +

∫
Ω0h

F̄ δfTdΩ0

+

∫
∂IΩ0h∪∂DΩ0h

JδfTK 〈JJJy(FFF, fV, fT)〉 ·NNN−dS0

+

∫
∂IΩ0h

JfTK 〈JJJy1(FFF, fV, fT) · ∇0δfT〉 ·NNN−dS0

+

∫
∂DΩ0h

JfTK
〈
JJJy1(FFF, f̄V, f̄T) · ∇0δfT

〉
·NNN−dS0

+

∫
∂IΩ0h

JfTK 〈LLL2(FFF, fV, fT) · ∇0δfV〉 ·NNN−dS0

+

∫
∂DΩ0h

JfTK
〈
LLL2(FFF, f̄V, f̄T) · ∇0δfV

〉
·NNN−dS0

+

∫
∂IΩ0h

JδfTKNNN− ·
〈

JJJy1(FFF, fV, fT)B
hs

〉
·NNN− JfTK dS0

+

∫
∂DΩ0h

JδfTKNNN− ·
〈

JJJy1(FFF, f̄V, f̄T)B
hs

〉
·NNN− JfTK dS0

+

∫
∂IΩ0h

JδfVKNNN− ·
〈

LLL2(FFF, fV, fT)B
hs

〉
·NNN− JfTK dS0

+

∫
∂DΩ0h

JδfVKNNN− ·
〈

LLL2(FFF, f̄V, f̄T)B
hs

〉
·NNN− JfTK dS0

∀δfV, δfT ∈ ΠeH
1(Ωe

0)×ΠeH
1(Ωe

0).

(5.41)

Using the notations considered to state the strong form, Eq. (5.17), the weak forms stated

by Eqs. (5.37, 5.41) can be combined and reformulated as finding uuu, MMM ∈
[
ΠeH

1(Ωe
0)
]d ×
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ΠeH
1(Ωe

0)×ΠeH
1+

(Ωe
0) such that∫

∂NΩ0h

δMMMTJ̄JJdΩ0 −
∫
∂DΩ0h

M̄MM
T
NNN

(
ZZZ0(FFF,M̄MM)∇0δMMM

)
dS0

+

∫
∂DΩ0h

δMMMT
NNN

(
B
hs

ZZZ0(FFF,M̄MM)

)
M̄MMNNNdS0 =

∫
Ω0h

∇0δMMM
TJJJ(FFF,MMM,∇0MMM)dΩ0

+

∫
Ω0h

δMMMTIIIidΩ0 +

∫
∂IΩ0h∪∂DΩ0h

q
δMMMT

NNN

y
〈JJJ(FFF,MMM,∇0MMM)〉 dS0

+

∫
∂IΩ0h

q
MMMT

NNN

y
〈ZZZ0(FFF,MMM)∇0δMMM〉 dS0

+

∫
∂DΩ0h

q
MMMT

NNN

y 〈
ZZZ0(FFF,M̄MM)∇0δMMM

〉
dS0

+

∫
∂IΩ0h

q
δMMMT

NNN

y〈 B
hs

ZZZ0(FFF,MMM)

〉
JMMMNNNK dS0

+

∫
∂DΩ0h

q
δMMMT

NNN

y〈 B
hs

ZZZ0(FFF,M̄MM)

〉
JMMMNNNK dS0 ∀δMMM ∈ ΠeH

1(Ωe
0)×ΠeH

1(Ωe
0),

(5.42)

where J̄JJ =

(
J̄e

J̄y

)
and M̄MM =

(
f̄V
f̄T

)
, and where the vector MMMNNN =

(
NNN− 0
0 NNN−

)
MMM and

M̄MMNNN =

(
NNN 0
0 NNN

)
M̄MM are introduced for simplicity.

It should be noted that the test functions in the previous equations of the weak for-

mulation belong to
[
H1(Ωe)

]d × H1(Ωe) × H1+
(Ωe), however for the numerical analysis, we

will need to be in
[
H2(Ωe)

]d × H2(Ωe) × H2+
(Ωe), as shown in the following sections. The

equivalent manifold to Eq. (2.6)1, is rewritten as

X(+)
s =

{
GGG ∈

[
L2(Ωh)

]d × L2(Ωh)× L2(+)
(Ωh)

such thatGGG|Ωe ∈ [Hs(Ωe)]d ×Hs(Ωe)×Hs(+)
(Ωe) ∀Ωe ∈ Ωh

}
. (5.43)

For the future use, we define X(+) as X
(+)
2 and X+ the manifold such that fT > 0, while X

is the manifold for which fT Q 0, with X+ ⊂ X. Moreover, using Eq. (2.9), we have

YYY =

{
∇GGG ∈

(
(L2(Ωh))d

)(d+2)
|∇GGG|Ωe∈(H1(Ωe))

d+2 ∀Ωe∈Ωh

}
. (5.44)

Thereafter, the problem is formulated as finding uuu, MMM ∈ X+ such that

A(FFF,MMM, δuuu) = B(δuuu), ∀δuuu ∈ X, and (5.45)

C(FFF,MMM, δMMM) = D(FFF, δMMM)−
∫

Ω0h

δMMMTIIIidΩ0 ∀δMMM ∈ X. (5.46)

1One more time, by abuse of notations, the (+) superscript means either usual Hs-space or the space Hs+

of strictly positive values.
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In these last two equations, the nonlinear forms read

A(FFF,MMM, δuuu) =

∫
Ω0h

PPP(FFF,MMM) : ∇0δuuudΩ0 +

∫
∂IΩ0h∪∂DΩ0h

JδuuuK · 〈PPP(FFF,MMM)〉 ·NNN−dS0

+

∫
∂IΩ0h∪∂DΩ0h

JuuuK · 〈HHH : ∇0δuuu〉 ·NNN−dS0 +

∫
∂IΩ0h∪∂DΩ0h

JuuuK⊗NNN− :

〈
HHHB
hs

〉
: JδuuuK⊗NNN−dS0

−
∫
∂DΩ0h

JδuuuK · 〈−YYY(MMM)MMM +YYY0MMM0〉 ·NNN−dS0,

(5.47)

where YYY(fT), YYY0(fT0) are a matrices of size d× d× 2 such that YYY(MMM)MMM = αααth :HHH 1

f2T
fT and

YYY0(MMM0)MMM0 = αααth :HHH 1

f2T0

fT0 ,

B(δuuu) =

∫
∂NΩ0h

δuuu · T̄TTdS0 −
∫
∂DΩ0h

ūuu · (HHH : ∇0δuuu) ·NNNdS0

+

∫
∂DΩ0h

ūuu⊗NNN : (
HHHB
hs

) : δuuu⊗NNNdS0 +

∫
∂DΩ0h

δuuu ·
〈
−YYY(M̄MM)M̄MM +YYY0MMM0

〉
·NNNdS0

(5.48)

C(FFF,MMM, δMMM) =

∫
Ω0h

(∇0δMMM)TJJJ(FFF,MMM,∇0MMM)dΩ0

+

∫
∂IΩ0h∪∂DΩ0h

q
δMMMT

NNN

y
〈JJJ(FFF,MMM,∇0MMM)〉 dS0

+

∫
∂IΩ0h

q
MMMT

NNN

y
〈ZZZ0(FFF,MMM)∇0δMMM〉dS0

+

∫
∂DΩ0h

q
MMMT

NNN

y 〈
ZZZ0(FFF,M̄MM)∇0δMMM

〉
dS0

+

∫
∂IΩ0h

q
δMMMT

NNN

y〈 B
hs

ZZZ0(FFF,MMM)

〉
JMMMNNNK dS0

+

∫
∂DΩ0h

q
δMMMT

NNN

y〈 B
hs

ZZZ0(FFF,M̄MM)

〉
JMMMNNNK dS0, and

(5.49)

D(FFF, δMMM) =

∫
∂NΩ0h

δMMMTJ̄JJdΩ0 −
∫
∂DΩ0h

M̄MM
T
NNN

(
ZZZ0(FFF,M̄MM)∇0δMMM

)
dS0

+

∫
∂DΩ0h

δMMMT
NNN

(
B
hs

ZZZ0(FFF,M̄MM)

)
M̄MMNNNdS0.

(5.50)

5.3.2 The Finite element discretization of the coupled problem

In the computational model, a finite dimensional space of real valued piecewise polyno-
mial functions is introduced such that

Xk(+)

=

{
(uuuh, fVh

, fTh
) ∈

[
L2(Ω0h)

]d × L2(Ω0h)× L2(+)
(Ω0h)

such that (uuuh, fVh
, fTh

) |Ωe
0
∈ [Pk(Ωe

0)]d × Pk(Ωe
0)× Pk(+)

(Ωe
0) ∀Ωe

0 ∈ Ω0h

}
,

(5.51)
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where Pk(Ωe
0) is the space of polynomial functions of order up to k and Pk+

means that the
polynomial approximation remains positive. The dicretization of the system is carried out
using the discontinuous Galerkin Finite element (DGFE) method. Accordingly, we introduce
the shape functions for the trial functions uuu, fV, and fT and test functions δuuu, δfV, and δfT
which are thus interpolated as

uuuh = Na
uuu uuua , fVh

= Na
fV

faV , fTh
= Na

fT
faT, (5.52)

where uuua, faV, and faT denote the nodal values of respectively uuuh, fVh
, and fTh

at node a.
Similarly, we have

δuuuh = Na
uuu δuuu

a , δfVh
= Na

fV
δfaV , δfTh

= Na
fT
δfaT, (5.53)

The gradients are computed by:

∇0uuuh = ∇0Na
uuu ⊗ uuua , ∇0fVh

= ∇0Na
fV

faV , ∇0fTh
= ∇0Na

fT
faT, (5.54)

where∇0Na
uuu, ∇0Na

fV
, and∇0Na

fT
are the gradients of the shape functions at node a. Similarly,

we have

∇0δuuuh = ∇0Na
uuu ⊗ δuuua , ∇0δfVh

= ∇0Na
fV
δfaV , ∇0δfTh

= ∇0Na
fT
δfbT. (5.55)

A solution approximation MMMh =

(
fVh

fTh

)
, uuuh of respectively MMM, uuu, is sought as the solution

of the discrete coupled problem, is stated as finding uuuh, MMMh ∈ Xk+
such that

A(FFFh,MMMh, δuuuh) = B(δuuuh) ∀δuuuh ∈ Xk, and (5.56)

C(FFFh,MMMh, δMMMh) = D(FFFh, δMMMh)−
∫

Ω0h

δMMMT
h IIIidΩ0 ∀δMMMh ∈ Xk. (5.57)

5.3.3 The system resolution

The set of Eqs. (5.56, 5.57) can be rewritten under the form:

FFFa
ext

(
GGGb
)

= FFFa
int

(
GGGb
)

+ FFFa
I

(
GGGb
)
, (5.58)

where GGGb is a 5× 1 vector of the unknown fields at node b

GGGb =

 uuub

fbV
fbT

 , with uuub =

 ub
x

ub
y

ub
z

 . (5.59)

The nonlinear Eqs. (5.58) are linearized by means of an implicit formulation and solved
using the Newton Raphson scheme using an initial guess of the last solution. To this end,
the forces are written in a residual form. The predictor at iteration 0, reads GGGc = GGGc0, and
the residual at iteration i reads

FFFa
ext (GGGc)−FFFa

int (GGGc)−FFFa
I (GGGc) = RRRa

(
GGGci
)
, (5.60)
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and at iteration i, the first order Taylor development yields the system to be solved, i.e.(
∂FFFa

ext

∂GGGb
− ∂FFFa

int

∂GGGb
−
∂FFFa

I

∂GGGb

)
|
GGG=GGGci ∆GGGb = −RRRa

(
GGGci
)
. (5.61)

Let us define the tangent matrix of the coupled Electro-Thermo-Mechanical system

KKKab
GGG =

∂FFFa
ext

∂GGGb −
∂FFFa

int

∂GGGb −
∂FFFa

I

∂GGGb , and ∆GGGb =
(
GGGb −GGGbi

)
, then we have

 KKKuuuuuu KKKuuufV KKKuuufT

KKKfVuuu KKKfVfV KKKfVfT

KKKfTuuu KKKfTfV KKKfTfT

 ∆uuu
∆fV
∆fT

 = −

 RRRuuu(uuu, fV, fT)
RfV(uuu, fV, fT)
RfT(uuu, fV, fT)

 . (5.62)

The new solution is given by GGGi+1 = GGGi + ∆GGG, and the iterations continue until the conver-
gence is obtained, that is until ‖ RRR ‖< tol.

The formula of the forces can be derived from Eqs. (5.56, 5.57), which leads at each
node a to:

FFFa
uuu/fV/fText = FFFa

uuu/fV/fTint + FFFa
uuu/fV/fTI. (5.63)

First the mechanical contribution reads

FFFa
uuuext =

∑
s

∫
(∂NΩ0)s

Na
uuuT̄TTdS0 −

∑
s

∫
(∂DΩ0)s

(ūuu⊗NNN :HHH) · ∇0Na
uuudS0

+
∑

s

∫
(∂DΩ0)s

(
ūuu⊗NNN :

HHHB
hs

)
·NNNNa

uuudS0

+

∫
∂DΩ0h

(
−α
ααth :HHH

f̄
2
T

f̄T +
αααth :HHH

f2T0

fT0

)
·NNNNa

uuudS0,

(5.64)

FFFa
uuuint =

∑
e

∫
Ωe

0

PPP(FFFh, fVh
, fTh

) · ∇0Na
uuudΩ0, and (5.65)

FFFa±
uuuI = FFFa±

uuuI1 + FFFa±
uuuI2 + FFFa±

uuuI3, (5.66)

with the three mechanical contributions to the interface forces 2

FFFa±
uuuI1 =

∑
s

∫
(∂IΩ0)s

(±Na±
uuu ) 〈PPP(FFFh, fVh

, fTh
)〉 ·NNN−dS0, (5.67)

FFFa±
uuuI2 =

1

2

∑
s

∫
(∂IΩ0)s

JuuuhK⊗NNN− :HHH± · ∇0Na±
uuu dS0, (5.68)

FFFa±
uuuI3 =

∑
s

∫
(∂IΩ0)s

(JuuuhK⊗NNN−) :

〈
HHHB
hs

〉
·NNN−(±Na±

uuu )dS0. (5.69)

2The contributions on ∂DΩ0h can be directly deduced by removing the factor (1/2) accordingly to the defi-
nition of the average flux on the Dirichlet boundary and by using LLL1(FFFh, f̄T), LLL2(FFFh, f̄V, f̄T), and JJJy1

(FFFh, f̄V, f̄T)
instead of LLL1(FFFh, fTh), LLL2(FFFh, fVh , fTh), and JJJy1

(FFFh, fVh , fTh). However, there is one more additional term in

FFFa±
uuuI1 in the Dirichlet boundary, which is

∑
s

∫
(∂DΩ0)s

(Na
uuu)

(
−αααth :HHH

f2T
fT +

αααth :HHH
f2T0

fT0

)
·NNN−dS0.
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Secondly, the electrical contributions read

Fa
fVext

=
∑

s

∫
(∂NΩ0)s

Na
fV

J̄edS0 −
∑

s

∫
(∂DΩ0)s

f̄VNNN ·LLL1(FFFh, f̄T) · ∇0Na
fV

dS0

−
∑

s

∫
(∂DΩ0)s

f̄TNNN ·LLL2(FFFh, f̄V, f̄T) · ∇0Na±
fV

dS0

+
∑

s

∫
(∂DΩ0)s

f̄VNNN ·LLL1(FFFh, f̄T)
B
hs
·NNNNa

fV
dS0

+
∑

s

∫
(∂DΩ0)s

f̄TNNN ·LLL2(FFFh, f̄V, f̄T)
B
hs
·NNNNa

fV
dS0,

(5.70)

Fa
fVint

=
∑

e

∫
Ωe

0

JJJe(FFFh, fVh
, fTh

) · ∇0Na
fV

dΩ0, and (5.71)

Fa±
fVI

= Fa±
fVI1

+ Fa±
fVI2

+ Fa±
fVI3

, (5.72)

with the three electric contributions to the interface forces

Fa±
fVI1

=
∑

s

∫
(∂IΩ0)s

(±Na±
fV

) 〈JJJe(FFFh, fVh
, fTh

)〉 ·NNN−dS0, (5.73)

Fa±
fVI2

=
1

2

∑
s

∫
(∂IΩ0)s

JfVh
K
(
LLL±1 (FFFh, fTh

) · ∇0Na±
fV

)
·NNN−dS0

+
1

2

∑
s

∫
(∂IΩ0)s

JfTh
K
(
LLL±2 (FFFh, fVh

, fTh
) · ∇0Na±

fV

)
·NNN−dS0,

(5.74)

Fa±
fVI3

=
∑

s

∫
(∂IΩ0)s

JfVh
KNNN− ·

〈
LLL1(FFFh, fTh

)
B
hs

〉
·NNN−(±Na±

fV
)dS0

+
∑

s

∫
(∂IΩ0)s

JfTh
KNNN− ·

〈
LLL2(FFFh, fVh

, fTh
)
B
hs

〉
·NNN−(±Na±

fV
)dS0.

(5.75)

Similarly, the thermal contributions read

Fa
fText

=
∑

s

∫
(∂NΩ0)s

NaJ̄y dS0 −
∑

s

∫
(∂DΩ0)s

f̄TNNN · JJJy1(FFFh, f̄V, f̄T) · ∇0Na
fT

dS0

−
∑

s

∫
(∂DΩ0)s

f̄VNNN ·LLL2(FFFh, f̄V, f̄T) · ∇0Na
fT

dS0

+
∑

s

∫
(∂DΩ0)s

f̄TNNN · JJJy1(FFFh, f̄V, f̄T)
B
hs
·NNNNa

fT
dS0

+
∑

s

∫
(∂DΩ0)s

f̄VNNN ·LLL2(FFFh, f̄V, f̄T)
B
hs
·NNNNa

fT
dS0,

(5.76)

FfTint
=
∑

e

∫
Ωe

0

JJJy(FFFh, fVh
, fTh

) · ∇0Na
fT

dΩ0 −
∑

e

∫
Ωe

0

ρ0∂tyNa
fT

dΩ0

+
∑

e

∫
Ωe

0

F̄Na
fT

dΩ0,

(5.77)
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and

Fa±
fTI

= Fa±
fTI1

+ Fa±
fTI2

+ Fa±
fTI3

, (5.78)

where the three thermal contributions to the interface forces read

Fa±
fTI1

=
∑

s

∫
(∂IΩ0)s

(±Na±
fT

) 〈JJJy(FFFh, fVh
, fTh

)〉 ·NNN−dS0, (5.79)

Fa±
fTI2

=
1

2

∑
s

∫
(∂IΩ0)s

JfTh
K
(
JJJ±y1

(FFFh, fVh
, fTh

) · ∇0Na±
fT

)
·NNN−dS0

+
1

2

∑
s

∫
(∂IΩ0)s

JfVh
K
(
LLL±2 (FFFh, fVh

, fTh
) · ∇0Na±

fT

)
·NNN−dS0,

(5.80)

Fa±
fTI3

=
∑

s

∫
(∂IΩ0)s

JfTh
KNNN− ·

〈
JJJy1

(FFFh, fVh
, fTh

)
B
hs

〉
·NNN−(±Na±

fT
)dS0

+
∑

s

∫
(∂IΩ0)s

JfVh
KNNN− ·

〈
LLL2(FFFh, fVh

, fTh
)
B
hs

〉
·NNN−(±Na±

fT
)dS0.

(5.81)

The stiffness matrix has been decomposed into nine sub-matrices as shown in Eq. (5.62)
with respect to the discretization of the five independent field variables (3 for displacement
uuu, fV, and fT). The stiffness derivation is detailed in Appendix D.1.

5.4 Numerical properties in a small deformation setting

The demonstration of the numerical properties for Electro-Thermo-Mechanical coupled
problems is derived in the same spirit as in Chapter 4, under the assumption d = 2, under
the assumptions of temperature independent material properties, (however JJJy, LLL1, LLL2 remain
temperature and electric potential dependent but CCC (the matrix form of the material constant
tensor HHH), αααth are temperature and electric potential in-dependent), and in the absence of
the heat source, such that the term F̄ in Eq. (5.23) is equal to zero. We also require a
framework in small deformation and linear elasticity in order to demonstrate the stability
and convergence rates.

Let us consider the vector of the unknown fields GGG defined as in Eq. (5.59). In ad-
dition, by recalling Eqs. (3.1, 4.39, and 4.45), we can introduce the matrix www of size
(5d−3)×1 as www(GGG,∇GGG) = vvv(GGG)∇GGG, with vvv the coefficient matrix of size (5d−3)× (5d−3)

such that vvv =

 CCC 000 000
000 lll1 lll2
000 lll2 jjjy1

, where CCC is the constant material tensor corresponding

to HHH written using Voigt’s notations. By the use of Eq. (4.30), vvv can also be writ-

ten as vvv =

(
CCC 000
000 ZZZ

)
. Moreover, we define the matrices ooo =

 000 000
−CCC
f2T
αααthc

000 000 000
000 000 000

 and

ooo0 =

 000 000
−CCC
f2T0

αααthc

000 000 000
000 000 000

 of size (5d− 3)× (d + 2), αααthc is a vector of size (3d− 3)× 1 with
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αααT
thc =

(
αth αth αth 0 0 0

)
, and CCCαααthc a vector of size (3d − 3) × 1 and given for d = 3

by (CCCαααthc)
T =

(
3Kαth 3Kαth 3Kαth 0 0 0

)
for isotropic materials. Finally we define hhh

a matrix of size (d + 2) × (d + 2) with hhh =

 000 000 000
0 0 0
0 0 ρcv

. In these relations ∇GGG is a

(5d − 3) × 1 vector of the gradient of the unknown fields, which is defined as ∇GGG = (∇)GGG
and is written for d = 3 using Voigt’s rules for the mechanical contribution as

(∇GGG) =



εxx

εyy

εzz

2εxy

2εxz

2εyz
∂fV
∂x
∂fV
∂y
∂fV
∂z
∂fT
∂x
∂fT
∂y
∂fT
∂z



=



∂
∂x 0 0 0 0

0 ∂
∂y 0 0 0

0 0 ∂
∂z 0 0

∂
∂y

∂
∂x 0 0 0

∂
∂z 0 ∂

∂x 0 0

0 ∂
∂z

∂
∂y 0 0

0 0 0 ∂
∂x 0

0 0 0 ∂
∂y 0

0 0 0 ∂
∂z 0

0 0 0 0 ∂
∂x

0 0 0 0 ∂
∂y

0 0 0 0 ∂
∂z




ux

uy

uz

fV
fT

 . (5.82)

From these definitions and using Voight’s notation, the energy conjugated stress for small
deformation can be written under the form

σσσxx

σσσyy

σσσzz

τττxy

τττxz

τττyz

jjjex

jjjey

jjjez

jjjyx

jjjyy

jjjyz



= vvv(GGG)∇GGG + ooo(GGG)GGG− ooo0GGG0. (5.83)

Therefore, the boundary value problem for Electro-Thermo-Elasticity coupled Eqs. (5.21-
5.25) is written under small deformation assumption under the form

−∇T [www(GGG,∇GGG) + ooo(GGG)GGG− ooo0GGG0] = hhhĠGG in Ω, (5.84)

with

GGG = ḠGG ∀ xxx ∈ ∂DΩ, (5.85)

n̄nnT(www + oooGGG− ooo0GGG0) = w̄ww ∀ xxx ∈ ∂NΩ, (5.86)
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where for d = 3 n̄nn =



nx 0 0 0 0
0 ny 0 0 0
0 0 nz 0 0
ny nx 0 0 0
nz 0 nx 0 0
0 nz ny 0 0
0 0 0 nx 0
0 0 0 ny 0
0 0 0 nz 0
0 0 0 0 nx

0 0 0 0 ny

0 0 0 0 nz



, GGG0 is a vector of the initial values GGG0 =


ux0

uy0

uz0

fV0

fT0

,

ḠGG gathers the constrained fields ūuu, f̄V, f̄T and w̄ww gathers the constrained fluxes t̄tt, j̄y, and j̄e.
For the following analysis we will consider a steady state, such that the time derivative

term is neglected, hhhĠGG = 0, then Eq. (5.84) becomes

−∇T(www(GGG,∇GGG))−∇T(ooo(GGG)GGG) = 0 in Ω. (5.87)

It can be noticed that the gradient of (ooo(GGG)GGG) consists of zero components and of the
gradient of (−αααth:HHH

f2T
fT), such that ∇(−αααth:HHH

f2T
fT) = αααth:HHH

f2T
∇fT. Henceforth the matrix ooo(GGG)

can be rearranged in a new form õoo(GGG) of size (d + 2)× (5d− 3), such that −∇T (ooo(GGG)GGG) can
be replaced by õoo(GGG)∇GGG, with

õoo(GGG)∇GGG =


0 0 0 0 0 0 0 0 0 −3Kαth

f2
T

0 0

0 0 0 0 0 0 0 0 0 0 −3Kαth

f2
T

0

0 0 0 0 0 0 0 0 0 0 0 −3Kαth

f2
T

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0





εxx

εyy

εzz

2εxy

2εxz

2εyz
∂fV
∂x
∂fV
∂y
∂fV
∂z
∂fT
∂x
∂fT
∂y
∂fT
∂z



.

(5.88)

The operator õoo can be seen as the transpose operator which accounts for the definition of
the ∇ operator.

Therefore Eq. (5.87) becomes

−∇T(www(GGG,∇GGG)) + õoo(GGG)∇GGG = 0 in Ω. (5.89)
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By comparing this formulation for Electro-Thermo-Elasticity with the formulation of Thermo-
Elasticity in Chapter 3, it can be seen that the two formulations Eq. (3.6) and Eq. (5.89)
are similar, however, it is nonlinear in this Chapter, while in Chapter 3 it is linear. The weak
form can be derived straightforwardly in a similar way as for Eqs. (5.33, 5.37, 5.41) under
the matrices form defined in Eq. (5.89), with the assumptions hhhĠGG = 0 and w̄ww independent
of GGG.

The associated DG form for the Electro-Thermo-Elasticity problem is now defined as
finding GGG ∈ X+ such that

a(GGG, δGGG) = b(δGGG), ∀δGGG ∈ X, (5.90)

with

a(GGG, δGGG) =

∫
Ωh

(∇δGGG)Twww(GGG,∇GGG)dΩ +

∫
Ωh

δGGGTõoo(GGG)∇GGGdΩ

+

∫
∂IΩh∪∂DΩh

r
δGGGT

nnn

z
〈www(GGG,∇GGG)〉 dS +

∫
∂IΩh

r
GGGT

nnn

z
〈vvv(GGG)∇δGGG〉 dS

+

∫
∂DΩh

r
GGGT

nnn

z 〈
vvv(ḠGG)∇δGGG

〉
dS +

∫
∂IΩh

r
GGGT

nnn

z〈vvv(GGG)B
hs

〉
JδGGGnnnK dS

+

∫
∂DΩh

r
GGGT

nnn

z〈vvv(ḠGG)B
hs

〉
JδGGGnnnK dS−

∫
∂IΩh∪∂DΩh

〈
δGGGT

nnn

〉
Jooo(GGG)GGG− ooo0GGG0K dS

+

∫
∂NΩh

δGGGTn̄nnT(ooo(GGG)GGG− ooo0GGG0)dS,

(5.91)

and

b(δGGG) =

∫
∂NΩh

δGGGTw̄wwdS−
∫
∂DΩh

ḠGG
T
nnn vvv(ḠGG)∇δGGG dS

+

∫
∂DΩh

δGGGT
nnn

vvv(ḠGG)B
hs

ḠGGnnn dS +

∫
∂DΩh

δGGGT
nnn (ooo(ḠGG)ḠGG− ooo0GGG0)dS,

(5.92)

where GGGnnn is a 12× 1 vector, which is defined as

GGGnnn =



uxnx

uyn−y
uzn
−
z

uxn−y + uyn−x
uxn−z + uzn

−
x

uzn
−
y + uyn−z
fVn−x
fVn−y
fVn−z
fTn−x
fTn−y
fTn−z



=



n−x 0 0 0 0
0 n−y 0 0 0

0 0 n−z 0 0
n−y n−x 0 0 0

n−z 0 n−x 0 0
0 n−z n−y 0 0

0 0 0 n−x 0
0 0 0 n−y 0

0 0 0 n−z 0
0 0 0 0 n−x
0 0 0 0 n−y
0 0 0 0 n−z




ux

uy

uz

fV
fT

 . (5.93)
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Note that, using the identity JabK = JaK 〈b〉+ 〈a〉 JbK on ∂IΩh, we have∫
Ωh

δGGGTõoo(GGG)∇GGGdΩ = −
∫

Ωh

δGGGT∇T(ooo(GGG)GGG− ooo0GGG0)dΩ

=
∑

e

∫
Ωe

(∇δGGG)T(ooo(GGG)GGG− ooo0GGG0)dΩ−
∑

e

∫
∂Ωe

δGGGT
nnn (ooo(GGG)GGG− ooo0GGG0)dS

=

∫
Ωh

(∇δGGG)T(ooo(GGG)GGG− ooo0GGG0)dΩ−
∫
∂NΩh

δGGGTn̄nnT(ooo(GGG)GGG− ooo0GGG0)dS

−
∫
∂DΩh

δGGGT
nnn (ooo(GGG)GGG− ooo0GGG0)dS +

∫
∂IΩh

r
δGGGT

nnn

z
〈(ooo(GGG)GGG− ooo0GGG0)〉 dS

+

∫
∂IΩh

〈
δGGGT

nnn

〉
Jooo(GGG)GGG− ooo0GGG0K dS.

(5.94)

Therefore, Eq. (5.90) can be rewritten as

a′(GGG, δGGG) = b′(δGGG), ∀δGGG ∈ X, (5.95)

with

a′(GGG, δGGG) =

∫
Ωh

(∇δGGG)Twww(GGG,∇GGG)dΩ +

∫
Ωh

(∇δGGG)T(ooo(GGG)GGG− ooo0GGG0)dΩ

+

∫
∂IΩh∪∂DΩh

r
δGGGT

nnn

z
〈www(GGG,∇GGG)〉 dS +

∫
∂IΩh

r
GGGT

nnn

z
〈vvv(GGG)∇δGGG〉 dS

+

∫
∂DΩh

r
GGGT

nnn

z 〈
vvv(ḠGG)∇δGGG

〉
dS +

∫
∂IΩh

r
GGGT

nnn

z〈vvv(GGG)B
hs

〉
JδGGGnnnK dS

+

∫
∂DΩh

r
GGGT

nnn

z〈vvv(ḠGG)B
hs

〉
JδGGGnnnK dS +

∫
∂IΩh∪∂DΩh

r
δGGGT

nnn

z
〈ooo(GGG)GGG− ooo0GGG0〉 dS

−
∫
∂DΩh

〈
δGGGT

nnn

〉
Jooo(GGG)GGG− ooo0GGG0K dS,

(5.96)

b′(δEEE) =

∫
∂NΩh

δGGGTw̄wwdS−
∫
∂DΩh

ḠGG
T
nnn vvv(ḠGG)∇δGGG dS

+

∫
∂DΩh

δGGGT
nnn

vvv(ḠGG)B
hs

ḠGGnnn dS +

∫
∂DΩh

δGGGT
nnn (ooo(ḠGG)ḠGG− ooo0GGG0)dS.

(5.97)

Henceforth, using Eq. (5.83), it is shown that Eq. (5.95), which is derived from Eq. (5.90),
corresponds to the weak form Eqs. (5.45, 5.46).

Unlike the usual case in DG, where the interface term involves ooo in the average operator
〈 〉, Eq. (5.91) shows that ooo is rather involved in the jump J K. This comes from the integration
by parts in Eq. (5.94), in which ooo is GGG dependent. However, this allows the volume and
consistency terms in Eq. (5.95) to be directly expressed in terms of the stress www∇GGG− (oooGGG−
ooo0GGG0), which is convenient when dealing with a non-linear formulation as in Eqs. (5.45,
5.46).
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5.4.1 Consistency

To prove the consistency of the method, the exact solution GGGe ∈
[
H2(Ω)

]d × H2(Ω) ×
H2+

(Ω) of the problem stated by Eq. (5.89) is considered. This implies JGGGeK = 0, 〈www〉 = www,
Jooo(GGGe)GGGe − ooo0GGG0K = 0 on ∂IΩh, and JGGGeK = −ḠGG = −GGGe, Jooo(GGGe)GGGe − ooo0GGG0K = −ooo(ḠGG)ḠGG +
ooo0GGG0, 〈www〉 = vvv(ḠGG)∇ḠGG = vvv(GGGe)∇GGGe, and vvv(GGG) = vvv(ḠGG) = vvv(GGGe) on ∂DΩh. Therefore, Eq.
(5.90) becomes:∫

∂NΩh

δGGGTw̄wwdS−
∫
∂DΩh

ḠGG
T
nnn vvv(ḠGG)∇δGGG dS +

∫
∂DΩh

δGGGT
nnn (ooo(ḠGG)ḠGG− ooo0GGG0)dS

+

∫
∂DΩh

δGGGT
nnn

vvv(ḠGG)B
hs

ḠGGnnn dS =

∫
Ωh

(∇δGGG)Twww(GGGe,∇GGGe)dΩ

+

∫
Ωh

δGGGTõoo(GGGe)∇GGGedΩ +

∫
∂IΩh

r
δGGGT

nnn

z
〈www(GGGe,∇GGGe)〉dS

−
∫
∂DΩh

δGGGT
nnn www(GGGe,∇GGGe)dS−

∫
∂DΩh

GGGeT

nnn vvv(ḠGG)∇δGGGdS +

∫
∂DΩh

δGGGT
nnn

B
hs

vvv(ḠGG)GGGe
nnndS

+

∫
∂DΩh

δGGGT
nnn (ooo(GGGe)GGGe − ooo0GGG0)dS +

∫
∂NΩh

δGGGTn̄nnT(ooo(GGGe)GGGe − ooo0GGG0)dS ∀δGGG ∈ X.

(5.98)

Integrating the first term of the right hand side by parts leads to∑
e

∫
Ωe

(∇δGGG)Twww(GGGe,∇GGGe)dΩ = −
∑

e

∫
Ωe

δGGGT∇Twww(GGGe,∇GGGe)dΩ

+
∑

e

∫
∂Ωe

δGGGT
nnn www(GGGe,∇GGGe)dS,

(5.99)

and Eq.(5.98) becomes∫
∂NΩh

δGGGTw̄wwdS−
∫
∂DΩh

ḠGG
T
nnn

(
vvv(ḠGG)∇δGGG

)
dS +

∫
∂DΩh

δGGGT
nnn (ooo(ḠGG)ḠGG− ooo0GGG0)dS

+

∫
∂DΩh

δGGGT
nnn

(
B
hs

vvv(ḠGG)

)
ḠGGnnndS = −

∫
Ωh

δGGGT∇Twww(GGGe,∇GGGe)dΩ

+

∫
∂NΩh

δGGGT
nnn www(GGGe,∇GGGe)dS +

∫
Ωh

δGGGTõoo(GGGe)∇GGGedΩ

−
∫
∂DΩh

GGGeT

nnn vvv(ḠGG)∇δGGGdS +

∫
∂DΩh

δGGGT
nnn

B
hs

vvv(ḠGG)GGGe
nnndS

+

∫
∂DΩh

δGGGT
nnn (ooo(GGGe)GGGe − ooo0GGG0)dS +

∫
∂NΩh

δGGGTn̄nnT(ooo(GGGe)GGGe − ooo0GGG0)dS ∀δGGG ∈ X.

(5.100)

The arbitrary nature of the test functions leads to recover the set of conservation laws, Eqs.
(5.84), and the boundary conditions, Eqs. (5.85-5.86).

5.4.2 Second order non-self-adjoint elliptic problem

In this part, we will assume that ∂DΩh = ∂Ωh. This assumption is not restrictive but
simplifies the demonstrations.
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Our subsequent analysis will be derived similar to the one in Section 4.2.2.

Starting from the definition of matrix vvv(GGG), which is a symmetric and positive definite
matrix, as its components CCC and ZZZ are positive definite matrix. Let us define the minimum
and maximum eigenvalues of the matrix vvv(GGG) as λ(GGG) and Λ(GGG), then for all ξ ∈ R5d−3

0

0 < λ(GGG)|ξ|2 ≤ ξivvv
ij(GGG)ξj ≤ Λ(GGG)|ξ|2. (5.101)

Also by assuming that ‖GGG ‖W1
∞
≤ α, then there is a positive constant Cα such that

0 < Cα < λ(GGG). (5.102)

In the following analysis, we use the integral form of the Taylor’s expansions of www, introduced
in Eqs. (4.89- 4.92).

For the future use, let us introduce for d = 3, ddd(GGG,∇GGG) = õoo(GGG)∇GGG a (d + 2)× 1 vector,
ddd∇GGG(GGG) = õoo(GGG) of size (d + 2) × (5d − 3), dddGGG(GGG,∇GGG) = õooGGG(GGG)∇GGG a (d + 2) × (d + 2)
matrix, dddGGGGGG(GGG,∇GGG) = õooGGGGGG(GGG)∇GGG a (d + 2)× (d + 2)× (d + 2) matrix, ddd∇GGGGGG(GGG) = õooGGG(GGG)
a (d + 2) × (5d − 3) × (5d − 3) matrix, the (5d − 3) × 1 vector ppp(GGG) = ooo(GGG)GGG and its
first and second derivatives pppGGG(GGG) of size (5d − 3) × (d + 2) and pppGGGGGG(GGG) of size (5d −
3) × (d + 2) × (d + 2) respectively, which will be computed later. Those matrices will be
needed for the further derivation of Taylor series as in Eq. (4.91). By recalling the definition
www(GGG,∇GGG) = vvv(GGG)∇GGG, then the expression of the derivatives wwwGGG(GGG,∇GGG) = vvvGGG(GGG)∇GGG,
www∇GGG(GGG) = vvv(GGG), wwwGGGGGG(GGG,∇GGG) = vvvGGGGGG(GGG)∇GGG, and wwwGGG∇GGG(GGG) = vvvGGG(GGG) of www(GGG,∇GGG) can be
extracted directly from Appendix C.2, as CCC for all the derivation is a constant matrix.

Let us define the solution GGGe ∈
[
H2(Ω)

]d×H2(Ω)×H2+
(Ω) of the strong form stated by

Eqs. (5.84-5.86). Thus since JGGGeK = 0 on ∂IΩ
e and JGGGeK = −GGGe = −ḠGG on ∂DΩe, and since

Eq. (5.90) satisfies the consistency, we have

a(GGGe, δGGGe) =

∫
Ωh

(∇δGGGe)Twww(GGGe,∇GGGe)dΩ +

∫
Ωh

δGGGeT
õoo(GGGe)∇GGGedΩ

+

∫
∂IΩh

r
δGGGeT

nnn

z
〈www(GGGe,∇GGGe)〉 dS−

∫
∂DΩh

δGGGeT

nnn www(GGGe,∇GGGe)dS

−
∫
∂DΩh

GGGeT

nnn vvv(GGGe)∇δGGGedS +

∫
∂DΩh

GGGeT

nnn

vvv(GGGe)B
hs

δGGGe
nnndS

+

∫
∂DΩh

δGGGeT

nnn (ooo(GGGe)GGGe − ooo0GGG0)dS = b(δGGGe) ∀δGGGe ∈ X,

(5.103)

with

b(δGGGe) = −
∫
∂DΩh

ḠGG
T
nnn

(
vvv(ḠGG)∇δGGGe

)
dS +

∫
∂DΩh

δGGGeT

nnn (ooo(ḠGG)ḠGG− ooo0GGG0)dS

+

∫
∂DΩh

δGGGeT

nnn

(
B
hs

vvv(ḠGG)

)
ḠGGnnndS.

(5.104)

Therefore, using δGGGe = δGGGh in Eq. (5.103) and subtracting the DG discretization (5.90) from

Eq. (5.103), then adding and subtracting successively
∫
∂IΩh

r
GGGeT

nnn −GGGT
hnnn

z
〈www∇GGG(GGGe)∇δGGGh〉 dS,
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∫
∂IΩh

r
GGGeT

nnn −GGGT
hnnn

z〈
B
hs

www∇GGG(GGGe)
〉

JδGGGhnnnK dS to this last relation, and using JGGGe
nnnK = 0, Jooo(GGGe)GGGe − ooo0GGG0K =

0 on ∂IΩh and JGGGe
nnnK = −GGGe

nnn = −ḠGGnnn, Jooo(GGGe)GGGe − ooo0GGG0K = −ooo(ḠGG)ḠGG +ooo0GGG0 on ∂DΩh, one gets

0 =

∫
Ωh

(∇δGGGh)T (www(GGGe,∇GGGe)−www(GGGh,∇GGGh)) dΩ

+

∫
Ωh

δGGGT
h (õoo(GGGe)∇GGGe − õoo(GGGh)∇GGGh) dΩ

+

∫
∂IΩh∪∂DΩh

q
δGGGT

hnnn

y
〈www(GGGe,∇GGGe)−www(GGGh,∇GGGh)〉 dS

+

∫
∂IΩh∪∂DΩh

r
GGGeT

nnn −GGGT
hnnn

z
〈www∇GGG(GGGe)∇δGGGh〉 dS

−
∫
∂IΩh∪∂DΩh

r
GGGeT

oooT(GGGe)−GGGT
h oooT(GGGh)

z
〈δGGGhnnn〉 dS

−
∫
∂IΩh

r
GGGeT

nnn −GGGT
hnnn

z
〈(www∇GGG(GGGe)−www∇GGG(GGGh))∇δGGGh〉 dS

+

∫
∂IΩh∪∂DΩh

r
GGGeT

nnn −GGGT
hnnn

z〈 B
hs

www∇GGG(GGGe)

〉
JδGGGhnnnK dS

−
∫
∂IΩh

r
GGGeT

nnn −GGGT
hnnn

z〈 B
hs

(www∇GGG(GGGe)−www∇GGG(GGGh))

〉
JδGGGhnnnK dS ∀δGGGh ∈ Xk.

(5.105)

Using the Taylor series defined in Eq. (4.89) the first three terms of the previous equation
can be successively rewritten as following. The first term of Eq. (5.105) can be rewritten as

∫
Ωh

(∇δGGGh)T(www(GGGe,∇GGGe)−www(GGGh,∇GGGh))dΩ

=

∫
Ωh

(∇δGGGh)T(wwwGGG(GGGe,∇GGGe)(GGGe −GGGh))dΩ

+

∫
Ωh

(∇δGGGh)T(www∇GGG(GGGe)(∇GGGe −∇GGGh))dΩ

−
∫

Ωh

(∇δGGGh)T(R̄RRwww(GGGe −GGGh,∇GGGe −∇GGGh))dΩ,

(5.106)

with

R̄www(GGGe −GGGh,∇GGGe −∇GGGh) = (GGGe −GGGh)Tw̄wwT
GGGGGG(GGGh)(GGGh −GGGh)

+ 2(GGGe −GGGh)Tw̄wwT
∇GGGGGG(GGGh)(∇GGGe −∇GGGh),

(5.107)

where w̄wwGGGGGG is (5d− 3)× (d + 2)× (d + 2) matrix and w̄ww∇GGGGGG is (5d− 3)× (5d− 3)× (d + 2)
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matrix. Similarly, the second term of Eq. (5.105) can be rewritten as∫
Ωh

δGGGT
h (õoo(GGGe)∇GGGe − õoo(GGGh)∇GGGh) dΩ =

∫
Ωh

δGGGT
h (ddd(GGGe,∇GGGe)− ddd(GGGh,∇GGGh)) dΩ

=

∫
Ωh

δGGGT
h dddGGG(GGGe,∇GGGe)(GGGe −GGGh))dΩ

+

∫
Ωh

δGGGT
h ddd∇GGG(GGGe)(∇GGGe −∇GGGh))dΩ

−
∫

Ωh

δGGGT
h R̄RRddd(GGGe −GGGh,∇GGGe −∇GGGh)dΩ,

(5.108)

where R̄RRddd(GGGe −GGGh) can be derived from Eq. (4.91) as

R̄ddd(GGGe −GGGh,∇GGGe −∇GGGh) = (GGGe −GGGh)Td̄ddGGGGGG(GGGh,∇GGGh)(GGGe −GGGh)

+ 2(GGGe −GGGh)Td̄dd∇GGGGGG(GGGh)(∇GGGe −∇GGGh).
(5.109)

Likewise, the third term is rewritten as∫
∂IΩh∪∂DΩh

q
δGGGT

hnnn

y
〈www(GGGe,∇GGGe)−www(GGGh,∇GGGh)〉dS

=

∫
∂IΩh∪∂DΩh

q
δGGGT

hnnn

y
〈wwwGGG(GGGe,∇GGGe)(GGGe −GGGh)〉 dS

+

∫
∂IΩh∪∂DΩh

q
δGGGT

hnnn

y
〈www∇GGG(GGGe)(∇GGGe −∇GGGh)〉 dS

−
∫
∂IΩh∪∂DΩh

q
δGGGT

hnnn

y 〈
R̄RRwww(GGGe −GGGh,∇GGGe −∇GGGh)

〉
dS.

(5.110)

The fifth term is developed by using the definition of pppT(GGG) = GGGToooT(GGG) and using the
Taylor’s series as in Eq. (4.89), but written on ppp(GGG): pppT(GGGe)−pppT(GGGh) = (GGGe−GGGh)TpppT

GGG(GGGe)−
R̄RRppp(GGGe −GGGh), where R̄RRppp(GGGe −GGGh) = (GGGe −GGGh)Tp̄ppT

GGGGGG(GGGh)(GGGe −GGGh).
Therefore, the fifth term of Eq. (5.105) becomes

−
∫
∂IΩh∪∂DΩh

r
GGGeT

oooT(GGGe)−GGGT
h oooT(GGGh)

z
〈δGGGhnnn〉 dS

= −
∫
∂IΩh∪∂DΩh

r
(GGGeT −GGGT

h )pppT
GGG(GGGe)

z
〈δGGGhnnn〉dS

+

∫
∂IΩh∪∂DΩh

q
R̄RRppp(GGGe −GGGh)

y
〈δGGGhnnn〉 dS.

(5.111)

However, one has pppT
GGG = ∂(GGGToooT(GGG))

∂GGG = GGGT ∂oooT(GGG)
∂GGG + oooT(GGG), which once computed explicitly as

to derive Eq. (5.94) gives pppT
GGG = −oooT(GGG). Moreover R̄RRppp(GGGe−GGGh) = −(GGGe−GGGh)TōooT

GGG(GGGh)(GGGe−
GGGh), and the previous equation can also be written as

−
∫
∂IΩh∪∂DΩh

r
GGGeT

oooT(GGGe)−GGGT
h oooT(GGGh)

z
〈δGGGhnnn〉 dS

=

∫
∂IΩh∪∂DΩh

r
(GGGeT −GGGT

h )oooT(GGGe)
z
〈δGGGhnnn〉 dS

−
∫
∂IΩh∪∂DΩh

q
(GGGe −GGGh)TōooT

GGG(GGGh)(GGGe −GGGh)
y
〈δGGGhnnn〉 dS.

(5.112)



104 Electro-Thermo-Mechanical DG coupling

Finally since GGGToooT(GGG′)δGGGnnn = GGGT
nnn õooT(GGG′)δGGG = −3K

f2
′

T

fTαthn−x δux−3K

f2
′

T

fTαthn−y δuy−3K

f2
′

T

fTαthn−z δuz,

then Eq. (5.112) is rewritten as

−
∫
∂IΩh∪∂DΩh

r
GGGeT

oooT(GGGe)−GGGT
h oooT(GGGh)

z
〈δGGGhnnn〉 dS

=

∫
∂IΩh∪∂DΩh

r
(GGGeT

nnn −GGGT
hnnn

)õooT(GGGe)
z
〈δGGGh〉dS

−
∫
∂IΩh∪∂DΩh

q
(GGGe −GGGh)TōooT

GGG(GGGh)(GGGe −GGGh)
y
〈δGGGhnnn〉 dS.

(5.113)

We can now first define N (GGGe,GGGh; δGGGh) as follows

N (GGGe,GGGh; δGGGh) =

∫
Ωh

(∇δGGGh)T(R̄RRwww(GGGe −GGGh,∇GGGe −∇GGGh))dΩ

+

∫
∂IΩh∪∂DΩh

q
δGGGT

hnnn

y 〈
R̄RRwww(GGGe −GGGh,∇GGGe −∇GGGh)

〉
dS

+

∫
∂IΩh

r
GGGeT

nnn −GGGT
hnnn

z
〈(www∇GGG(GGGe)−www∇GGG(GGGh))∇δGGGh〉dS

+

∫
∂IΩh

r
GGGeT

nnn −GGGT
hnnn

z〈 B
hs

(www∇GGG(GGGe)−www∇GGG(GGGh))

〉
JδGGGhnnnK dS

+

∫
∂IΩh∪∂DΩh

q
(GGGe −GGGh)TōooT

GGG(GGGh)(GGGe −GGGh)
y
〈δGGGhnnn〉dS

+

∫
Ωh

δGGGT
h R̄RRddd(GGGe −GGGh,∇GGGe −∇GGGh)dΩ

= I1 + I2 + I3 + I4 + I5 + I6.

(5.114)

Moreover, for given ψψψ ∈ X+,ωωω ∈ X and δωωω ∈ X, we define the following forms:

A(ψψψ;ωωω, δωωω) =

∫
Ωh

∇δωωωTwww∇ψψψ(ψψψ)∇ωωωdΩ +

∫
∂IΩh∪∂DΩh

q
δωωωT

nnn

y 〈
www∇ψψψ (ψψψ)∇ωωω

〉
dS

+

∫
∂IΩh∪∂DΩh

q
ωωωT

nnn

y 〈
www∇ψψψ(ψψψ)∇δωωω

〉
dS +

∫
∂IΩh∪∂DΩh

q
ωωωT

nnn

y〈 B
hs

www∇ψψψ(ψψψ)

〉
JδωωωnnnK dS,

(5.115)

B(ψψψ;ωωω, δωωω) =

∫
Ωh

∇δωωωT
(
wwwψψψ(ψψψ,∇ψψψ)ωωω

)
dΩ +

∫
Ωh

δωωωTddd∇ψψψ(ψψψ)∇ωωωdΩ

+

∫
∂IΩh∪∂DΩh

q
δωωωT

nnn

y〈
wwwT
ψψψ(ψψψ)ωωω

〉
dS +

∫
Ωh

δωωωTdddψψψ(ψψψ,∇ψψψ)ωωωdΩ

+

∫
∂IΩh∪∂DΩh

r
ωωωT

nnn dddT
∇ψψψ(ψψψ)

z
〈δωωω〉dS.

(5.116)

For fixed ψψψ, the form A(ψψψ; ., .) and the form B(ψψψ; ., .) are bi-linear. Comparing with the
fixed form from Gudi et al. [24] for non-linear elliptic problems, the formulations A and B
are similar, except the last term of B(ψψψ; ., .) in which ddd∇ψψψ(ψψψ) appears in the J K operator
instead of the 〈 〉 operator. Nevertheless, this term becomes identical with the one in Gudi
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et al. [24] for fixed ψψψ. However the N is different in the fifth and sixth term, so they will
require a different treatment.

Therefore, using the relations (5.114-5.116) and the definitions (5.106-5.110), the set of

Eqs. (5.105) is rewritten as finding GGGh ∈ Xk+
such that:

A(GGGe;GGGe −GGGh, δGGGh) + B(GGGe;GGGe −GGGh, δGGGh) = N (GGGe,GGGh; δGGGh) ∀δGGGh ∈ Xk. (5.117)

When comparing the Electro-Thermo-Elasticity coupling formulation of this Chapter, and
the Electro-Thermal coupling formulation of Chapter 4, it can be seen that both of them are
nonlinear formulations. However, additional terms appear in the Electro-Thermo-Elasticity
coupled formulation, which are related to the expansion term (the term in ooo).

If fT ≥ fT0 > 0, then w̄wwGGG, w̄ww∇GGG, w̄wwGGGGGG, w̄wwGGG∇GGG, w̄ww∇GGGGGG, ōooGGG, d̄dd, d̄ddGGG, d̄dd∇GGG, d̄ddGGGGGG, d̄dd∇GGGGGG ∈
LLL∞ (Ω × R(d+1) × R+

0 ). These matrices with ( ¯ ) are related to the remainder term of
Taylor’s expansion formulation, similar to Eq. (4.89), as will be shown later. Since www, ooo,
and ddd are twice continuously differentiable function with all the derivatives through the sec-
ond order locally bounded in a ball around GGG ∈ [R]3×R×R+

0 as it will be shown in Section
5.4.3, and we denote by Cy

Cy = max
{
‖ www, ddd ‖W2

∞(Ω×Rd+1×R+
0 ×R(5d−3) ,

‖ w̄wwGGG, w̄ww∇GGG, w̄wwGGGGGG, w̄wwGGG∇GGG, w̄ww∇GGGGGG, ōooGGG, d̄ddGGG, d̄dd∇GGG, d̄ddGGGGGG, d̄dd∇GGGGGG ‖L∞(Ω×Rd×R+
0 )

}
.

(5.118)

5.4.3 Solution uniqueness

Let us first assume ηηη = IhGGG −GGGe ∈ X, with IhGGG ∈ Xk+
the interpolant of GGGe in Xk+

.
The last relation (5.117) thus becomes

A(GGGe; IhGGG−GGGh, δGGGh) + B(GGGe; IhGGG−GGGh, δGGGh) = A(GGGe;ηηη, δGGGh) + B(GGGe;ηηη, δGGGh)

+N (GGGe,GGGh; δGGGh) ∀δGGGh ∈ Xk.
(5.119)

Now in order to prove the existence of a solution GGGh of the problem stated by Eq. (5.105),
which corresponds to the DG finite element discretization (5.90), we state the problem in

the fixed point formulation and we define a map Sh : Xk+ → Xk+
as follows: for a given

yyy ∈ Xk+
, find Sh(yyy) = GGGyyy ∈ Xk+

, such that

A(GGGe; IhGGG−GGGyyy, δGGGh) + B(GGGe; IhGGG−GGGyyy, δGGGh) = A(GGGe;ηηη,δGδGδGh) + B(GGGe;ηηη, δGGGh)

+N (GGGe,yyy; δGGGh) ∀δGGGh ∈ Xk.
(5.120)

The existence of a unique solution GGGh of the discrete problem (5.90) is equivalent to the
existence of a fixed point of the map Sh, see [25].

For the subsequent analysis, we denote by Ck, a positive generic constant which is inde-
pendent of the mesh size, but does depend on the polynomial approximation degree k.

Lemma 5.4.1 (Lower bound). For B larger than a constant, which depends on the polyno-
mial approximation only, there exist two constants Ck

1 and Ck
2, such that

A(GGGe; δGGGh, δGGGh) + B(GGGe; δGGGh, δGGGh) ≥ Ck
1 |‖ δGGGh ‖|2∗ −Ck

2 ‖ δGGGh ‖2L2(Ω)
∀δGGGh ∈ Xk, (5.121)
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A(GGGe; δGGGh, δGGGh) + B(GGGe; δGGGh, δGGGh) ≥ Ck
1 |‖ δGGGh ‖|2 −Ck

2 ‖ δGGGh ‖2L2(Ω)
∀δGGGh ∈ Xk. (5.122)

The two positive constants Ck
1,C

k
2 are independent of the mesh size, but do depend on k and

B. These bounds are estimated by proceeding in a similar way as for Lemmatta 3.4.1 and
4.4.1 in Chapters 3 and 4 respectively, and the stability of the method is conditioned by the

constant B > C2
y

C2
α

max(4CT (Ck
I + 1), 4Ck2

K ) under consideration for Ck
1 to remain positive, for

details see Appendix D.2.

Lemma 5.4.2 (Upper bound). There exist C > 0 and Ck > 0 such that

| A(GGGe;mmm, δGGG) + B(GGGe;mmm, δGGG) | ≤ C |‖mmm ‖|1 |‖ δGGG ‖|1 ∀mmm , δGGG ∈ X, (5.123)

| A(GGGe;mmm, δGGGh) + B(GGGe;mmm, δGGGh) | ≤ Ck |‖mmm ‖|1 |‖ δGGGh ‖| ∀mmm ∈ X , δGGGh ∈ Xk, (5.124)

| A(GGGe;mmmh, δGGGh) + B(GGGe;mmmh, δGGGh) | ≤ Ck |‖mmmh ‖| |‖ δGGGh ‖| ∀mmmh, δGGGh ∈ Xk. (5.125)

The upper bounds are established similarly to the demonstration of Lemmatta 3.4.2, 4.4.2 in
the previous two chapters. The proof is presented in Appendix D.3.

Using Lemma 5.4.1 and Lemma 5.4.2, the stability of the method is demonstrated
through the following Lemmata.

Lemma 5.4.3 (Auxiliary problem). We consider the following auxiliary problem, with φφφ ∈
L2(Ω):

−∇T (www∇GGG(GGGe)∇ψψψ + wwwGGG(GGGe,∇GGGe)ψψψ) + ddd∇GGG(GGGe)∇ψψψ + dddGGG(GGGe,∇GGGe)ψψψ = φφφ on Ω,

ψψψ = 0 on ∂Ω.
(5.126)

Assuming regular ellipticity of the operators and that wwwGGG and dddGGG satisfy the weak minimum

principle [23, Theorem 8.3], there is a unique solution ψψψ ∈
[
H2(Ω)

]d×H2(Ω)×H2(Ω) to the
problem stated by Eq. (5.126) satisfying the elliptic property

‖ ψψψ ‖H2(Ωh)≤ C ‖ φφφ ‖L2(Ωh) . (5.127)

The proof is given in [23], by combining [23, Theorem 8.3] to [23, Lemma 9.17].

Moreover, for a given ϕϕϕ ∈
[
L2(Ωh)

]d × L2(Ωh) × L2(Ωh) there exists a unique φφφh ∈ Xk

such that

A(GGGe; δGGGh,φφφh) + B(GGGe; δGGGh,φφφh) =
∑
e

∫
Ωe

ϕϕϕTδGGGhdΩ ∀δGGGh ∈ Xk, (5.128)

and there is a constant Ck such that :

|‖ φφφh ‖|≤ Ck ‖ ϕϕϕ ‖L2(Ωh) . (5.129)

The proof follows from the use of Lemma 5.4.1 to bound |‖ φφφh ‖| in terms of ‖ ϕϕϕ ‖L2(Ωh)

and ‖ φφφh ‖L2(Ωh). ‖ φφφh ‖L2(Ωh) is then estimated by considering φφφ = φφφh ∈ Xk in Eq.

(5.126), multiplying the result by φφφh and integrating it by parts on Ωh yielding ‖ φφφh ‖2L2(Ωh)
=

A(GGGe;ψψψ,φφφh) + B(GGGe;ψψψ,φφφh). Inserting the interpolant Ihφφφ in these last terms, making suc-
cessive use of Lemmata 5.4.2 and 2.4.6, and using the regular ellipticity Eq. (5.127) allows
deriving the bound ‖ φφφh ‖L2(Ωh)≤ Ck ‖ ϕϕϕ ‖L2(Ωh), which results into the proof of the solution
uniqueness. The proof is derived in details in Appendix D.4.
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In order to prove that the solution GGGyyy is unique for a given yyy ∈ Xk+
, and that the solution

is Sh(yyy) = GGGyyy, let us assume that there are two distinct solutions GGGyyy1 , GGGyyy2 to the problem
stated by Eq. (5.120), which results into

A(GGGe; IhGGG−GGGyyy1 , δGGGh) + B(GGGe; IhGGG−GGGyyy1 , δGGGh)

= A(GGGe; IhGGG−GGGyyy2 , δGGGh) + B(GGGe; IhGGG−GGGyyy2 , δGGGh) ∀ δGGGh ∈ Xk.
(5.130)

For fixed GGGe, A and B are bi-linear, therefore this last relation becomes

A(GGGe;GGGyyy1 −GGGyyy2 , δGGGh) + B(GGGe;GGGyyy1 −GGGyyy2 , δGGGh) = 0 ∀ δGGGh ∈ Xk. (5.131)

Using Lemma 5.4.3, with ϕϕϕ = δGGGh = GGGyyy1−GGGyyy2 ∈ Xk results in stating that there is a unique
ΦΦΦh ∈ Xk solution of the problem Eq. (5.128), with for δGGGh = GGGyyy1 −GGGyyy2

A(GGGe;GGGyyy1 −GGGyyy2 ,ΦΦΦh) + B(GGGe;GGGyyy1 −GGGyyy2 ,ΦΦΦh) =‖GGGyyy1 −GGGyyy2 ‖2L2(Ωh)
, (5.132)

and with |‖ ΦΦΦh ‖|≤ Ck ‖ GGGyyy1 −GGGyyy2 ‖L2(Ωh). Choosing δGGGh as ΦΦΦh in Eq. (5.131), we have
‖GGGyyy1 −GGGyyy2 ‖L2(Ωh)= 0. Therefore, the solution Sh(yyy) = GGGyyy is unique.

We will now show that Sh maps from a ball Oσ(IhGGG) ⊂ Xk+
into itself and is continuous

in the ball. Therefore we define the ball Oσ with radius σ and centered at the interpolant
IhGGG of GGGe as

Oσ(IhGGG) =
{

yyy ∈ Xk+

such that |‖ IhGGG− yyy ‖|1≤ σ
}
,

with σ =
|‖ IhGGG−GGGe ‖|1

hεs
, 0 < ε <

1

4
.

(5.133)

The idea proposed in [25] is to work on a linearized problem in a ball Oσ(IhGGG) ⊂ Xk+

around an interpolat IhGGG of GGGe so the nonlinear terms www and ddd and their derivatives are

locally bounded in the ball Oσ(IhGGG) ⊂ Xk+
. Assuming GGGe ∈

[
H

5
2 (Ω)

]d
×H

5
2 (Ω)×H

5
2

+

(Ω),

and applying Lemma 2.4.6, Eq. (2.23) with s = 5
2 , CG =‖ GGGe ‖

H
5
2 (Ωh)

, and µ = 5
2 = s, it

follows that

|‖ IhGGG−GGGe ‖|1 ≤ Ckh
3
2
s ‖GGGe ‖

H
5
2 (Ωh)

and σ ≤ CkCGh
3
2
−ε

s if k ≥ 2. (5.134)

We can show that www(xxx;yyy,∇yyy), wwwGGG(xxx;yyy,∇yyy), wwwGGGGGG(xxx;yyy,∇yyy), www∇GGG(xxx;yyy), wwwGGG∇GGG(xxx;yyy),
ooo(xxx;yyy), oooGGG(xxx;yyy), ddd(xxx;yyy,∇yyy), dddGGG(xxx;yyy,∇yyy), dddGGGGGG(xxx;yyy,∇yyy), ddd∇GGG(xxx;yyy), dddGGG∇GGG(xxx;yyy) are bounded
for xxx ∈ Ω̄, yyy ∈ Oσ(IhGGG), by the same reasoning as in [76] and as explained in Chapter 4,
which justifies Eq. (5.118).

Lemma 5.4.4. Let yyy ∈ Oσ(IhGGG) and δGGGh ∈ Xk, then the bound of the nonlinear term
N (GGGe,yyy; δGGGh) defined in Eq. (5.114) reads

| N (GGGe,yyy; δGGGh) | ≤ CkCy ‖ GGGe ‖Hs(Ωh) hµ−2−ε
s σ

‖ δGGGh ‖H1(Ωh) +

(∑
e

hs ‖ δGGGh ‖2H1(∂Ωe)

) 1
2

+

(∑
e

h−1
s ‖ JδGGGhnnnK ‖2L2(∂Ωe)

) 1
2

 .
(5.135)
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This bound of the nonlinear term N (GGGe,yyy; δGGGh) defined Eq. (5.120) is derived in Appendix
D.5 by bounding every term separately using Taylor series (5.107 and 5.109), the generalized
Hölder inequality, the generalized Cauchy-Schwartz’ inequality, the definition of Cy in Eq.
(5.118), the definition of the ball, Eqs. (5.133, 5.134) and some other inequalities which
are reported in Chapter 2, such as trace inequalities, Eqs. (2.16-2.18), inverse inequalities,
Eqs. (2.19-2.21) for d = 2, and interpolation inequalities for d = 2, Eqs. (2.13-2.15). The
proof follows from the argumentation reported in [25] and the bound of the nonlinear term
N (GGGe,yyy; δGGGh) is nominated by the term with the largest bound, see Appendix D.5 for details.

Moreover, using the definition of the energy norm (2.12), this relation becomes

| N (GGGe,yyy; δGGGh) | ≤ CkCy ‖ GGGe ‖Hs(Ωh) hs
µ−2−εσ |‖ δGGGh ‖|1, (5.136)

which could be rewritten using Lemma 2.4.5 for the general case as

| N (GGGe,yyy; δGGGh) | ≤ CkCy ‖ GGGe ‖Hs(Ωh) hs
µ−2−εσ |‖ δGGGh ‖|

≤ CkCyCGhs
1
2
−εσ |‖ δGGGh ‖| if k ≥ 2.

(5.137)

We now have the tools to demonstrate that Sh (i) maps from a ball Oσ(IhGGG) ⊂ Xk+
into

itself and (ii) is continuous in the ball.

Theorem 5.4.5 (Sh maps Oσ(IhGGG) into itself). Let 0 < hs < 1 and σ be defined by Eq.
(5.134). Then Sh maps the ball Oσ(IhGGG) into itself.

|‖ IhGGG−GGGyyy ‖|≤ Ck′σhεs if k ≥ 2, (5.138)

and for a mesh size hs small enough and a given ball size σ, IhGGG−GGGyyy −→ 0, hence Sh maps
Oσ(IhGGG) to itself. The demonstration follows the same procedure as in the Theorem 4.4.6.

Theorem 5.4.6 (The continuity of the map Sh in the ball Oσ(IhGGG)). For yyy1, yyy2 ∈ Oσ(IhGGG),
let GGGyyy1 = Sh(yyy1), GGGyyy2 = Sh(yyy2) be solutions of Eq. (5.120). Then for 0 < hs < 1

|‖ GGGyyy1 −GGGyyy2 ‖| ≤ CkCy ‖ GGGe ‖Hs(Ωh) hµ−2−ε
s |‖ yyy1 − yyy2 ‖| . (5.139)

Repeating the same argument as in Theorem 4.4.7, one can easily obtain the proof.

Using the Theorems 5.4.5, 5.4.6 of the map Sh, we can deduced that for all 0 < hs < 1,
the maps Sh has a fixed point GGGh of the ball Oσ(IhGGG), and this fixed point is the solution of
the nonlinear system of Eqs. (5.90).

5.4.4 A priori error estimates

As Sh has a fixed point GGGh, we can use GGGh instead of GGGy in Eq. (5.138), hence we have

|‖ IhGGG−GGGh ‖| ≤ Ck′σhεs = Ck′ |‖ IhGGG−GGGe ‖|1 . (5.140)

Now using this last relation, Lemma 2.4.5, Eq. (2.22), Lemma 2.4.6, Eq. (2.23), and Eq.
(4.155) lead to

|‖GGGe −GGGh ‖|1 ≤|‖GGGe − IhGGG ‖|1 + |‖ IhGGG−GGGh ‖|1≤|‖GGGe − IhGGG ‖|1 +Ck′ |‖ IhGGG−GGGe ‖|1
≤ (1 + Ck′) |‖GGGe − IhGGG ‖|1≤ Ck′′hµ−1

s ‖GGGe ‖Hs(Ωh),

(5.141)
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where µ = min {s, k + 1}, and Ck′′ = Ck(1 + Ck′). This shows that the error estimate is
optimal in hs.

5.4.5 Error estimate in the L2-norm

The optimal order of convergence in the L2-norm is obtained by applying the duality
argument. Thereby, let us consider the following dual problem

−∇T(www∇GGG(GGGe)∇ψψψ + dddT
∇GGG(GGGe)ψψψ) + wwwT

GGG(GGGe,∇GGGe)∇ψψψ + dddGGG(GGGe,∇GGGe)ψψψ = eee on Ω,

ψψψ = ggg on ∂Ω,
(5.142)

which is assumed to satisfy the elliptic regularity condition as www∇GGG is positive definite
and that dddT

∇GGG and dddGGG satisfy the weak minimum principle [23, Theorem 8.3], with ψψψ ∈[
H2m(Ωh)

]d ×H2m(Ωh)×H2m(Ωh) for p ≥ 2m and

‖ ψψψ ‖Hp(Ωh)≤ C

(
‖ eee ‖

Hp−2m
(Ωh)

+ ‖ ggg ‖
H

p− 1
2

(∂Ωh)

)
, (5.143)

if eee ∈
[
Hp−2m(Ωh)

]d ×Hp−2m(Ωh)×Hp−2m(Ωh).

Considering eee = GGGe − GGGh ⊂
[
L2(Ωh)

]d × L2(Ωh) × L2(Ωh) be the error and ggg = 0,
multiplying Eq. (5.142) by eee, and integrating over Ωh, yields∫

Ωh

[www∇GGG(GGGe)∇ψψψ]T∇eeedΩ +

∫
Ωh

[
dddT
∇GGG(GGGe)ψψψ

]T∇eeedΩ +

∫
Ωh

[
wwwT

GGG(GGGe,∇GGGe)∇ψψψ
]T

eeedΩ

+

∫
Ωh

[dddGGG(GGGe,∇GGGe)ψψψ]T eeedΩ−
∑

e

∫
∂Ωe

[www∇GGG(GGGe)∇ψψψ]T eeennndS

−
∑

e

∫
∂Ωe

[
eeeT

nnn dddT
∇GGG(GGGe)

]
ψψψdS =‖ eee ‖2

L2(Ωh)
,

(5.144)

with

‖ ψψψ ‖H2(Ωh)≤ C ‖ eee ‖L2(Ωh) . (5.145)

As JψψψK = J∇ψψψK = 0 on ∂IΩh and ψψψ = 0 on ∂DΩh, we have by comparison with Eqs.
(5.115-5.116), that

∫
Ωh

[www∇GGG(GGGe)∇ψψψ]T∇eeedΩ +
∫
∂IΩh

[www∇GGG(GGGe)∇ψψψ]T JeeennnK dS

−
∫
∂DΩh

[www∇GGG(GGGe)∇ψψψ]T eeennndS = A(GGGe; eee,ψψψ),∫
Ωh

[wwwGGG(GGGe,∇GGGe)eee]T∇ψψψdΩ +
∫

Ωh
[dddGGG(GGGe,∇GGGe)ψψψ]T eeedΩ

+
∫

Ωh

[
dddT
∇GGG(GGGe)ψψψ

]T∇eeedΩ +
∫
∂IΩh

q
eeeT

nnn dddT
∇GGG(GGGe)

y
ψψψdS

−
∫
∂DΩh

eeeT
nnn dddT
∇GGG(GGGe)ψψψdS = B(GGGe; eee,ψψψ),

(5.146)

as wwwGGG, www∇GGG are symmetric. Therefore, Eq. (5.144) reads

‖ eee ‖2
L2(Ωh)

= A(GGGe; eee,ψψψ) + B(GGGe; eee,ψψψ). (5.147)
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From Eq. (5.117), one has

A(GGGe;GGGe −GGGh, Ihψψψ) + B(GGGe;GGGe −GGGh, Ihψψψ) = N (GGGe,GGGh; Ihψψψ), (5.148)

since GGGe is the exact solution and Ihψψψ ∈ Xk, and Eq. (5.147) is rewritten

‖ eee ‖2
L2(Ωh)

= A(GGGe; eee,ψψψ − Ihψψψ) + B(GGGe; eee,ψψψ − Ihψψψ) +N (GGGe,GGGh; Ihψψψ). (5.149)

First, using Lemma 5.4.2, Eq. (5.123), Lemma 2.4.6, Eq. (2.23), and Eq. (5.141), leads
to

| A(GGGe; eee,ψψψ − Ihψψψ) + B(GGGe; eee,ψψψ − Ihψψψ) | ≤ Ck |‖ eee ‖|1 |‖ ψψψ − Ihψψψ ‖|1
≤ Ck |‖ eee ‖|1 hs ‖ ψψψ ‖H2(Ωh)

≤ Ck′′hµs ‖GGGe ‖Hs(Ωh)‖ ψψψ ‖H2(Ωh),

(5.150)

with µ = min {s, k + 1}.
Then proceeding as for establishing Lemma 5.4.4 and using the a priori error estimate

(5.140-5.141), we have

| N (GGGe,GGGh; Ihψψψ) | ≤ Ck′′Cyh2µ−3
s ‖GGGe ‖2Hs(Ωh)|‖ Ihψψψ ‖| . (5.151)

The bound of | N (GGGe,GGGh; Ihψψψ) | can be derived in the same way as Eq. (4.166) as reported
in Appendix C.9.
Finally, using Lemma 2.4.6, Eq. (2.23), remembering JψψψK = 0 in Ω, we deduce that

|‖ Ihψψψ ‖| ≤|‖ Ihψψψ −ψψψ ‖|1 + |‖ ψψψ ‖|1
≤ Ckhs ‖ ψψψ ‖H2(Ωh) + ‖ ψψψ ‖H1(Ωh)

≤ Ck(hs + 1) ‖ ψψψ ‖H2(Ωh) .

(5.152)

Combining Eqs. (5.150-5.152), Eq. (5.149) becomes, for µ ≥ 3

‖ eee ‖2
L2(Ωh)

≤ Ck′′hµs
(
1+ ‖GGGe ‖Hs(Ωh)

)
‖GGGe ‖Hs(Ωh)‖ ψψψ ‖H2(Ωh), (5.153)

with µ = min {s, k + 1}, or using Eq. (5.145), the final result for k ≥ 2

‖ eee ‖L2(Ωh)≤ Ck′′CGhµs ‖GGGe ‖Hs(Ωh) . (5.154)

This result demonstrates the optimal convergence rate of the method with the mesh-size for
cases in which k ≥ 2, (so that µ ≥ 3).

5.5 Numerical results

In this section the following numerical tests are performed: the 2D pipe for the conver-
gence verification of Electro-Thermo-Elasticity problem, and the 3D cell of polymer rein-
forced by carbon fibers, where the behavior of that composite material is studied when it is
driven by applying electric current. All the simulations are performed using polynomial of
second degree and stabilization parameter of value β = 100.
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5.5.1 2-D study of convergence order

The same quarter of the pipe as in Chapter 3 is considered for the convergence study. The
material parameters are reported in Table 5.1 and the boundary conditions are presented in
Fig. 5.1 and completed by a plane strain condition. The initial value for the temperature is
T0 = 20 [◦C] and V0 = 0 [V] for the electric potential. The same mesh as shown in Fig. 3.2
is considered. At the inner boundary, the value of the electric potential is 0.05 [V], Fig. 5.1.
The resulting electric potential distribution is shown in Fig. 5.2(a) and causes a gradual
increase in temperature from 20 [◦C] at the inner face to 145.7 [◦C] at the outer face, as
shown in Fig. 5.2(b). Consequently, an expansion of the pipe of 6.35 ×10−4 [cm] at the
outer radius is observed.

Table 5.1: Material parameters

Parameter Value

Poisson ratio[−] 0.33

Young’s modulus E [Pa] 50× 109

Thermal expansion αααth [1/K] diag(2×10−6)

Thermal conductivity kkk [W/(K ·m)] diag(1.612)

Seebeck coefficient α [S/m] 1.941× 10−4

Electrical conductivity lll [V/K] diag(8.422× 104)

ro=0.04 [m]

ri=0.03 [m]

V = 0.05 [V]
T= 20 [oC]

V = 0 [V]

Figure 5.1: The boundary conditions for a quarter of a pipe

The convergence of the DGFEM has been investigated on uniform meshes for the quadratic
polynomial degree k = 2. In Fig. 5.3(a) the error measured in the energy norm |‖ eee ‖| is
plotted against the mesh size hs. The observed rate is quadratic. This optimal result agrees
with our theoretical estimate in Section 5.4.4.

A refinement of the mesh, together with the use of second order-degree polynomial, leads
to the L2-norm to converge with a rate h3

s as this can be seen in Fig. 5.3(b). The theoretical
result of Section 5.4.5 is consequently validated.

5.5.2 3-D unit cell simulation

The same test as in Chapter 4 is applied. The boundary conditions are illustrated in
Fig. 5.4, where the electric potential difference is applied on the transverse direction (a)
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Electric potential [V]
0          0.025       0.05

(a)

Temperature [°C]
20    82.8     145.7

(b)

Figure 5.2: The distribution along the radius of (a) the electric potential and (b) the tem-
perature

and on the longitudinal direction (b). The displacement is constrained along three faces as
follows: the nodes in the XY-plane are fixed in the Z-direction, the nodes in the YZ-plane
are fixed in the X-direction, and the nodes in the XZ-plane are fixed in the Y-direction,
while the other three faces are restrained in order to get a uniform deformation, the top
face is restrained in the Z direction, the infront face is restrained in the Y direction and the
right face is restrained in the X direction. Finally the initial values for the temperature and
electric potential are T0 = 5 [◦C] and V0 = 0 [V] respectively. The material properties of
the polymers and carbon fibers are presented respectively in Tables 6.1 and 6.2. It should
be noted that the considered constitutive equations of the carbon fiber and shape memory
polymer, are presented in the following Chapter. The temperatures for the tests presented
in this Chapter remain lower than the glass transition temperature. However more tests
that involve SMP behavior above and below glass transition temperature will be presented
in the next Chapter.

For the transverse case, Fig. 5.4(a), the distribution of electric potential and temperature
are given in Figs. 5.5. When an electric potential of 11 [V] is applied the temperature in-
creases from 5 [◦C] to 35 [◦C] on the unconstrained face, where the temperature is restrained
on this right face to get uniform distribution for the temperature. The displacement is mea-
sured with respect to the right side of the cell, and the cell expansion due to the electric
potential increase is plotted in Fig. 5.7(a).

The same test is performed with an electric potential applied in the longitudinal direction.
The boundary conditions are shown in Fig. 5.4(b). It can be seen that in order to get an
increase in temperature close to the one of the previous test, from 5 [◦C] to 36.4 [◦C], an
electric potential of 0.16 [V] has been applied, as shown in Fig. 5.6, where a constrain is
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Figure 5.3: Error with respect to the mesh size. (a) The energy error, and (b) The error of
the fields

0.16 [mm] 0.05 [mm]

0.12 [mm]

X
Y

Z
0.12 [mm]

(a)

X
Y

Z

(b)

Figure 5.4: Boundary conditions applied in (a) the transversal direction, and (b) the longi-
tudinal direction

applied on the infront face to get a uniform temperature distribution on that face. This is
lower than the previous test. The strain/electric potential dependency is depicted in Fig.
5.7(b).

5.6 Conclusions

Throughout this chapter, the DG method has been studied for a coupled Electro-Thermo-
Mechanical problem. We have established the stability and uniqueness of the DG analytical
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Electric potential [V]

0               5.5                     11

(a) (b)

Figure 5.5: The distribution of the unit cell of (a) the electric potential, and (b) the tem-
perature, for an electric potential difference applied on the transversal direction

Electric potential [V]
0               0.075                    0.15

(a)

Temperature [°C] 

5                                              15,7                     36,4

(b)

Figure 5.6: The distribution of the unit cell of (a) the electric potential, and (b) the tem-
perature, for an electric potential difference applied on the longitudinal direction

approximated solution, as well as the optimal convergence order in both H1-and L2-norms
for small deformation problems and have verified these properties through numerical sim-
ulations. A micromechanical model of unidirectional carbon fibers embedded in a polymer
matrix is formulated considering the interaction of electrical, thermal, and mechanical fields.
The applicability of the DG method to coupled ETM problems is therefore verified, thus
making possible to predict the carbon fiber reinforced polymers behavior.
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Figure 5.7: The engineering strain versus electric potential difference applied in the (a)
transversal direction, and (b) longitudinal directions (the strain along x superposes the
strain along y)





Chapter 6

The constitutive laws of smart
composite materials

6.1 Introduction

Nowadays, most of the material surrounding us are made of different components to im-
prove the physical properties of the resulting material, for example carbon fiber reinforced
polymer composites which have increasingly become important due to their unique proper-
ties, as they combine the favorite characteristics of the both materials. In the construction
of fiber reinforced composite material, the high strength and stiffness of the carbon fibers
are combined with a low density stable matrix to create a combined material with desirable
material properties. Our choice for the fiber and the polymers, as discussed in Chapter 1,
is shape memory polymers reinforced by carbon fiber (SMPC).

The two most common uses for carbon fiber are in applications where high strength to
weight and high stiffness to weight ratios are desirable. These include aerospace structures,
wind turbines, military structures, robotics, manufacturing fixtures, sports equipment, and
many others. Certain applications also exploit carbon fiber electrical conductivity, as well
as their high thermal conductivity in the case of specialized carbon fiber.

Shape memory polymer is polymer having the ability to return from a deformed state to
its original shape, in other word, to remember the original shape. Starting from its primary
shape, deforming it into a temporary shape, it memorizes a macroscopic shape and returns
into its primary shape upon applying a particular stimulus such as temperature, electric
field, magnetic field, light, water or solvent. This ability of the material reverting back from
its temporary shape to its permanent shape is known as shape memory effect (SME). In this
work, we are interested in the thermal activation mechanism. These polymers take advantage
of a property change at the glass transition temperature Tg, such that the material can be
deformed with minimal force at temperatures above their Tg (hysteretic rubber state), where
the polymers are considered as viscous materials. Once cooled below the Tg (glassy state)
the SMPs become rigid again and the polymers are considered as elastic materials. As a
result they can maintain the shape that were given to them in their viscous states as long as
the temperature remains lower than their glass transition. The typical Thermo-Mechanical
cycle for SMP consists of the following steps as shown in Fig. 6.1

1. Deforming the polymer at temperature above the glass transition Tg.

117
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1

3

4

e

s

T

2

Figure 6.1: Thermo-Mechanical cycle of a Shape Memory Polymer

2. Fixing the polymer at constant deformation by cooling it to a temperature below Tg

3. Releasing the constraint upon the completion of cooling, to obtain the temporary
pre-deformed shape. The polymer will hold this temporary shape as long as the tem-
perature remains lower than the glass transition temperature.

4. Heating back the deformed structure above Tg, to recover the original shape

The objective of this chapter is to implement, modify and develop large deformation
constitutive theories and a numerical FE model able to model the response of Shape Memory
Polymers (SMPs) and Shape Memory Polymers composites (SMPC) subjected to a variety
of Thermo-Mechanical and Electro-Thermo-Mechanical histories.

The composite material system is obtained by defining two separate models, one for
carbon fiber and another one for shape memory polymers. For carbon fiber the transversely
isotropic hyperelastic model is considered while an elasto-visco-plastic model is considered
for the shape memory polymers.

The Thermo-Mechanical behaviors of shape memory polymer depend on the temper-
ature and time rate. Auxiliary studies have examined the numerical Thermo-Mechanical
constitutive modeling [7,8,10,44,61,68,71] of shape memory polymers. The aforementioned
fundamental studies have been instrumental in understanding and quantifying the response
of unreinforced shape memory polymers. The constitutive model proposed by Srivastava et
al. [68] is based on the glass transition concept. The material is assumed to be softer in the
rubber regime above Tg and to be harder in the glassy polymer regime below Tg. During the
phase transition, part of the material is in the glassy state and the other is in the rubbery
state. Internal variables and constrains have been used to prescribe the transition between
the two phases. This constitutive theory is discussed for application to amorphous polymers
which are called amorphous thermosets that are chemically crosslinked shape memory poly-
mers, which have more desirable properties in comparison with thermoplastic when they
are physically crossklinked. This constitutive model is able to reproduce the fundamental
features of the macroscopic stress-strain response of the material in the two phases.
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In addition this formulation is able to predict the nonlinear history and strain rate
dependence at large strain.

The current chapter is organized in the following sections. In Section 6.2 the constitutive
equation proposed in [11] of carbon fiber is presented and extended to Thermo-Elasticity, and
in Section 6.3 the constitutive equation for SMP is derived following the model of Srivastava
et al. [68]. Afterward, numerical tests are carried out in Section 6.4 to show the capabilities of
the constitutive laws in predicting the shape memory polymers and shape memory polymer
composites behaviors. The two uniaxial compression tests of shape memory polymer are
performed, one with free recovery and the other with constrained recovery. Then the third
uniaxial compression test shows the different responses of SMP in terms of temperature and
strain rate changes, and the model predictions are compared with the available numerical and
experimental results. Finally, other compression and bending tests are applied to simulate
the behavior of a structure made of conductive SMPC behavior in the large-deformation
regime, in which the shape memory effect is triggered by applying an indirect heat (by
means of a low electric field).

6.2 Material model of carbon fiber

Carbon fiber is a transversely isotropic material and subsequently the number of me-
chanical constants are reduced to 5 because of the in-plane isotropy.

ET = E1 = E2 6= E3 = EL, νTT = ν12 = ν21 6= ν13 = ν23 = νTL

GLT = G13 = G23 = G3 = GL.
(6.1)

The missing in-plane shear modulus GTT is obtained from νTT and ET, with

GTT = G12 =
ET

2(1 + νTT)
. (6.2)

In the previous relation, the subscript 3 or the superscript L refers to the fiber direction and
1, 2, or T is a direction transverse to the fiber direction. Along the longitudinal direction
the Poisson ratios are not symmetric but instead satisfy

νij

Ei
=

νji

Ej
.

In order to model the carbon fiber, we have considered the equation proposed by Bonet
et al. [11], which describes the isotropic hyperelastic solids in the large strain regime. In
addition, we have added the thermal contribution, characterized by the thermal expansion
term αth. In this formulation, the strain energy density ψ consists of an isotropic component
ψis and of an orthotropic transversely isotropic component ψtr such that ψ = ψis +ψtr. The
Neo-Hookean equation is used to model the isotropic part, such that

ψis =
1

2
GTT(trCCC− 3)−GTT(lnJ− 3αth(T− T0)) +

1

2
λ(lnJ− 3αth(T− T0))2, (6.3)

where this energy density function has been defined by C. Miehe in [54]. In this equation,
the deformation gradient FFF, with J = detFFF =

√
detCCC, its Jaccobian.

The orthotropic transversely isotropic component is obtained from a generalization of
the model proposed by Bonet et al. [11], with some modifications proposed by Wu et al. [75],
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as the original formulation considered that νTL = νTT, which is wrong for carbon fibers.
After the addition of the thermal contribution, one thus has

ψtr =
[
αtrn + 2βtrn(lnJ− 3αth(T− T0)) + γtrn(I4 − 1)

]
(I4 − 1)− 1

2
αtrn(I5 − 1), (6.4)

where I4 and I5 denote the two new pseudo invariants of CCC expressed as [66,67],

I4 = AAA ·CCC ·AAA and I5 = AAA ·CCC2 ·AAA, (6.5)

where the unit vector AAA defines the main direction of orthotropy (fiber direction) in the
undeformed configuration.

The parameters of the model Eq. (6.4), λ, GTT, αtr, βtr and γtr are obtained from the
measured properties Eqs. (6.1, 6.2) as

λ =
ET(νTT + nνTL2

)

m(1 + νTT)
, GTT =

ET

2(1 + νTT)
,

αtr = GTT −GLT

βtr =
ET
[
nνTL(1 + νTT − νTL)− νTT

]
4m(1 + νTT)

,

γtr =
ET(1− νTT)

8m
− λ+ 2GTT

8
+
αtr

2
− βtr,

m = 1− νTT − 2nνTT2
, n =

EL

ET
.

(6.6)

The second Piola-Kirchhoff stress tensor can be obtained by differentiating the free energy
in terms of the right Cauchy-Green strain tensor SSS = 2 ∂ψ∂CCC leading to

SSS = SSSis + SSStr, (6.7)

SSSis = λlnJCCC−1 + GTT(III−CCC−1)− 3λαth(T− T0)CCC−1, (6.8)

where III is the identity tensor, and with

SSStr = 2βtr(I4 − 1)CCC−1 + 2
[
αtr + 2βtr(lnJ− 3αth(T− T0)) + 2γtr(I4 − 1)

]
AAA⊗AAA

− αtr(CCC ·AAA⊗AAA + AAA⊗CCC ·AAA).
(6.9)

Then the first Piola-Kirchhoff stress tensor is evaluated from the second Piola-Kirchhoff
stress tensor as

PPP = FFFSSS. (6.10)

The stiffness is computed in detail in Appendix E.1.

6.3 Constitutive equations of shape memory polymer

In this Section, we summarize the work of Srivastava et al. [68] to model the shape
memory polymer behavior above and below glass transition.
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6.3.1 Kinematics

We consider a homogeneous body Ω0 identified by the region of space it occupies in a
fixed reference configuration, and denote by XXX an arbitrary material point of Ω0. A motion
of Ω0 is then a smooth one-to-one mapping

xxx = xxx (XXX, t) , (6.11)

with the deformation gradient
FFF =∇∇∇0xxx. (6.12)

To model the inelastic response of the amorphous polymeric materials, we assume that the
deformation gradient FFF may be multiplicatively decomposed into elastic and plastic parts

FFF = FFFe(α) ·FFFp(α) with detFFFe(α) > 0 and detFFFp(α) > 0, (6.13)

where FFFe(α) is the elastic distortion with

Je(α) = detFFFe(α) = J > 0, (6.14)

and FFFp(α) is the inelastic distortion with

Jp(α) = detFFFp(α) = 1 with initial value FFFp(α)(X, 0) = III. (6.15)

In these equations we have considered the possibility to account for several mechanisms
α = 1, 2, 3. Moreover, the elastic decomposition of the deformation gradient can be written
as

FFFe(α) = RRRe(α) ·UUUe(α), (6.16)

leading to
CCCe(α) = UUUe(α)2

= FFFe(α)T ·FFFe(α), (6.17)

where CCCe(α) is the elastic right Cauchy-Green strain tensor, and to

BBBe(α) = FFFe(α) ·FFFe(α)T, (6.18)

where BBBe(α) is the elastic left Cauchy-Green strain tensor.

6.3.2 Elasto-visco-plasticity

The material may be idealized to be isotropic. Accordingly, all constitutive functions are
presumed to be isotropic in character.

Let us assume that the free energy has the separable form

ψR = Σα ψ
(α)(ΦCCCe(α) ,T), (6.19)

where Φccce(α) represents a list of the principle invariants of CCCe(α) and T is the temperature.
The Cauchy stress is decomposed in terms of the mechanisms

σσσ =
∑
(α)

σσσ(α) , σσσ(α) = σσσ(α)T, (6.20)
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with

σσσ(α) =
1

J
FFF SSS(α) FFFT

=
1

J
FFF

(
2
∂ψ(α)(ΦCCCe(α) ,T)

∂CCC

)
FFFT

=
1

J
FFF

(
2
∂ψ(α)(ΦCCCe(α) ,T)

∂CCCe
:
∂CCCe

∂CCC

)
FFFT

=
1

J
FFFFFFp(α)−1

(
2
∂ψe(α)(ΦCCCe(α) ,T)

∂CCCe

)
FFFp(α)-TFFFT

=
1

J
FFFe(α) SSSe(α) FFFe(α)T,

(6.21)

where SSSe(α) is the symmetric elastic second Piola-Kirchhoff stress

SSSe(α) = 2
∂ψ(α)(Φccce(α) ,T)

∂CCCe(α)
. (6.22)

Moreover, the first Piola-Kirchhoff stress tensor can be computed from the following equation

PPP(α) = J σσσ(α)FFF−T = J
1

J
FFFe(α) SSSe(α) FFFe(α)T FFF−T

= FFFe(α) SSSe(α) FFFp(α)−T = FFF FFFp(α)−1 SSSe(α) FFFp(α)−T.
(6.23)

The driving stress of the plastic flow is the symmetric Mandel stress, which is defined as

MMMe(α) = J RRRe(α)Tσσσ(α)RRRe(α)

= J RRRe(α)TFFFe(α)FFFe(α)−1σσσ(α)FFFe(α)−TFFFe(α)TRRRe(α)

= UUUe(α)SSSe(α)UUUe(α) = CCCe(α)SSSe(α),

(6.24)

where MMMe(α) is the elastic Mandel stress, RRRe(α) is the rotation matrix, if CCCe(α) and SSSe(α)

permute. The corresponding equivalent shear stress is given by

τ̄ (α) =
1√
2
|MMMe(α)

0 |, (6.25)

where MMM
e(α)
0 is the deviatoric part of the Mandel stress

MMM
e(α)
0 = MMMe(α) + pIII , p = −1

3
trMMMe(α). (6.26)

Moreover |MMMe(α)
0 | is the norm of the deviatoric part of the Mandel stress with

|MMMe(α)
0 |=

√
MMM

e(α)
0 : MMM

e(α)
0 . (6.27)

The plastic flow reads

ḞFF
p(α)

= DDDp(α)FFFp(α), (6.28)
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where each FFFp(α) is to be regarded as an internal variable of the theory and which is defined
as a solution of the differential equation

DDDp(α) = ε̇p(α)(
MMM

e(α)
0

2τ̄α
), (6.29)

where DDDp is the plastic stretching tensor, and ε̇p(α) is an equivalent plastic shear strain rate

ε̇p(α) =
√

2|DDDp(α)|. (6.30)

In order to account for the major strain-hardening and softening characteristics of poly-
meric materials observed during visco-plastic deformation, we introduce macroscopic internal
variables to represent important aspects of the microstructural resistance to plastic flow. The
list of m scalar internal state-variables reads

ξξξ(α) = (ξξξ
(α)
1 , ξξξ

(α)
2 , ξξξ

(α)
3 , ...., ξξξ(α)

m ). (6.31)

Besides, let
ΛΛΛ(α) = (CCCe(α),BBBp(α), ξξξ(α),T), (6.32)

denotes a list of constitutive variables. Then for a given τ̄ (α) and ΛΛΛ(α), the equivalent plastic
shear strain rate ε̇p(α) is obtained by solving a scalar strength relation such as

τ̄ (α) = Υ(α)(ΛΛΛ(α), ε̇p(α)), (6.33)

where the strength function Υ(α)(ΛΛΛ(α), ε̇p(α)) is an isotropic function of its arguments.

6.3.3 Partial differential governing equations

The partial differential equation for the deformation is obtained in the absence of body
force, as shown in Chapter 5, Eq. (5.1), from the following expression,

∇0 ·PPPT = 0, (6.34)

where PPP denotes the first Piola Kirchhoff stress, which is defined as

PPP = J σσσ FFF−T. (6.35)

The partial differential equation for the temperature is obtained by the balance on energy,
from Eq. (5.9) after neglecting the electrical contribution, as

∇0 ·QQQ = −ρ0cvṪ + F̄ , (6.36)

where the thermal flux is governed by the Fourrier law QQQ = −KKK ·∇0T and F̄ denotes all the
body sources of heat and is expressed as

F̄ = Qr +
∑
α

τ̄ (α)ε̇p(α) + T
∂2ψe(α)

∂CCCe(α)∂T
: ĊCC

e(α)
, (6.37)

where Qr is the scalar heat supply measured per unit reference volume and the last term of
the right hand side is the thermo-elastic damping term which is neglected. Instead we assume
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that only a fraction v of the rate of the plastic dissipation contributes to the temperature
change

F̄ = Qr + v
∑
α

τ̄ (α)ε̇p(α), (6.38)

where 0 ≤ v ≤ 1 is fraction of the rate of plastic dissipation contribution to the temperature
change. The volumetric heat capacity per unit mass is a function of the glass transition
temperature, and is defined as follows

cv =

{
c0 − c1(T− Tg) if T ≤ Tg

c0 if T > Tg.
(6.39)

The theory with three micromechanisms M=3 as shown in Fig. 6.2 is considered. These
three micromechanisms are intended to represent the following underlying physical phenom-
ena:

1 2 3 

Intermolecular  
resistance 

Moclecular 
resistance 

Figure 6.2: A spring-dashpot schematic of the constitutive law

1. The first micromechanism (α = 1) represents an elastic resistance due to intermolecular
energetic bond-stretching. The dashpot represents thermally-activated plastic flow due
to inelastic mechanisms, such as chain segment rotation and relative slippage of the
polymer chains between neighboring cross-linkage points.

2. The second micromechanism (α = 2) represents the molecular chains between mechan-
ical crosslinks. At temperatures below Tg the polymer exhibits a significant amount of
mechanical crosslinking which disintegrates when the temperature is increased above
Tg.

3. The third micromechanism (α = 3) introduces the molecular chains between chemical
crosslinks. The nonlinear springs represent resistances due to changes in the free energy
upon stretching of the molecular chains between the crosslinks.

The used strategy to model the response of the material as the temperature traverses Tg

(glass transition) is as follows
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• For T < Tg we do not allow any plastic flow in the dashpot associated with micromech-
anism α = 2. Thus since the springs in α = 2 and α = 3 are in parallel, the three
micromechanism model reduces to a simpler two micromechanism model.

• For T > Tg only mechanisms α = 1 and α = 3 contribute to the macroscopic stress.

The glass transition in amorphous polymers depends on the strain rate to which the material
is subjected.

ε̇ =
√

2|DDD0|, (6.40)

where ε̇ is the equivalent shear strain rate, and DDD0 denotes the total deviatoric stretching
tensor

DDD0 = sym0(ḞFFFFF−1). (6.41)

In this equation, sym0 denotes the symmetric deviatoric part. This symmetric part is ob-
tained as DDD computed by the following equation

DDD =
1

2
(ḞFF FFF−1 + FFF−TḞFF

T
), (6.42)

and the symmetric deviatoric stretching tensor thus reads

DDD0 = DDD− 1

3
trDDD III. (6.43)

Eventually, the glass transition Tg is calculated from the following expression

Tg =

 Tr if ε̇ ≤ εr,

Tr + n log (
ε̇

εr
) if ε̇ > εr,

(6.44)

where Tr is the reference glass transition temperature at low strain rate, ε̇ is the shear strain
rate, and εr is the reference strain rate.

6.3.4 Definition of the micromechanisms

6.3.4.1 The first micromechanism (α = 1) of Shape-Memory Polymers (SMP)

The non-linear spring represents an elastic resistance due to intermolecular energetic
bond-stretching. The dashpot represents thermally activated plastic flow due to inelastic
mechanisms.

At the first we need to calculate the Cauchy stress σσσ(1) using

σσσ(1) = J−1RRRe(1)MMMe(1)RRRe(1)T, (6.45)

where MMMe(1) is the symmetric Mandel stress which is symmetric by definition, and RRRe(1) is
the rotation matrix. The Mandel stress reads

MMMe(1) =
∂ψe(1)(EEEe(1),T)

∂EEEe(1)
. (6.46)
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EEEe(1) denotes the logarithmic elastic strain, which is evaluated using the eigenvalue decom-
position of CCCe(1) with

CCCe(1) =
3∑
i=1

(λe
i )

2 rrre
i ⊗ rrre

i , EEEe(1) =
3∑

i=1

lnλe
i rrre

i ⊗ rrre
i , (6.47)

where λe1, λ
e
2, λ

e
3 are the positive eigenvalues of UUUe, and rrre

1, rrr
e
2, rrr

e
2 are the orthonormal eigen-

vectors of CCCe and UUUe. The relation (6.46) is derived from Eq. (6.24) as

MMMe(1) = 2CCCe(1)∂ψ
e(1)(EEEe(1),T)

∂CCCe(1)
= 2CCCe(1)∂ψ

e(1)(EEEe(1),T)

∂EEEe(1)

∂EEEe(1)

∂CCCe(1)

= CCCe(1)−1

MMMe(1)CCCe(1) = MMMe(1),

(6.48)

if CCCe(1) and MMMe(1) permute. Permutation of CCCe(1) and MMMe(1) is directly obtained from the
eigenvectors decomposition Eq. (6.47), as CCCe(1), EEEe(1) and MMMe(1) have the same basis rrre

i ⊗ rrre
i .

It should be noted that in this work EEEe(1) is computed by using a Taylor series approxi-
mation of Eq. (6.47), and not through the eigenvalue decomposition.

The following simple generalization of the classical strain energy function of infinitesimal
isotropic elasticity is considered, which uses a logarithmic measure of finite strain [4]1, then
the form of the elastic free energy is

ψe(1) = G|EEEe(1)
0 |2 +

1

2
K
(

trEEEe(1)
)2
− 3K

(
trEEEe(1)

)
αth(T− T0) + f̃(T). (6.49)

This relation of free energy allows the stress to be determined via the strain relation, where
the deviatoric part of strain is denoted by EEEe

0, and f̃(T) is an entropic contribution to the free
energy related to the temperature dependent specific heat of the material, and where the
temperature dependent parameters G(T), K(T), αth(T) are respectively the shear modulus,
bulk modulus, and the coefficient of thermal expansion. Substituting Eq. (6.49) in Eq.

(6.46), as |EEEe(1)
0 |= EEE

e(1)
0 : EEE

e(1)
0 one can get directly MMMe(1) as

MMMe(1) = 2GEEE
e(1)
0 + K

(
trEEEe(1)

)
III − 3Kαth(T− T0)III. (6.50)

Moreover, one can get

τ̄ (1) =
1√
2
|MMMe(1)

0 |, p = −1

3
trMMMe(1), MMM

e(1)
0 = MMMe(1) + pIII, (6.51)

where p is the normal pressure which has negative value for hydrostatic stress, τ̄1 is the

equivalent shear stress, and MMM
e(1)
0 is the deviatoric part of the Mandel stress. The tem-

perature dependence of the shear modulus may be approximated by the following function,
where it decrease significantly for polymers as the temperature increases through the glass
transition temperature of the material:

G(T) =
1

2
(Ggl + Gr)−

1

2
(Ggl −Gr) tanh(

1

∆
(T− Tg))−M(T− Tg), (6.52)

1This free energy function is used for moderately large elastic stretches parameters
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where M = Mgl if T ≤ Tg, M = Mr if T > Tg, Ggl, Gr are the values of the shear modu-
lus in the glassy and rubbery regions, ∆ is a parameter related to the temperature range
across which the glass transition occurs, and the parameter M represents the slope of the
temperature variation of G outside the transition region.

The coefficient of thermal expansion is taken to have a bilinear temperature dependence,
with the following contribution to the thermal expansion term αth(T−T0) in the free energy
relation. Four cases are considered for the coefficient of thermal expansion in terms of the
initial temperature T0

αth(T− T0) =


αgl(T− T0) if T ≤ Tg and T0 ≤ Tg,
αr(T− T0) + (αgl − αr)(T− Tg) if T ≤ Tg and T0 > Tg,
αgl(T− T0) + (αr − αgl)(T− Tg) if T > Tg and T0 ≤ Tg,
αr(T− T0) if T > Tg and T0 > Tg.

(6.53)

The temperature dependence of Poisson ratio ν(T) is given by

ν(T) =
1

2
(νgl + νr)−

1

2
(νgl − νr) tanh(

1

∆
(T− Tg)). (6.54)

The temperature dependence of the bulk modulus K(T) is then obtained by using the stan-
dard relation for isotropic materials

K(T) = G(T)
2(1 + ν(T))

3(1− 2 ν(T))
. (6.55)

Moreover, the evaluation equation for FFFp(1) follows Eqs. (6.28-6.30) which are rewritten

ḞFF
p(1)

= DDDp(1)FFFp(1), (6.56)

with

DDDp(1) = ε̇p(1)MMM
e(1)
0

2τ̄ (1)
. (6.57)

The thermally-activated relation for the equivalent plastic strain rate in the specific form
reads

ε̇p(1) =


0 if τe ≤ 0,

ε
...(1)
0 exp (−1

ξ
) exp (−Q(T)

KBT
)[sinh(

τ e(1) ∗ V

2 KB T
)]1/m

(1)
if τe > 0,

(6.58)

where ε̇p(1) is the plastic strain rate, the parameter ε
...(1)
0 is a pre-exponential factor with

units of 1/time, KB is Boltzmann’s constant, V is an activation volume, m(1) is the sensitive
parameter for the strain rate and τ e(1) denotes a net shear stress for the thermally activated
flow

τ e(1) = τ̄ (1) − (Sa + Sb + αpp̄), (6.59)

with αp > 0 a parameter introduced to account for the pressure sensitivity. The term

exp (−1

ξ
) in Eq. (6.58) represents a concentration of flow defects, with

ξ =

{
ξgl if T ≤ Tg,
ξgl + d(T− Tg) if T > Tg.

(6.60)
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Finally Q(T) is the temperature dependence of the activation energy with

Q(T) =
1

2

(
Qgl + Qr

)
− 1

2
(Qgl −Qr) tanh(

1

∆
(T− Tg)), (6.61)

which takes the value, Qgl in the glassy regime and Qr in the rubbery regime.

6.3.4.2 Equations for internal variables

Typical initial conditions presume that the body is initially (at time t=0) in a virgin
state, leading to

FFF(α)(XXX, 0) = FFFp(α)(XXX, 0) = III⇒ FFFe(α)(XXX, 0) = III, (6.62)

ξ
(α)
i (XXX, 0) = ξ

(α)
i (= constant). (6.63)

For the first micromechanism, the list ξ1 of internal variables consists of three positive
scalars, such that

ξ1 = (ϕ,Sa,Sb), (6.64)

where the variable ϕ ≥ 0 and Sa ≥ 0 are introduced to model the yield peak which is observed
in the intrinsic stress-strain response of glassy polymers and Sb ≥ 0 is introduced to model
the isotropic hardening at high strain. In details, the three internal variables correspond to

• The high order parameter ϕ is introduced to represent material disorder with the
microscale dilatation induced by plastic deformation;

• The resistance Sa represents the disorder of the material which causes a transient
change in the stress as the a result of plastic deformation proceeding;

• The resistance Sb ≥ 0 is introduced to model a dissipative resistance to the plastic
flow;

The evolutions of Ṡa and ϕ̇ are governed by

Ṡa = ha(S∗a − Sa)ε̇p(1) with initial value Sa = Sa0, (6.65)

ϕ̇ = g(ϕ∗ − ϕ)ε̇p(1) with initial value ϕ = ϕ0. (6.66)

In these equations, we have introduced

S∗a = b(ϕ∗ − ϕ), (6.67)

which controls the extent of the stress, and ϕ∗ as

ϕ∗(ε̇p(1),T) =


z

(
(1− T

Tg
)r + hg

)
(
ε̇p(1)

εr
)s if (T ≤ Tg) and (ε̇p(1) > 0),

zhg (
ε̇p(1)

εr
)s if (T > Tg) and (ε̇p(1) > 0),

(6.68)

which represents the temperature and strain rate dependency of ϕ, where z, r, hg, and s
are taken to be constants. In particular hg is introduced to get a small value for ϕ∗ when
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T > Tg, instead of 0 in order to improve the convergence of numerical model. Then the
evolution of Sb is governed by

Sb = Sb0 + Hb(λ̄− 1)a, λ̄ =
√

trCCC/3, (6.69)

where λ̄ is an effective stretch which increases or decreases as the overall stretch increases
or decreases, and the hardening parameter Hb is temperature dependent, with

Hb(T) =
1

2
(Hgl + Hr)−

1

2
(Hgl −Hr) tanh(

1

∆
(T− Tg))− L(T− Tg), (6.70)

where Hgl and Hr are the values in glassy and rubbery regions, and where L represents the
slope of the temperature variation of Hb, and takes the value of L = Lgl if T ≤ Tg and
L = Lr if T > Tg.

6.3.4.3 The second micromechanism (α = 2) of Shape-Memory Polymers (SMP)

The second mechanism represents the molecular chains between mechanical-crosslinks.
The nonlinear spring in this mechanism represents resistances due to changes in the free
energy upon stretching of the molecular chains between the crosslinks and the dashpot corre-
sponds to the thermally-activated plastic flow resulting from a phenomenon of disintegrating
of the mechanical cross-links for T > Tg.

Defining

F̄FF
e(2)

= J−
1
3FFFe(2), detF̄FF

e(2)
= 1, (6.71)

C̄CC
e(2)

= F̄FF
e(2)T

F̄FF
e(2)

= J−
2
3CCCe(2), (6.72)

where C̄CC
e(2)

denotes the distrotional (or volume preserving) right Cauchy strain tensor, we
can define a free energy function in form

ψ(2) = ψ̄(2)(C̄CC
e(2)

,T) (6.73)

which is an isotropic function of its argument, the volumetric elastic energies for ψ(2)or ψ(3)

are not needed as it has been already accounted for a volumetric elastic energy in ψ(1).
Employing the simple phenomenological form for the free energy function ψ(2) proposed by
Gent [20], one has

ψ̄(2) = −1

2
µ(2)I(2)

m ln(1− trC̄CC
e(2) − 3

I
(2)
m

), (6.74)

where µ(2) is the rubbery shear modulus. The experimental results indicate that it is tem-
perature dependent and decreases with increasing temperature such as

µ(2) = µgexp(−N(T− Tg)), (6.75)

where µg is the value of µ(2) at the glass transition temperature, and N is a parameter that

represents the slope of temperature variation on a logarithmic scale. The parameter I
(2)
m is

taken to be temperature constant.
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Using the free energy Eq. (6.74) yields the corresponding second Piola stress SSSe(2) as

SSSe(2) = 2
∂ψ̄(2)

∂CCCe(2)
= 2

∂ψ̄(2)

∂C̄CC
e(2)

:
∂C̄CC

e(2)

∂CCCe(2)

= J−
2
3µ(2)(1− trC̄CC

e(2) − 3

I
(2)
m

)−1[III− 1

3
(trC̄CC

e(2)
)C̄CC

e(2)−1
].

(6.76)

Then Eq. (6.21) gives the contribution to the Cauchy stress σσσ(2) as

σσσ(2) = J−1FFFe(2)SSSe(2)FFFe(2)T

= J−1 [µ(2)(1− trC̄CC
e(2) − 3

I
(2)
m

)−1B̄BB
e(2)
0 ],

(6.77)

with
B̄BB

e(2)
= F̄FF

e(2)
F̄FF

e(2)T
= J−

2
3BBBe(2), (6.78)

where BBB
e(2)
0 = BBBe(2) − 1

3trCCCe(2)III is the deviatoric part of BBBe(2) the left Cauchy Green strain
tensor, and where trCCC = trBBB.

Also from Eq. (6.24) and Eq. (6.76) the corresponding Mandel stress reads

MMMe(2) = CCCe(2)SSSe(2) = µ(2)(1− trC̄CC
e(2) − 3

I
(2)
m

)−1C̄CC
e(2)
0 , (6.79)

where C̄CC
e(2)
0 = C̄CC

e(2)− 1
3trC̄CC

e(2)
III is the deviatoric part of CCCe(2) the right Cauchy Green tensor.

Clearly, as C̄CC
e(2)

and CCCe(2) permute, MMMe(2) and C̄CC
e(2)

permute as well.
The equivalent shear stress of the plastic flow is given by

τ̄ (2) =
1√
2
|MMMe(2)|. (6.80)

The plastic flow is based on

ḞFF
p(2)

= DDDp(2)FFFp(2), (6.81)

with the plastic stretching DDDp(2) obtained by

DDDp(2) = ε̇p(2)MMMe(2)

2τ̄ (2)
, (6.82)

where the equivalent shear strain rate reads:

ε̇p(2) =
√

2|DDDp(2)|. (6.83)

For the second mechanism, we consider the equivalent plastic strain rate

ε̇p(2) = ε̇
(2)
0 (

τ̄ (2)

S(2)
)

1

m(2) , (6.84)

where ε̇
(2)
0 is a reference plastic shear strain rate, m(2) is the positive valued strain rate

sensitivity parameter, S(2) is a temperature dependent parameter, which can be determined
by

S(2)(T) =
1

2
(S

(2)
gl + S(2)

r )− 1

2
(S

(2)
gl − S(2)

r ) tanh(
1

∆2
(T− Tg)), (6.85)

where S
(2)
gl and S

(2)
r denote respectively the glass and rubbery sensitivities and ∆2 is a

parameter related to the temperature range across which the glass transition occurs.
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6.3.4.4 The third micromechanism (α = 3) of Shape Memory Polymers (SMP)

The micromechanism α = 3 represents chemically-crosslinked backbone of the thermoset
polymer in which the crosslinks do not slip. The nonlinear spring in this mechanism repre-
sents resistances due to changes in the free energy upon stretching of the molecular chains
between the crosslinks.

Accordingly we do not use a dashpot for this micromechanism, and we set FFFp(3) = III, so
that FFFe(3) = FFF, with

F̄FF = J−
1
3FFF, detF̄FF = 1. (6.86)

Then right Cauchy Green strain tensor is defined as follows

C̄CC = F̄FF
T

F̄FF = J−
2
3CCC. (6.87)

The free energy is a function of C̄CC, and is defined similar to mechanisms α = 2, and is given
by a deviatoric Gent form [20]

ψ(3) = ψ̄(3)(C̄CC) = −1

2
µ(3)I(3)

m ln(1− trC̄CC− 3

I
(3)
m

), (6.88)

where the material constant µ(3) > 0 is assumed to be temperature-independent.
Using

∂C̄CC

∂CCC
=

1

J
2
3

(III − 1

3
C̄CC⊗ C̄CC

−1
), (6.89)

the free energy Eq. (6.87) yields the corresponding second Piola stress SSS(3) as

SSS(3) = 2
∂ψ̄(3)

∂C̄CC
:
∂C̄CC

∂CCC

= J−
2
3µ(3)(1− trC̄CC− 3

III
(3)
m

)−1[III− 1

3
(trC̄CC)C̄CC

−1
].

(6.90)

Furthermore, by the use of Eq. (6.21), the contribution to the Cauchy stress σσσ(3) reads

σσσ(3) = J−1FFFSSS(3)FFFT

= J−1 [µ(3)(1− trC̄CC− 3

I
(3)
m

)−1B̄BB0],
(6.91)

where B̄BB0 = B̄BB− 1
3trC̄CCIII is the deviatoric part of left Cauchy Green strain tensor

B̄BB = F̄FFF̄FF
T

= J−
2
3 B̄BB, (6.92)

with BBB the left Cauchy Green strain tensor.

6.3.5 Finite increment form of the Shape Memory Polymer constitutive
law

In this section we present the finite increment form of the theory developed previously.
The resolution of the system follows the predictor-corrector scheme during the time interval
[tn; tn+1], where we use the subscript n for the previous time tn and n + 1 for the current
time tn+1. The formulation can be summarized as follows:
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• Prediction step: The plastic deformation gradient is initialized to the value at the

previous step FFF
p(α)
(pr) = FFF

p(α)
(n) , and the elastic deformation follows

FFF
e(α)
(n+1) = FFF(n+1)FFF

p(α)−1

(n) , (6.93)

leading to the right Cauchy strain elastic predictor

CCC
e(α)
(pr) = FFF

p(α)−T
(pr) FFFT

(n+1)FFF(n+1)FFF
p(α)−1
(pr) . (6.94)

• Correction step: In this step we solve the system of equations that has been developed
in Section 6.3.4, to extract the plastic increment using the evaluation equation of the
plastic deformation gradient during the time step between the configurations n and
n+1, with

FFF
p(α)
(n+1) = exp(∆DDDp(α))FFF

p(α)
(n) . (6.95)

Then the elastic deformation tensor is obtained from

FFF
e(α)
(n+1) = FFF(n+1)FFF

p(α)−1
(n) (exp(∆DDDp(α)))−1. (6.96)

By Eq. (6.82), one can have

∆DDDp(α) = (ε
p(α)
(n+1) − ε

p(α)
(n) )

MMMe(α)

2τ̄ (α)
= ∆εp(α)(

MMMe(α)

2τ̄ (α)
), (6.97)

and the expression of the elastic deformation tensor can be rewritten under the form

FFF
e(α)
(n+1) = FFF(n+1)FFF

p(α)−1

(n) exp[(∆εp(α))
(MMMe(α))

2τ̄ (α)
]−1. (6.98)

As the plastic flow is independent from the rotation tensor, the plastic correction can
be computed in an unrotated configuration.

More details about the predictor-corrector algorithm and the stiffness computation can be
found in Appendix E.2.

6.4 Numerical simulations

The constitutive equations for SMP and carbon fiber that were presented in the previous
sections have been implemented in a DGFEM software, i.e. GMSH [22], to model Shape
Memory Polymer and Shape Memory Polymer composite behaviors. The numerical results
are compared with some experimental tests performed by [68].

All material parameters of the SMP which have been used in the simulations are reported
in Table 6.1, where the thermo-mechanical parameters have been calibrated by Srivastava et
al. [68] to fit the experimental data of tert-butyl acrylate (90% by weight) with crosslinking
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Table 6.1: Shape memory polymers parameters

Parameter Value Parameter Value

ε̇
(1)
0 [1/s] 1.73× 1013 ρ [Kg/m3] 1020

εr 5.2× 10−4 ε̇
(2)
0 [1/s] 5.2× 10−4

αgl [1/K] 13× 10−5 αr [1/K] 25× 10−5

Tr [K] 310 n [K] 2.1

Ggl [Pa] 156× 106 Gr [Pa] 13.4× 106

Mgl [Pa/K] 7.4× 106 Mr [Pa/K] 0.168× 106

Qgl [J] 1.4× 10−19 Qr [J] 0.2× 10−21

Hgl [Pa/K] 1.56× 106 Hr [Pa/K] 0.76× 106

Lgl [Pa/K] 0.44× 106 Lr [Pa/K] 0.006× 106

νgl 0.35 νr 0.49

∆ 2.6 m(1) 0.17

ha 230 g 5.8

z 0.083 r 1.3

s 0.005 a 0.5

d [1/K] 0.015 ζgl 0.14

Sa0 [Pa] 0 Sb0 [Pa] 0

V [m3] 2.16× 10−27 I
(2)
m 6.3

αp 0.058 ϕ0 0

β 0.5 ha 230

Sgl [Pa] 58× 106 Sr [Pa] 3× 102

N [1/K] 0.045 µg [Pa] 1.38× 106

I
(3)
m 5 m(2) 0.19

µ(3) [Pa] 0.75× 106 w 0.7

c0 [J/(Kg ·K)] 1710 c1[J/Kg] 4.

hg 10−6 α [V/K] [s/m] 3× 10−7

b [Pa] 5850× 106

kkk [W/(K ·m)] diag(0.2) lll [V/K] diag(0.1)

agent poly (ethylene glycol) dimethacrylate (10% by weight). The parameters related to
the conductivity are assumed to correspond to nano-composites and consist of values of the
order of magnitude that can be found in [72].

The composite cell models of carbon fiber reinforced SMP are studied using the carbon
fiber material parameters reported in Table 6.2, which are given in Wu et al. paper [75],
while the approximated electrical and thermal parameters are taken from [32,33,12,73].

6.4.1 3-D Shape memory polymers tests

Three tests have been considered to show the ability of the model to recover SMP be-
havior on a cube of size 1 × 1 × 1 [mm3], meshed with quadratic elements, and using a
stabilization parameter of value β=100. In the first one, the different responses of SMP at
different temperatures are extracted and compared to experimental data, then in the sec-
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Table 6.2: Carbon fiber properties

Parameter Value

Density ρ [Kg/m3] 1750

Longitudinal Young’s modulus EL [GPa] 230

Transverse Young’s modulus ET [GPa] 40

Transverse Poisson ratio νTT [−] 0.2

Longitudinal-transverse Poisson ratio νLT [−] 0.256

Transverse shear modulus GTT [GPa] 16.7

Longitudinal shear modulus GLT [GPa] 24

Thermal expansion αth [1/K] 2×10−6

Thermal conductivity kkk [W/(K ·m)] diag(40)

Seebeck coefficient α [V/K] 3× 10−6

Electrical conductivity lll α [S/m] diag(10)× 104

Heat capacity cv [J/(kg ·K)] 712

ond one the sample is subjected to constrained recovery, and in the third one the sample is
subjected to free recovery.

6.4.1.1 Uniaxial compression tests

In these tests, we consider a single quadratic element. The tests are performed at constant
temperatures of 22 [◦C], 40 [◦C], and 50 [◦C], and are subjected to strain control up to true
strain ' 100 % at a rates of 0.1 [s−1], and 0.001 [s−1]. Fig. 6.3 shows the different behaviors
of the SMP above and below glass transition temperature and at different strain rates.
At temperature below glass transition, T = 22 [◦C], Fig. 6.3(a), the yield peak appears
followed by strain softening, then strain hardening. Since the temperature is lower than
Tg, permanent plastic deformation can be seen. At temperature above glass transition, at
T = 65 [◦C], Fig. 6.3(c), the stiffness is clearly lower and as the constrain is removed, SMP
recovers its original shape. A distinct behavior is observed near glass transition temperature,
T = 40 [◦C], Fig. 6.3(b), where at high strain rate 0.1 [s−1], it behaves as a glassy polymer,
while at low strain rate 0.001 [s−1] it behaves as hysteretic rubber. In these figures, it can
be noted that at high strain rates the generated stress is higher and the glass transition
temperature is not constant, it increases with the increase of the strain rate. Our results
agree with the experimental results reported by Srivastava et al. [68].

6.4.1.2 A shape memory polymer constrained recovery tests

In these tests, the mesh is composed of 8 quadratic bricks. The cube is subjected to the
following Thermo-Mechanical cycle under a constrained recovery

• At temperature above glass transition a compressive strain of 15 % is applied.

• The temperature is decreased below the glass transition to room temperature 25 [◦C]
under a constrained strain.
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Figure 6.3: Stress-strain curves at strain rates 0.1 [s−1] and 0.001 [s−1], and at different
temperatures 22 [◦C], 40 [◦C], and 65 [◦C] and experimental results reported in [68]

• The temperature is increased back above glass transition 58 [◦C] under the compression
constrain.

The engineering strain and temperature histories are plotted in Fig. 6.4 and the force versus
time curve is plotted in Fig. 6.5, where the effect of material hardening in the force during
the deformation above Tg is shown, then during the cooling the effect of material softening
is also seen. In the same figure the same test is performed a second time but without
considering mechanism 2, and it is clear that the two curves agree well.

In order to highlight the time dependency behavior of SMP, the same test is performed
with an increase in the strain rate from 0.0015 s−1 of the previous test to 0.015 s−1 as
presented in Fig. 6.6. The resulting curve when the 3 mechanisms are used still agrees
very well with the curve with two mechanisms, i.e. when the second mechanisms is not
considered.
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Figure 6.4: The temperature and displacement histories of the constrained recovery test
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Figure 6.5: The force versus time curve for small strain rate of the constrained recovery test

6.4.1.3 A shape memory polymer free recovery tests

In these tests, the mesh is composed of 8 quadratic bricks. The applied pressure and
heating-cooling cycle for the free recovery test are presented in Fig. 6.7, the specimen was
subjected to the following Thermo-Mechanical cycle

• Apply a pressure of 9× 105 [N/m2] on the cube at temperature above glass transition
60 [◦C].

• Cool it down to 21 [◦C] under the compression pressure.

• Remove the constrain at 21 [◦C].

• Reheat it again above glass transition to 60 [◦C] allowing to recover freely the original
shape.
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Figure 6.6: The force versus time curve for high strain rate of the constrained recovery test
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Figure 6.7: The pressure and temperature versus time of the free recovery test

The engineering strain versus temperature histories are plotted in Fig. 6.8, and the
shape recovery is showed. We have the same result when the same test is applied without
considering the second mechanism, as displayed in the same figure. Henceforth from the
previous two tests, the constrained and the free recovery tests, we can conclude that the
Thermo-Mechanical properties of SMP can be reproduced without considering the second
mechanism. Eventually the following tests will be performed without considering the second
mechanism, since the resolution of mechanism 2 is time consuming as compared to the other
two ones.



138 Constitutive law of smart composite

20 25 30 35 40 45 50 55 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Temperature [
o
C]

−
S

tr
ai

n
 [

−
] 

 

 

3 mechanisms

2 mechanisms

*

Figure 6.8: The strain versus temperature curve of the free recovery test

6.4.2 3-D Electro-Thermo-Mechanical coupling compression test applied
on Shape memory polymers reinforced by carbon fibers (SMPC)

The following test focuses in applying the proposed composite model to simulate the
conductive SMPC behavior at large-deformation regime, when triggered by Joule effect. The
geometry is illustrated in Fig. 6.9 and the applied boundary conditions are the following:
the displacement is constrained along three perpendicular faces as follows: the nodes in the
XY-plane are fixed along the Z-direction, the nodes in the YZ-plane are fixed along the
X-direction, and the nodes in the XZ-plane are fixed along the Y-direction, while the other
three faces are restrained in order to get a uniform deformation, the top face is restrained
in the Z-direction, the infront face is restrained in the Y-direction and the right face is
restrained in the X-direction. It should be noted that the temperature is restrained on the
Shape Memory Polymer volume to get a uniform distribution of the temperature. The initial
value of the electric potential is 0 [V] and the initial value of the temperature is 21 [◦C].
The material parameters are provided in Tables 6.1 and 6.2. A finite element mesh of 79
quadratic bricks is considered and the value of stabilization parameter is β= 100. The test
is implemented with displacement control as shown in Fig. 6.11, and the applied electric
potential on the back face is given in the same figure, while on the infront face is 0 [V].

The unit cell of SMPC is subjected to indirect heating by applying electric potential
with the following Electro-Thermo-Mechanical history:

• Apply an electric field of 0.28 [V] in order to heat the cell above the glass transition
temperature of 37 [◦C].

• Compress the sample above glass transition.

• Reduce the electric field to 0 [V], in order to cool the cell down to room temperature,
while the cell is still under a constrained strain.
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Figure 6.9: Unit cell of SMPC used for the compression test

• Increase the electric field back to 0.28 [V], which causes increase in the temperature of
the sample to a temperature above the glass transition, and maintain the deformation
constant until the cell reaches a value above the glass transition temperature of 37
[◦C], then unload the material in order to recover the original shape.

The resulting temperature of the SMP volume versus time is plotted in Fig. 6.12.
The particular behavior of SMPC is illustrated through the average stress shown in Fig.

6.13. Deformed shapes of the SMPC unit cell and the corresponding stress distribution
along the compression direction are illustrated in Fig. 6.10. It appears that the force starts
to increase (in absolute value) during the heating by Joule effect due to thermal dilation,
and a sudden drop can be observed once the temperature reaches the glass transition tem-
perature Tg. Then the force increases due to the cell deformation above the glass transition
temperature Tg. Afterward, there is an increase of the force during the constrained cooling
as the deformation constraint is still applied. When the temperature is minimal, the force
has almost vanished, which represent a fixation of the deformation, , see also the limited
stress distribution in Fig. 6.10(b). Then, the force decreases dramatically and changes the
sign when it is reaches the glass transition temperature Tg, which means that it tends to
recover the original shape, see the important stress distribution in Fig. 6.10(c). once the
displacement constrain is removed above Tg, the force reaches a zero value as the cell recover
its original shape above the glass transition temperature Tg around 1200 [s], see Fig. 6.10(d).

6.4.3 3-D Electro-Thermo-Mechanical coupling bending test applied on
Shape memory polymers reinforced by carbon fibers (SMPC)

The aim of the following test is to apply the free recovery test on carbon fiber reinforced
shape memory polymer.

The unit cell of SMPC is subjected to indirect heating by applying electric potential.
This cell is similar to the one illustrated in Fig. 6.9, but with different dimensions: the
length of the unit cell is 1.7 [mm], the width is 0.0425 [mm], the height is 0.0614 [mm], and
the CF radius is 0.01 [mm], as shown in Fig. 6.14, to achieve proper bending conditions.
The back side of the cell is fixed along all the directions, the temperature is fixed on that
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Figure 6.10: Snapshots of the SMPC unit-cell under compression test during the Electro-
Thermo-Mechanical cycle. #1 (t = 750 s): after compression above the glass transition
temperature. #2 (t = 900 s): after having released the voltage difference. #3 (t = 1135 s):
after having applied again a voltage difference to reheat above the glass transition temper-
ature with partial compression. #4 (t = 1500 s): after having removed the compression
above the glass transition temperature.
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Figure 6.11: The displacement and temperature versus time of SMPC unit cell

face and on the infront side as well, while differences in the electric potentials are applied
on those faces, see Fig. 6.15. One more condition is to restrain the side faces along the
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Figure 6.12: The distributions of the electric potential and the resulting SMP temperature
versus time
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Figure 6.13: The force versus time

X-direction, in order to get a uniform deformation. The initial value of the temperature is
25 [◦C] and the initial value of the electric potential is 0 [V]. A finite element mesh of 90
linear bricks is considered, and the value of the stabilization parameter is β = 100.

The applied boundary condition for the force and electric potential versus time are
illustrated in Fig .6.15, with the following Electro-Thermo-Mechanical history

• Apply an electric field of 0.35 [V], which generates heat and increases the temperature.

• Apply perpendicular force on the free infront face.

• Reduce the electric field to 0 [V], in order to cool the cell down under a constrained
strain.

• Remove the force at 25 [◦C].

• Increase the electric field back to 0.35 [V], which causes an increase in the temperature
of the composite cell to recover freely the original shape.
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Figure 6.14: Unit cell of SMPC beam for the bending test
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Figure 6.15: Boundary condition of SMPC beam for the bending test

The resulting temperature history is evaluated at the mid-length of the beam and is
shown in Fig. 6.16, and the electric potential and temperature distribution along the beam
length at time t=500 [s] are illustrated in Fig. 6.17. When an electric potential of 0.35 [V]
is applied, the temperature increases inside the beam and reaches 59.7 [◦C], which is above
the glass transition temperature, at the beam mid-length. The distribution of the electric
potential is close to linear but the distribution of the temperature is almost quadratic with a
maximum value of 59.7 [◦C]. Therefore, only a part of the beam has a shape memory effect
that can be triggered during the test.

The displacement history of the beam extremity is illustrated in Fig. 6.18, and the
successive configurations are reported in Fig. 6.19. It can be noticed that the cell recovers
part of the deformation as the force is removed. Indeed, only part of the deformation can
be recovered since, on the one hand the carbon fibers remain elastic, and on the other hand
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Figure 6.16: The evolution of the applied electric potential difference on the beam extremities
and the evolution of the resulting temperature at the beam mid-length
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Figure 6.17: The distributions of the temperature and electric potential along the beam
length at time 500 [s]
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Figure 6.18: Shape Memory recovery via the temperature generated by Joule effect
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Figure 6.19: Snapshots of the SMPC beam simulation during the Electro-Thermo-
Mechanical cycle of the free recovery bending test. #1: after applying an electric potential
of 0.35 [V] to heat the beam above the glass transition temperature. #2: after applying the
load to bend the beam. #3: after removing the load at 0 [V] of electric potential. #4: after
reapplying an electric potential of 0.35 [V] to recover the initial configuration.

only one part of the beam reaches a value higher than the glass transition.

6.5 Conclusions

The main focus of this chapter is to apply the presented constitutive models in simulating
the conductive SMPC behavior in the large-deformation regime, when it is actuated by
joule effect, in addition to simulate non conductive SMP. Several numerical simulations
are reported for simple and complicated geometries in the large-deformation regime. The
presented models are able to predict the behavior of carbon fiber reinforced Shape Memory
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Polymers for free recovery and constrained recovery.





Chapter 7

Conclusions and perspectives

In this thesis the DG method has been extended to simulate linear and nonlinear coupled
problems, in particular Thermo-Elastic, Electro-Thermal, and Electro-Thermo-Mechanical
coupled problems. Starting from the first principles of solid mechanics, and electrical and
thermal field theories as the basic tools, the DG method has been derived as a consistent
and stable weak form to solve the various interacting physics in the coupled simulations
for non-composite and composite materials, in particular, for carbon fiber reinforced Shape
Memory Polymer Composites (SMPC).

In Chapter 3, the DG for Thermo-Elastic problems has been analyzed, then it has
been extended to nonlinear Electro-Thermal elliptic problems in Chapter 4, and to Electro-
Thermo-Mechanics in Chapter 5. The Electro-Thermal coupling equations were formulated
in terms of energetically conjugated pairs of fluxes and fields gradient. Indeed, the use of
energetically consistent pairs allowed us writing the strong form in a matrix form suitable
to the derivation of a stable SIPG weak form. Particular attention was paid in proving
the uniqueness, consistency, and stability of the discrete solution for the Thermo-Elasticity,
Electro-Thermal, and Electro-Thermo-Elasticity coupling problems (the latter one being
formulated in a small deformation setting). In addition, the optimal error estimate in the
L2-and H1-norms were proved under the assumption of the use of a polynomial degree of
approximation k ≥ 2. Moreover, numerical simulations were carried out to illustrate the per-
formance of the DGFEM applied on linear elliptic problems and non-linear elliptic problems
in order to confirm the theoretical results.

In Chapter 6, the constitutive equations that govern the behaviors of carbon fiber and
shape memory polymer have been presented. Numerical simulations were performed for
composite and non-composite SMP. It was shown that the constitutive model of SMP is
able to predict the characteristic behavior of SMPs above and below the glass transition
temperature. The numerical results were compared with some experimental results presented
in the literature, showing good agreements. A micromechanical model of unidirectional
carbon fibers embedded in a shape memory polymer matrix was formulated by considering
the interaction of electrical, thermal, and mechanical fields. When the mechanical and
electrical loads were applied, the heat induced due to the Joule effect triggered the shape
memory behavior.

In this work the DG method was used to solve linear and nonlinear elliptic coupled
problems and the theoretical results were derived. It would be worthwhile to extend the
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study of DG methods to time dependent problems. Moreover, in the future, the multiphysics
framework will serve as a basis toward the formulation of multi-scale analyzes for smart
composite materials.
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Appendix A

Annexes related to chapter 2

A.1 Bounds of the norms

For OOOh ∈ Xk, the two extra terms of the norm defined by Eq. (2.12) in comparison to
the norm defined by Eq. (2.11) can be linked with the other terms. First, using the trace
inequality, Eq. (2.17) and the inverse inequality, Eq. (2.21), we have∑

e

hs ‖OOOh ‖2L2(∂Ωe)
≤
∑

e

CT

(
‖OOOh ‖2L2(Ωe)

+hs ‖OOOh ‖L2(Ωe)‖ ∇OOOh ‖L2(Ωe)

)
≤
∑

e

CT (Ck
I + 1) ‖OOOh ‖2L2(Ωe)

.
(A.1)

Then by Eq. (2.18), we have∑
e

hs ‖ ∇OOOh ‖2L2(∂Ωe)
≤
∑

e

Ck
K ‖ ∇OOOh ‖2L2(Ωe)

. (A.2)

Therefore the norm |‖ OOOh ‖|1, Eq. (2.12), can be bounded by

|‖OOOh ‖|1 ≤
∑

e

(
(1 + CT (Ck

I + 1) ‖OOOh ‖2L2(Ωe)
+(Ck

K + 1) ‖ ∇OOOh ‖2L2(Ωe)

+h−1
s ‖ JOOOnnnh

K ‖2
L2(∂Ωe)

)
.

(A.3)

This leads to complete the proof of Lemma 2.4.5, that

|‖OOOh ‖|1 ≤ Ck |‖OOOh ‖|, (A.4)

with Ck = max
(
1 + CT (Ck

I + 1), (Ck
K + 1)

)
.

A.2 Energy bound

Using the definition of the mesh dependent norm, Eq. (2.12), with ηηη = OOOe − IhOOO ∈ X in
X2, where IhOOO is the interpolant of OOOe in Xk we have

|‖ ηηη ‖|21=
∑

e

‖ηηη‖2
H1(Ωe)

+
∑

e

hs‖ηηη‖2H1(∂Ωe)
+
∑

e

h−1
s ‖ JηηηnnnK ‖2

L2(∂Ωe)
. (A.5)
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For the first term of the right hand side, using the interpolation inequality, Eq. (2.13), leads
to ∑

e

‖ηηη‖2
H1(Ωe)

≤ Ck2

D h2µ−2
s

∑
e

‖OOOe‖2Hs(Ωe), (A.6)

with µ = min(s, k + 1), s > 1. Then, applying Lemma 2.4.1, Eq. (2.15), yields∑
e

hs‖ηηη‖2H1(∂Ωe)
≤ Ck2

D
(
h2µ−2

s

)∑
e

‖OOOe‖2Hs(Ωe). (A.7)

Now for the last interface term in Eq. (A.5), as the interior edge (∂IΩ)s is shared by the
element + and −, using (a− b)2 ≤ 2a2 + 2b2, we have∑

e

∫
∂Ωe

h−1
s ‖ JηηηnnnK ‖2 dS

≤ h−1
s

∑
e

(
2

∫
∂IΩe

‖ ηηη+
nnn ‖2 dS + 2

∫
∂IΩe

‖ ηηη−nnn ‖2 dS +

∫
∂DΩe

‖ ηηηnnn ‖2 dS

)
≤ 4

∑
e

∫
∂Ωe

h−1
s ‖ ηηηnnn ‖2 dS.

(A.8)

Therefore, using Lemma 1, Eq. (2.15) leads to∑
e

h−1
s ‖ JηηηnnnK ‖2

L2(∂Ωe)
≤ 4

∑
e

h−1
s ‖ηηηnnn‖2H0(∂Ωe)

≤ 4Ck2

D
∑

e

h2µ−2
s ‖OOOe‖2Hs(Ωe). (A.9)

By combining the above results, the proof of Lemma 2.4.6 is completed as

|‖ ηηη ‖|1 ≤ Ckhµ−1
s

(∑
e

‖OOOe‖2Hs(Ωe)

) 1
2

= Ckhµ−1
s ‖OOOe‖Hs(Ωh), (A.10)

with µ = min(s, k + 1).
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Annexes related to chapter 3

B.1 Stiffness matrix for Thermo-Elastic coupling

First KKKuuuuuu, the derivative of the displacement contributions with respect to uuu, is computed
using Eq. (3.45)

∂FFFa
uuuint

∂uuub
=
∑

e

∫
Ωe

∂σσσ

∂uuub
· ∇Na

uuudΩ =
∑

e

∫
Ωe

∇Na
uuu · HHH · ∇Nb

uuudΩ. (B.1)

Similarly, for the interface contribution1, Eqs. (4.75, 4.76, and 4.77), from Eqs. (3.47),
(3.48), and (3.49) one can get

∂FFFa±
uuuI1

∂uuub± =
1

2

∑
s

∫
(∂IΩ)s

(±Na±
uuu )nnn− · HHH± · ∇Nb±

uuu dS, (B.2)

∂FFFa±
uuuI2

∂uuub± =
1

2

∑
s

∫
(∂IΩ)s

(±Nb±
uuu )∇Na±

uuu · HHH± · nnn−dS, (B.3)

∂FFFa±
uuuI3

∂uuub± =
1

2

∑
s

∫
(∂IΩ)s

(±Nb±
uuu )nnn− · H

HH±B
2hs

· nnn−(±Na±
uuu )dS, (B.4)

where the symbol ± refers to the node a± (+ for node a+ and - for node a−).
The stiffness matrix of the mechanical forces with respect to T, KKKuuuT is evaluated from

∂FFFa
uuuint

∂Tb
= −

∑
e

∫
Ωe

Nb
Tαααth :HHH · ∇Na

uuudΩ, (B.5)

∂FFFa
uuuI1

∂Tb± =
1

2

∑
s

∫
(∂IΩ)s

(∓Na±
uuu )ααα±th :HHH∓ · nnn−Nb±

T dS. (B.6)

∂Fa±
uuuI2

∂Tb± = −γ
2

∑
s

∫
(∂IΩ)s

Na±
uuu ααα±th :HHH±(∓Nb±

T ) · nnn−dS, (B.7)

1The contributions on ∂DΩh can be directly deduced by removing the factor (1/2) accordingly to the
definition of the average flux on the Dirichlet boundary.
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The derivatives of the thermal contributions with respect to fT, KKKTT, for the volume term
is obtained from Eq. (3.51)

∂Fa
Tint

∂Tb
= −

∑
e

∫
Ωe

∂qqq

∂T
· ∇Na

TNb
TdΩ−

∑
e

∫
Ωe

∇Na
T ·

∂qqq

∂∇T
· ∇Nb

TdΩ

+
∑

e

∫
Ωe

∂Ṫ

∂T
ρcvNb

TNa
T dΩ =

∑
e

∫
Ωe

∇Na
T · kkk · ∇Nb

TdΩ

+
∑

e

∫
Ωe

∂Ṫ

∂T
ρcvNb

TNa
T dΩ,

(B.8)

and the derivatives of the interface forces are computed by calling Eqs. (3.53), (3.54), and
(3.55) leading to

∂Fa±
TI1

∂Tb± =
1

2

∑
s

∫
(∂IΩ)s

(∓Na±
T )

∂qqq±

∂T±
Nb±

T · nnn
−dS0

+
1

2

∑
s

∫
(∂IΩ)s

(∓Na±
T )

(
∂qqq±

∂∇T±
· ∇Nb±

T

)
· nnn−dS

=
1

2

∑
s

∫
(∂IΩ)s

(±Na±
T )

(
kkk± · ∇Nb±

T

)
· nnn−dS,

(B.9)

∂Fa±
TI2

∂Tb± =
1

2

∑
s

∫
(∂IΩ)s

(±Nb±
T )kkk± · ∇Na±

T · nnn
−dS, and (B.10)

∂Fa±
TI3

∂Tb± =
1

2

∑
s

∫
(∂IΩ)s

(±Na±
T )nnn− · k

kk±B
hs
· nnn−(±Nb±

T )dS. (B.11)

B.2 Lower bound for Thermo-Elastic coupling

In order to derive the lower bound of the Thermo-Elastic DG formulation, let us first
use δEEEh as EEEh in Eq. (3.24), yielding

a(δEEEh, δEEEh) =

∫
Ωh

(∇δEEE)T
h www∇δEEEhdΩ−

∫
Ωh

δEEET
h rrrT∇δEEEhdΩ

+ 2

∫
∂IΩh∪∂DΩh

r
δEEET

h

z
〈www∇δEEEhnnn〉 dS +

∫
∂IΩh∪∂DΩh

r
δEEET

hnnn

z〈wwwB
hs

〉
JδEEEhnnnK dS

−
∫
∂IΩh∪∂DΩh

r
δEEET

hnnn

z
〈rrrδEEEh〉 dS− γ

∫
∂IΩh∪∂DΩh

〈
δEEET

hnnn

〉
JrrrδEEEhK dS.

(B.12)
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Using Eqs. (3.59) and (3.60), Eq. (B.12) becomes

a(δEEEh, δEEEh) ≥
∑

e

(
Cα ‖ ∇δEEEh ‖2L2(Ωe)

−Cx ‖ ∇δEEEh ‖L2(Ωe)‖ δEEEh ‖L2(Ωe)

)
− 2

∑
s

Cx|
∫

(∂DIΩ)s
JδEEEhnnnK 〈∇δEEEh〉 dS|

− (1 + γ)
∑

s

Cx|
∫

(∂DIΩ)s
JδEEEhnnnK 〈δEEEh〉 dS|

+
∑

s

Cα
B
hs
‖ JδEEEhnnnK ‖2L2((∂DIΩ)s)

.

(B.13)

The third and fourth terms of the right hand side in Eq. (B.13) can be bounded using
Cauchy-Schwartz’ inequality, Eq. (2.26),

2Cx

∑
s

|
∫

(∂DIΩ)s
JδEEEhnnnK 〈∇δEEEh〉dS | +(1 + γ)Cx

∑
s

|
∫

(∂DIΩ)s
JδEEEhnnnK 〈δEEEh〉 dS |

≤ 2Cx

(∑
s

1

hs
‖ JδEEEhnnnK ‖2L2((∂DIΩ)s)

) 1
2
(∑

s

hs ‖ 〈δ∇EEEh〉 ‖2L2((∂DIΩ)s)

) 1
2

+ (1 + γ)Cx

(∑
s

1

hs
‖ JδEEEhnnnK ‖2L2((∂DIΩ)s)

) 1
2
(∑

s

hs ‖ 〈δEEEh〉 ‖2L2((∂DIΩ)s)

) 1
2

≤ 2Cx

(∑
s

1

hs
‖ JδEEEhnnnK ‖2L2((∂DIΩ)s)

) 1
2

(∑
s

hs ‖ 〈∇δEEEh〉 ‖2L2((∂DIΩ)s)

) 1
2

+

(∑
s

hs ‖ 〈δEEEh〉 ‖2L2((∂IΩ)s)

) 1
2

 ,

(B.14)

assuming γ ≤ 1.

First, the term hs ‖ 〈∇δEEEh〉 ‖2L2((∂IΩ)s)
can be bounded using the trace inequality on the

finite element space (2.18), with

∑
s

hs ‖ 〈∇δEEEh〉 ‖2L2((∂DIΩ)s)
=

1

2

∑
e

hs ‖ 〈∇δEEEh〉 ‖2L2(∂IΩe)
+
∑

e

hs ‖ 〈∇δEEEh〉 ‖2L2(∂DΩe)

≤
∑

e

hs ‖ ∇δEEEh ‖2L2(∂Ωe)
≤ Ck2

K
∑

e

‖ ∇δEEEh ‖2L2(Ωe)
.

(B.15)
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Then using the trace inequality, Eq. (2.16), and inverse inequality, Eq. (2.21), we have∑
s

hs ‖ 〈δEEEh〉 ‖2L2((∂DIΩ)s)
=

1

2

∑
e

hs ‖ 〈δEEEh〉 ‖2L2(∂IΩe)
+
∑

e

hs ‖ 〈δEEEh〉 ‖2L2(∂DΩe)

≤
∑

e

hs ‖ δEEEh ‖2L2(∂Ωe)

≤ CT
∑

e

(
‖ δEEEh ‖2L2(Ωe)

+hs ‖ δEEEh ‖L2(Ωe)‖ ∇δEEEh ‖L2(Ωe)

)
≤
∑

e

CT (Ck
I + 1) ‖ δEEEh ‖2L2(Ωe)

.

(B.16)

Therefore Eq. (B.14) is rewritten as

2Cx

∑
s

|
∫

(∂DIΩ)s
JδEEEhnnnK 〈∇δEEEh〉dS|+ (1 + γ)Cx

∑
s

|
∫

(∂DIΩ)s
JδEEEhnnnK 〈δEEEh〉 dS|

≤ Cx

(∑
s

1

hs
‖ JδEEEhnnnK ‖2L2((∂IΩ)s)

) 1
2
(∑

e

max(4CT (Ck
I + 1), 4Ck2

K )(‖ δEEEh ‖2H1(Ωe)

) 1
2

.

(B.17)

Finally, by the use of the ξ-inequality –ξ > 0 : |ab| ≤ ξ
4a2+1

ξb2– with ξ = Cα
Cxmax(4CT (Ck

I+1),4Ck2
K )

,

we arrive at

2Cx

∑
s

|
∫

(∂DIΩ)s
JδEEEhnnnK 〈∇δEEEh〉dS|+ (1 + γ)Cx

∑
s

|
∫

(∂DIΩ)s
JδEEEhnnnK 〈δEEEh〉 dS|

≤ Cα

4

∑
e

‖ δEEEh ‖2H1(Ωe)
+

C2
x

Cα
max(4CT (Ck

I + 1), 4Ck2

K )
∑

s

1

hs
‖ JδEEEhnnnK ‖2L2((∂IΩ)s)

.

(B.18)

For the second term of the right hand side of Eq. (B.13), by choosing ξ = Cα
Cx

and applying
the ξ-inequality, we find∑

e

Cx ‖ ∇δEEEh ‖L2(Ωe)‖ δEEEh ‖L2(Ωe) ≤
Cx

ξ

∑
e

‖ δEEEh ‖2L2(Ωe)
+

Cxξ

4

∑
e

‖ δ∇EEEh ‖2L2(Ωe)

≤ C2
x

Cα

∑
e

‖ δEEEh ‖2L2(Ωe)
+

Cα

4

∑
e

‖ ∇δEEEh ‖2L2(Ωe)
.

(B.19)

If we substitute Eqs. (B.18) and (B.19) in Eq. (B.13), we thus obtain the following result:

a(δEEEh, δEEEh) ≥ Cα

2

∑
e

‖ ∇δEEEh ‖2L2(Ωe)
−
(

C2
x

Cα
+

Cα

4

)∑
e

‖ δEEEh ‖2L2(Ωe)

+

[
BCα −

C2
x

Cα
max(4CT (Ck

I + 1), 4Ck2

K )

]
h−1

s

∑
e

‖ JδEEEhnnnK ‖2L2(∂Ωe)
.

(B.20)
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This last relation can be rewritten as

a(δEEEh, δEEEh) ≥ Ck
1

[∑
e

‖ ∇δEEEh ‖2L2(Ωe)
+h−1

s

∑
e

‖ JδEEEhnnnK ‖2L2(∂Ωe)

]
− Ck

2 ‖ δEEEh ‖2L2(Ωh)
∀δEEEh ∈ Xk,

(B.21)

where Ck
1 = min

(
Cα
2 ,BCα − C2

x
Cα

max(4CT (Ck
I + 1), 4Ck2

K )
)

, which is positive when B >

C2
x

C2
α

max(4CT (Ck
I + 1), 4Ck2

K ), and Ck
2 = C2

x
Cα

+ Cα
4 > 0.

Therefore, comparing with the definition of the mesh dependent norm, Eq. (2.10), we
have

a(δEEEh, δEEEh) ≥ Ck
1 |‖ δEEEh ‖|2∗ −Ck

2 ‖ δEEEh ‖2L2(Ωh)
∀ δEEEh ∈ Xk. (B.22)

Moreover, starting from Eq. (B.20) and choosing Ck
2 = C2

x
Cα

+ 3Cα
4 , we rewrite the expression

in terms of the norm (2.11) as

a(δEEEh, δEEEh) ≥ Ck
1 |‖ δEEEh ‖|2 −Ck

2 ‖ δEEEh ‖2L2(Ωh)
∀ δEEEh ∈ Xk. (B.23)

Hence, this shows that the stability of the method is conditioned by the constant B, which
should be large enough.

B.3 Upper bound for Thermo-Elastic coupling

We prove herein that our DG formulation for Thermo-Elastic is upper bounded. First
the upper bound of the bi-linear form Eq. (3.24), for EEE, δEEE ∈ X is obtained by

|a(EEE, δEEE)| ≤ |
∫

Ωh

(∇EEE)Twww∇δEEEdΩ|+ |
∫

Ωh

EEETrrrT∇δEEEdΩ|

+ |
∫
∂IΩh∪∂DΩh

r
δEEET

nnn

z
〈www∇EEE〉 dS|+ |

∫
∂IΩh∪∂DΩh

r
EEET

nnn

z
〈www∇δEEE〉dS|

+ |
∫
∂IΩh∪∂DΩh

r
EEET

nnn

z〈wwwB
hs

〉
JδEEEnnnK dS|+ γ|

∫
∂IΩh∪∂DΩh

〈
δEEET

nnn

〉
JrrrEEEK dS|

+ |
∫
∂IΩh∪∂DΩh

r
δEEET

nnn

z
〈rrrEEE〉dS|.

(B.24)

Then let us bound every term in the right hand side using the Hölder’s inequality, Eq. (2.24),
and the bound Eq. (3.60). The bound of the first term reads

|
∫

Ωh

∇EEETwww∇δEEEdΩ| ≤
∑

e

(

∫
Ωe

|∇EEETwww∇δEEE|dΩ)

≤ Cx

∑
e

‖ ∇δEEE ‖L2(Ωe) ‖ ∇EEE ‖L2(Ωe),
(B.25)

likewise, for the second term, we have

|
∫

Ωh

EEETrrrT∇δEEEdΩ| ≤
∑

e

(

∫
Ωe

|EEETrrrT∇δEEE|dΩ)

≤ Cx

∑
e

‖ ∇δEEE ‖L2(Ωe) ‖ EEE ‖L2(Ωe),
(B.26)
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and for the third term we have

|
∫
∂IΩh∪∂DΩh

r
δEEET

nnn

z
〈www∇EEE〉 dS| ≤ |1

2

∑
e

∫
∂IΩe

r
δEEET

nnn

z
〈www∇EEE〉dS

+
∑

e

∫
∂DΩe

r
δEEET

nnn

z
〈www∇EEE〉 dS| ≤

∑
e

‖ h
1
2
s www∇EEE ‖L2(∂Ωe) ‖ h

− 1
2

s JδEEEnnnK ‖L2(∂Ωe)

≤ Cx

∑
e

‖ h
1
2
s ∇EEE ‖L2(∂Ωe) ‖ h

− 1
2

s JδEEEnnnK ‖L2(∂Ωe) .

(B.27)

The same argument goes for the fourth, sixth, and seventh terms as follow

|
∫
∂IΩh∪∂DΩh

r
EEET

nnn

z
〈www∇δEEE〉dS| ≤ Cx

∑
e

‖ h
1
2
s ∇δEEE ‖L2(∂Ωe) ‖ h

− 1
2

s JEEEnnnK ‖L2(∂Ωe), (B.28)

|
∫
∂IΩh∪∂DΩh

〈
δEEET

nnn

〉
JrrrEEEK dS| ≤ |1

2

∑
e

∫
∂IΩe

〈
δEEET

nnn

〉
JrrrEEEK dS

+
∑

e

∫
∂DΩe

〈
δEEET

nnn

〉
JrrrEEEK dS| ≤ Cx

∑
e

‖ h
1
2
s δEEE ‖L2(∂Ωe) ‖ h

− 1
2

s JEEEnnnK ‖L2(∂Ωe),

(B.29)

|
∫
∂IΩh∪∂DΩh

r
δEEET

nnn

z
〈rrrEEE〉 dS| ≤ |1

2

∑
e

∫
∂IΩe

r
δEEET

nnn

z
〈rrrEEE〉dS

+
∑

e

∫
∂DΩe

r
δEEET

nnn

z
〈rrrEEE〉 dS| ≤ Cx

∑
e

‖ h
1
2
s EEE ‖L2(∂Ωe) ‖ h

− 1
2

s JδEEEnnnK ‖L2(∂Ωe) .

(B.30)

In the same way, the fifth term becomes

|
∫
∂IΩh∪∂DΩh

r
EEET

nnn

z〈wwwB
hs

〉
JδEEEnnnK dS| ≤ |1

2

∑
e

∫
∂IΩe

r
EEET

nnn

z〈wwwB
hs

〉
JδEEEnnnK dS

+
∑

e

∫
∂DΩe

r
EEET

nnn

z〈wwwB
hs

〉
JδEEEnnnK dS|

≤ BCx

∑
e

‖ h
− 1

2
s JδEEEnnnK ‖L2(∂Ωe) ‖ h

− 1
2

s JEEEnnnK ‖L2(∂Ωe) .

(B.31)



B.3 Upper bound for Thermo-Elastic coupling 163

Therefore by combining the above results and assuming | γ |≤ 1, we can rewrite Eq. (B.24)
as follows

| a(EEE, δEEE) | ≤ Cx

∑
e

‖ ∇EEE ‖L2(Ωe) ‖ ∇δEEE ‖L2(Ωe)

+ Cx

∑
e

‖ EEE ‖L2(Ωe) ‖ ∇δEEE ‖L2(Ωe)

+ BCx

∑
e

‖ h
− 1

2
s JEEEnnnK ‖L2(∂Ωe) ‖ h

− 1
2

s JδEEEnnnK ‖L2(∂Ωe)

+ Cx

∑
e

‖ hs
1
2∇EEE ‖L2(∂Ωe) ‖ h

− 1
2

s JδEEEnnnK ‖L2(∂Ωe)

+ Cx

∑
e

‖ h
− 1

2
s JEEEnnnK ‖L2(∂Ωe) ‖ h

1
2
s ∇δEEE ‖L2(∂Ωe)

+ Cx

∑
e

‖ h
1
2
s EEE ‖L2(∂Ωe) ‖ h

− 1
2

s JδEEEnnnK ‖L2(∂Ωe)

+ Cx

∑
e

‖ hs
1
2 δEEE ‖L2(∂Ωe) ‖ h

− 1
2

s JEEEnnnK ‖L2(∂Ωe) .

(B.32)

Choosing C = max(Cx,CxB), the previous equation is rewritten as:

| a(EEE, δEEE) | ≤ C
∑

e

‖ ∇EEE ‖L2(Ωe) ‖ ∇δEEE ‖L2(Ωe)

+ C
∑

e

‖ EEE ‖L2(Ωe)‖ ∇δEEE ‖L2(Ωe)

+ C
∑

e

‖ h
− 1

2
s JEEEnnnK ‖L2(∂Ωe) ‖ h

− 1
2

s JδEEEnnnK ‖L2(∂Ωe)

+ C
∑

e

‖ hs
1
2∇EEE ‖L2(∂Ωe) ‖ h

− 1
2

s JδEEEnnnK ‖L2(∂Ωe)

+ C
∑

e

‖ h
−1
2

s JEEEnnnK ‖L2(∂Ωe) ‖ h
1
2
s ∇δEEE ‖L2(Ωe)

+ C
∑

e

‖ hs
1
2EEE ‖L2(∂Ωe) ‖ h

− 1
2

s JδEEEnnnK ‖L2(∂Ωe)

+ C
∑

e

‖ hs
1
2 δEEE ‖L2(∂Ωe) ‖ h

− 1
2

s JEEEnnnK ‖L2(∂Ωe) .

(B.33)

After some maths, this becomes

| a(EEE, δEEE) | ≤ C
∑

e

[
‖ ∇EEE ‖L2(Ωe) + ‖ EEE ‖L2(Ωe) +(hs)

1
2 ‖ EEE ‖L2(∂Ωe)

+(hs)
1
2 ‖ ∇EEE ‖L2(∂Ωe) +(

1

hs
)

1
2 ‖ JEEEnnnK ‖L2(∂Ωe)

]
×
[
‖ ∇δEEE ‖L2(Ωe) + ‖ δEEE ‖L2(Ωe) +(hs)

1
2 ‖ δEEE ‖L2(∂Ωe)

+(hs)
1
2 ‖ ∇δEEE ‖L2(∂Ωe) +(

1

hs
)

1
2 ‖ JδEEEnnnK ‖L2(∂Ωe)

]
.

(B.34)
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Using the Cauchy-Schwartz’ inequality, Eq. (2.26), and the property 2ab ≤ a2 +b2, this last
equation becomes

| a(EEE, δEEE) |2 ≤ C2
∑

e

[
‖ ∇EEE ‖L2(Ωe) + ‖ EEE ‖L2(Ωe) +(hs)

1
2 ‖ EEE ‖L2(∂Ωe)

+(hs)
1
2 ‖ ∇EEE ‖L2(∂Ωe) +(

1

hs
)

1
2 ‖ JEEEnnnK ‖L2(∂Ωe)

]2

×
∑
e′

[
‖ ∇δEEE ‖L2(Ωe′ ) + ‖ δEEE ‖L2(Ωe′ ) +(hs)

1
2 ‖ δEEE ‖L2(∂Ωe′ )

+(hs)
1
2 ‖ ∇δEEE ‖L2(∂Ωe′ ) +(

1

hs
)

1
2 ‖ JδEEEnnnK ‖L2(∂Ωe′ )

]2

≤ 4C2
∑

e

[
‖ ∇EEE ‖2

L2(Ωe)
+ ‖ EEE ‖2

L2(Ωe)
+hs ‖ EEE ‖2

L2(∂Ωe)
+

hs ‖ ∇EEE ‖2
L2(∂Ωe)

+h−1
s ‖ JEEEnnnK ‖2

L2(∂Ωe)

]
×∑

e′

[
‖ ∇δEEE ‖2

L2(Ωe′ )
+ ‖ δEEE ‖2

L2(Ωe′ )
+hs ‖ δEEE ‖2L2(∂Ωe′ )

+hs ‖ ∇δEEE ‖2L2(∂Ωe′ )
+h−1

s ‖ JδEEEnnnK ‖2
L2(∂Ωe′ )

]
.

(B.35)

Considering 4 in C2, and using the definition of the mesh dependent norm, (2.12), we get:

| a(EEE, δEEE) | ≤ C |‖ EEE ‖|1 |‖ δEEE ‖|1 ∀ EEE, δEEE ∈ X. (B.36)

Moreover, using Eq. (2.22), we obtain directly

| a(EEE, δEEEh) | ≤ Ck |‖ EEE ‖|1 |‖ δEEEh ‖| ∀ EEE ∈ X, δEEEh ∈ Xk, (B.37)

and again, using Eq. (2.22), we have

| a(EEEh, δEEEh) | ≤ Ck |‖ EEE ‖| |‖ δEEEh ‖| ∀ EEEh, δEEEh ∈ Xk. (B.38)

B.4 Uniqueness of the solution for Thermo-Elastic coupling

Let us first show that for a given ξξξ ∈
[
L2(Ω)

]d × L2(Ω), there is a unique φφφh ∈ Xk such
that

a(δEEEh,φφφh) =
∑

e

∫
Ωe

ξξξTδEEEhdΩ ∀δEEEh ∈ Xk. (B.39)

From Lemma 3.4.1, Eq. (3.66), with δEEEh = φφφh ∈ Xk, ∃Ck
1, Ck

2, such that:

a(φφφh,φφφh) ≥ Ck
1 |‖ φφφh ‖|2 −Ck

2 ‖ φφφh ‖2L2(Ωh)
. (B.40)

Using δEEEh = φφφh in Eq. (B.39) thus yields

Ck
1 |‖ φφφh ‖|2 −Ck

2 ‖ φφφh ‖2L2(Ωh)
≤
∑

e

∫
Ω
ξξξTφφφhdΩ

≤‖ ξξξ ‖L2(Ωh) ‖ φφφh ‖L2(Ωh),

(B.41)
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or again

Ck
1 |‖ φφφh ‖|2≤‖ ξξξ ‖L2(Ωh)‖ φφφh ‖L2(Ωh) +Ck

2 ‖ φφφh ‖2L2(Ωh)
. (B.42)

Using the definition (2.11) of the energy norm, we have that ‖ φφφh ‖L2(Ωh)≤|‖ φφφh ‖|, and Eq.
(B.42) becomes

Ck
1 |‖ φφφh ‖|2≤‖ ξξξ ‖L2(Ωh)|‖ φφφh ‖| +Ck

2 |‖ φφφh ‖|‖ φφφh ‖L2(Ωh) . (B.43)

Hence, we have

|‖ φφφh ‖|≤ Ck
3 ‖ ξξξ ‖L2(Ωh) +Ck

4 ‖ φφφh ‖L2(Ωh) . (B.44)

In order to estimate ‖ φφφh ‖L2(Ωh), we use the auxiliary problem stated by Eq. (3.70), with
φφφ = φφφh. Then it follows from [23, Theorem 8.3 and Lemma 9.17] that there exists a unique

solution ψψψ ∈
[
H2(Ω)

]d×H2(Ω) to the problem stated by Eq. (3.70), and the solution satisfies
the elliptic property stated by Eq. (3.71). Multiplying Eq. (3.70) by φφφh, integrating on Ωh,
and integrating by parts yield∑

e

∫
Ωe

[www∇ψψψ]T∇φφφhdΩ−
∑

e

∫
∂Ωe

[www∇ψψψ]TφφφhnnndS

−
∑

e

∫
Ωe

[rrrψψψ]T∇φφφhdΩ +
∑

e

∫
∂Ωe

[rrrψψψ]TφφφhnnndS =

∫
Ωh

φφφT
hφφφhdΩ =‖ φφφh ‖2L2(Ωh)

.

(B.45)

As ψψψ ∈
[
H2(Ω)

]d ×H2(Ω) implies JψψψK = J∇∇∇ψK = 0 on ∂IΩh and JψψψK = −ψψψ = 0 on ∂DΩh, we
conclude that{ ∫

Ωh
[www∇ψψψ]T∇φφφh +

∫
∂IΩh

[www∇ψψψ]T JφφφhnnnK dS +
∫
∂DΩh

[www∇ψψψ]T JφφφhnnnK dS

−
∫

Ωh
[rrrψψψ]T∇φφφhdΩ−

∫
∂IΩh

[rrrψψψ]T JφφφhnnnK dS−
∫
∂DΩh

[rrrψψψ]T JφφφhnnnK dS = a(ψψψ,φφφh),
(B.46)

leading to

‖ φφφh ‖2L2(Ωh)
= a(ψψψ,φφφh). (B.47)

Inserting Ihψψψ the interpolant of ψψψ in Xk, as a(ψψψ,φφφh) is a bilinear form, this can be rewritten
as

‖ φφφh ‖2L2(Ωh)
= a(ψψψ − Ihψψψ,φφφh) + a(Ihψψψ,φφφh). (B.48)

From Eq. (B.39), in the particular case of δEEEh = Ihψψψ, we have for one solution φφφh

a(Ihψψψ,φφφh) =

∫
Ωh

ξξξIhψψψdΩ ≤‖ ξξξ ‖L2(Ωh) ‖ Ihψψψ ‖L2(Ωh) . (B.49)

Using Lemma 3.4.2, Eq. (3.68), and Lemma 2.4.6, Eq. (2.23), we get

| a(ψψψ − Ihψψψ,φφφh) | ≤ Ck |‖ ψψψ − Ihψψψ ‖|1 |‖ φφφh ‖|
≤ Ckhµ−1

s ‖ ψψψ ‖Hs(Ωh)|‖ φφφh ‖|,
(B.50)
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with µ = min {s, k + 1}.
Substituting Eq. (B.49) and Eq. (B.50), for s = 2, in Eq. (B.48), yields

‖ φφφh ‖2L2(Ωh)
≤ Ckhs ‖ ψψψ ‖H2(Ωh) |‖ φφφh ‖| + ‖ ξξξ ‖L2(Ωh) ‖ Ihψψψ ‖L2(Ωh), (B.51)

whereas, for hs sufficient small, the term ‖ Ihψψψ ‖L2(Ω) can be bounded using Lemma 2.4.6,
Eq. (2.23)

‖ Ihψψψ ‖L2(Ωh) ≤‖ Ihψψψ −ψψψ +ψψψ ‖L2(Ωh)

≤‖ Ihψψψ −ψψψ ‖L2(Ωh) + ‖ ψψψ ‖L2(Ωh)≤|‖ Ihψψψ −ψψψ ‖|1 + ‖ ψψψ ‖H2(Ωh)

≤ Ckhs ‖ ψψψ ‖H2(Ωh) + ‖ ψψψ ‖H2(Ωh)≤ Ck ‖ ψψψ ‖H2(Ωh) .

(B.52)

Eq. (B.51) is thus rewritten for small hs as

‖ φφφh ‖2L2(Ωh)
≤ Ck ‖ ψψψ ‖H2(Ωh)

(
hs |‖ φφφh ‖| + ‖ ξξξ ‖L2(Ωh)

)
. (B.53)

By using the regular ellipticity Eq. (3.71), we obtain

‖ φφφh ‖L2(Ωh) ≤ Ckhs |‖ φφφh ‖| +Ck ‖ ξξξ ‖L2(Ωh)≤ Ck ‖ ξξξ ‖L2(Ωh), (B.54)

for small hs. Hence we complete the proof of Lemma 3.4.3 by substituting Eq. (B.54) in
Eq. (B.44)

|‖ φφφh ‖|≤ Ck ‖ ξξξ ‖L2(Ωh) . (B.55)



Appendix C

Annexes related to chapter 4

C.1 Stiffness matrix for Electro-Thermal coupling

For the stiffness matrix, we have four sub matrices with respect to the discretization with
the two independent variables. First part is the derivative of the electrical contributions with
respect to fV. From Eq. (4.73), we have

∂Fa
fVint

∂fbV
=
∑

e

∫
Ωe

∂jjje
∂fV
· ∇Na

fV
Nb

fV
dΩ

+
∑

e

∫
Ωe

∇Na
fV
· ∂jjje
∂∇fV

· ∇Nb
fV

dΩ,

(C.1)

and for the interface terms ∂IΩh
1, Eqs. (4.75, 4.76, and 4.77), we have

∂Fa±
fVI1

∂fb±V
=

1

2

∑
s

∫
(∂IΩ)s

(
±Na±

fV

) ∂jjj±e
∂f±V
· nnn−Nb±

fV
dS

+
1

2

∑
s

∫
(∂IΩ)s

(
±Na±

fV

)
nnn− · ∂jjj±e

∂∇f±V
· ∇Nb±

fV
dS,

(C.2)

∂Fa±
fVI2

∂fb±V
=

1

2

∑
s

∫
(∂IΩ)s

(
±Nb±

fV

)(
lll±1 · ∇Na±

fV

)
· nnn−dS

+
1

2

∑
s

∫
(∂IΩ)s

JfTh
Knnn− · ∂lll±2

∂f±V
· ∇Na±

fV
Nb±

fV
dS,

(C.3)

∂Fa±
fVI3

∂fb±V
=
∑

s

∫
(∂IΩ)s

(
±Na±

fV

)
nnn− ·

〈
lll1B
hs

〉
· nnn−(±Nb±

fV
)dS

+
1

2

∑
s

∫
(∂IΩ)s

(
±Na±

fV

)
nnn− · ∂lll±2

∂f±V

B
hs
· nnn−Nb±

fV
JfTh

K dS.

(C.4)

1The contributions on ∂DΩh can be directly deduced by removing the factor (1/2) accordingly to the
definition of the average flux on the Dirichlet boundary and lll1(f̄T), lll2(f̄V, f̄T) and jjjy(f̄V, f̄T), which are constant
with respect to fVh , and fTh , instead of lll1(fTh), lll2(fVh , fTh) and jjjy(fVh , fTh) .
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Similarly, the derivatives of the forces for the electrical contribution with respect to fT are

∂Fa
fVint

∂fbT
=
∑

e

∫
Ωe

∂jjje
∂fT
· ∇Na

fV
Nb

fT
dΩ

+
∑

e

∫
Ωe

∇Na
fV
· ∂jjje
∂∇fT

· ∇Nb
fT

dΩ,

(C.5)

∂Fa±
fVI1

∂fb±T
=

1

2

∑
s

∫
(∂IΩ)s

(
±Na±

fV

) ∂jjj±e
∂fT

Nb±
fT
· nnn−dS

+
1

2

∑
s

∫
(∂IΩ)s

(
±Na±

fV

) ∂jjj±e
∂∇f±T

· ∇Nb±
fT
· nnn−dS,

(C.6)

∂Fa±
fVI2

∂fb±T
=

1

2

∑
s

∫
(∂IΩ)s

(
±Nb±

fT

)(
lll±2 · ∇Na±

fV

)
· nnn−dS

+
1

2

∑
s

∫
(∂IΩ)s

JfVh
K
(
∂lll±1
∂f±T
· ∇Na±

fV
Nb±

fT

)
· nnn−dS

+
1

2

∑
s

∫
(∂IΩ)s

JfTh
K
(
∂lll±2
∂f±T
· ∇Na±

fT
Nb±

fT

)
· nnn−dS,

(C.7)

∂Fa±
fVI3

∂fb±T
=
∑

s

∫
(∂IΩ)s

(
±Na±

fV

)
nnn− ·

〈
lll2B
hs

〉
· nnn−(±Nb±

fT
)dS

+
1

2

∑
s

∫
(∂IΩ)s

JfVh
Knnn− · ∂lll±1

∂f±T

B
hs
· nnn−Nb±

fT

(
±Na±

fV

)
dS

+
1

2

∑
s

∫
(∂IΩ)s

(
±Na±

fV

)
nnn− · ∂lll±2

∂f±T

B
hs
· nnn−Nb±

fT
JfTh

K dS.

(C.8)

The derivatives of the thermal contributions with respect to fT read, for the volume term
Eq. (4.79)

∂Fa
fTint

∂fbT
=
∑

e

∫
Ωe

ρ
∂jjjy
∂fT
· ∇Na

fT
NbdΩ +

∑
e

∫
Ωe

∇Na
fT
· ∂jjjy
∂∇fT

· ∇Nb
fT

dΩ

−
∑

e

∫
Ωe

∂ty

∂fT
Nb

fT
Na

fT
dΩ,

(C.9)

and for the interface forces Eq. (4.81, 4.82 and 4.83)

∂Fa±
fTI1

∂fb±T
=

1

2

∑
s

∫
(∂IΩ)s

(
±Na±

fT

) ∂jjjy
±

∂f±T
· nnn−Nb±

fT
dS

+
1

2

∑
s

∫
(∂IΩ)s

(
±Na±

fT

)( ∂jjjy
±

∂∇f±T
· ∇Nb±

fT

)
· nnn−dS,

(C.10)
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∂Fa±
fTI2

∂fb±T
=

1

2

∑
s

∫
(∂IΩ)s

(
±Nb±

fT

)(
jjj±y1 · ∇Na±

fT

)
· nnn−dS

+
1

2

∑
s

∫
(∂IΩ)s

JfTh
K

(
jjj±y1

∂f±T
· ∇Na±

fT
Nb±

fT

)
· nnn−dS

+
1

2

∑
s

∫
(∂IΩ)s

JfVh
K
(
∂lll±2
∂f±T
· ∇Na±

fT
Nb±

fT

)
· nnn−dS,
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∂Fa±
fTI3

∂fb±T
=
∑

s

∫
(∂IΩ)s

(
±Na±

fT

)
nnn− ·

〈
jjjy1B
hs

〉
· nnn−

(
±Nb±

fT

)
dS

+
1

2

∑
s

∫
(∂IΩ)s

(
±Na±

fT

)
nnn− ·

∂jjj±y1

∂f±T

B
hs
· nnn−Nb±

fT
JfTh

K dS

+
1

2

∑
s

∫
(∂IΩ)s

JfVh
Knnn− · ∂lll±2

∂f±T

B
hs
· nnn−Nb±

fT

(
±Na±

fT

)
dS.

(C.12)

The last part is the derivatives of the thermal contribution forces with respect to fV

∂Fa
fTint

∂fbV
=
∑

e

∫
Ωe

ρ
∂jjjy
∂fV
· ∇Na

fT
Nb

fV
dΩ +

∑
e

∫
Ωe

∇Na
fT
· ∂jjjy
∂∇fV

· ∇Nb
fV

dΩ

−
∑

e

∫
Ωe

∂ty

∂fV
Nb

fV
Na

fT
dΩ,

(C.13)

∂Fa±
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∂fb±V
=

1

2

∑
s

∫
(∂IΩ)s

(
±Na±

fT

) ∂jjj±y

∂f±V
· nnn−Nb±

fV
dS

+
1

2

∑
s

∫
(∂IΩ)s

(
±Na±

fT

)
nnn− ·

∂jjj±y

∂∇f±V
· ∇Nb±

fV
dS,

(C.14)

∂Fa±
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∂fb±V
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1
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∑
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∫
(∂IΩ)s

(
±Nb±

fV

)(
lll±2 · ∇Na±

fT

)
· nnn−dS

+
1

2

∑
s

∫
(∂IΩ)s

JfTh
K

(
∂jjj±y1

∂f±V
· ∇Na±

fT
Nb±

fV

)
· nnn−dS

+
1

2

∑
s

∫
(∂IΩ)s

JfVh
K
(
∂lll±2
∂f±V
· ∇Na±

fT
Nb±

fV

)
· nnn−dS,
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∂Fa±
fTI3

∂fb±V
=
∑
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∫
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±Nb±

fV

)
nnn− ·

〈
lll2B
hs

〉
· nnn−

(
±Na±

fT

)
dS

+
1

2

∑
s

∫
(∂IΩ)s

JfTh
Knnn− ·

∂jjj±y1

∂f±V

B
hs
· nnn−Nb±

fV

(
±Na±

fT

)
dS

+
1

2

∑
s

∫
(∂IΩ)s

JfVh
Knnn− · ∂lll±2

∂f±V

B
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· nnn−Nb±

fV

(
±Na±

fT

)
dS.

(C.16)

All the tensor derivatives are explicitly given in Appendix D.1.2.
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C.2 Derivatives

Let the derivative of the fluxes jjj(6 × 1) defined in Eq. (4.29, 5.17) with respect to the
fields vector MMM(2× 1) be jjjMMM, which could be split into

jjjfV =

(
0 − 1

f2T
lll

− 1
f2T

lll − 2α 1
f3T

lll + 2 fV
f3T

lll

)(
∇fV
∇fT

)
, and (C.17)

jjjfT =

 − 1
f2T

lll + 2 fV
f3T

lll− 2α 1
f3T

lll

+2 fV
f3T

lll− 2α 1
f3T

lll − 2 kkk
f3T

+ 6α fV
f4T

lll− 3α2 1
f4T

lll− 3
f2V
f4T

lll

( ∇fV
∇fT

)
, (C.18)

and let the derivatives of the previous matrices with respect to the gradient of the unknown
fields be jjjMMM∇MMM which could be split into

jjjfV∇MMM =

(
0 − 1

f2T
lll

− 1
f2T

lll − 2α 1
f3T

lll + 2 fV
f3T

lll

)
, (C.19)

jjjfT∇MMM =

 − 1
f2T

lll + 2 fV
f3T

lll− 2α 1
f3T

lll

+2 fV
f3T

lll− 2α 1
f3T

lll − 2 kkk
f3T

+ 6α fV
f4T

lll− 3α2 1
f4T

lll− 3
f2V
f4T

lll

 . (C.20)

Then let jjjMMMMMM be the derivative of jjjMMM, with respect to MMM, this consists of the four following
matrices

jjjfVfV =

(
0 0
0 + 2

f3T
lll

)(
∇fV
∇fT

)
, (C.21)

jjjfVfT =

(
0 + 2 1

f3T
lll

+2 1
f3T

lll + 6 α
f4T

lll− 6 fV
f4T

lll

)(
∇fV
∇fT

)
, (C.22)

jjjfTfV =

(
0 + 2 1

f3T
lll

+2 1
f3T

lll + 6α 1
f4T

lll + 6 fV
f4T

lll

)(
∇fV
∇fT

)
= jjjfVfT , and (C.23)

jjjfTfT =

 2 1
f3T

lll − 6 fV
f4T

lll + 6α 1
f4T

lll

−6 fV
f4T

lll + 6α 1
f4T

lll + 6 kkk
f4T
− 24α fV

f5T
lll + 12α2 1

f5T
lll + 12

f2V
f5T

lll

( ∇fV
∇fT

)
. (C.24)
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C.3 Lower bound for Electro-Thermal coupling

In order to prove Lemma 4.4.1, let us first use Eq. (4.102) and Eq. (4.103), yielding

A(MMMe; δMMMh, δMMMh) + B(MMMe; δMMMh, δMMMh)

=

∫
Ωh

(∇δMMMh)Tjjj∇MMM(MMMe)∇δMMMhdΩ

+

∫
∂IΩh∪∂DΩh

q
δMMMT

hnnn

y
〈jjj∇MMM(MMMe)∇δMMMh〉 dS

+

∫
∂IΩh∪∂DΩh

q
δMMMT

hnnn

y
〈jjj∇MMM(MMMe)∇δMMMh〉 dS

+

∫
∂IΩh∪∂DΩh

q
δMMMT

hnnn

y〈 B
hs

jjj∇MMM(MMMe)

〉
JδMMMhnnnK dS

+

∫
Ωh

(∇δMMMh)TjjjMMM(MMMe,∇MMMe)δMMMhdΩ

+

∫
∂IΩh∪∂DΩh

q
δMMMT

hnnn

y
〈jjjMMM(MMMe,∇MMMe)δMMMh〉dS ∀δMMMh ∈ Xk.

(C.25)

This equation can be rewritten as

A(MMMe; δMMMh, δMMMh) + B(MMMe; δMMMh, δMMMh)

=

∫
Ωh

(∇δMMMh)Tjjj∇MMM(MMMe)∇δMMMhdΩ

+

∫
Ωh

(∇δMMMh)TjjjMMM(MMMe,∇MMMe)δMMMhdΩ

+ 2

∫
∂IΩh∪∂DΩh

q
δMMMT

hnnn

y
〈jjj∇MMM(MMMe)∇δMMMh〉 dS

+

∫
∂IΩh∪∂DΩh

q
δMMMT

hnnn

y
〈jjjMMM(MMMe,∇MMMe)δMMMh〉dS

+

∫
∂IΩh∪∂DΩh

q
δMMMT

hnnn

y〈 B
hs

jjj∇MMM(MMMe)

〉
JδMMMhnnnK dS.

(C.26)

Using Eqs. (4.88) and (4.93), Eq. (C.26) becomes

A(MMMe; δMMMh, δMMMh) + B(MMMe; δMMMh, δMMMh)

≥
∑

e

(
Cα ‖ ∇δMMMh ‖2L2(Ωe)

−Cy ‖ ∇δMMMh ‖L2(Ωe)‖ δMMMh ‖L2(Ωe)

)
− 2

∑
s

Cy|
∫

(∂DIΩ)s
JδMMMhnnnK 〈∇δMMMh〉 dS|

−
∑

s

Cy|
∫

(∂DIΩ)s
JδMMMhnnnK 〈δMMMh〉 dS|+

∑
s

Cα
B
hs
‖ JδMMMhnnnK ‖2L2((∂DIΩ)s)

,

(C.27)

where
∫
∂IΩh

+
∫
∂DΩh

=
∑

s

∫
(∂DIΩ)s .
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The third and fourth terms of the right hand side in Eq. (C.27) can be bounded using
Cauchy-Schwartz’ inequality, Eq. (2.26),

2Cy

∑
s

|
∫

(∂DIΩ)s
JδMMMhnnnK 〈∇δMMMh〉 dS | +Cy

∑
s

|
∫

(∂DIΩ)s
JδMMMhnnnK 〈δMMMh〉dS |

≤ 2Cy

(∑
s

1

hs
‖ JδMMMhnnnK ‖2L2((∂DIΩ)s)

) 1
2
(∑

s

hs ‖ 〈δ∇MMMh〉 ‖2L2((∂DIΩ)s)

) 1
2

+ Cy

(∑
s

1

hs
‖ JδMMMhnnnK ‖2L2((∂DIΩ)s)

) 1
2
(∑

s

hs ‖ 〈δMMMh〉 ‖2L2((∂DIΩ)s)

) 1
2

≤ 2Cy

(∑
s

1

hs
‖ JδMMMhnnnK ‖2L2((∂DIΩ)s)

) 1
2

(∑
s

hs ‖ 〈∇δMMMh〉 ‖2L2((∂DIΩ)s)

) 1
2

+
1

2

(∑
s

hs ‖ 〈δMMMh〉 ‖2L2((∂DIΩ)s)

) 1
2

 ,

(C.28)

where the term hs ‖ 〈∇δMMMh〉 ‖2L2((∂DIΩ)s)
can be bounded using the trace inequality on the

finite element space (2.18), with∑
s

hs ‖ 〈∇δMMMh〉 ‖2L2((∂DIΩ)s)
=

1

2

∑
e

hs ‖ 〈∇δMMMh〉 ‖2L2(∂IΩe)
+
∑

e

hs ‖ ∇δMMMh ‖2L2(∂DΩe)

≤
∑

e

hs ‖ ∇δMMMh ‖2L2(∂Ωe)
≤ Ck2

K
∑

e

‖ ∇δMMMh ‖2L2(Ωe)
.

(C.29)

Then using the trace inequality, Eq. (2.16), and inverse inequality, Eq. (2.21), we have

1

4

∑
s

hs ‖ 〈δMMMh〉 ‖2L2((∂DIΩ)s)
=

1

8

∑
e

hs ‖ 〈δMMMh〉 ‖2L2(∂IΩe)
+

1

4

∑
e

hs ‖ δMMMh ‖2L2(∂DΩe)

≤ 1

4

∑
e

hs ‖ δMMMh ‖2L2(∂Ωe)

≤ 1

4
CT
∑

e

(
‖ δMMMh ‖2L2(Ωe)

+hs ‖ δMMMh ‖L2(Ωe)‖ ∇δMMMh ‖L2(Ωe)

)
≤
∑

e

CT (Ck
I + 1)

4
‖ δMMMh ‖2L2(Ωe)

.

(C.30)

Therefore Eq. (C.28) is rewritten as

2Cy

∑
s

|
∫

(∂DIΩ)s
JδMMMhnnnK 〈∇δMMMh〉 dS|+ Cy

∑
s

|
∫

(∂DIΩ)s
JδMMMhnnnK 〈δMMMh〉 dS|

≤ Cy

(∑
s

1

hs
‖ JδMMMhnnnK ‖2L2((∂DIΩ)s)

) 1
2
(∑

e

max(CT (Ck
I + 1), 4Ck2

K ) ‖ δMMMh ‖2H1(Ωe)

) 1
2

.

(C.31)
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Finally, by the use of the ξ-inequality –ξ > 0 : |ab| ≤ ξ
4a2+1

ξb2– with ξ = Cα
Cymax(CT (Ck

I+1),4Ck2
K )

,

we arrive at

2Cy

∑
s

|
∫

(∂DIΩ)s
JδMMMhnnnK 〈∇δMMMh〉 dS|+ Cy

∑
s

|
∫

(∂DIΩ)s
JδMMMhnnnK 〈δMMMh〉 dS|

≤ Cα

4

∑
e

‖ δMMMh ‖2H1(Ωe)
+

C2
y

Cα
max(CT (Ck

I + 1), 4Ck2

K )
∑

s

1

hs
‖ JδMMMhnnnK ‖2L2((∂DIΩ)s)

.

(C.32)

For the second term of the right hand side of Eq. (C.27), choosing ξ = Cα
Cy

and applying the
ξ-inequality, we find∑

e

Cy ‖ ∇δMMMh ‖L2(Ωe)‖ δMMMh ‖L2(Ωe) ≤
Cy

ξ

∑
e

‖ δMMMh ‖2L2(Ωe)
+

Cyξ

4

∑
e

‖ δ∇MMMh ‖2L2(Ωe)

≤
C2

y

Cα

∑
e

‖ δMMMh ‖2L2(Ωe)
+

Cα

4

∑
e

‖ ∇δMMMh ‖2L2(Ωe)
.

(C.33)

If we substitute Eqs. (C.32) and (C.33) in Eq. (C.27), we thus obtain the following result:

A(MMMe; δMMMh, δMMMh) + B(MMMe; δMMMh, δMMMh)

≥ Cα

2

∑
e

‖ ∇δMMMh ‖2L2(Ωe)
−

(
C2

y

Cα
+

Cα

4

)∑
e

‖ δMMMh ‖2L2(Ωe)

+

[
BCα −

C2
y

Cα
max(CT (Ck

I + 1), 4Ck2

K )

]
h−1

s

∑
e

‖ JδMMMhnnnK ‖2L2(∂Ωe)
.

(C.34)

This last relation can be rewritten as

A(MMMe; δMMMh, δMMMh) + B(MMMe; δMMMh, δMMMh) ≥ Ck
1

[∑
e

‖ ∇δMMMh ‖2L2(Ωe)
+h−1

s

∑
e

‖ JδMMMhnnnK ‖2L2(∂Ωe)

]
− Ck

2 ‖ δMMMh ‖2L2(Ωh)
∀δMMMh ∈ Xk.

(C.35)

where Ck
1 = min

(
Cα
2 ,BCα −

C2
y

Cα
max(CT (Ck

I + 1), 4Ck2

K )
)

, which is positive when

B > C2
y

C2
α

max(CT (Ck
I + 1), 4Ck2

K ), and Ck
2 =

C2
y

Cα
+ Cα

4 > 0.

Therefore, comparing with the definition of the mesh dependent norm, Eq. (2.10), we
have

A(MMMe; δMMMh, δMMMh) + B(MMMe; δMMMh, δMMMh) ≥ Ck
1 |‖ δMMMh ‖|2∗ −Ck

2 ‖ δMMMh ‖2L2(Ωh)
∀ δMMMh ∈ Xk.

(C.36)

Moreover, starting from Eq. (C.34) and choosing Ck
2 =

C2
y

Cα
+ 3Cα

4 , we rewrite the expression
in terms of the norm (2.11) as

A(MMMe; δMMMh, δMMMh) + B(MMMe; δMMMh, δMMMh) ≥ Ck
1 |‖ δMMMh ‖|2 −Ck

2 ‖ δMMMh ‖2L2(Ωh)
∀ δMMMh ∈ Xk.

(C.37)

Hence, this shows that the stability of the method is conditioned by the constant B, which
should be large enough.
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C.4 Upper bound for Electro-Thermal coupling

The upper bound of the bi-linear form is determined by recalling Eq. (4.102) and Eq.
(4.103), for uuu, δMMM ∈ X

A(MMMe;uuu, δMMM) + B(MMMe;uuu, δMMM) =

∫
Ωh

(∇δMMM)Tjjj∇MMM(MMMe)∇uuudΩ

+

∫
∂IΩh∪∂DΩh

q
δMMMT

nnn

y
〈jjj∇MMM(MMMe)∇uuu〉dS +

∫
∂IΩh∪∂DΩh

q
uuuT

nnn

y
〈jjj∇MMM(MMMe)∇δMMM〉 dS

+

∫
∂IΩh∪∂DΩh

q
δMMMT

nnn

y〈 B
hs

jjj∇MMM(MMMe)

〉
JuuunnnK dS +

∫
Ωh

(∇δMMM)TjjjMMM(MMMe,∇MMMe)uuudΩ

+

∫
∂IΩh∪∂DΩh

q
δMMMT

nnn

y
〈jjjMMM(MMMe,∇MMMe)uuu〉dS.

(C.38)

Every term in the right hand side of Eq. (C.38) is bounded using the Hölder’s inequality,
Eq. (2.24), and the bound (4.93). This successively results in∣∣∣∣∫

Ωh

(∇δMMM)Tjjj∇MMM(MMMe)∇uuudΩ

∣∣∣∣ ≤∑
e

(∫
Ωe

|(∇δMMM)Tjjj∇MMM(MMMe)∇uuu|dΩ

)
≤ Cy

∑
e

‖ ∇δMMM ‖L2(Ωe) ‖ ∇uuu ‖L2(Ωe),
(C.39)

∣∣∣∣∫
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(C.40)
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∂IΩe

q
δMMMT

nnn

y〈jjj∇MMM(MMMe)B
hs

〉
JuuunnnK dS

+
∑

e

∫
∂DΩe

q
δMMMT

nnn
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(C.43)
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and

∣∣∣∣∫
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(C.44)

Therefore by combining the above results, we obtain:

| A(MMMe;uuu, δMMM) + B(MMMe;uuu, δMMM) |

≤ Cy

∑
e

‖ ∇uuu ‖L2(Ωe) ‖ ∇δMMM ‖L2(Ωe)

+ Cy

∑
e

‖ uuu ‖L2(Ωe) ‖ ∇δMMM ‖L2(Ωe)

+ BCy

∑
e

‖ h
− 1

2
s JuuunnnK ‖L2(∂Ωe) ‖ h

− 1
2

s JδMMMnnnK ‖L2(∂Ωe)

+ Cy

∑
e

‖ hs
1
2∇uuu ‖L2(∂Ωe) ‖ h

− 1
2

s JδMMMnnnK ‖L2(∂Ωe)

+ Cy

∑
e

‖ h
− 1

2
s JuuunnnK ‖L2(∂Ωe) ‖ h

1
2
s ∇δMMM ‖L2(∂Ωe)

+ Cy

∑
e

‖ h
1
2
s uuu ‖L2(∂Ωe) ‖ h

− 1
2

s JδMMMnnnK ‖L2(∂Ωe) .

(C.45)

Choosing C = max(Cy,CyB), the previous equation is rewritten as:

| A(MMMe;uuu, δMMM) + B(MMMe;uuu, δMMM) | ≤ C
∑

e

‖ ∇uuu ‖L2(Ωe) ‖ ∇δMMM ‖L2(Ωe)

+ C
∑

e

‖ uuu ‖L2(Ωe)‖ ∇δMMM ‖L2(Ωe)

+ C
∑

e

‖ h
− 1

2
s JuuunnnK ‖L2(∂Ωe) ‖ h

− 1
2

s J∇δMMMnnnK ‖L2(∂Ωe)

+ C
∑

e

‖ hs
1
2∇uuu ‖L2(∂Ωe) ‖ h

− 1
2

s JδMMMnnnK ‖L2(∂Ωe)

+ C
∑

e

‖ h
− 1

2
s JuuunnnK ‖L2(∂Ωe) ‖ h

1
2
s ∇δMMM ‖L2(Ωe)

+ C
∑

e

‖ hs
1
2uuu ‖L2(∂Ωe) ‖ h

− 1
2

s JδMMMnnnK ‖L2(∂Ωe) .

(C.46)
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After some math, this becomes

| A(MMMe;uuu, δMMM) + B(MMMe;uuu, δMMM) |

≤ C
∑

e

[
‖ ∇uuu ‖L2(Ωe) + ‖ uuu ‖L2(Ωe) +h

1
2
s ‖ uuu ‖L2(∂Ωe)

+h
1
2
s ‖ ∇uuu ‖L2(∂Ωe) +h

− 1
2

s ‖ JuuunnnK ‖L2(∂Ωe)

]
×
[
‖ ∇δMMM ‖L2(Ωe) + ‖ δMMM ‖L2(Ωe) +h

1
2
s ‖ δMMM ‖L2(∂Ωe)

+h
1
2
s ‖ ∇δMMM ‖L2(∂Ωe) +h

− 1
2

s ‖ JδMMMnnnK ‖L2(∂Ωe)

]
.

(C.47)

Using the Cauchy-Schwartz’ inequality, Eq. (2.26), and the property 2ab ≤ a2 +b2, this last
equation becomes

| A(MMMe;uuu, δMMM) + B(MMMe;uuu, δMMM) |2

≤ C2
∑

e

[
‖ ∇uuu ‖L2(Ωe) + ‖ uuu ‖L2(Ωe) +h

1
2
s ‖ uuu ‖L2(∂Ωe)

+h
1
2
s ‖ ∇uuu ‖L2(∂Ωe) +h

− 1
2

s ‖ JuuunnnK ‖L2(∂Ωe)

]2

×
∑
e′

[
‖ ∇δMMM ‖L2(Ωe′ ) + ‖ δMMM ‖L2(Ωe′ ) +h

1
2
s ‖ δMMM ‖L2(∂Ωe′ )

+h
1
2
s ‖ ∇δMMM ‖L2(∂Ωe′ ) +h

− 1
2

s ‖ JδMMMnnnK ‖L2(∂Ωe′ )

]2

≤ 4C2
∑

e

[
‖ ∇uuu ‖2

L2(Ωe)
+ ‖ uuu ‖2

L2(Ωe)
+hs ‖ uuu ‖2

L2(∂Ωe)
+

hs ‖ ∇uuu ‖2
L2(∂Ωe)

+h−1
s ‖ JuuunnnK ‖2

L2(∂Ωe)

]
×∑

e′

[
‖ ∇δMMM ‖2

L2(Ωe′ )
+ ‖ δMMM ‖2

L2(Ωe′ )
+hs ‖ δMMM ‖2L2(∂Ωe′ )

+hs ‖ ∇δMMM ‖2L2(∂Ωe′ )
+h−1

s ‖ JδMMMnnnK ‖2
L2(∂Ωe′ )

]
.

(C.48)

Considering 4 in C, and using the definition of the mesh dependent norm, Eq. (2.12), we
get:

| A(MMMe;uuu, δMMM) + B(MMMe;uuu, δMMM) | ≤ C |‖ uuu ‖|1 |‖ δMMM ‖|1 ∀ uuu, δMMM ∈ X. (C.49)

Moreover, using Eq. (2.22), we obtain

| A(MMMe;uuu, δMMMh) + B(MMMe;uuu, δMMMh) | ≤ Ck |‖ uuu ‖|1 |‖ δMMMh ‖| ∀ uuu ∈ X, δMMMh ∈ Xk, (C.50)

and again, using Eq. (2.22), we have

| A(MMMe;uuuh, δMMMh) + B(MMMe;uuuh, δMMMh) | ≤ Ck |‖ uuuh ‖| |‖ δMMMh ‖| ∀ uuuh, δMMMh ∈ Xk. (C.51)
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C.5 Uniqueness of the solution for Electro-Thermal coupling

Let us first show that for a given ξξξ ∈ L2(Ω)×L2(Ω), there is a unique φφφh ∈ Xk such that

A(MMMe; δMMMh,φφφh) + B(MMMe; δMMMh,φφφh) =
∑

e

∫
Ωe

ϕϕϕTδMMMhdΩ ∀δMMMh ∈ Xk. (C.52)

From Lemma 4.4.1, Eq. (4.108), with δMMMh = φφφh ∈ Xk, ∃Ck
1, Ck

2, such that:

A(MMMe;φφφh,φφφh) + B(MMMe;φφφh,φφφh) ≥ Ck
1 |‖ φφφh ‖|2 −Ck

2 ‖ φφφh ‖2L2(Ωh)
. (C.53)

Using δMMMh = φφφh in Eq. (C.52) thus yields

Ck
1 |‖ φφφh ‖|2 −Ck

2 ‖ φφφh ‖2L2(Ωh)
≤
∑

e

∫
Ω
ϕϕϕTφφφhdΩ

≤‖ ϕϕϕ ‖L2(Ωh) ‖ φφφh ‖L2(Ωh),

(C.54)

or again

Ck
1 |‖ φφφh ‖|2≤‖ ϕϕϕ ‖L2(Ωh)‖ φφφh ‖L2(Ωh) +Ck

2 ‖ φφφh ‖2L2(Ωh)
. (C.55)

Using the definition (2.11) of the energy norm, we have that ‖ φφφh ‖L2(Ωh)≤|‖ φφφh ‖|, and Eq.
(C.56) becomes

Ck
1 |‖ φφφh ‖|2≤‖ ϕϕϕ ‖L2(Ωh)|‖ φφφh ‖| +Ck

2 |‖ φφφh ‖|‖ φφφh ‖L2(Ωh) . (C.56)

Hence, we have

|‖ φφφh ‖|≤ Ck
3 ‖ ϕϕϕ ‖L2(Ωh) +Ck

4 ‖ φφφh ‖L2(Ωh) . (C.57)

In order to estimate ‖ φφφh ‖L2(Ωh), we use the auxiliary problem stated by Eq. (4.112),
with φφφ = φφφh. Then it follows from [23, Theorem 8.3 and Lemma 9.17] that there exists

a unique solution ψψψ ∈ H2(Ω) × H2+
(Ω) to the problem stated by Eq. (4.112), and the

solution satisfies the elliptic property stated by Eq. (4.113). Multiplying Eq. (4.112) by φφφh,
integrating on Ωh, and integrating by parts yield

∑
e

∫
Ωe

[jjj∇MMM(MMMe)∇ψψψ + jjjMMM(MMMe,∇MMMe)ψψψ]T∇φφφhdΩ

−
∑

e

∫
∂Ωe

[jjj∇MMM(MMMe)∇ψψψ + jjjMMM(MMMe,∇MMMe)ψψψ]TφφφhnnndS =

∫
Ωh

φφφT
hφφφhdΩ =‖ φφφh ‖2L2(Ωh)

.

(C.58)

As ψψψ ∈ H2(Ω) × H2(Ω) implies JψψψK = J∇∇∇ψK = 0 on ∂IΩh and JψψψK = −ψψψ = 0 on ∂DΩh, we
conclude that



∫
Ωh

[jjj∇MMM(MMMe)∇ψψψ]T∇φφφh +
∫
∂IΩh

[jjj∇MMM(MMMe)∇ψψψ]T JφφφhnnnK dS

−
∫
∂DΩh

[jjj∇MMM(MMMe)∇ψψψ]TφφφhnnndS = A(MMMe;ψψψ,φφφh)∫
Ωh

[jjjMMM(MMMe,∇MMMe)ψψψ]T∇φφφhdΩ +
∫
∂IΩh

[jjjMMM(MMMe,∇MMMe)ψψψ]T JφφφhnnnK dS

−
∫
∂DΩh

[jjjMMM(MMMe,∇MMMe)ψψψ]TφφφhnnndS = B(MMMe;ψψψ,φφφh),

(C.59)
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leading to

‖ φφφh ‖2L2(Ωh)
= A(MMMe;ψψψ,φφφh) + B(MMMe;ψψψ,φφφh). (C.60)

Inserting Ihψψψ the interpolant of ψψψ in Xk, this can be rewritten as

‖ φφφh ‖2L2(Ωh)
= A(MMMe;ψψψ − Ihψψψ,φφφh) + B(MMMe;ψψψ − Ihψψψ,φφφh)

+A(MMMe; Ihψψψ,φφφh) + B(MMMe; Ihψψψ,φφφh).
(C.61)

From Eq. (C.52) for ϕϕϕ, in the particular case of δMMMh = Ihψψψ, we have for one of the possible
solutions φφφh

A(MMMe; Ihψψψ,φφφh) + B(MMMe; Ihψψψ,φφφh) =

∫
Ωh

ϕϕϕTIhψψψ

≤‖ ϕϕϕ ‖L2(Ωh) ‖ Ihψψψ ‖L2(Ωh) .

(C.62)

Using Lemma 4.4.2, Eq. (4.110), and Lemma 2.4.6, Eq. (2.23), we get

| A(MMMe;ψψψ − Ihψψψ,φφφh) + B(MMMe;ψψψ − Ihψψψ,φφφh) | ≤ Ck |‖ ψψψ − Ihψψψ ‖|1 |‖ φφφh ‖|
≤ Ckhµ−1

s ‖ ψψψ ‖Hs(Ωh)|‖ φφφh ‖|,
(C.63)

with µ = min {s, k + 1}.
Substituting Eq. (C.62) and Eq. (C.63), for s = 2, in Eq. (C.61), yields

‖ φφφh ‖2L2(Ωh)
≤ Ckhs ‖ ψψψ ‖H2(Ωh) |‖ φφφh ‖| + ‖ ϕϕϕ ‖L2(Ωh) ‖ Ihψψψ ‖L2(Ωh), (C.64)

whereas, for hs sufficient small, the term ‖ Ihψψψ ‖L2(Ω) can be bounded using Lemma 2.4.6,
Eq. (2.23), by

‖ Ihψψψ ‖L2(Ωh) ≤‖ Ihψψψ −ψψψ +ψψψ ‖L2(Ωh)

≤‖ Ihψψψ −ψψψ ‖L2(Ωh) + ‖ ψψψ ‖L2(Ωh)≤|‖ Ihψψψ −ψψψ ‖|1 + ‖ ψψψ ‖H2(Ωh)

≤ Ckhs ‖ ψψψ ‖H2(Ωh) + ‖ ψψψ ‖H2(Ωh)≤ Ck ‖ ψψψ ‖H2(Ωh) .

(C.65)

Equation (C.64) is thus rewritten for small hs

‖ φφφh ‖2L2(Ωh)
≤ Ck ‖ ψψψ ‖H2(Ωh)

(
hs |‖ φφφh ‖| + ‖ ϕϕϕ ‖L2(Ωh)

)
. (C.66)

By using the regular ellipticity Eq. (4.113), we obtain

‖ φφφh ‖L2(Ωh) ≤ Ckhs |‖ φφφh ‖| +Ck ‖ ϕϕϕ ‖L2(Ωh)≤ Ck ‖ ϕϕϕ ‖L2(Ωh), (C.67)

for small hs. Hence we complete the proof of Lemma 4.4.3 by substituting Eq. (C.67) in
Eq. (C.57)

|‖ φφφh ‖|≤ Ck ‖ ϕϕϕ ‖L2(Ωh) . (C.68)

The existence of the solution φφφh to the problem stated by Eq. (C.52) follows from its
uniqueness, which follows trivially from Eq. (C.68). Indeed for ϕϕϕ1, ϕϕϕ2 ∈ L2(Ω)× L2(Ω), we
have

‖ φφφh1 −φφφh2 ‖L2(Ωh)≤ Ck ‖ ϕϕϕ1 −ϕϕϕ2 ‖L2(Ωh), (C.69)

and φφφh1 = φφφh2 if ϕϕϕ1 = ϕϕϕ2.
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C.6 The bound in the ball

We need to show that jjj(xxx;yyy,∇yyy), jjjMMM(xxx;yyy,∇yyy), jjjMMMMMM(xxx;yyy,∇yyy), jjj∇MMM(xxx;yyy), jjjMMM∇MMM(xxx;yyy) are
bounded for xxx ∈ Ω̄, yyy ∈ Oσ(IhMMM).

To this end, we first show that yyy and ∇yyy are bounded, by considering the ball Oσ(IhMMM)
with radius σ = h−εs |‖MMMe − IhMMM ‖|1, 0 < ε < 1

4 . Therefore, we have

‖ yyy−MMMe ‖W1
∞(Ω) ≤‖ yyy− IhMMM ‖W1

∞(Ω) + ‖ IhMMM−MMMe ‖W1
∞(Ω) . (C.70)

The first term of the right hand side of Eq. (C.70) can be bounded using the inverse
inequality (2.19), yielding

‖ yyy− IhMMM ‖W1
∞(Ω) =‖ yyy− IhMMM ‖L∞(Ω) + ‖ ∇(yyy− IhMMM) ‖L∞(Ω)

≤ Ck
Ih
−1
s ‖ yyy− IhMMM ‖L2(Ω) +Ck

Ih
−1
s ‖ ∇(yyy− IhMMM) ‖L2(Ω)

≤ Ck
Ih
−1
s ‖ yyy− IhMMM ‖H1(Ω)≤ Ck

Ih
−1
s |‖ yyy− IhMMM ‖|1 .

(C.71)

Using the interpolant inequality (2.14), the definition of the ball (4.119), and Eq. (4.121)
for k ≥ 2 to bound the second term of the right hand side of Eq. (C.70), we have for hs

small enough

‖ yyy−MMMe ‖W1
∞(Ω) ≤ Ck

Ih
−1
s |‖ yyy− IhMMM ‖|1 + ‖ IhMMM−MMMe ‖W1

∞(Ω)

≤ Ck
Ih
−1−ε
s |‖MMMe − IhMMM ‖|1 +Ck

Dh
1
2
s ‖MMMe ‖

H
5
2 (Ωh)

≤ Ck
ICMh

1
2
−ε

s ‖MMMe ‖
H

5
2 (Ωh)

+Ck
Dh

1
2
s ‖MMMe ‖

H
5
2 (Ωh)

≤ Ck
ICMh

1
2
−ε

s ‖MMMe ‖
H

5
2 (Ωh)

if k ≥ 2.

(C.72)

Hence, for small hs, ‖ yyy ‖W1
∞(Ω)≤ (1 + σ∗) ‖ MMMe ‖W1

∞(Ω), where 0 < σ∗ < 1, for k ≥ 2. If

MMMe ∈ H
5
2 (Ω)×H

5
2

+

(Ω), the value yyy(xxx) ∈ [(1− σ∗)kMMM, (1 + σ∗)KMMM] is considered to derive the
bounds, where 0 < σ∗ < 1, kMMM = min

{
MMMe(xxx) : xxx ∈ Ω̄

}
and KMMM = max

{
MMMe(xxx) : xxx ∈ Ω̄

}
.

Similarly, we consider the value of ∂yyy
∂xxxi (xxx) ∈ [(1− σ∗)k∇MMM, (1 + σ∗)K∇MMM], such that k∇MMM =

min
{
∇MMMe(xxx) : xxx ∈ Ω̄

}
and K∇MMM = max

{
∇MMMe(xxx) : xxx ∈ Ω̄

}
2.

Since the nonlinear functions jjjMMM, jjjMMMMMM, jjj∇MMM, jjjMMM∇MMM are continuous, they map the compact
set [(1− σ∗)kMMM, (1 + σ∗)KMMM] × [(1− σ∗)k∇MMM, (1 + σ∗)K∇MMM] into a compact set, hence the
nonlinear term jjj(xxx;yyy,∇yyy) and its derivatives jjjMMM(xxx;yyy,∇yyy), jjjMMMMMM(xxx;yyy,∇yyy),
jjj∇MMM(xxx;yyy), jjjMMM∇MMM(xxx;yyy) are bounded in a ball around MMMe ∈W1

∞(Ω)×W1
∞(Ω).

C.7 Intermediate bounds derivation

The purpose of this section is to derive the bound of the nonlinear term N .
First the term ‖ ζζζ ‖L2(Ωe) is bounded by using its decomposition as ζζζ = ηηη + ξξξ, where

ηηη = MMMe − IhMMM and ξξξ = IhMMM− yyy, which gives∑
e

‖ ζζζ ‖2
L2(Ωe)

≤ 2

(∑
e

‖ ηηη ‖2
L2(Ωe)

+
∑

e

‖ ξξξ ‖2
L2(Ωe)

)
. (C.73)

2By abuse of notations, in this context the min and max operator applied on vectors, mean we retain
respectively the minimum and maximum value for each component.
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Using the interpolation inequality (2.14) leads to∑
e

‖ ηηη ‖2
L2(Ωe)

≤ Ck2

D h2µ
s

∑
e

‖MMMe ‖2Hs(Ωe)= Ck2

D h5
s

∑
e

‖MMMe ‖2
H

5
2 (Ωe)

if k ≥ 2. (C.74)

An application of the norm definition, Eq. (2.12), and the definition of the ball, Eqs. (4.119,
4.120), give∑

e

‖ ξξξ ‖2
L2(Ωe)

≤ C2
P |‖ ξξξ ‖|21≤ C2

Pσ
2

≤ C2
Ph2(µ−1−ε)

s

∑
e

‖MMMe ‖2Hs(Ωe)= C2
Ph3−2ε

s

∑
e

‖MMMe ‖2
H

5
2 (Ωe)

if k ≥ 2.
(C.75)

Combining Eq. (C.74, C.75), gives for hs small enough∑
e

‖ ζζζ ‖2
L2(Ωe)

≤ Ck2

σ2

≤ Ck2

h2(µ−1−ε)
s

∑
e

‖MMMe ‖2Hs(Ωe)= Ck2

h3−2ε
s

∑
e

‖MMMe ‖2
H

5
2 (Ωe)

if k ≥ 2.

(C.76)

Similarly, one can get

∑
e

‖ ζζζ ‖4
L4(Ωe)

≤ 4

(∑
e

‖ ηηη ‖4
L4(Ωe)

+
∑

e

‖ ξξξ ‖4
L4(Ωe)

)
. (C.77)

Using the interpolation inequality (2.14) leads to

‖ ηηη ‖L4(Ωe) ≤ Ck
Dh

µ− 1
2

s ‖MMMe ‖Hs(Ωe)= Ck
Dh2

s ‖MMMe ‖
H

5
2 (Ωe)

if k ≥ 2. (C.78)

Next, ‖ ξξξ ‖4
L4(Ωe)

is bounded by applying, the inverse inequality (2.19), the definition of the

norm (2.12), and the definition of the ball, Eqs. (4.119, 4.120), which yields∑
e

‖ ξξξ ‖4
L4(Ωe)

≤ Ck4

I (
1

hs
)2
∑

e

‖ ξξξ ‖4
L2(Ωe)

≤ Ck4

I (
1

hs
)2

(∑
e

‖ ξξξ ‖2
L2(Ωe)

)2

≤ Ck4

I h−2
s |‖ ξξξ ‖|41≤ Ck4

I h−2
s σ4

≤ Ck4

I h
4(µ− 3

2
−ε)

s ‖MMMe ‖4Hs(Ωh)= Ck4

I h4(1−ε)
s ‖MMMe ‖4

H
5
2 (Ωh)

if k ≥ 2.

(C.79)

Combining Eqs. (C.78, C.79), gives for hs small enough∑
e

‖ ζζζ ‖4
L4(Ωe)

≤ Ck4

h−2
s σ4

≤ Ck4

h
4(µ− 3

2
−ε)

s ‖MMMe ‖4Hs(Ωh)= Ck4

h4(1−ε)
s ‖MMMe ‖4

H
5
2 (Ωh)

if k ≥ 2.

(C.80)
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Proceeding by the same way,
∑

e ‖ ∇ζζζ ‖2L2(Ωe)
can be estimated by applying the interpolation

inequality (2.13), the definition of the norm (2.12), and the definition of the ball, Eqs. (4.119,
4.120), as

∑
e

‖ ∇ζζζ ‖2
L2(Ωe)

≤ 2

(∑
e

‖ ∇ηηη ‖2
L2(Ωe)

+
∑

e

‖ ∇ξξξ ‖2
L2(Ωe)

)
≤ Ck2

D h2µ−2
s

∑
e

‖MMMe ‖2Hs(Ωe) +2 |‖ ξξξ ‖|21

≤ Ck2

D h2µ−2
s

∑
e

‖MMMe ‖2Hs(Ωe) +2σ2

≤ Ck2

D h2µ−2
s

∑
e

‖MMMe ‖2Hs(Ωe) +Ck2

I h2µ−2−2ε
s

∑
e

‖MMMe ‖2Hs(Ωe)

≤ Ck2

h
2( 3

2
−ε)

s

∑
e

‖MMMe ‖2
H

5
2 (Ωe)

if k ≥ 2.

(C.81)

Using the trace inequality (2.16) we have

‖ ηηη ‖4
L4(∂Ωe)

≤ CT

(
h−1

s ‖ ηηη ‖4
L4(Ωe)

+ ‖ ηηη ‖3
L6(Ωe)

‖ ∇ηηη ‖L2(Ωe)

)
. (C.82)

Calling the interpolation inequality (2.14) gives

‖ ηηη ‖4
W0

4(Ωe)
≤ Ck4

D h
4(µ− 1

2
)

s ‖MMMe ‖4Hs(Ωe), and (C.83)

‖ ηηη ‖3
W0

6(Ωe)
≤ Ck3

D h
3(µ− 2

3
)

s ‖MMMe ‖3Hs(Ωe) . (C.84)

Also, by the use of the interpolation inequality (2.13) one has

‖ ∇ηηη ‖L2(Ωe)≤‖ ηηη ‖H1(Ωe)≤ Ck
Dhµ−1

s ‖MMMe ‖Hs(Ωe) . (C.85)

Combining the last three equations results into
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4
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5
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if k ≥ 2. (C.86)

Likewise, applying the trace inequality (2.16) and the interpolation inequality (2.14), leads
to

‖ ∇ηηη ‖4
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s ‖ ∇ηηη ‖4
L4(Ωe)

+ ‖ ∇ηηη ‖3
L6(Ωe)

‖ ∇2ηηη ‖L2(Ωe)

)
, (C.87)

with
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‖ ∇2ηηη ‖L2(Ωe)≤‖ ηηη ‖W2
2(Ωe)≤ Ck

Dhµ−2
s ‖MMMe ‖Hs(Ωe) . (C.90)
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Combining the last three equations gives
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4
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H
5
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if k ≥ 2. (C.91)

Next, the bound of ‖ ξξξ ‖L4(∂Ωe) is estimated by applying the trace inequality (2.16) and the
inverse inequality, Eqs. (2.19, 2.21), leading to
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L4(∂Ωe)

≤ CT
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, (C.92)

with
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, (C.93)
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Combining the last three equations, then applying the definition of the norm (2.12) and the
definition of the ball, Eqs. (4.119, 4.120), result into∑
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(C.96)

Then, using the inverse inequality (2.20), Lemma 2.4.3, Eq. (2.18), the definition of the
norm (2.12), and the definition of the ball, Eqs. (4.119, 4.120), yields∑
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(C.97)

Moreover, ‖ ζζζ ‖L4(∂Ωe) can be bounded by the dominant term of its component as∑
e
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(C.98)

By the same way, the bound of ‖ ∇ζζζ ‖L4(∂Ωe) is the dominant term of its component (C.91,
C.97), yielding∑

e
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(C.99)
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Now the bound of ‖ JζζζK ‖4
L4(∂Ωe)

can be evaluated from

∑
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Using Eq. (C.86), we have
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(C.101)

Then, applying the inverse inequality (2.20), the definition of the norm (2.12), and the
definition of the ball, Eqs. (4.119, 4.120), yields
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(C.102)

Combining Eqs. (C.101 and C.102), gives
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(C.103)

Finally, by the use of the inverse inequality (2.19), we get Eq. (4.134), as

‖ δMMMh ‖L4(Ωe) ≤ Ck
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− 1

2
s ‖ δMMMh ‖L2(Ωe), (C.104)
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2
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which implies | δMMMh |W1
4(Ωe) ≤ Ck
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2
s | δMMMh |H1(Ωe),
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(C.106)
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C.8 The bound of the nonlinear term N (MMMe,yyy; δMMMh)

The first term of N (MMMe,yyy; δMMMh), defined in Eq. (4.101), can be expanded using Eq.
(4.91) as

I1 =

∫
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(∇δMMM)T
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(C.107)

The first term of the right hand side of Eq. (C.107) is bounded by using the generalized
Hölder inequality (2.25), the generalized Cauchy-Schwartz’ inequality (2.27), the definition
of Cy in Eq. (4.93), and the bounds (4.122, 4.123, and 4.134) as
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(C.108)

For the second term of the right hand side of Eq. (C.107), the generalized Hölder inequality
(2.25), the generalized Cauchy-Schwartz’ inequality (2.27), and the bounds (4.123, 4.124,
and 4.134), imply that
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(C.109)

Combining the above result leads to

| I1 | ≤ CkCyhµ−2−ε
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1
2
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(C.110)



C.8 The bound of the nonlinear term N (MMMe,yyy; δMMMh) 185

The second term of N (MMMe,yyy; δMMMh), defined in Eq. (4.101), becomes by using Eq. (4.91),
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(C.111)

The first term of the right hand side of Eq. (C.111) is estimated by using the generalized
Hölder inequality (2.25), the generalized Cauchy-Schwartz’ inequality (2.27), the definition
of Cy in Eq. (4.93), and the bound (4.131)
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(C.112)

The second term of the right hand side of Eq. (C.111) is bounded by applying the generalized
Hölder inequality (2.25), the generalized Cauchy-Schwartz’ inequality (2.27), the definition



186 Annexes related to chapter 4

of Cy in Eq. (4.93), and the bounds (4.131, 4.133), yielding
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(C.113)

We now substitute Eqs. (C.112, C.113) in Eq. (C.111), to obtain the final bound of the
second term of N (MMMe,yyy; δMMMh) as
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(C.114)

Furthermore, for the third term of N (MMMe,yyy; δMMMh) as decomposed in Eq. (4.101), using
Taylor series (4.89-4.91), the generalized Hölder inequality (2.25), the generalized Cauchy-
Schwartz’ inequality (2.27), the definition of Cy in Eq. (4.93), and the bounds (4.131, 4.132),
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leads to
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Likewise, the fourth term of N (MMMe,yyy; δMMMh) defined in Eq. (4.101) is bounded using
Taylor series (4.89-4.91), the generalized Hölder inequality (2.25), the generalized Cauchy-
Schwartz’ inequality (2.27), the definition of Cy in Eq. (4.93), and the bounds (4.131, 4.132)
leading to

| I4 |≤|
1

2

∑
e

∫
∂IΩe

r
MMMeT

nnn − yyyT
nnn

z〈 B
hs

(jjj∇MMM(MMMe)− jjj∇MMM(yyy))

〉
JδMMMhnnnK dS |

≤
∑

e

|
∫
∂IΩe

q
ζζζT

nnn

y( B
hs
ζζζTj̄jj∇MMMMMM(yyy)

)
JδMMMhnnnK dS |

≤ Cy

∑
e

[
h
− 1

2
s ‖ JζζζK ‖L4(∂Ωe)‖ ζζζ ‖L4(∂Ωe)

(
h−1

s ‖ JδMMMhnnnK ‖2L2(∂Ωe)

) 1
2

]

≤ Cyh
− 1

2
s

(∑
e

‖ JζζζK ‖4
L4(∂Ωe)

) 1
4
(∑

e

‖ ζζζ ‖4
L4(∂Ωe)

) 1
4
(∑

e

h−1
s ‖ JδMMMhnnnK ‖2L2(∂Ωe)

) 1
2

≤ Cyh
− 1

2
s Ckh

1
4
s σh

− 3
4

s σ

(∑
e

h−1
s ‖ JδMMMhnnnK ‖2L2(∂Ωe)

) 1
2

≤ CkCy ‖MMMe ‖Hs(Ωh) hµ−2−ε
s σ

(∑
e

h−1
s ‖ JδMMMhnnnK ‖2L2(∂Ωe)

) 1
2

≤ CkCyCMh
1
2
−ε

s σ

(∑
e

h−1
s ‖ JδMMMhnnnK ‖2L2(∂Ωe)

) 1
2

if k ≥ 2.

(C.116)
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Combining all the terms of N (MMMe,yyy; δMMMh), Eqs. (C.110, C.114, C.115, C.116), yields
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 .
(C.117)

C.9 The bound of N used for L2-norm convergence rate deriva-
tion

The purpose of this section is to derive the bound of the nonlinear term N , which is
needed for the error estimation in the L2-norm.

C.9.1 Intermediate bounds for the L2-norm

The bounds of some terms, which will be used in the following analysis, are first estab-
lished in this Appendix.

First the term ‖ ζζζ ‖L2(Ωe) is bounded by using its decomposition ζζζ = ηηη + ξξξ, where
ηηη = MMMe − IhMMM and ξξξ = IhMMM−MMMh, which gives

∑
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)
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Using the interpolation inequality (2.14), leads to∑
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An application of the definition of the norm (2.12), Eq. (4.155), and Lemma 2.4.6, Eq.
(2.23), gives ∑

e

‖ ξξξ ‖2
L2(Ωe)

≤ C2
P |‖ ξξξ ‖|21≤ C2

PCk′2 |‖ IhMMM−MMMe ‖|21

≤ C2
PCk′′2h2µ−2

s

∑
e

‖MMMe ‖2Hs(Ωe) .
(C.120)

Combining Eqs. (C.119, C.120) leads to∑
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(C.121)
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Similarly, one can get

∑
e

‖ ζζζ ‖4
L4(Ωe)

≤ 4

(∑
e

‖ ηηη ‖4
L4(Ωe)

+
∑

e

‖ ξξξ ‖4
L4(Ωe)

)
. (C.122)

Using the interpolation inequality (2.14) leads to
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Next, ‖ ξξξ ‖4
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is bounded by applying the inverse inequality (2.19), the definition of the

norm (2.12), and the a priori error estimate (4.155-4.156), which yields

∑
e

‖ ξξξ ‖4
L4(Ωe)

≤ Ck4

I

(
1

hs

)2∑
e

‖ ξξξ ‖4
L2(Ωe)

≤ Ck4

I

(
1

hs

)2

|‖ ξξξ ‖|41

≤ Ck4

I (Ck′)4h4µ−6
s ‖MMMe ‖4Hs(Ωh) .

(C.124)

Combining Eq. (C.123, C.124), gives for hs small enough∑
e

‖ ζζζ ‖4
L4(Ωe)

≤ 4
(

Ck4

D + Ck4

I (Ck′)4
)

h4µ−6
s ‖MMMe ‖4Hs(Ωh)≤ (Ck′′)4h4µ−6

s ‖MMMe ‖4Hs(Ωh) .

(C.125)

By the same way
∑

e ‖ ∇ζζζ ‖2L2(Ωe)
can be estimated by applying the interpolation

inequality, Eq. (2.14), the definition of the norm (2.12), the a priori error estimate (4.155-
4.156), as

∑
e

‖ ∇ζζζ ‖2
L2(Ωe)

≤ 2

(∑
e

‖ ∇ηηη ‖2
L2(Ωe)

+
∑

e

‖ ∇ξξξ ‖2
L2(Ωe)

)

≤ 2

(
Ck2

D h2µ−2
s

∑
e

‖MMMh ‖2Hs(Ωe) +(Ck′)2 |‖ IhMMM−MMMe ‖|21

)

≤ 2

(
Ck2

D h2µ−2
s

∑
e

‖MMMe ‖2
H

5
2 (Ωe)

+(Ck′)2h2µ−2
s

∑
e

‖MMMe ‖2Hs(Ωe)

)
≤ (Ck′′)2h2µ−2

s

∑
e

‖MMMe ‖2Hs(Ωe) .

(C.126)

Then, using the trace inequality (2.16) yields

‖ ηηη ‖4
L4(∂Ωe)

≤ CT

(
h−1

s ‖ ηηη ‖4
L4(Ωe)

+ ‖ ηηη ‖3
L6(Ωe)

‖ ∇ηηη ‖L2(Ωe)

)
. (C.127)

Calling the interpolation inequality (2.14) gives

‖ ηηη ‖4
W0

4(Ωe)
≤ Ck4

D h
4(µ− 1

2
)

s ‖MMMe ‖4Hs(Ωe), and (C.128)

‖ ηηη ‖3
W0

6(Ωe)
≤ Ck3

D h
3(µ− 2

3
)

s ‖MMMe ‖3Hs(Ωe) . (C.129)
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Also by the use of the interpolation inequality (2.13), one has

‖ ∇ηηη ‖L2(Ωe)≤‖ ηηη ‖H1(Ωe)≤ Ck
Dhµ−1

s ‖MMMe ‖Hs(Ωe) . (C.130)

Combining the last three equations results into

‖ ηηη ‖L4(∂Ωe)≤ C
1
4
T Ck
Dh

µ− 3
4

s ‖MMMe ‖Hs(Ωe) . (C.131)

Likewise, the bound of ‖ ∇∇∇η ‖4
L4(∂Ωe)

is obtained by applying the trace inequality (2.16) and

the interpolation inequality (2.14), leading to

‖ ∇∇∇η ‖4
L4(∂Ωe)

≤ CT

(
h−1

s ‖ ∇∇∇η ‖4
L4(Ωe)

+ ‖ ∇∇∇η ‖3
L6(Ωe)

‖ ∇2ηηη ‖L2(Ωe)

)
, (C.132)

with

‖ ηηη ‖4
W1

4(Ωe)
≤ Ck4

D h
4(µ− 3

2
)

s ‖MMMe ‖4Hs(Ωe), (C.133)

‖ ηηη ‖3
W1

6(Ωe)
≤ Ck3

D h
3(µ− 5

3
)

s ‖MMMe ‖3Hs(Ωe), (C.134)

‖ ∇2ηηη ‖L2(Ωe)≤‖ ηηη ‖W2
2(Ωe)≤ Ck

Dhµ−2
s ‖MMMe ‖Hs(Ωe) . (C.135)

Combining the last three equation gives

‖ ∇ηηη ‖L4(∂Ωe)≤ C
1
4
T Ck
Dh

µ− 7
4

s ‖MMMe ‖Hs(Ωe) . (C.136)

Next, the bound of ‖ ξξξ ‖L4(∂Ωe) is estimated by applying the trace inequality (2.16) and the
inverse inequalities (2.19, 2.21), leading to

‖ ξξξ ‖4
L4(∂Ωe)

≤ CT

(
h−1

s ‖ ξξξ ‖4
L4(Ωe)

+ ‖ ξξξ ‖3
L6(Ωe)

‖ ∇ξξξ ‖L2(Ωe)

)
, (C.137)

with

‖ ξξξ ‖4
L4(Ωe)

≤ Ck4

I h−2
s ‖ ξξξ ‖4

L2(Ωe)
, (C.138)

‖ ξξξ ‖3
L6(Ωe)

≤ Ck3

I h−2
s ‖ ξξξ ‖3

L2(Ωe)
, (C.139)

‖ ∇ξξξ ‖L2(Ωe)≤ Ck
Ih
−1
s ‖ ξξξ ‖L2(Ωe) . (C.140)

Combining the last three equations, then applying the definition of the norm (2.12), the a
priori error estimate (4.155-4.156), result into∑

e

‖ ξξξ ‖4
L4(∂Ωe)

≤ CT Ck4

I h−3
s

∑
e

‖ ξξξ ‖4
L2(Ωe)

≤ CT Ck4

I C4
Ph−3

s |‖ ξξξ ‖|41

≤ CT Ck4

I C4
P(Ck′)4h−3

s |‖ IhMMM−MMMe ‖|41
≤ CT Ck4

I C4
P(Ck′)4h4µ−7

s ‖MMMe ‖4Hs(Ωh)

≤ Ck′′4h4µ−7
s ‖MMMe ‖4Hs(Ωh) .

(C.141)
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Then, using the inverse inequality (2.20), Lemma 2.4.3, Eq. (2.18), the definition of the
norm, Eq. (2.12), and the a priori error estimate (4.155-4.156), yields∑

e

‖ ∇ξξξ ‖4
L4(∂Ωe)

≤ Ck4

I h−1
s

∑
e

‖ ∇ξξξ ‖4
L2(∂Ωe)

≤ Ck4

I Ck4

K h−3
s

∑
e

‖ ∇ξξξ ‖4
L2(Ωe)

≤ Ck4

I Ck4

K h−3
s |‖ ξξξ ‖|41≤ (Ck′)4Ck4

I Ck4

K h−3
s |‖ IhMMM−MMMe ‖|41

≤ (Ck′)4Ck4

I Ck4

K h4µ−7
s ‖MMMe ‖4Hs(Ωh) .

(C.142)

Using these last result, ‖ ζζζ ‖L4(∂Ωe) can be bounded by the dominant of its component
as ∑

e

‖ ζζζ ‖4
L4(∂Ωe)

≤ 4(CT Ck4

D h4µ−3
s + CT Ck4

I C4
P(Ck′)4h4µ−7

s ) ‖MMMe ‖4Hs(Ωh)

≤ (Ck′′)4h4µ−7
s ‖MMMe ‖4Hs(Ωh),

(C.143)

and similarly for the bound of ‖ ∇ζζζ ‖L4(∂Ωe) by∑
e

‖ ∇ζζζ ‖4
L4(∂Ωe)

≤ 4(CT Ck4

D + (Ck′)4Ck4

I Ck4

K )h4µ−7
s ‖MMMe ‖4Hs(Ωh))

≤ (Ck′′)4h4µ−7
s ‖MMMe ‖4Hs(Ωh) .

(C.144)

Now the bound of ‖ JζζζK ‖4
L4(∂Ωe)

can be computed as

∑
e

‖ JζζζK ‖4
L4(∂Ωe)

≤ 4

(∑
e

‖ JηηηK ‖4
L4(∂Ωe)

+
∑

e

‖ JξξξK ‖4
L4(∂Ωe)

)
. (C.145)

Using Eq. (C.131), we have∑
e

‖ JηηηK ‖4
L4(∂Ωe)

≤ 2
∑

e

‖ ηηη ‖4
L4(∂Ωe)

≤ CT Ck4

D h4µ−3
s ‖MMMe ‖4Hs(Ωe) . (C.146)

Then, applying the inverse inequality (2.20), the definition of the norm (2.12), and and the
a priori error estimate (4.155-4.156), yields∑

e

‖ JξξξK ‖4
L4(∂Ωe)

≤ Ck4

I h−1
s

∑
e

‖ JξξξK ‖4
L2(∂Ωe)

≤ Ck4

I hs

∑
e

‖ h
− 1

2
s JξξξK ‖4

L2(∂Ωe)

≤ Ck4

I hs |‖ ξξξ |‖41≤ Ck4

I hs |‖ IhMMM−MMMe ‖|41
≤ Ck4

I (Ck′)4h4µ−3
s ‖MMMe ‖4Hs(Ωh) .

(C.147)

Combining Eqs. (C.146) and (C.147), gives∑
e

‖ JζζζK ‖4
L4(∂Ωe)

≤ (Ck′′)4h4µ−3
s ‖MMMe ‖4Hs(Ωh) . (C.148)

Finally, by the use of the inverse inequality (2.19), we directly deduce

‖ Ihψψψ ‖L4(Ωe) ≤ Ck
Ih
− 1

2
s ‖ Ihψψψ ‖L2(Ωe), (C.149)
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‖ ∇Ihψψψ ‖L4(Ωe) ≤ Ck
Ih
− 1

2
s ‖ ∇Ihψψψ ‖L2(Ωe), (C.150)

which implies | Ihψψψ |W1
4(Ωe) ≤ Ck

Ih
− 1

2
s | Ihψψψ |H1(Ωe),

‖ Ihψψψ ‖W1
4(Ωe) ≤ Ck

Ih
− 1

2
s ‖ Ihψψψ ‖H1(Ωe) .

(C.151)

C.9.2 Bound of N (MMMe,MMMh; Ihψψψ)

The first term of N (MMMe,MMMh; Ihψψψ), developed in Eq. (4.101), can now be expanded using
Eq. (4.91) as

I1 =

∫
Ωh

∇Ihψψψ
TR̄RRjjj(ζζζ,∇ζζζ)dΩ =

∑
e

∫
Ωe

∇Ihψψψ
T(ζζζTj̄jjMMMMMM(MMMh,∇MMMh)ζζζ)dΩ

+ 2
∑

e

∫
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∇Ihψψψ
T
(
ζζζTj̄jjMMM∇MMM(MMMh)∇ζζζ

)
dΩ

= I11 + I12,

(C.152)

with ζζζ = MMMe −MMMh.

The first term of the right hand side of Eq. (C.152) is bounded using the generalized
Hölder’s inequality (2.25), the generalized Cauchy Schwartz’ inequality (2.27), the definition
of Cy in Eq. (4.93), and Eqs. (C.121, C.125, C.151)

| I11 | =|
∑

e

∫
Ωe

∇Ihψψψ
T
(
ζζζTj̄jjMMMMMM(MMMh,∇MMMh)ζζζ
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) 1
4
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) 1
2
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) 1
4

≤ Ck′′Cy ‖MMMe ‖2Hs(Ωh) h2µ−3
s | Ihψψψ |H1(Ωh) .

(C.153)

For the second term of the right hand side of Eq. (C.152), the generalized Hölder’s inequality
(2.25), the generalized Cauchy Schwartz’ inequality (2.27), and Eqs. (C.125, C.126, C.150),
imply that

| I12 | =|
∑

e

∫
Ωe
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) 1
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4

≤ Ck′′Cy ‖MMMe ‖2Hs(Ωh) h2µ−3
s | Ihψψψ |H1(Ωh) .

(C.154)
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Combining the above results, we have that

| I1 | ≤ Ck′′Cy ‖MMMe ‖2Hs(Ωh) h2µ−3
s ‖ Ihψψψ ‖H1(Ωh) . (C.155)

The second term of Eq. (4.101) can be expanded by the use of Eq. (4.91) as:

I2 =

∫
∂IΩh∪∂DΩh

q
Ihψψψ

T
nnn

y 〈
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〉
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(C.156)

The first term of the right hand side of Eq. (C.156) is estimated by using the Hölder’s
inequality (2.25), the generalized Cauchy Schwartz’ inequality (2.27), the definition of Cy in
Eq. (4.93), and Eq. (C.143), leading to

| I21 | ≤
∑

e

|
∫
∂Ωe
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)
dS |

≤ Cy

∑
e

[
h

1
2
s ‖ ζζζ ‖2L4(∂Ωe)

(
h
− 1

2
s ‖

q
Ihψψψ

T
nnn

y
‖L2(∂Ωe)

)]

≤ Ck′′Cy ‖MMMe ‖2Hs(Ωh) h
1
2
s h

2µ− 7
2

s

(∑
e

h−1
s ‖ JIhψψψnnnK ‖2

L2(∂Ωe)

) 1
2

≤ Ck′′Cy ‖MMMe ‖2Hs(Ωh) h2µ−3
s

(∑
e

h−1
s ‖ JIhψψψnnnK ‖2

L2(∂Ωe)

) 1
2
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(C.157)

Now, applying the Hölder’s inequality (2.25), the generalized Cauchy Schwartz’ inequality
(2.27), Eq. (4.93), and Eqs. (C.143, C.144), the second term of the right hand side of Eq.
(C.156) is bounded by

| I22 |≤
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| 2
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(C.158)
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By combining Eqs. (C.157) and Eq. (C.158), we have

| I2 | ≤ Ck′′Cy ‖MMMe ‖2Hs(Ωh) h2µ−3
s

(∑
e

h−1
s ‖ JIhψψψnnnK ‖2

L2(∂Ωe)

) 1
2

. (C.159)

Furthermore, for the third term of N (MMMe,MMMh; Ihψψψ), Eq. (4.101), employing Taylor series,
Eqs. (4.89-4.91), the generalized Hölder’s inequality (2.25), the generalized Cauchy Schwartz
(2.27), the definition of Cy in Eq. (4.93), and Eqs. (C.143, C.148), leads to
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2
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(C.160)

Likewise, the fourth term of N (MMMe,MMMh; Ihψψψ), Eq. (4.101) is bounded using Taylor se-
ries, Eqs. (4.89-4.91), the generalized Hölder’s inequality, the generalized Cauchy Schwartz’
inequality (2.27), the definition of Cy in Eq. (4.93) and Eqs. (C.143, C.148) as
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(C.161)

By combining all the terms of N (MMMe,MMMh; Ihψψψ), Eqs. (C.155, C.159, C.160, C.161), we
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have

| N (MMMe,MMMh; Ihψψψ) | ≤ Ck′′Cy ‖MMMe ‖2Hs(Ωh) h2µ−3
s

| Ihψψψ |H1(Ωh) +

(∑
e

hs | Ihψψψ |2H1(∂Ωe)

) 1
2

+

(∑
e

h−1
s ‖ JIhψψψnnnK ‖2

L2(∂Ωe)

) 1
2

 .
(C.162)

Moreover, using the definition of the energy norm Eq. (2.12), there exists a positive constant
independent of hs, such that

| N (MMMe,MMMh; Ihψψψ) | ≤ Ck′′Cy ‖MMMe ‖2Hs(Ωh) hs
2µ−3 |‖ Ihψψψ ‖|1, (C.163)

or again using Eq. (2.22)

| N (MMMe,MMMh; Ihψψψ) | ≤ Ck′′Cy ‖MMMe ‖2Hs(Ωh) hs
2µ−3 |‖ Ihψψψ ‖| . (C.164)





Appendix D

Annexes related to chapter 5

D.1 Stiffness matrix for Electro-Thermo-Mechanical coupling

The stiffness matrix, has been decomposed into nine sub-matrices with respect to the
discretization of the five independent fields variables (3 for displacement uuu, one for fV and
one for fT).

D.1.1 Expression of the force derivations

First KKKuuuuuu is the derivative of the displacement contributions with respect to uuu, is obtained
from Eq. (5.65)

∂FFFa
uuuint

∂uuub
=
∑

e

∫
Ωe

0

∂PPP

∂uuub
· ∇0Na

uuudΩ0

=
∑

e

∫
Ωe

0

∇0Na
uuu ·2 CCC ·4 ∇0Nb

uuudΩ0,

(D.1)

where CCC =
∂PPP

∂FFF
, and ·2 and ·4 mean to apply the contraction on the second and forth

component of CCC.

Similarly, for the interface contribution1, from Eq. (5.67, 5.68 and 5.69) one can get

∂FFFa±
uuuI1

∂uuub± =
1

2

∑
s

∫
(∂IΩ0)s

(±Na±
uuu )NNN− ·2 CCC± ·4 ∇0Nb±

uuu dS0, (D.2)

∂FFFa±
uuuI2

∂uuub± =
1

2

∑
s

∫
(∂IΩ0)s

(±Nb±
uuu )NNN− ·2HHH± ·4 ∇0Na±

uuu dS0, (D.3)

∂FFFa±
uuuI3

∂uuub± =
∑

s

∫
(∂IΩ0)s

(±Nb±
uuu )NNN− ·2

〈
HHHB
hs

〉
·4 NNN−(±Na±

uuu )dS0. (D.4)

1The contributions on ∂DΩh can be directly deduced by removing the factor (1/2) accordingly to the
definition of the average flux on the Dirichlet boundary.
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Then stiffness matrix KKKuuufV corresponding to the forces for the mechanical part with respect
to fV and reads

∂FFFa
uuuint

∂fbV
=
∑

e

∫
Ωe

0

∇0Na
uuu ·

∂PPP

∂fV
Nb

fV
dΩ0, (D.5)

∂FFFa±
uuuI1

∂fb±V
=

1

2

∑
s

∫
(∂IΩ0)s

(±Na±
uuu )

∂PPP±

∂f±V
·NNN−Nb±

fV
dS0. (D.6)

The stiffness matrix corresponding to the forces for the mechanical part with respect to fT
is KKKuuufT

2 and reads

∂FFFa
uuuint

∂fbT
=
∑

e

∫
Ωe

0

∇0Na
uuu ·

∂PPP

∂fT
Nb

fT
dΩ0, (D.7)

∂FFFa±
uuuI1

∂fb±T
=

1

2

∑
s

∫
(∂IΩ0)s

(±Na±
uuu )

∂PPP±

∂f±T
·NNN−Nb±

fT
dS0. (D.8)

Secondly, the derivative of the electrical contributions with respect to the displacement
uuu is KKKfVuuu and derives from Eqs. (5.70, 5.71)

∂Fa
fVext

∂uuub
= −

∑
s

∫
(∂DΩ0)s

f̄VNNN ·
(
∂LLL1(FFFh, f̄T)

∂FFFb
· ∇0Nb

uuu

)
· ∇0Na

fV
dS0

−
∑

s

∫
(∂DΩ0)s

f̄TNNN ·
(
∂LLL2(FFFh, f̄V, f̄T)

∂FFFb
· ∇0Nb

uuu

)
· ∇0Na±

fV
dS0

+
∑

s

∫
(∂DΩ0)s

f̄VNNN ·
(
∂LLL1(FFFh, f̄T)

∂FFFb
· ∇0Nb

uuu

B
hs

)
·NNNNa

fV
dS0

+
∑

s

∫
(∂DΩ0)s

f̄TNNN ·
(
∂LLL2(FFFh, f̄V, f̄T)

∂FFFb
· ∇0Nb

uuu

B
hs

)
·NNNNa

fV
dS0,

(D.9)

∂Fa
fVint

∂uuub
=
∑

e

∫
Ωe

0

∇0Na
fV
· ∂JJJe

∂FFF
· ∇0Nb

uuudΩ0, (D.10)

and then using Eqs. (5.73, 5.74, and 5.75), we have

∂Fa±
fVI1

∂uuub± =
1

2

∑
s

∫
(∂IΩ0)s

(±Na±
fV

)
∂JJJ±e
∂FFF±

· ∇0Nb±
uuu ·NNN−dS0, (D.11)

2There is one more additional term in
∂FFFa±

uuuI1

∂fb±T
on the Dirichlet boundary, which is

∑
s

∫
(∂DΩ0)s

(Na
uuu)

(
2
αααth :HHH

f2T
Nb

fT

)
·NNN−dS0.
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∂Fa±
fVI2

∂uuub± =
1

2

∑
s

∫
(∂IΩ0)s

JfVh
K (∇0Na±

fV
· ∂LLL±1
∂FFF±

· ∇0Nb±
uuu ) ·NNN−dS0

+
1

2

∑
s

∫
(∂IΩ0)s

JfTh
K (∇0Na±

fV
· ∂LLL±2
∂FFF±

· ∇0Nb±
uuu ) ·NNN−dS0,

(D.12)

∂Fa±
fVI3

∂uuub± =
1

2

∑
s

∫
(∂IΩ0)s

JfVh
KNNN− ·

(
∂LLL±1
∂FFF±

B
hs
· ∇0Nb±

uuu

)
·NNN−(±Na±

fV
)dS0

+
1

2

∑
s

∫
(∂IΩ0)s

(±Na±
fV

)NNN− ·
(
∂LLL±2
∂FFF±

B
hs
· ∇0Nb±

uuu

)
·NNN− JfTh

K dS0.

(D.13)

Moreover, the derivative of the electrical contributions with respect to fV is KKKfVfV , and from
Eq. (5.71), we have for the volume term

∂Fa
fVint

∂fbV
=
∑

e

∫
Ωe

0

∂JJJe

∂fV
· ∇0Na

fV
Nb

fV
dΩ0 +

∑
e

∫
Ωe

0

∇0Na
fV
· ∂JJJe

∂∇0fV
· ∇0Nb

fV
dΩ0, (D.14)

and for the interface terms, by calling Eqs. (5.73, 5.74, and 5.75), we have

∂Fa±
fVI1

∂fb±V
=

1

2

∑
s

∫
(∂IΩ0)s

(±Na±
fV

)
∂JJJ±e
∂f±V
·NNN−Nb±

fV
dS0

+
1

2

∑
s

∫
(∂IΩ0)s

(±Na±
fV

)NNN− · ∂JJJ±e
∂∇0f±V

· ∇0Nb±
fV

dS0,

(D.15)

∂Fa±
fVI2

∂fb±V
=

1

2

∑
s

∫
(∂IΩ0)s

(±Nb±
fV

)
(
LLL±1 · ∇0Na±

fV

)
·NNN−dS0

+
1

2

∑
s

∫
(∂IΩ0)s

JfTh
K
(
∂LLL±2
∂f±V

· ∇0Na±
fV

Nb±
fV

)
·NNN−dS0,

(D.16)

∂Fa±
fVI3

∂fb±V
=
∑

s

∫
(∂IΩ0)s

(±Na±
fV

)NNN− ·
〈

LLL1B
hs

〉
·NNN−(±Nb±

fV
)dS0

+
∑

s

∫
(∂IΩ0)s

(±Na±
fV

)NNN− ·
〈
∂LLL2

∂f±V

B
hs

〉
·NNN−Nb±

fV
JfTh

K dS0.

(D.17)

Similarly, the derivatives of the forces for the electrical contribution with respect to fT give
KKKfVfT and read

∂Fa
fVint

∂fbT
=
∑

e

∫
Ωe

0

∂JJJe

∂fT
· ∇0Na

fV
Nb

fT
dΩ0 +

∑
e

∫
Ωe

0

∇0Na
fV
· ∂JJJe

∂∇0fT
· ∇0Nb

fT
dΩ0, (D.18)

then for the interface terms by recalling Eqs. (5.73, 5.74, and 5.75), one can get

∂Fa±
fVI1

∂fb±T
=

1

2

∑
s

∫
(∂IΩ0)s

(±Na±
fV

)
∂JJJ±e
∂fT
·NNN−Nb±

fT
dS0

+
1

2

∑
s

∫
(∂IΩ0)s

(±Na±
fV

)NNN− · ∂JJJ±e
∂∇0f±T

· ∇0Nb±
fT

dS0,

(D.19)
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∂Fa±
fVI2

∂fb±T
=

1

2

∑
s

∫
(∂IΩ0)s

JfVh
K (
∂LLL±1
∂f±T

· ∇0Na±
fV

Nb±
fT

) ·NNN−dS0

+
1

2

∑
s

∫
(∂IΩ0)s

JfTh
K (
∂LLL±2
∂f±T

· ∇0Na±
fV

Nb±
fT

) ·NNN−dS0

+
1

2

∑
s

∫
(∂IΩ0)s

(±Nb±
fT

)(LLL±2 · ∇0Na±
fV

) ·NNN−dS0,

(D.20)

∂Fa±
fVI3

∂fb±T
=

1

2

∑
s

∫
(∂IΩ0)s

JfVh
KNNN− · ∂LLL±1

∂f±T

B
hs
·NNN−Nb±

fT
(±Na±

fV
)dS0

+
∑

s

∫
(∂IΩ0)s

(±Na±
fV

)NNN− ·
〈

LLL2B
hs

〉
·NNN−(±Nb±

fT
)dS0

+
1

2

∑
s

∫
(∂IΩ0)s

(±Na±
fV

)NNN− · ∂LLL±2
∂f±T

B
hs
·NNN−Nb±

fT
JfTh

K dS0.

(D.21)

The derivative of the thermal contributions with respect to the displacement uuu is KKKfTuuu,
and is obtained from Eq. (5.76, 5.77)

∂Fa
fText

∂uuub
= −

∑
s

∫
(∂DΩ0)s

f̄TNNN ·
(
∂JJJy1(FFFh, f̄V, f̄T)

∂FFFb
· ∇0Nb

uuu

)
· ∇0Na

fT
dS0

−
∑

s

∫
(∂DΩ0)s

f̄VNNN ·
(
∂LLL2(FFFh, f̄V, f̄T)

∂FFFb
· ∇0Nb

uuu

)
· ∇0Na

fT
dS0

+
∑

s

∫
(∂DΩ0)s

f̄TNNN ·
(
∂JJJy1(FFFh, f̄V, f̄T)

∂FFFb
· ∇0Nb

uuu

)
B
hs
·NNNNa

fT
dS0

+
∑

s

∫
(∂DΩ0)s

f̄VNNN ·
(
∂LLL2(FFFh, f̄V, f̄T)

∂FFFb
· ∇0Nb

uuu

)
B
hs
·NNNNa

fT
dS0,

(D.22)

∂Fa
fTint

∂uuub
=
∑

e

∫
Ωe

0

∇0Na
fT
· ∂JJJy

∂FFF
· ∇0Nb

uuudΩ0 +
∑

e

∫
Ωe

0

∂F̄

∂FFF
· ∇0Nb

uuuNa
fT

dΩ0, (D.23)

and from Eqs. (5.79, 5.80, and 5.81)

∂Fa
fTI1

∂uuub± =
1

2

∑
s

∫
(∂IΩ0)s

(±Na±
fT

)NNN− ·
∂JJJ±y
∂FFF±

· ∇0Nb±
uuu dS0, (D.24)

∂Fa±
fTI2

∂uuub± =
1

2

∑
s

∫
(∂IΩ0)s

JfTh
K

(
∇0Na±

fT
·

JJJ±y1

∂FFF±
· ∇0Nb±

uuu

)
·NNN−dS0

+
1

2

∑
s

∫
(∂IΩ0)s

JfVh
K
(
∇0Na±

fT
· ∂LLL±2
∂FFF±

· ∇0Nb±
uuu

)
·NNN−dS0,

(D.25)

∂Fa±
fTI3

∂uuub± = +
1

2

∑
s

∫
(∂IΩ0)s

(±Na±
fT

)NNN− ·

(
∂JJJ±y1

∂FFF±
B
hs
· ∇0Nb±

uuu

)
·NNN− JfTh

K dS0

+
1

2

∑
s

∫
(∂IΩ0)s

JfVh
KNNN− ·

(
∂LLL±2
∂FFF±

B
hs
· ∇0Nb±

uuu

)
·NNN−(±Na±

fT
)dS0.

(D.26)
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The derivatives of the thermal contributions with respect to fT is KKKfTfT read, for the volume
term Eq. (5.77)

∂Fa
fTint

∂fbT
=
∑

e

∫
Ωe

0

∂JJJy

∂fT
· ∇0Na

fT
Nb

fT
dΩ0 +

∑
e

∫
Ωe

0

∇0Na
fT
· ∂JJJy

∂∇0fT
· ∇0Nb

fT
dΩ0

−
∑

e

∫
Ωe

0

ρ0
∂ty

∂fT
Nb

fT
Na

fT
dΩ0 +

∑
e

∫
Ωe

0

∂F̄

∂fT
Nb

fT
Na

fT
dΩ0,

(D.27)

and the derivatives of the interface forces are computed by calling Eqs. (5.79, 5.80, and
5.81)

∂Fa±
fTI1

∂fb±T
=

1

2

∑
s

∫
(∂IΩ0)s

(±Na±
fT

)
∂JJJy

±

∂f±T
·NNN−Nb±

fT
dS0

+
γ

2

∑
s

∫
(∂IΩ0)s

(±Na±
fT

)

(
∂JJJy

±

∂∇0f±T
· ∇0Nb±

fT

)
·NNN−dS0,

(D.28)

∂Fa±
fTI2

∂fb±T
=

1

2

∑
s

∫
(∂IΩ0)s

(±Nb±
fT

)
(
JJJ±y1 · ∇0Na±

fT

)
·NNN−dS0

+
1

2

∑
s

∫
(∂IΩ0)s

JfTh
K

(
JJJ±y1

∂f±T
· ∇0Na±

fT
Nb±

fT

)
·NNN−dS0

+
1

2

∑
s

∫
(∂IΩ0)s

JfVh
K
(
∂LLL±2
∂f±T

· ∇0Na±
fT

Nb±
fT

)
·NNN−dS0,

(D.29)

and

∂Fa±
fTI3

∂fb±T
=
∑

s

∫
(∂IΩ0)s

(±Na±
fT

)NNN− ·
〈

JJJy1B
hs

〉
·NNN−(±Nb±

fT
)dS0

+
1

2

∑
s

∫
(∂IΩ0)s

(±Na±
fT

)NNN− ·
∂JJJ±y1

∂f±T

B
hs
·NNN−Nb±

fT
JfTh

K dS0

+
1

2

∑
s

∫
(∂IΩ0)s

JfVh
KNNN− · ∂LLL±2

∂f±T

B
hs
·NNN−Nb±

fT
(±Na±

fT
)dS0.

(D.30)

The last part is the derivative of the thermal forces contribution with respect to fV is KKKfTfV

∂Fa
fTint

∂fbV
=
∑

e

∫
Ωe

0

∂JJJy

∂fV
· ∇0Na

fT
Nb

fV
dΩ0 +

∑
e

∫
Ωe

0

∇0Na
fT
· ∂JJJy

∂∇0fV
· ∇0Nb

fV
dΩ0

−
∑

e

∫
Ωe

0

ρ0
∂ty

∂fV
Nb

fV
Na

fT
dΩ0,

(D.31)

and the derivatives of the interface forces are computed by recalling Eqs. (5.79, 5.80 and
5.81)

∂Fa±
fTI1

∂fb±V
=

1

2

∑
s

∫
(∂IΩ0)s

(±Na±
fT

)
∂JJJ±y

∂f±V
·NNN−Nb±

fV
dS0

+
1

2

∑
s

∫
(∂IΩ0)s

(±Na±
fT

)NNN− ·
∂JJJ±y

∂∇0f±V
· ∇0Nb±

fV
dS0,

(D.32)
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∂Fa±
fTI2

∂fb±V
=

1

2

∑
s

∫
(∂IΩ0)s

JfTh
K (
∂JJJ±y1

∂f±V
· ∇0Na±

fT
Nb±

fV
) ·NNN−dS0

+
1

2

∑
s

∫
(∂IΩ0)s

(±Nb±

fV
)(LLL±2 · ∇0Na±

fT
) ·NNN−dS0

+
1

2

∑
s

∫
(∂IΩ0)s

JfVh
K (
∂LLL±2
∂f±V

· ∇0Na±
fT

Nb±
fV

) ·NNN−dS0,

(D.33)

∂Fa±
fTI3

∂fb±V
=

1

2

∑
s

∫
(∂IΩ0)s

JfTh
KNNN− ·

∂JJJ±y1

∂f±V

B
hs
·NNN−Nb±

fV
(±Na

fT
)dS0

+
∑

s

∫
(∂IΩ0)s

(±Nb±
fV

)NNN− ·
〈

LLL2B
hs

〉
·NNN−(±Na±

fT
)dS0

+
1

2

∑
s

∫
(∂IΩ0)s

JfVh
KNNN− · ∂LLL±2

∂f±V

B
hs
·NNN−Nb±

fV
(±Na±

fT
)dS0.

(D.34)

D.1.2 Expression of the constitutive law derivations

The derivative of first Piola-Kirchhoff with respect to the deformation gradient
∂PPP

∂FFF
and

to the temperature
∂PPP

∂T
are given in Appendix E.1 and E.2, then

∂PPP

∂fT
is computed as follows

∂PPP

∂fT
=
∂PPP

∂T

∂T

∂fT
+
∂PPP

∂V

∂V

∂fT
. (D.35)

where ∂T
∂fT

= −1
f2T

and ∂V
∂fT

= fV
f2T

. In our case
∂PPP

∂V
= 0 as the Electro-Mechanical coupling is

not considered.

The other derivatives related to the electrical and thermal contributions are give here.
First the derivative of the electrical current flow with respect to fV is obtained using (5.20)

∂JJJe

∂fV
=
∂LLL1

∂fV
· ∇0fT +

∂LLL2

∂fV
· ∇0fV, (D.36)

where the derivative of ∂LLL1
∂fV

and ∂LLL2
∂fV

are obtained using Eq. (5.17)

∂LLL1

∂fV
= 0, (D.37)

∂LLL2

∂fV
= − 1

f2T
LLL(FFF). (D.38)

The derivative of the electrical current flow with respect to fT is computed from (5.20)

∂JJJe

∂fT
=
∂LLL1

∂fT
· ∇0fT +

∂LLL2

∂fT
· ∇0fV, (D.39)
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where ∂LLL1
∂fT

and ∂LLL2
∂fT

are computed by recalling Eq. (5.17)

∂LLL1

∂fT
= − 1

f2T
LLL(FFF), (D.40)

∂LLL2

∂fT
= 2

fV

f3T
LLL(FFF)− 2α

1

f3T
LLL(FFF). (D.41)

The derivative with respect to the gradient of fv and fT are

∂JJJe

∂∇0fV
= LLL1(FFF),

∂JJJe

∂∇0fT
= LLL2(FFF). (D.42)

The derivative of energy flux with respect to fT is obtained from:

∂JJJy

∂fT
=
∂JJJy1

∂fT
· ∇0fT +

∂LLL2

∂fT
· ∇0fV, (D.43)

where
∂JJJy1

∂fT
is computed from Eq. (5.17) as

∂JJJy1

∂fT
= − 2

f3T
KKK(FFF) + 6α

fV

f4T
LLL(FFF)− α2 3

f4T
LLL(FFF)− 3f2V

f4T
LLL(FFF), (D.44)

Moreover

∂JJJy

∂fV
=
∂JJJy1

∂fV
· ∇0fT +

∂LLL2

∂fV
· ∇0fV, (D.45)

where using Eq. (5.17), we have

∂JJJy1

∂fV
= −2α

1

f3T
LLL(FFF) +

2fV

f3T
LLL(FFF). (D.46)

The derivative of energy flux with respect to the gradient of fT and fV are

∂JJJy

∂∇0fT
= JJJy1

,
∂JJJy

∂∇0fv
= LLL2. (D.47)

The derivative of the electric current flow with respect to the deformation gradient is obtained
from Eq. (5.20)

∂JJJe

∂FFF
=
∂LLL1

∂FFF
· ∇0fV +

∂LLL2

∂FFF
· ∇0fT, (D.48)

where
∂LLL1

∂FFF
=

1

fT

∂LLL(FFF)

∂FFF
, (D.49)

and
∂LLL2

∂FFF
= (− fV

f2T
+ α

1

f2T
)
∂LLL(FFF)

∂FFF
. (D.50)
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According to the definition of LLL(FFF) in Eq. (5.5), its derivative with respect to the deformation
gradient is

∂LLLKL

∂FFFNm
= −FFF−1

KmLLLNL −LLLKNFFF−1
Lm + LLLKLFFF−1

Nm. (D.51)

Similarly, we have

∂JJJy

∂FFF
=
∂JJJy1

∂FFF
· ∇0fT +

∂LLL2

∂FFF
· ∇0fV, (D.52)

where

∂JJJy1

∂FFF
=

1

f2T

∂KKK(FFF)

∂FFF
+ (−2α

fV

f3T
+ α2 1

f3T
+

f2V
f3T

)
∂LLL

∂FFF
, (D.53)

where
∂LLL

∂FFF
is already computed in Eq. (D.51), while

∂KKK

∂FFF
can be computed using Eq. (5.12)

as

∂KKKKL

∂FFFNm
= −FFF−1

KmKKKNL −KKKKNFFF−1
Lm + KKKKLFFF−1

Nm. (D.54)

D.2 Lower bound for Electro-Thermo-Mechanical coupling

In order to prove Lemma 5.4.1, let us first use Eq. (5.115) and Eq. (5.116), yielding

A(GGGe; δGGGh, δGGGh) + B(GGGe; δGGGh, δGGGh)

=

∫
Ωh

(∇δGGGh)Twww∇GGG(GGGe)∇δGGGhdΩ +

∫
∂IΩh∪∂DΩh

q
δGGGT

hnnn

y
〈www∇GGG(GGGe)∇δGGGh〉dS

+

∫
∂IΩh∪∂DΩh

q
δGGGT

hnnn

y
〈www∇GGG(GGGe)∇δGGGh〉 dS

+

∫
∂IΩh∪∂DΩh

q
δGGGT

hnnn

y〈 B
hs

www∇GGG(GGGe)

〉
JδGGGhnnnK dS

+

∫
Ωh

(∇δGGGh)TwwwGGG(GGGe,∇GGGe)δGGGhdΩ +

∫
∂IΩh∪∂DΩh

q
δGGGT

hnnn

y
〈wwwGGG(GGGe,∇GGGe)δGGGh〉 dS

+

∫
Ωh

δGGGT
h ddd∇GGG(GGGe)∇δGGGhdΩ +

∫
Ωh

δGGGT
h dddGGG(GGGe,∇GGGe)δGGGhdΩ

+

∫
∂IΩh∪∂DΩh

r
δGGGT

hnnn
dddT
∇GGG(GGGe)

z
〈δGGGh〉dS ∀δGGGh ∈ Xk.

(D.55)



D.2 Lower bound for Electro-Thermo-Mechanical coupling 205

This equation can be rewritten as

A(GGGe; δGGGh, δGGGh) + B(GGGe; δGGGh, δGGGh) =

∫
Ωh

(∇δGGGh)Twww∇GGG(GGGe)∇δGGGhdΩ

+

∫
Ωh

(∇δGGGh)TwwwGGG(GGGe,∇GGGe)δGGGhdΩ

+

∫
Ωh

(∇δGGGh)T
(
dddT
∇GGG(GGGe)δGGGh

)
dΩ

+

∫
Ωh

δGGGT
h dddGGG(GGGe,∇GGGe)δGGGhdΩ

+ 2

∫
∂IΩh∪∂DΩh

q
δGGGT

hnnn

y
〈www∇GGG(GGGe)∇δGGGh〉dS

+

∫
∂IΩh∪∂DΩh

q
δGGGT

hnnn

y
〈wwwGGG(GGGe,∇GGGe)δGGGh〉 dS

+

∫
∂IΩh∪∂DΩh

q
δGGGT

hnnn

y〈 B
hs

www∇GGG(GGGe)

〉
JδGGGhnnnK dS

+

∫
∂IΩh∪∂DΩh

r
δGGGT

hnnn
dddT
∇GGG(GGGe)

z
〈δGGGh〉 dS.

(D.56)

By Eqs. (5.102) and (5.118), Eq. (D.56) gives

A(GGGe; δGGGh, δGGGh) + B(GGGe; δGGGh, δGGGh) ≥∑
e

Cα ‖ ∇δGGGh ‖2L2(Ωe)
+
∑

e

Cα ‖ δGGGh ‖2L2(Ωe)

− 2Cy

∑
e

‖ ∇δGGGh ‖L2(Ωe)‖ δGGGh ‖L2(Ωe)

− 2
∑

s

Cy|
∫

(∂DIΩ)s
JδGGGhnnnK 〈∇δGGGh〉dS|

− 2
∑

s

Cy|
∫

(∂DIΩ)s
JδGGGhnnnK 〈δGGGh〉dS|+

∑
s

Cα
B
hs
‖ JδGGGhnnnK ‖2L2((∂DIΩ)s)

,

(D.57)

where
∫
∂IΩh

+
∫
∂DΩh

=
∑

s

∫
(∂DIΩ)s .

The fourth and fifth terms of the right hand side in Eq. (D.57) can be estimated using
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Cauchy-Schwartz’ inequality, Eq. (2.26),

2Cy

∑
s

|
∫

(∂DIΩ)s
JδGGGhnnnK 〈∇δGGGh〉 dS | +2Cy

∑
s

|
∫

(∂DIΩ)s
JδGGGhnnnK 〈δGGGh〉dS |

≤ 2Cy

(∑
s

1

hs
‖ JδGGGhnnnK ‖2L2((∂DIΩ)s)

) 1
2
(∑

s

hs ‖ 〈∇δGGGh〉 ‖2L2((∂DIΩ)s)

) 1
2

+ 2Cy

(∑
s

1

hs
‖ JδGGGhnnnK ‖2L2((∂DIΩ)s)

) 1
2
(∑

s

hs ‖ 〈δGGGh〉 ‖2L2((∂DIΩ)s)

) 1
2

≤ 2Cy

(∑
s

1

hs
‖ JδGGGhnnnK ‖2L2((∂DIΩ)s)

) 1
2

(∑
s

hs ‖ 〈∇δGGGh〉 ‖2L2((∂DIΩ)s)

) 1
2

+

(∑
s

hs ‖ 〈δGGGh〉 ‖2L2((∂DIΩ)s)

) 1
2

 ,

(D.58)

where the term hs ‖ 〈∇δGGGh〉 ‖2L2((∂DIΩ)s)
can be bounded using the trace inequality on the

finite element space (2.18), with∑
s

hs ‖ 〈∇δGGGh〉 ‖2L2((∂DIΩ)s)
=

1

2

∑
e

hs ‖ 〈∇δGGGh〉 ‖2L2(∂IΩe)
+
∑

e

hs ‖ ∇δGGGh ‖2L2(∂DΩe)

≤
∑

e

hs ‖ ∇δGGGh ‖2L2(∂Ωe)
≤ Ck2

K
∑

e

‖ ∇δGGGh ‖2L2(Ωe)
.

(D.59)

Then using the trace inequality, Eq. (2.16), and inverse inequality, Eq. (2.21), we observe
that∑

s

hs ‖ 〈δGGGh〉 ‖2L2((∂DIΩ)s)
=

1

2

∑
e

hs ‖ 〈δGGGh〉 ‖2L2(∂IΩe)
+
∑

e

hs ‖ δGGGh ‖2L2(∂DΩe)

≤
∑

e

hs ‖ δGGGh ‖2L2(∂Ωe)

≤ CT
∑

e

(
‖ δGGGh ‖2L2(Ωe)

+hs ‖ δGGGh ‖L2(Ωe)‖ ∇δGGGh ‖L2(Ωe)

)
≤
∑

e

CT (Ck
I + 1) ‖ δGGGh ‖2L2(Ωe)

.

(D.60)

Therefore Eq. (D.58) is rewritten as

2Cy

∑
s

|
∫

(∂DIΩ)s
JδGGGhnnnK 〈∇δGGGh〉 dS|+ 2Cy

∑
s

|
∫

(∂DIΩ)s
JδGGGhnnnK 〈δGGGh〉 dS|

≤ Cy

(∑
s

1

hs
‖ JδGGGhnnnK ‖2L2((∂DIΩ)s)

) 1
2
(∑

e

max(4CT (Ck
I + 1), 4Ck2

K ) ‖ δGGGh ‖2H1(Ωe)

) 1
2

.

(D.61)
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Finally, by the use of the ξ-inequality –ξ > 0 : |ab| ≤ ξ
4a2+1

ξb2– with ξ = Cα
Cymax(4CT (Ck

I+1),4Ck2
K )

,

we arrive at

2Cy

∑
s

|
∫

(∂DIΩ)s
JδGGGhnnnK 〈∇δGGGh〉dS|+ 2Cy

∑
s

|
∫

(∂DIΩ)s
JδGGGhnnnK 〈δGGGh〉dS|

≤ Cα

4

∑
e

‖ δGGGh ‖2H1(Ωe)
+

C2
y

Cα
max(4CT (Ck

I + 1), 4Ck2

K )
∑

s

1

hs
‖ JδGGGhnnnK ‖2L2((∂DIΩ)s)

.

(D.62)

For the third term of the right hand side of Eq. (D.57), choosing ξ = 2Cα
Cy

and applying the
ξ-inequality, we find∑

e

2Cy ‖ ∇δGGGh ‖L2(Ωe)‖ δGGGh ‖L2(Ωe) ≤
2Cy

ξ

∑
e

‖ δGGGh ‖2L2(Ωe)
+

2Cyξ

4

∑
e

‖ ∇δGGGh ‖2L2(Ωe)

≤
C2

y

Cα

∑
e

‖ δGGGh ‖2L2(Ωe)
+

Cα

4

∑
e

‖ ∇δGGGh ‖2L2(Ωe)
.

(D.63)

If we substitute Eqs. (D.62) and (D.63) in Eq. (D.57), we thus obtain the following result:

A(GGGe; δGGGh, δGGGh) + B(GGGe; δGGGh, δGGGh)

≥ Cα

2

∑
e

‖ ∇δGGGh ‖2L2(Ωe)
+Cα

∑
e

‖ δGGGh ‖2L2(Ωe)

−

(
C2

y

Cα
+

Cα

4

)∑
e

‖ δGGGh ‖2L2(Ωe)

+

[
BCα −

C2
y

Cα
max(4CT (Ck

I + 1), 4Ck2

K )

]
h−1

s

∑
e

‖ JδGGGhnnnK ‖2L2(∂Ωe)
.

(D.64)

Therefore

A(GGGe; δGGGh, δGGGh) + B(GGGe; δGGGh, δGGGh) ≥ Cα

2

∑
e

‖ ∇δGGGh ‖2L2(Ωe)
−

(
C2

y

Cα
+

5Cα

4

)∑
e

‖ δGGGh ‖2L2(Ωe)

+

[
BCα −

C2
y

Cα
max(4CT (Ck

I + 1), 4Ck2

K )

]
h−1

s

∑
e

‖ JδGGGhnnnK ‖2L2(∂Ωe)
.

(D.65)

This last relation can be rewritten as

A(GGGe; δGGGh, δGGGh) + B(GGGe; δGGGh, δGGGh) ≥ Ck
1

[∑
e

‖ ∇δGGGh ‖2L2(Ωe)
+h−1

s

∑
e

‖ JδGGGhnnnK ‖2L2(∂Ωe)

]
− Ck

2 ‖ δGGGh ‖2L2(Ωh)
∀δGGGh ∈ Xk.

(D.66)
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where Ck
1 = min

(
Cα
2 ,BCα −

C2
y

Cα
max(4CT (Ck

I + 1), 4Ck2

K )
)

, which is positive when

B > C2
y

C2
α

max(4CT (Ck
I + 1), 4Ck2

K ), and Ck
2 =

C2
y

Cα
+ 5Cα

4 > 0.

Therefore, comparing with the definition of the mesh dependent norm, Eq. (2.10), we
have

A(GGGe; δGGGh, δGGGh) + B(GGGe; δGGGh, δGGGh) ≥ Ck
1 |‖ δGGGh ‖|2∗ −Ck

2 ‖ δGGGh ‖2L2(Ωh)
∀ δGGGh ∈ Xk.

(D.67)

Moreover, starting from Eq. (D.64) and choosing Ck
2 =

C2
y

Cα
+ 3Cα

4 , we rewrite the expression
in terms of the norm (2.11) as

A(GGGe; δGGGh, δGGGh) + B(GGGe; δGGGh, δGGGh) ≥ Ck
1 |‖ δGGGh ‖|2 −Ck

2 ‖ δGGGh ‖2L2(Ωh)
∀ δGGGh ∈ Xk.

(D.68)

Hence, this shows that the stability of the method is conditioned by the constant B, which
should be large enough.

D.3 Upper bound for Electro-Thermo-Mechanical coupling

The upper bound of the bi-linear form is determined, by recalling Eq. (5.115) and Eq.
(5.116), for mmm, δGGG ∈ X

A(GGGe;mmm, δGGG) + B(GGGe;mmm, δGGG) =

∫
Ωh

(∇δGGG)Twww∇GGG(GGGe)∇mmmdΩ

+

∫
∂IΩh∪∂DΩh

q
δGGGT

nnn

y
〈www∇GGG(GGGe)∇mmm〉 dS +

∫
∂IΩh∪∂DΩh

q
mmmT

nnn

y
〈www∇GGG(GGGe)∇δGGG〉 dS

+

∫
∂IΩh∪∂DΩh

q
δGGGT

nnn

y〈 B
hs

www∇GGG(GGGe)

〉
JmmmnnnK dS +

∫
Ωh

(∇δGGG)TwwwGGG(GGGe,∇GGGe)mmmdΩ

+

∫
∂IΩh∪∂DΩh

q
δGGGT

nnn

y
〈wwwGGG(GGGe,∇GGGe)mmm〉 dS +

∫
Ωh

δGGGT (dddGGG(GGGe,∇GGGe)mmm) dΩ

+

∫
Ωh

δGGGT (ddd∇GGG(GGGe)∇mmm) dΩ +

∫
∂IΩh∪∂DΩh

q
mmmT

nnn dddT
∇GGG(GGGe)

y
〈δGGG〉dS.

(D.69)

Every term in the right hand side of Eq. (D.69) is bounded using the Hölder’s inequality,
Eq. (2.24), and the bound (5.118). This successively results in∣∣∣∣∫

Ωh

(∇δGGG)Twww∇GGG(GGGe)∇mmmdΩ

∣∣∣∣ ≤∑
e

(∫
Ωe

|(∇δGGG)Twww∇GGG(GGGe)∇mmm|dΩ

)
≤ Cy

∑
e

‖ ∇δGGG ‖L2(Ωe) ‖ ∇mmm ‖L2(Ωe),
(D.70)

∣∣∣∣∫
Ωh

(∇δGGG)TwwwGGG(GGGe,∇GGGe)mmmdΩ

∣∣∣∣ ≤∑
e

(∫
Ωe

|(∇δGGG)TwwwGGG(GGGe,∇GGGe)mmm|dΩ

)
≤ Cy

∑
e

‖ ∇δGGG ‖L2(Ωe) ‖mmm ‖L2(Ωe),
(D.71)
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∣∣∣∣∫
Ωh

δGGGTdddGGG(GGGe)mmmdΩ

∣∣∣∣ ≤ Cy

∑
e

‖ δGGG ‖L2(Ωe) ‖mmm ‖L2(Ωe), (D.72)

∣∣∣∣∫
Ωh

δGGGTddd∇GGG(GGGe)∇mmmdΩ

∣∣∣∣ ≤ Cy

∑
e

‖ δGGG ‖L2(Ωe) ‖ ∇mmm ‖L2(Ωe), (D.73)

∣∣∣∣∫
∂IΩh∪∂DΩh

q
δGGGT

nnn

y〈www∇GGG(GGGe)B
hs

〉
JmmmnnnK dS

∣∣∣∣
=

∣∣∣∣∣∑
e

∫
∂DΩe

q
δGGGT

nnn

y www∇GGG(GGGe)B
hs

JmmmnnnK dS

+
1

2

∑
e

∫
∂IΩe

q
δGGGT

nnn

y〈www∇GGG(GGGe)B
hs

〉
JmmmnnnK dS

∣∣∣∣∣
≤ B

∑
e

Cy ‖ hs
− 1

2 JδGGGnnnK ‖L2(∂Ωe) ‖ hs
− 1

2 JmmmnnnK ‖L2(∂Ωe),

(D.74)

∣∣∣∣∫
∂IΩh∪∂DΩh

q
mmmT

nnn

y
〈www∇GGG(GGGe)∇δGGG〉dS

∣∣∣∣ =

∣∣∣∣∣12 ∑
e

∫
∂IΩe

q
mmmT

nnn

y
〈www∇GGG(GGGe)∇δGGG〉dS

+
∑

e

∫
∂DΩe

q
mmmT

nnn

y
www∇GGG(GGGe)∇δGGGdS

∣∣∣∣∣ ≤ Cy

∑
e

‖ hs
1
2∇δGGG ‖L2(∂Ωe) ‖ h

− 1
2

s JmmmnnnK ‖L2(∂Ωe),

(D.75)

∣∣∣∣∫
∂IΩh∪∂DΩh

q
δGGGT

nnn

y
〈www∇GGG(GGGe)∇mmm〉dS

∣∣∣∣ =

∣∣∣∣∣12 ∑
e

∫
∂IΩe

q
δGGGT

nnn

y
〈www∇GGG(GGGe)∇mmm〉dS

+
∑

e

∫
∂DΩe

q
δGGGT

nnn

y
www∇GGG(GGGe)∇mmmdS

∣∣∣∣∣ ≤ Cy

∑
e

‖ hs
1
2∇mmm ‖L2(∂Ωe) ‖ h

− 1
2

s JδGGGnnnK ‖L2(∂Ωe),

(D.76)

∣∣∣∣∫
∂IΩh∪∂DΩh

q
δGGGT

nnn

y
〈wwwGGG(GGGe,∇GGGe)mmm〉 dS

∣∣∣∣ =

∣∣∣∣∣12 ∑
e

∫
∂IΩe

q
δGGGT

nnn

y
〈wwwGGG(GGGe,∇GGGe)mmm〉 dS

+
∑

e

∫
∂DΩe

q
δGGGT

nnn

y
wwwGGG(GGGe,∇GGGe)mmmdS

∣∣∣∣∣ ≤ Cy

∑
e

‖ h
1
2
s mmm ‖L2(∂Ωe) ‖ h

− 1
2

s JδGGGnnnK ‖L2(∂Ωe),

(D.77)

and ∣∣∣∣∫
∂IΩh∪∂DΩh

q
mmmT

nnn dddT
∇GGG(GGGe)

y
〈δGGG〉 dS

∣∣∣∣ =

∣∣∣∣∣12 ∑
e

∫
∂IΩe

q
mmmT

nnn dddT
∇GGG(GGGe)

y
〈δGGG〉 dS

+
∑

e

∫
∂DΩe

q
mmmT

nnn dddT
∇GGG(GGGe)

y
〈δGGG〉 dS

∣∣∣∣∣ ≤ Cy

∑
e

‖ h
1
2
s δGGG ‖L2(∂Ωe) ‖ h

− 1
2

s JmmmnnnK ‖L2(∂Ωe) .

(D.78)
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Thereby, in combining the above results, we thus obtain:

| A(GGGe;mmm, δGGG) + B(GGGe;mmm, δGGG) | ≤ Cy

∑
e

‖ ∇mmm ‖L2(Ωe) ‖ ∇δGGG ‖L2(Ωe)

+ Cy

∑
e

‖ ∇mmm ‖L2(Ωe) ‖ δGGG ‖L2(Ωe)

+ Cy

∑
e

‖mmm ‖L2(Ωe) ‖ ∇δGGG ‖L2(Ωe)

+ Cy

∑
e

‖mmm ‖L2(Ωe) ‖ δGGG ‖L2(Ωe)

+ BCy

∑
e

‖ h
− 1

2
s JmmmnnnK ‖L2(∂Ωe) ‖ h

− 1
2

s JδGGGnnnK ‖L2(∂Ωe)

+ Cy

∑
e

‖ hs
1
2∇mmm ‖L2(∂Ωe) ‖ h

− 1
2

s JδGGGnnnK ‖L2(∂Ωe)

+ Cy

∑
e

‖ h
− 1

2
s JmmmnnnK ‖L2(∂Ωe) ‖ h

1
2
s ∇δGGG ‖L2(∂Ωe)

+ Cy

∑
e

‖ h
1
2
s mmm ‖L2(∂Ωe) ‖ h

− 1
2

s JδGGGnnnK ‖L2(∂Ωe)

+ Cy

∑
e

‖ h
1
2
s δGGG ‖L2(∂Ωe) ‖ h

− 1
2

s JmmmnnnK ‖L2(∂Ωe) .
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Choosing C = max(Cy,CyB), the previous equation is rewritten as:

| A(GGGe;mmm, δGGG) + B(GGGe;mmm, δGGG) | ≤ C
∑

e

‖ ∇mmm ‖L2(Ωe) ‖ ∇δGGG ‖L2(Ωe)

+ C
∑

e

‖ ∇mmm ‖L2(Ωe) ‖ δGGG ‖L2(Ωe)

+ C
∑

e

‖mmm ‖L2(Ωe)‖ ∇δGGG ‖L2(Ωe)

+ C
∑

e

‖mmm ‖L2(Ωe)‖ δGGG ‖L2(Ωe)

+ C
∑

e

‖ h
− 1

2
s JmmmnnnK ‖L2(∂Ωe) ‖ h

− 1
2

s J∇δGGGnnnK ‖L2(∂Ωe)

+ C
∑

e

‖ hs
1
2∇mmm ‖L2(∂Ωe) ‖ h

− 1
2

s JδGGGnnnK ‖L2(∂Ωe)

+ C
∑

e

‖ h
−1
2

s JmmmnnnK ‖L2(∂Ωe) ‖ h
1
2
s ∇δGGG ‖L2(Ωe)

+ C
∑

e

‖ hs
1
2mmm ‖L2(∂Ωe) ‖ h

− 1
2

s JδGGGnnnK ‖L2(∂Ωe)

+ C
∑

e

‖ h
1
2
s δGGG ‖L2(∂Ωe) ‖ h

− 1
2

s JmmmnnnK ‖L2(∂Ωe) .

(D.80)



D.3 Upper bound for Electro-Thermo-Mechanical coupling 211

After some maths, this becomes

| A(GGGe;mmm, δGGG) + B(GGGe;mmm, δGGG) | ≤ C
∑

e

[
‖ ∇mmm ‖L2(Ωe) + ‖mmm ‖L2(Ωe) +h

1
2
s ‖mmm ‖L2(∂Ωe)

+h
1
2
s ‖ ∇mmm ‖L2(∂Ωe) +h

− 1
2

s ‖ JmmmnnnK ‖L2(∂Ωe)

]
×
[
‖ ∇δGGG ‖L2(Ωe) + ‖ δGGG ‖L2(Ωe) +h

1
2
s ‖ δGGG ‖L2(∂Ωe)

+h
1
2
s ‖ ∇δGGG ‖L2(∂Ωe) +h

− 1
2

s ‖ JδGGGnnnK ‖L2(∂Ωe)

]
.

(D.81)

Using the Cauchy-Schwartz’ inequality, Eq. (2.26), and the property 2ab ≤ a2 +b2, this last
equation becomes

| A(GGGe;mmm, δGGG) + B(GGGe;mmm, δGGG) |2

≤ C2
∑

e

[
‖ ∇mmm ‖L2(Ωe) + ‖mmm ‖L2(Ωe) +h

1
2
s ‖mmm ‖L2(∂Ωe)

+h
1
2
s ‖ ∇mmm ‖L2(∂Ωe) +h

− 1
2

s ‖ JmmmnnnK ‖L2(∂Ωe)

]2

×
∑
e′

[
‖ ∇δGGG ‖L2(Ωe′ ) + ‖ δGGG ‖L2(Ωe′ ) +h

1
2
s ‖ δGGG ‖L2(∂Ωe′ )

+h
1
2
s ‖ ∇δGGG ‖L2(∂Ωe′ ) +h

− 1
2

s ‖ JδGGGnnnK ‖L2(∂Ωe′ )

]2

≤ 4C2
∑

e

[
‖ ∇mmm ‖2

L2(Ωe)
+ ‖mmm ‖2

L2(Ωe)
+hs ‖mmm ‖2

L2(∂Ωe)
+

hs ‖ ∇mmm ‖2
L2(∂Ωe)

+h−1
s ‖ JmmmnnnK ‖2

L2(∂Ωe)

]
×∑

e′

[
‖ ∇δGGG ‖2

L2(Ωe′ )
+ ‖ δGGG ‖2

L2(Ωe′ )
+hs ‖ δGGG ‖2L2(∂Ωe′ )

+hs ‖ ∇δGGG ‖2L2(∂Ωe′ )
+h−1

s ‖ JδGGGnnnK ‖2
L2(∂Ωe′ )

]
.

(D.82)

Considering 4 in C, and using the definition of the mesh dependent norm, Eq. (2.12), we
get:

| A(GGGe;mmm, δGGG) + B(GGGe;mmm, δGGG) | ≤ C |‖mmm ‖|1 |‖ δGGG ‖|1 ∀mmm, δGGG ∈ X. (D.83)

Moreover, using Eq. (2.22), we obtain

| A(GGGe;mmm, δGGGh) + B(GGGe;mmm, δGGGh) | ≤ Ck |‖mmm ‖|1 |‖ δGGGh ‖| ∀ mmm ∈ X, δGGGh ∈ Xk, (D.84)

and again, using Eq. (2.22), we have

| A(GGGe;mmmh, δGGGh) + B(GGGe;mmmh, δGGGh) | ≤ Ck |‖mmmh ‖| |‖ δGGGh ‖| ∀mmmh, δGGGh ∈ Xk. (D.85)
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D.4 Uniqueness of the solution for Electro-Thermo-Mechanical
coupling

Let us first show that for a given ϕϕϕ ∈
[
L2(Ω)

]d×L2(Ω)×L2(Ω), there is a unique φφφh ∈ Xk

such that

A(GGGe; δGGGh,φφφh) + B(GGGe; δGGGh,φφφh) =
∑

e

∫
Ωe

ϕϕϕTδGGGhdΩ ∀δGGGh ∈ Xk. (D.86)

Lemma 5.4.1, Eq. (5.122), with δGGGh = φφφh ∈ Xk, implies that ∃Ck
1, Ck

2 such that

A(GGGe;φφφh,φφφh) + B(GGGe;φφφh,φφφh) ≥ Ck
1 |‖ φφφh ‖|2 −Ck

2 ‖ φφφh ‖2L2(Ωh)
. (D.87)

Choosing δGGGh = φφφh in Eq. (D.86) thus yields

Ck
1 |‖ φφφh ‖|2 −Ck

2 ‖ φφφh ‖2L2(Ωh)
≤
∑

e

∫
Ω
ϕϕϕTφφφhdΩ ≤‖ ϕϕϕ ‖L2(Ωh) ‖ φφφh ‖L2(Ωh), (D.88)

or again

Ck
1 |‖ φφφh ‖|2≤‖ ϕϕϕ ‖L2(Ωh)‖ φφφh ‖L2(Ωh) +Ck

2 ‖ φφφh ‖2L2(Ωh)
. (D.89)

By the use of the the energy norm definition (2.11), we thus deduce ‖ φφφh ‖L2(Ωh)≤|‖ φφφh ‖|,
and Eq. (D.90) becomes

Ck
1 |‖ φφφh ‖|2≤‖ ϕϕϕ ‖L2(Ωh)|‖ φφφh ‖| +Ck

2 |‖ φφφh ‖|‖ φφφh ‖L2(Ωh) . (D.90)

Hence, we have

|‖ φφφh ‖|≤ Ck
3 ‖ ϕϕϕ ‖L2(Ωh) +Ck

4 ‖ φφφh ‖L2(Ωh) . (D.91)

The term ‖ φφφh ‖L2(Ωh) can be estimated as follows using the auxiliary problem stated by
Eq. (5.126), with φφφ = φφφh. Then it follows from [23, Theorem 8.3 and Lemma 9.17] that

there exists a unique solution ψψψ ∈
[
H2(Ω)

]d ×H2(Ω)×H2(Ω) to the problem stated by Eq.
(5.126), and the solution satisfies the elliptic property stated by Eq. (5.127). Multiplying
Eq. (5.126) by φφφh, then integrating on Ωh, and integrating by parts, lead to∑

e

∫
Ωe

[www∇GGG(GGGe)∇ψψψ + wwwGGG(GGGe,∇GGGe)ψψψ]T∇φφφhdΩ

−
∑

e

∫
∂Ωe

[www∇GGG(GGGe)∇ψψψ + wwwGGG(GGGe,∇GGGe)ψψψ]TφφφhnnndS

+
∑

e

∫
Ωe

[ddd∇GGG(GGGe)∇ψψψ]TφφφhdΩ +
∑

e

∫
Ωe

[dddGGG(GGGe)ψψψ]TφφφhdΩ =‖ φφφh ‖2L2(Ωh)
.

(D.92)

As ψψψ ∈
[
H2(Ω)

]d × H2(Ω)× H2(Ω) implies JψψψK = J∇∇∇ψψψK = 0 on ∂IΩh and JψψψK = −ψψψ = 0 on
∂DΩh, we conclude by comparing to Eqs. (5.115, 5.116) that

∫
Ωh

[www∇GGG(GGGe)∇ψψψ]T∇φφφh +
∫
∂IΩh

[www∇GGG(GGGe)∇ψψψ]T JφφφhnnnK dS

−
∫
∂DΩh

[www∇GGG(GGGe)∇ψψψ]TφφφhnnndS = A(GGGe;ψψψ,φφφh)∫
Ωh

[wwwGGG(GGGe,∇GGGe)ψψψ]T∇φφφhdΩ +
∫
∂IΩh

[wwwGGG(GGGe,∇GGGe)ψψψ]T JφφφhnnnK dS

−
∫
∂DΩh

[wwwGGG(GGGe,∇GGGe)ψψψ]TφφφhnnndS +
∫

Ωh
φφφT

h ddd∇GGG(GGGe)∇ψψψdΩ

+
∫

Ωh
φφφT

h dddGGG(GGGe)ψψψdΩ = B(GGGe;ψψψ,φφφh),

(D.93)
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leading to

‖ φφφh ‖2L2(Ωh)
= A(GGGe;ψψψ,φφφh) + B(GGGe;ψψψ,φφφh). (D.94)

Inserting Ihψψψ the interpolant of ψψψ in Xk, this can be rewritten as

‖ φφφh ‖2L2(Ωh)
= A(GGGe;ψψψ − Ihψψψ,φφφh) + B(GGGe;ψψψ − Ihψψψ,φφφh)

+A(GGGe; Ihψψψ,φφφh) + B(GGGe; Ihψψψ,φφφh).
(D.95)

From Eq. (D.86), in the particular case of δGGGh = Ihψψψ, assuming there are several solutions
to Eq. (D.86), we have for one solution φφφh

A(GGGe; Ihψψψ,φφφh) + B(GGGe; Ihψψψ,φφφh) =

∫
Ωh

ϕϕϕIhψψψdΩ

≤‖ ϕϕϕ ‖L2(Ωh) ‖ Ihψψψ ‖L2(Ωh) .

(D.96)

Now an application of Lemma 5.4.2, Eq. (5.124), with Lemma 2.4.6, Eq. (2.23), yields

| A(GGGe;ψψψ − Ihψψψ,φφφh) + B(GGGe;ψψψ − Ihψψψ,φφφh) | ≤ Ck |‖ ψψψ − Ihψψψ ‖|1 |‖ φφφh ‖|
≤ Ckhµ−1

s ‖ ψψψ ‖Hs(Ωh)|‖ φφφh ‖|,
(D.97)

with µ = min {s, k + 1}.
Substituting Eq. (D.96) and Eq. (D.97), for s = 2, in Eq. (D.95), yields

‖ φφφh ‖2L2(Ωh)
≤ Ckhs ‖ ψψψ ‖H2(Ωh) |‖ φφφh ‖| + ‖ ϕϕϕ ‖L2(Ωh) ‖ Ihψψψ ‖L2(Ωh), (D.98)

whereas, for hs sufficient small, the term ‖ Ihψψψ ‖L2(Ω) can be bounded using Lemma 2.4.6,
Eq. (2.23), by

‖ Ihψψψ ‖L2(Ωh) ≤‖ Ihψψψ −ψψψ +ψψψ ‖L2(Ωh)

≤‖ Ihψψψ −ψψψ ‖L2(Ωh) + ‖ ψψψ ‖L2(Ωh)≤|‖ Ihψψψ −ψψψ ‖|1 + ‖ ψψψ ‖H2(Ωh)

≤ Ckhs ‖ ψψψ ‖H2(Ωh) + ‖ ψψψ ‖H2(Ωh)≤ Ck ‖ ψψψ ‖H2(Ωh) .

(D.99)

Eq. (D.98) is thus rewritten for small hs

‖ φφφh ‖2L2(Ωh)
≤ Ck ‖ ψψψ ‖H2(Ωh)

(
hs |‖ φφφh ‖| + ‖ ϕϕϕ ‖L2(Ωh)

)
. (D.100)

By using the regular ellipticity Eq. (5.127), we obtain

‖ φφφh ‖L2(Ωh) ≤ Ckhs |‖ φφφh ‖| +Ck ‖ ϕϕϕ ‖L2(Ωh)≤ Ck ‖ ϕϕϕ ‖L2(Ωh), (D.101)

for small hs. Hence we complete the proof of Lemma 5.4.3 by substituting Eq. (D.101) in
Eq. (D.91)

|‖ φφφh ‖|≤ Ck ‖ ϕϕϕ ‖L2(Ωh) . (D.102)

Indeed, the existence of the solution φφφh to the problem stated by Eq. (D.86) follows from

the uniqueness, which follows trivially from Eq. (D.102). Indeed for ϕϕϕ1, ϕϕϕ2 ∈
[
L2(Ω)

]3 ×
L2(Ω)× L2(Ω), we have

‖ φφφh1 −φφφh2 ‖L2(Ωh)≤ Ck ‖ ϕϕϕ1 −ϕϕϕ2 ‖L2(Ωh), (D.103)

and φφφh1 = φφφh2 if ϕϕϕ1 = ϕϕϕ2.
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D.5 The bound of the nonlinear term N (GGGe,yyy; δGGGh)

D.5.1 Bounds of different contributions

The bound of N (GGGe,yyy; δGGGh) follows from the argumentation reported in [25] and the
bound of the nonlinear term N (GGGe,yyy; δGGGh) is nominated by the term with the largest bound.

Indeed the bound of the first forth terms of Eq. (5.114) follow from the argumentation
reported in Chapter 4 after replacing MMMe, δMMMh, jjj by GGGe, δGGGh, www respectively. Henceforth,
only the final results are given for the first forth terms as

| I1 | =|
∫

Ωh

(∇δGGGh)T(R̄RRwww(ζζζ,∇ζζζ))dΩ |

≤ CkCyhµ−2−ε
s σ | δGGGh |H1(Ωh)‖GGGe ‖Hs(Ωh),

(D.104)

| I2 | =|
∫
∂IΩh∪∂DΩh

q
δGGGT

hnnn

y 〈
R̄RRwww(ζζζ,∇ζζζ)

〉
dS |

≤ CkCy ‖GGGe ‖Hs(Ωh) hµ−2−ε
s σ

(∑
e

h−1
s ‖ JδGGGhnnnK ‖2L2(∂Ωe)

) 1
2

,

(D.105)

| I3 | = |
∫
∂IΩh

r
GGGeT

nnn − yyyT
nnn

z
〈(www∇GGG(GGGe)−www∇GGG(yyy))∇δGGGh〉 dS |

≤ CyCk ‖GGGe ‖Hs(Ωh) hµ−2−ε
s σ

(∑
e

hs | δGGGh |2H1(∂Ωe)

) 1
2

,

(D.106)

| I4 |=|
∫
∂IΩh

r
GGGeT

nnn − yyyT
nnn

z〈 B
hs

(www∇GGG(GGGe)−www∇GGG(yyy))

〉
JδGGGhnnnK dS |

≤ CkCy ‖GGGe ‖Hs(Ωh) hµ−2−ε
s σ

(∑
e

h−1
s ‖ JδGGGhnnnK ‖2L2(∂Ωe)

) 1
2

.

(D.107)

It should be noted that all the intermediate bounds
(∑

e ‖ ζζζ ‖4L4(Ωe)

) 1
4
,
(∑

e ‖ ∇ζζζ ‖2L2(Ωe)

) 1
2
,(∑

e ‖ ∇ζζζ ‖2L2(Ωe)

) 1
2
,
(∑

e ‖ ζζζ ‖4L4(∂Ωe)

) 1
4
,
(∑

e ‖ JζζζK ‖4
L4(∂Ωe)

) 1
4
,
(∑

e ‖ ∇ζζζ ‖4L4(∂Ωe)

) 1
4
,

‖ δGGGh ‖W1
4(Ωe), and | δGGGh |W1

4(Ωe) can be derived by the same spirit as in Lemma 4.4.4,
after replacing MMMe, IhMMM and δMMMh by GGGe, IhGGG and δGGGh respectively. We will use the bounds
(4.122-4.134) of Chapter 4 directly.
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Then the bound of the fifth term is derived as follows, using Eq. (D.124)

| I5 | =|
∫
∂IΩh∪∂DΩh

q
(GGGe −GGGh)TōooT

GGG(GGGh)(GGGe −GGGh)
y
〈δGGGhnnn〉dS |

≤ 2Cy

∑
e

|
∫
∂IΩe∪∂DΩe

q
(GGGe −GGGh)T

y
III(GGGe −GGGh)δGGGhnnndS |

+
1

8
Cy

∑
e

|
∫
∂IΩe

q
(GGGe −GGGh)T

y
III JGGGe −GGGhK JδGGGhnnnK dS |

≤| I51 | + | I52 | .

(D.108)

Therefore, with ζζζ = GGGe −GGGh, one has

| I51 | ≤ 2Cy

∑
e

|
∫
∂Ωe

q
ζζζT

y
III (ζζζδGGGhnnn) dS |

≤ 2Cy

∑
e

[
h
− 1

2
s ‖ JζζζK ‖L4(∂Ωe)‖ ζζζ ‖L4(∂Ωe)

(
hs ‖ δGGGh ‖2L2(∂Ωe)

) 1
2

]

≤ 2Cyh
− 1

2
s

(∑
e

‖ JζζζK ‖4
L4(∂Ωe)

) 1
4
(∑

e

‖ ζζζ ‖4
L4(∂Ωe)

) 1
4
(∑

e

hs ‖ δGGGh ‖2L2(∂Ωe)

) 1
2

≤ 2Cyh
− 1

2
s Ckh

− 3
4

s σh
1
4
s σ

(∑
e

hs ‖ δGGGh ‖2L2(∂Ωe)

) 1
2

≤ 2CyCk ‖GGGe ‖Hs(Ωh) hµ−2−ε
s σ

(∑
e

hs ‖ δGGGh ‖2L2(∂Ωe)

) 1
2

,

(D.109)

where we have used the generalized Hölder’s inequality (2.25), the generalized Cauchy-
Schwartz’ inequality (2.27), the definition of Cy in Eq. (5.118), and the bounds (4.131,
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4.132). Similarly we have the following bound for I52

| I52 | ≤ Cy
1

8

∑
e

|
∫
∂IΩe

q
(GGGe −GGGh)T

y
III JGGGe −GGGhK JδGGGhnnnK dS |

≤ 1

8
Cy

∑
e

|
∫
∂Ωe

q
ζζζT

y
III JζζζK JδGGGhnnnK dS |

≤ 1

8
Cy

∑
e

[
h

1
2
s ‖ JζζζK ‖L4(∂Ωe)‖ JζζζK ‖L4(∂Ωe)

(
h−1

s ‖ JδGGGhK ‖2
L2(∂Ωe)

) 1
2

]

≤ 1

8
Cyh

1
2
s

(∑
e

‖ JζζζK ‖4
L4(∂Ωe)

) 1
4
(∑

e

‖ JζζζK ‖4
L4(∂Ωe)

) 1
4
(∑

e

h−1
s ‖ JδGGGhK ‖2

L2(∂Ωe)

) 1
2

≤ 1

8
Cyh

1
2
s Ckh

1
4
s σh

1
4
s σ

(∑
e

h−1
s ‖ JδGGGhK ‖2

L2(∂Ωe)

) 1
2

≤ 1

8
CyCk ‖GGGe ‖Hs(Ωh) hµ−εs σ

(∑
e

h−1
s ‖ JδGGGhK ‖2

L2(∂Ωe)

) 1
2

.

(D.110)

By combining Eqs. (D.109, and D.110), we have

| I5 | ≤ 2CyCk ‖GGGe ‖Hs(Ωh) hµ−2−ε
s σ

(∑
e

hs ‖ δGGGh ‖2L2(∂Ωe)

) 1
2

+
1

8
CyCk ‖GGGe ‖Hs(Ωh) hµ−εs σ

(∑
e

h−1
s ‖ JδGGGhK ‖2

L2(∂Ωe)

) 1
2

(D.111)

Finally to bound the last term of the right hand side of Eq. (5.109), we rewrite it using
Eq. (5.109) as

I6 =

∫
Ωh

δGGGT
h R̄RRddd(ζζζ,∇ζζζ)dΩ =

∑
e

∫
Ωe

δGGGT
h (ζζζTd̄ddGGGGGG(yyy,∇yyy)ζζζ)dΩ

+ 2
∑

e

∫
Ωe

δGGGT
h (ζζζTd̄ddGGG∇GGG(yyy)∇ζζζ)dΩ

= I61 + 2I62.

(D.112)

The first part is bounded by

| I61 | ≤|
∑

e

∫
Ωe

δGGGT
h

(
ζζζTd̄ddGGGGGG(yyy,∇yyy)ζζζ

)
dΩ |≤ Cy

∑
e

‖ ζζζ ‖L4(Ωe)‖ ζζζ ‖L4(Ωe)‖ δGGGh ‖L2(Ωe)

≤ Cy

(∑
e

‖ ζζζ ‖4
L4(Ωe)

) 1
4
(∑

e

‖ ζζζ ‖4
L4(Ωe)

) 1
4
(∑

e

‖ δGGGh ‖2L2(Ωe)

) 1
2

≤ CkCyhµ−2−ε
s σ ‖ δGGGh ‖L2(Ωh)‖GGGe ‖Hs(Ωh) .

(D.113)
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This bound is estimated by recalling the generalized Hölder inequality (2.25), the generalized
Cauchy-Schwartz’ inequality (2.27), the definition of Cy in Eq. (5.118), and the bound
(4.123).

The second part can be estimated in the same way using the generalized Hölder’s in-
equality (2.25), the generalized Cauchy-Schwartz’ inequality (2.27), the definition of Cy in
Eq. (5.118), the bounds (4.123, 4.124), and the inverse inequality of Lemma 2.4.4

| I62 | ≤|
∑

e

∫
Ωe

δGGGT
h

(
ζζζTd̄ddGGG∇GGG(yyy)∇ζζζ

)
dΩ |≤ Cy

∑
e

‖ ζζζ ‖L4(Ωe)‖ ∇ζζζ ‖L2(Ωe)‖ δGGGh ‖L4(Ωe)

≤ Cy

(∑
e

‖ ζζζ ‖4
L4(Ωe)

) 1
4
(∑

e

‖ ∇ζζζ ‖2
L2(Ωe)

) 1
2
(∑

e

‖ δGGGh ‖4L4(Ωe)

) 1
4

≤ CkCyhµ−2−ε
s σ ‖ δGGGh ‖L2(Ωh)‖GGGe ‖Hs(Ωh) .

(D.114)

Substituting Eqs. (D.113, D.114) in Eq. (D.112), we get

| I6 | ≤ CkCyhµ−2−ε
s σ ‖ δGGGh ‖L2(Ωh)‖GGGe ‖Hs(Ωh) . (D.115)

Combining Eqs. (D.104, D.105, D.106, D.107, D.108, and D.115), yields the bound of
N (GGGe,yyy; δGGGh)

| N (GGGe,yyy; δGGGh) | ≤ CkCy ‖GGGe ‖Hs(Ωh) hµ−2−ε
s σ

[
‖ δGGGh ‖H1(Ωh)

+

(∑
e

hs ‖ δGGGh ‖2H1(∂Ωe)

) 1
2
(

+
∑

e

h−1
s ‖ JδGGGhnnnK ‖2L2(∂Ωe)

) 1
2

 . (D.116)

D.5.2 Declaration related to the fifth term of N (GGGe,yyy; δGGGh)

Using the identities JabK = JaK 〈b〉 + 〈a〉 JbK and 〈a〉 〈b〉 = 〈ab〉 − 1
4 JaK JbK on ∂IΩh, the

term
q
(GGGe −GGGh)TōooT

GGG(GGGh)(GGGe −GGGh)
y
〈δGGGhnnn〉 can be rewritten with an abuse of notations on

the product operator as
q
(GGGe −GGGh)TōooT

GGG(GGGh)(GGGe −GGGh)
y
〈δGGGhnnn〉 =

〈
(GGGe −GGGh)TōooT

GGG(GGGh)
〉
JGGGe −GGGhK 〈δGGGhnnn〉

+
q
(GGGe −GGGh)TōooT

GGG(GGGh)
y
〈GGGe −GGGh〉 〈δGGGhnnn〉

=
〈
(GGGe −GGGh)TōooT

GGG(GGGh)δGGGhnnn

〉
JGGGe −GGGhK

− 1

4

q
(GGGe −GGGh)TōooT

GGG(GGGh)
y

JGGGe −GGGhK JδGGGhnnnK

+
q
(GGGe −GGGh)TōooT

GGG(GGGh)
y
〈GGGe −GGGh〉 〈δGGGhnnn〉 .

(D.117)

Now, we need to solve explicitly the term
q
(GGGe −GGGh)TōooT

GGG(GGGh)
y
, where ōooT

GGG(GGGh) is equal by
analogy to Eq. (4.92) to

ōooGGG(GGGh) =

∫ 1

0
(1− t)oooGGG(VVVt)dt, (D.118)
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with VVVt = GGGe + t(GGGh −GGGe). As oooGGG only involves terms in 2
f3T

, we compute ᾱ the nonzero

component.

ᾱ = 3Kαth

∫ 1

0
(1− t)(

2

[feT + t(fT − feT)]3
)dt. (D.119)

For simplicity, let us define λ as

λ =

∫ 1

0
(1− t)

2

[feT + t(fT − feT)]3
dt. (D.120)

Setting a = 1 − t, da = −dt, db = 2dt
[feT+t(fT−feT)]3

, and b = −1
(fT−feT)[feT+t(fT−feT)]2

, such that λ

can be rewritten as

λ =

[
t− 1

(fT − feT)[feT + t(fT − feT)]2

]1

0

−
∫ 1

0

dt

(fT − feT)[feT + t(fT − feT)]2

=
1

(fT − feT)fe
2

T

−
[

−1

(fT − feT)2[feT + t(fT − feT)]

]1

0

=
1

(fT − feT)fe
2

T

+
1

(fT − feT)2fT
− 1

(fT − feT)2feT

=
1

(fT − feT)fe
2

T

+
1

(fT − feT)2
(
feT − fT

fTfeT
) =

1

(fT − feT)fe
2

T

− 1

(fT − feT)

1

fTfeT

=
−1

(fT − feT)
(
feT − fT

fTfe
2

T

) =
1

fTfe
2

T

.

(D.121)

It can be noticed that to evaluate
q
(GGGe −GGGh)TōooT

GGG(GGGh)
y
, we need λ(feT − fT) which reads

λ(feT − fT) =
1

fTfe
2

T

(feT − fT) =
1

feT
(

1

fT
− 1

feT
), (D.122)

and the jump of the last result is

Jλ(feT − fT)K =


1
feT

( 1
f+T
− 1

feT
− 1

f−T
+ 1

feT
) = − 1

feT

(
f−T−f+T
f+T f−T

)
= − 1

feTf+T f−T
JfT − feTK on ∂IΩh

1

fTfe
2

T

(fT − feT) = − 1

fTfe
2

T

JfT − feTK on ∂DΩh.

(D.123)

Hence considering this equation in the matrix form, and then substituting it in Eq. (D.117),
lead to
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|
∑

e

∫
∂IΩe∪∂DΩe

q
(GGGe −GGGh)TōooT

GGG(GGGh)(GGGe −GGGh)
y
〈δGGGhnnn〉 dS |

≤ 1

2
|
∑

e

∫
∂IΩe

〈
(GGGe −GGGh)TōooT

GGG(GGGh)δGGGhnnn

〉
JGGGe −GGGhK dS |

+
1

8
|
∑

e

∫
∂IΩe

q
(GGGe −GGGh)TōooT

GGG(GGGh)
y

JGGGe −GGGhK JδGGGhnnnK dS |

+
1

2
|
∑

e

∫
∂IΩe

q
(GGGe −GGGh)TōooT

GGG(GGGh)
y
〈GGGe −GGGh〉 〈δGGGhnnn〉 dS |

+ |
∑

e

∫
∂DΩe

J(GGGe −GGGh)K ōooT
GGG(GGGh)(GGGe −GGGh)δGGGhnnndS |

≤
∑

e

|
∫
∂IΩe

(GGGe −GGGh)TIII JGGGe −GGGhK δGGGhnnndS |

+
1

8

∑
e

|
∫
∂IΩe

q
(GGGe −GGGh)T

y
III JGGGe −GGGhK JδGGGhnnnK dS |

+
∑

e

|
∫
∂IΩe

q
(GGGe −GGGh)T

y
III(GGGe −GGGh)δGGGhnnndS |

+
∑

e

|
∫
∂DΩe

q
(GGGe −GGGh)T

y
III(GGGe −GGGh)δGGGhnnndS |

(D.124)

where III is a matrix of unit norm and has the same size of ōooT
GGG.





Appendix E

Annexes related to chapter 6

E.1 Tangent of the carbon fiber

The first Piola-Kirchhoff is evaluated from the second Piola-Kirchhoff as

PPPxJ = FFFxISSSIJ = FFFxI(SSS
is
IJ + SSStr

IJ). (E.1)

The derivative of PPP with respect to the deformation gradient is computed components by
components

∂SSSis
IJ

∂CCCKL
=
λ

2
CCC−1

IJ CCC−1
KL −

1

2
(λlnJ−GTT − 3λαth(T− T0))(CCC−1

IKCCC−1
JL + CCC−1

IL CCC−1
JK), (E.2)

∂SSStr
IJ

∂CCCKL
= 2βtr(CCC−1

IJ AAAKAAAL + CCC−1
KLAAAIAAAJ) + 4γtrAAAIAAAJAAAKAAAL

− IIIJKα
trAAAIAAAL − IIIIKα

trAAAJAAAL − βtr(I4 − 1)(CCC−1
IKCCC−1

JL + CCC−1
IL CCC−1

JK).

(E.3)

which result in

∂PPPxJ

∂FFFkL
= IIIxk(SSSis

JL + SSStr
JL) + FFFxI(

∂SSSis
IJ

∂CCCDN
+

∂SSStr
IJ

∂CCCDN
)(IIIDLFFFkN + IIINLFFFkD). (E.4)

The derivative of PPP with respect to temperature reads

∂PPPxJ

∂T
= FFFxI(

∂SSSis
IJ

∂T
+
∂SSStr

IJ

∂T
), (E.5)

with

∂SSSis
IJ

∂T
= −3λαthCCC−1

IJ , (E.6)

and

∂SSStr
IJ

∂T
= −12βtrαthAAAIAAAJ. (E.7)
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E.2 Predictor-corrector and stiffness computation for SMP

E.2.1 Predictor-corrector for the first mechanism (α = 1)

In this step we will solve the system of equations that has to be developed.

E.2.1.1 Flow rule

The plastic part of the deformation gradient in the incremental form can be derived from
the continuous form Eq. (6.56) as

FFF
p(1)
(n+1) = exp(∆DDDp(1))FFF

p(1)
(n) , (E.8)

where

∆DDDp(1) = ∆εp(1)(
MMM

e(1)
0

2τ̄ (1)
), (E.9)

and the elastic part of the deformation becomes

FFF
e(1)
(n+1) = FFF(n+1) FFF

p(1)−1

(n) exp[(∆εp(1))
MMM

e(1)
0

2τ̄ (1)
]−1, (E.10)

where MMM
e(1)
0 is the deviatoric part of Mandel stress. Let us define the normal NNN(1) as

NNN(1) =
MMM

e(1)
0√

2|MMMe(1)
0 |

. (E.11)

Then FFFe(1), Eq. (E.10), can be rewritten under the form

FFF
e(1)
n+1 = FFF(n+1)FFF

p(1)−1

(n)

[
exp(∆εp(1)NNN(1))

]−1
, (E.12)

and we have

CCC
e(1)
(n+1) =

[
exp(∆εp(1)NNN(1))

]−T
CCC
e(1)
(pr)

[
exp(∆εp(1)NNN(1))

]−1
, (E.13)

where CCC
e(1)
(pr) = FFF

p(1)−T
(n) FFFT

(n+1) FFF(n+1) FFF
p(1)−1
(n) . In order to compute MMMe(1) from Eq. (6.50), we

need first to compute the elastic strain

EEEe(1) = ln

√
CCC

e(1)
(n+1), (E.14)

which becomes using Eq. (E.10)

EEE
e(1)
(n+1) =

1

2
ln

{[
exp(∆εp(1)NNN(1))

]−T
CCC
e(1)
(pr)

[
exp(∆εp(1)NNN(1))

]−1
}
, (E.15)

The deviatoric part can thus be evaluated as

EEE
e(1)
0 =

1

2

(
ln(CCC

e(1)
(pr))

)
0
−∆εp(1)NNN(1), (E.16)

and the volume part as

trEEEe(1) =
1

2
tr
(

ln(CCC
e(1)
(pr))

)
, (E.17)

where we have dropped the subscript (n + 1) for conciseness.
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E.2.1.2 Mandel stress

Using Eqs. (E.16) and (E.17), then Mandel stress Eq. (6.50) can be expressed as

MMMe(1) = G
(

ln(CCC
e(1)
(pr))

)
0
− 2G∆εp(1)NNN(1) +

1

2
K tr

(
ln(CCC

e(1)
(pr))

)
III − 3Kαth(T− T0)III. (E.18)

From this equation one can deduce

trMMMe(1) =
3

2
K tr

(
ln(CCC

e(1)
(pr))

)
− 9Kαth(T− T0), (E.19)

MMM
e(1)
0 = G

(
ln(CCC

e(1)
(pr))

)
0
− 2G∆εp(1)NNN(1). (E.20)

Thus, from Eq. (E.11) and Eq. (E.20), one can conclude that:

NNN(1) =

(
ln(CCC

e(1)
(pr))

)
0√

2 |
(

ln(CCC
e(1)
(pr))

)
0
|
. (E.21)

Note that NNN(1) is constant during the plastic corrections because of Eq. (E.21).

E.2.1.3 Shear stress

Let us compute MMM
e(1)
0 : NNN(1) from Eq. (6.25), we get

MMM
e(1)
0 : NNN(1) =

MMM
e(1)
0 : MMM

e(1)
0√

2|MMMe(1)
0 |

=
|MMMe(1)

0 |√
2

= τ̄ (1). (E.22)

Moreover, starting from Eq. (E.20)

MMM
e(1)
0 : NNN(1) = G

√
2 |
(

ln(CCCe(1)
pr )

)
0
|NNN(1) : NNN(1) − 2G∆εp(1) NNN(1) : NNN(1)

=
G√

2
|
(

ln(CCC
e(1)
(pr))

)
0
| −G∆εp(1),

(E.23)

and combining Eq. (E.22) and Eq. (E.23) gives the equivalent shear stress

τ̄ (1) =
G√

2
|
(

ln(CCC
e(1)
(pr))

)
0
| −G∆εp(1). (E.24)

Then the governing equation for the net shear stress of the thermally activated flow one has
successively the final expression of Eq. (E.35) as

τ e(1) =
G√

2
|
(

ln(CCC
e(1)
(pr))

)
0
| −G∆εp(1) − (Sa + Sb + αpp̄), (E.25)

where p = −1
3trMMMe(1), is obtained using Eq. (E.19), as

p = −1

3
trMMMe(1) = −

[
1

2
K tr

(
ln(CCC

e(1)
(pr))

)
− 3Kαth(T− T0)

]
. (E.26)

Using the previous equation and Eq. (6.52) we may rewrite the evolution equation for
τ e(1) (E.25) as

τ
e(1)
1 =

G√
2
|
(

ln(CCC
e(1)
(pr))

)
0
| −G∆εp(1) +

1

2
αpK tr

(
ln(CCCe(1)

pr )
)

− 3αpKαth(T− T0)− Sa − Sb.

(E.27)
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E.2.1.4 Internal variables

The time incremental form for internal variable for Sa, can be derived from Eq. (6.65)

Sa(n+1) = Sa(n) + ha (S∗a(n+β) − Sa(n+β))∆ε
p(1), (E.28)

where β is a constant value between [0, 1] with

Sa(n+β) = βSa(n+1) + (1− β)Sa(n), (E.29)

S∗a(n+β) = βS∗a(n+1) + (1− β)S∗a(n). (E.30)

This last term is computed using Eq. (6.66)

ϕ(n+1) = ϕ(n) + g (ϕ∗(n+β) − ϕ(n+β))∆ε
p(1). (E.31)

as
S∗a = b(ϕ∗ − ϕ), (E.32)

with

ϕ∗(ε̇p(1),T) =


z((1− T

Tg
)r + hg) (

ε̇p(1)

εr
)s if (T ≤ Tg) and (ε̇p(1) > 0),

zhg(
ε̇p(1)

εr
)s if (T > Tg) and (ε̇p(1) > 0).

(E.33)

In this previous equation, (z, r, s,hg) are constant properties, in particular hg is introduced
to get small value of ϕ∗ instead of 0 for T > Tg, and this in turn avoids the big slope of
∆εp(1) between above and below glass transition temperature.

The incremental form of the plastic shear strain rate, Eq. (6.58) is rewritten

∆εp(1) =

 0 if τ e(1) ≤ 0,

∆hε
···(1)
0 exp (−1

ξ
) exp (− Q

KBT
)[sinh(

τ e(1) ∗ V

2 KB T
)]1/m if τ e(1) > 0,

(E.34)

where
τ e(1) = τ̄ (1) − (Sa(n+1) + Sb(n+1) + αpp̄), (E.35)

τ e(1) denotes a net shear stress for the thermally activated flow, and αp > 0 is a parameter
introduced to account for the pressure sensitivity, p is the normal pressure which has negative
value of hydrostatic stress, and τ̄1 is the equivalent shear stress.

The evaluation of the internal variables follows from Eqs. (E.28-E.34), where by com-
bining Eqs. (E.29, E.30) in (E.28), we have

Sa(n+1) =
Sa(n) + haβS∗a(n+1) ∆εp(1) + ha(1− β)(S∗a(n) − Sa(n))∆ε

p(1)

1 + βha∆εp(1)
. (E.36)

In the same way, from Eq. (E.31) we get

ϕ(n+1) =
ϕ(n) + gβϕ∗(n+1) ∆εp(1) + g(1− β)(ϕ∗(n) − ϕ(n))∆ε

p(1)

1 + βg∆εp(1)
. (E.37)
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The missing terms read
S∗a(n+1) = b(ϕ∗(n+1) − ϕ(n+1)), (E.38)

with

ϕ∗(n+1) =


z((1− T

Tg
)r + hg) (

∆εp(1)

∆tεr
)s if (T ≤ Tg) and (ε̇p(1) > 0),

z(hg)r (
∆εp(1)

∆tεr
)s if (T > Tg) and (ε̇p(1) > 0),

(E.39)

and hence Eq. (E.37) becomes for T ≤ Tg

ϕ(n+1) =

ϕ(n) + gβz

(
(1− T

Tg
)r + hg

)
(
∆εp(1)

∆tεr
)s ∆εp(1) + g(1− β)(ϕ∗(n) − ϕ(n))∆ε

p(1)

1 + βg∆εp(1)
,

(E.40)
Eq. (E.38) becomes for T ≤ Tg

S∗(n+1) =

b

(
z

(
(1− T

Tg
)r + hg

)
(
∆εp(1)

∆tεr
)s − ϕ(n) − g(1− β)(ϕ∗(n) − ϕ(n))∆ε

p(1)

)
1 + βg∆εp(1)

,
(E.41)

and Eq. (E.36) becomes for T ≤ Tg

Sa(n+1) =
Sa(n) + ha(1− β)(S∗a(n) − Sa(n))∆ε

p(1)

1 + βha∆εp(1)

+

haβb

(
z

(
(1− T

Tg
)r + hg

)
(
∆εp(1)

∆tεr
)s − ϕ(n) − g(1− β)(ϕ∗(n) − ϕ(n))∆ε

p(1)

)
∆εp(1)

(1 + βha∆εp(1))(1 + βg∆εp(1))
.

(E.42)

Similarly, for T > Tg, we have

Sa(n+1) =
Sa(n) + ha(1− β)(S∗a(n) − Sa(n))∆ε

p(1)

1 + βha∆εp(1)

+

haβb

(
z (hg) (

∆εp(1)

∆tεr
)s − ϕ(n) − g(1− β)(ϕ∗(n) − ϕ(n))∆ε

p(1)

)
∆εp(1)

(1 + βha∆εp(1))(1 + βg∆εp(1))
.

(E.43)

Finally Eq. (6.69) becomes

Sb = Sb0 + Hb(λ̄− 1)a, λ̄ =
√

trCCC(1)/3, (E.44)

with Hb(T) defined in Eq. (6.70).
Finally the glass transition temperature Tg, Eq. (6.44) is computed as

Tg =

 Tr if ε̇ ≤ εr,

Tr + nlog(
ε̇

εr
) if ε̇ > εr,

(E.45)
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where ε̇ is computed using Eq. (6.40), which in turn is computed using Eq.(6.42), thus one
has

DDDix(sym) =
1

2∆t
ln
(
FFF(n+1)iA FFF−1

(n)Ax + FFF−1
(n)AiFFF(n+1)xA

)
. (E.46)

E.2.1.5 Non-linear system of equations

Thereafter the residual equation for the first micromechanisms can be defined from Eq.
(6.59)

Ω(1) = τ e(1) −
(
τ̄ (1) − (Sa + Sb + αpp̄(1))

)
. (E.47)

From Eq. (E.34) let us define L(T) to simplify the equation

L(T) =


ε
...(1)
0 ∆t exp (− 1

ξgl
) exp (−Q(T)

KBT
) if T ≤ Tg,

ε
...(1)
0 ∆t exp (− 1

(ξgl + d(T− Tg))
) exp (−Q(T)

KBT
) if T > Tg,

(E.48)

where Q(T) is defined in Eq. (6.61), and W(T) as

W(T) =
V

2 KBT
, (E.49)

which allow rewriting (E.34) as

∆εp(1) =

{
L(T)

[
sinh

(
τ e(1)W(T)

)]1/m
if τ e(1) > 0,

0 if τ e(1) ≤ 0.
(E.50)

This equation can be rewritten

τ e(1) =
1

W(T)
arcsinh

(
∆εp(1)

L(T)

)m

. (E.51)

So the residual defined by Eq. (E.47) becomes, using Eq. (E.27)

Ω(1) =
1

W(T)
arcsinh

(
∆εp(1)

L(T)

)m

− G(T)√
2
|
(

ln(CCC
e(1)
(pr))

)
0
|+ G(T)∆εp(1)

− 1

2
αpK(T) tr

(
ln(CCC

e(1)
(pr))

)
+ 3 αpK(T)αth(T− T0) + Sa(n+1)(T) + Sb(T).

(E.52)

For both cases (T ≶ Tg) the associated Newton-Raphson (NR) scheme reads

Ω(1) +
∂Ω(1)

∂∆εp(1)
|
C̄CC

e(1)
pr

∆∆εp(1) = 0. (E.53)

This system is iteratively solved using the Jacobian, which is defined as 1
(1) =

∂Ω(1)

∂∆εP(1)
|
C̄CC

e(1)
pr

,

leading to

∆∆εp(1) = −(1)−1 Ω(1), (E.54)
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with the updated step

∆εp(1) ← ∆εp(1) + ∆∆εp(1). (E.55)

The iterations continue until convergence until a specified tolerance is achieved.

Let us now compute the derivative of the components of Ω(1), and let us start by com-

puting
∂τ e(1)

∂∆εP(1)
by calling Eq. (E.51)

∂τ e(1)

∂∆εp(1)
=

∂

∂∆εp(1)

(
1

W(T)
arcsinh(

∆εp(1)

L(T)
)m

)

=
m

W(T)L(T)

1√√√√(∆εp(1)

L(T)

)2m

+ 1

(
∆εp(1)

L(T)

)m−1

.
(E.56)

By doing some calculations we can get the derivative of Sa, Eq. (E.43), with respect to
∆εp(1) for T ≤ Tg,

∂Sa(n+1)

∂∆εp(1)
=

ha(1− β)(S∗a(n) − Sa(n))(1 + βha∆ε
p(1)
1 )− βha(Sa(n) + ha(1− β)(S∗a(n) − Sa(n))∆ε

p(1))

(1 + βha∆εp(1))2

+

shaβb

∆tεr
z

(
(1− T

Tg
)r + hg

)
(
∆εp(1)

∆tεr
)s−1∆εp(1)

(1 + βha∆εp(1))(1 + βg∆εp(1))
+

haβbz

(
(1− T

Tg
)r + hg

)
(
∆εp(1)

∆tεr
)s

(1 + βha∆εp(1))(1 + βg∆εp(1))

−
haβb

(
g(1− β)(ϕ∗(n) − ϕ(n))∆ε

p(1)
)

(1 + βha∆εp(1))(1 + βg∆εp(1))
−

haβb
(
ϕ(n) + g(1− β)(ϕ∗(n) − ϕ(n))∆ε

p(1)
)

(1 + βha∆εp(1))(1 + βg∆εp(1))

+
(β2ha(1 + βg∆εp(1)) + β2g(1 + βha∆εp(1)))(hab(ϕ(n)) ∆εp(1))

(1 + βha∆εp(1))2(1 + βg∆εp(1))2

+
(β2ha(1 + βg∆εp(1)) + β2g(1 + βha∆εp(1)))(habg(1− β)(ϕ∗(n) − ϕ(n))∆ε

p(1)) ∆εp(1)

(1 + βha∆εp(1))2(1 + βg∆εp(1))2

−
(β2ha(1 + βg∆εp(1)) + β2g(1 + βha∆εp(1)))

(
hab(z

(
(1− T

Tg
)r + hg

)
(
∆ε

p(1)
1

∆tεr
)s

)
∆εp(1)

(1 + βha∆εp(1))2(1 + βg∆εp(1))2
,

(E.57)
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and for the second case T > Tg, from Eq. (E.43)

∂Sa(n+1)

∂∆εp(1)
=

ha(1− β)(S∗a(n) − Sa(n))

(1 + βha∆εp(1))
−
βha

(
Sa(n) + ha(1− β)(S∗a(n) − Sa(n))∆ε

p(1)
)

(1 + βha∆εp(1))2

+

shaβb

∆tεr
zhg (

∆εp(1)

∆tεr
)s−1∆εp(1)

(1 + βha∆εp(1))(1 + βg∆εp(1))
+

haβbzhg (
∆ε

p(1)
1

∆tεr
)s

(1 + βha∆εp(1))(1 + βg∆εp(1))

−
haβb

(
ϕ(n) + g(1− β)(ϕ∗(n) − ϕ(n))∆ε

p(1)
)

(1 + βha∆εp(1))(1 + βg∆εp(1))

−
haβb

(
g(1− β)(ϕ∗(n) − ϕ(n))

)
∆εp(1)

(1 + βha∆εp(1))(1 + βg∆εp(1))

+

(
β2ha(1 + βg∆εp(1)) + β2g(1 + βha∆εp(1))

)
hab(ϕ(n))∆ε

p(1)

(1 + βha∆εp(1))2(1 + βg∆εp(1))2

+

(
β2ha(1 + βg∆εp(1)) + β2g(1 + βha∆εp(1))

)
hab(g(1− β)(ϕ∗(n) − ϕ(n))∆ε

p(1))∆εp(1)

(1 + βha∆εp(1))2(1 + βg∆εp(1))2

−
(β2ha(1 + βg∆εp(1)) + β2g(1 + βha∆εp(1)))(habzhg(

∆ε
p(1)
1

∆tεr
)s)∆εp(1)

(1 + βha∆εp(1))2(1 + βg∆εp(1))2
.

(E.58)

By combining Eqs. (E.56 and E.57 or E.58) we obtain the Jacobian and the system is
iteratively solved for T ≶ Tg using

(1) =
∂Ω(1)

∂∆εp(1)
|
C̄CC

e(1)
pr

=
m

W(T)L(T)

1√√√√(∆εp(1)

L(T)

)2m

+ 1

(
∆εp(1)

L(T)

)m−1

+ G +
∂Sa(n+1)

∂∆εp(1)
.

(E.59)

E.2.1.6 Converged solution

The first Piola-Kirchhoff stress tensor, is given by PPP = 2FFF
∂ψe(1)

∂CCC
can be derived from

Eq. (6.46)

PPP
(1)
iA = 2FFFiN

∂ψe(1)

∂CCCNA
= 2FFF

(1)
iN

∂ψe(1)

∂EEE
e(1)
KL

∂EEE
e(1)
KL

∂CCC
e(1)
MS

∂CCC
e(1)
MS

∂CCCNA

=FFFiNFFF
p(1)−1
NM LLLe

KLMS

∂ψe(1)

∂EEE
e(1)
KL

FFF
p(1)−1
AS

=FFF
e(1)
iM LLL

e
KLMS

∂ψe(1)

∂EEE
e(1)
KL

FFF
p(1)−T
SA

=FFF
e(1)
iM LLL

e
KLMSMMM

e(1)
KL FFF

p(1)−T
SA .

(E.60)
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Note that MMMe(1) is computed from Eq. (E.18), Le in an approximated matrix for the deriva-

tive of ln
√

CCCe(1) with respect to CCCe(1), such that Le = 2∂ln
√

CCCe(1)

∂CCCe(1) = ∂lnCCCe(1)

∂CCCe(1) .
The previous equation allows us to evaluate the first Piola-Kirchhoff stress in terms of the

elastic and plastic parts of the deformation gradient. Then using these results, the derivative
of the Piola-Kirchhoff stress tensor with respect to the deformation can be evaluated as

∂PPP
(1)
iA

∂FFFjC
=
∂(FFF

e(1)
iM LLLe

KLMSMMM
e(1)
KL FFF

p(1)−T
SA )

∂FFFjC

=
∂FFF

e(1)
iM

∂FFFjC
LLLe

KLMSMMM
e(1)
KL FFF

p(1)−T
SA + FFF

e(1)
iM LLL

e
KLMS

∂MMM
e(1)
KL

∂FFFjC
FFF

p(1)−T
SA

+ FFF
e(1)
iM

∂LLLe
KLMS

∂FFFjC
MMM

e(1)
KL FFF

p(1)−T
SA + FFF

e(1)
iM LLL

e
KLMSMMM

e(1)
KL

∂FFF
p(1)−T
SA

∂FFFjC
.

(E.61)

The derivative of the inverse of the plastic deformation gradient is given by

∂FFF
p(1)−1
XY

∂FFFjC
= −FFF

p(1)−1
XE

∂FFF
p(1)
EZ

∂FFFjC
FFF

p(1)−1
ZY . (E.62)

The derivative of the elastic deformation gradient with respect to the deformation gradient
reads

∂FFF
e(1)
iM

∂FFFjC
=
∂(FFFiGFFF

p(1)−1
GM )

∂FFFjC
=

(
δδδijFFF

p(1)−1
CM −FFFiGFFF

p(1)−1
GX

∂FFF
p(1)
XY

∂FFFjC
FFF

p(1)−1
yM

)
. (E.63)

The derivative of Le follows from

∂LLLe
KLMS

∂FFFjC
=
∂Le

KLMS

∂CCC
e(1)
QV

∂CCC
e(1)
QV

∂FFF
e(1)
EU

∂FFF
e(1)
EU

∂FFFjC

=
∂Le

KLMS

∂CCC
e(1)
QV

(
δδδQUFFF

e(1)
EV + FFF

e(1)
EQ δδδVU

) ∂FFF
e(1)
EU

∂FFFjC
.

(E.64)

To evaluate these three terms, the derivative of the plastic deformation gradient is obtained
from its definition Eq. (6.95), leading to

∂FFF
p(1)
(n+1)EZ

∂FFFjC
=
∂exp(∆DDD

(1)
EZ)

∂∆DDD
(1)
OP

∂∆DDD
(1)
OP

∂FFFjC
FFF

p(1)
(n)IZ

= ZEIOP

[
NNN

(1)
OP

∂∆εp(1)

∂FFFjC
+ ∆εp(1)∂NNN

(1)
OP

∂FFFjC

]
FFF

p(1)
(n)IZ,

(E.65)

where Z is an approximated matrix for the derivative of exponential of CCCe(1) with respect

to CCCe(1), such that Z = ∂expCCCe(1)

∂CCCe(1) . The derivative of the missing terms can be computed by

deriving the residual Ω(1), Eq. (E.47), with respect to right Cauchy tensor CCCe(1), yielding

∂Ω(1)

∂FFFjC
|∆εp(1) +

∂Ω(1)

∂∆εp(1)

∂∆εp(1)

∂FFFjC
= 0, (E.66)
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=⇒ ∂∆εp(1)

∂FFFjC
= −(1)−1∂Ω(1)

∂FFFjC
|∆εp(1) . (E.67)

The derivative of the residual with respect to the deformation gradient tensor is obtained
from

∂Ω(1)

∂FFFjC
|∆εP(1) =

FFF
p(1)−1
(pr)WH

∂Ω(1)

∂CCC
e(1)
(pr)HT

FFF
p(1)−T
(pr)TV +

∂Ω(1)

∂CCCWV

 (FFFjVδδδWC + FFFjWδδδVC). (E.68)

Let us compute the derivative of the components of Ω(1) given by Eq. (E.52). First one has

∂tr
(

ln(CCC
e(1)
(pr))

)
∂CCC

e(1)
(pr)HT

=
∂tr
(

ln(CCC
e(1)
(pr))

)
∂
(

ln(CCC
e(1)
(pr)XO)

) ∂
(

ln(CCC
e(1)
(pr)XO)

)
∂CCC

e(1)
(pr)HT

= δδδXO LLLe
(pr)XOHT, (E.69)

and then, one has

∂
(

ln(CCC
e(1)
(pr)KL)

)
0

∂CCC
e(1)
(pr)HT

=
∂
(

(ln(CCC
e(1)
(pr)KL)− 1

3tr ln(CCC
e(1)
(pr))δKL

)
∂CCC

e(1)
(pr)HT

= LLLe
(pr)KLHT −

1

3
δδδYZLLLe

(pr)YZHTδKL,

(E.70)

where Le
(pr) =

∂lnCCC
e(1)
(pr)

∂CCC
e(1)
(pr)

. Now let us compute the derivative of NNN(1) by recalling Eq. (E.21).

First one has

∂|
(

ln(CCC
e(1)
pr )

)
0
|

∂CCCe
(pr)HT

=
∂
√

(ln(CCC
e(1)
(pr)OM))0(ln(CCC

e(1)
(pr)OM))0

∂(CCCe
(pr))HT)

=
√

2NNN
(1)
OMLLL

e
OMHT −

√
2

3
NNN

(1)
OMδδδYZLLLe

YZHTδδδOM

=
√

2NNN
(1)
OMLLL

e
OMHT.

(E.71)

The derivative of glass transition temperature with respect to the deformation gradient is
obtained from Eq. (6.44), with

∂Tg

∂FFFjC
=

 0 if ε̇ ≤ εr
n

ε̇

∂ε̇

∂FFFjC
if ε̇ > εr

(E.72)

Using Eq. (6.40), one has

∂ε̇

∂FFFjC
=

√
2|DDD0(sym)|
∂FFFjC

=
√

2DDDix(0sym)|DDD0(sym)|−1

(
∂DDDix(sym)

∂FFFjC
− 1

3
δδδyz

∂DDDyz(sym)

∂FFFjC
δδδix

)
,

(E.73)
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where using Eq. (E.46), thus one has

∂DDDix(sym)

∂FFF(n+1)jC
=

1

2∆t

∂ ln
(
FFF(n+1)iA FFF−1

(n)Ax + FFF−1
(n)AiFFF(n+1)xA

)
∂
(
FFF(n+1)zB FFF−1

(n)By + FFF−1
(n)BzFFF(n+1)yB

) ∂
(
FFF(n+1)zB FFF−1

(n)By + FFF−1
(n)BzFFF(n+1)yB

)
∂FFF(n+1)jC

=
1

2∆t
LLLixzy

(
δδδzj FFF−1

(n)Cy + δδδyj FFF−1
(n)Cz

)
,

(E.74)

where LLL is the approximated matrix for the derivative of ln
(
FFF(n+1) FFF−1

(n) + FFF−1
(n)FFF(n+1)

)
with

respect to
(
FFF(n+1) FFF−1

(n) + FFF−1
(n)FFF(n+1)

)
.

The derivative of Poisson ratio with respect to the deformation gradient can be computed
by

∂ν(T)

∂FFFjC
=
∂ν(T)

∂Tg

∂Tg

∂FFFjC
(E.75)

where the derivative of Poisson ratio with respect to glass transition temperature using Eq.
(6.55) is

∂ν(T)

∂Tg
=

1

2∆
(νgl − νr)(1− tanh2(

1

∆
(T− Tg)). (E.76)

Similarly, using Eq. (6.52), the derivative of the shear modulus G reads

∂G

∂FFFjC
=

∂G

∂Tg

∂Tg

∂FFFjC
, (E.77)

with

∂G(T)

∂Tg
=

{
1

2∆(Ggl −Gr)(1− tanh2( 1
∆(T− Tg)) + Mgl if T ≤ Tg

1
2∆(Ggl −Gr)(1− tanh2( 1

∆(T− Tg)) + Mr if T > Tg.
(E.78)

By the same way, one can get the derivative of the bulk modulus Eq. (6.55), with respect
to the deformation gradient as follows

∂K

∂FFFjC
=

∂K

∂Tg

∂Tg

∂FFFjC
, (E.79)

∂K(T)

∂Tg
=
∂G(T)

∂Tg

2(1 + ν)

3(1− 2 ν)
+ G(T)

2
∂ν

∂Tg
(1− 2 ν) + 4

∂ν

∂Tg
(1 + ν)

3(1− 2 ν)2

 . (E.80)

By the same way, using Eq. (6.70), gives

∂Hb(T)

∂FFFjC
=

{ [
1

2∆(Hgl −Hr)(1− tanh2( 1
∆(T− Tg))) + Lgl

] ∂Tg

∂FFFjC
if T ≤ Tg,[

1
2∆(Hgl −Hr)(1− tanh2( 1

∆(T− Tg))) + Lr

] ∂Tg

∂FFFjC
if T > Tg.

(E.81)
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By calling Eqs. (E.42, E.43), one has

∂Sa(n+1)

∂Tg
=


rhaβbzT

T2
g

(1−
T

Tg
)r−1 (

∆εp(1)

∆tεr
)s∆εp(1)

(1+βha∆εp(1))(1+βg∆εp(1))
if T ≤ Tg,

0 if T > Tg.

(E.82)

Now let us compute the derivative of αth with respect to the glass transition temperature
by using Eq. (6.53):

∂αth(T− T0)

∂FFFjC
=
∂αth(T− T0)

∂Tg

∂Tg

∂FFFjC
, (E.83)

where

∂αth(T− T0)

∂Tg
=


0 if T ≤ Tg and T0 ≤ Tg,
−αgl + αr if T ≤ Tg and T0 > Tg,
−αr + αgl if T > Tg and T0 ≤ Tg,
0 if T > Tg and T0 > Tg.

(E.84)

Moreover, we need to compute
∂L(T)

∂FFFjC
by recalling Eq. (E.48)

∂L(T)

∂FFFjC
= −ε

...(1)
0 ∆t

TKB
exp (− 1

ξgl
) exp (− Q

KBT
)
∂Q

∂FFFjC
if T ≤ Tg, (E.85)

and

∂L(T)

∂FFFjC
= −ε

...(1)
0 ∆t

TKB
exp (− 1

(ξgl + d(T− Tg))
) exp (− Q

KBT
)
∂Q

∂FFFjC

−ε.(1)
0 ∆t exp (− 1

(ξgl + d(T− Tg))
) exp (− Q

KBT
)

d

(ξgl + d(T− Tg))2

∂Tg

∂FFFjC
if T > Tg,

(E.86)

where
∂Q(T)

∂FFF
is computed, after recalling Eq. (6.61)

∂Q(T)

∂FFFjC
=

[
1

2∆
(Qgl −Qr)(1− tanh2(

1

∆
(T− Tg))

]
∂Tg

∂FFFjC
. (E.87)
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Eventually, by gathering Eqs. (E.75-E.87), Eq. (E.68) becomes

∂Ω(1)

∂FFFjC
|∆εp(1) = −2mKB T

V

1√√√√(∆εp(1)

L(T)

)2m

+ 1

(∆εp(1))m(L(T))−m−1∂L(T)

∂FFFjC

− 1√
2

∂G(T)

∂FFFjC
|
(

ln(CCCe(1)
pr )

)
0
|+ ∂G(T)

∂FFFjC
∆εp(1) − 1

2
αp
∂K(T)

∂FFFjC
tr
(

ln(CCCe(1)
pr )

)
+3 αp

∂K(T)

∂FFFjC
αth(T− T0) + 3 αpK(T)

∂αth(T− T0)

∂FFFjC
+
∂Sa(n+1)

∂FFFjC

+

[
−G(T) NNN

(1)
OMLLL

e
OMHX −

1

2
αpK(T) δδδYZ LLLe

(pr)YZHX

]
FFF

p(1)−1
(pr)WHFFF

p(1)−1
(pr)VX(FFFjVδδδWC + FFFjWδδδVC) +

∂Hb(T)

∂FFFjC
(

√
trCCC

3
− 1)a

+
a

2
Hb(T)(

√
trCCC

3
− 1)a−1 1√

3trCCC
δδδWV(FFFjVδδδWC + FFFjWδδδVC).

(E.88)

Therefore, Eq. (E.67) becomes

∂∆εp(1)

∂FFFjC
= −1

J

∂Ω(1)

∂FFFjC
|∆εp(1) . (E.89)

By the same way of the first term of Eq. (E.68), the derivative of NNN(1) Eq. (E.21) reads

∂NNN
(1)
OP

∂CCCWV
=

∂NNN
(1)
OP

∂CCC
e(1)
(pr)HX

FFF
p(1)−1
(pr)WHFFF

p(1)−1
(pr)VX

=
1√
2

(
LLLe

(pr)OPHX −
1

3
δδδYZLLLe

(pr)YZHXδOP

)
|
(

ln(CCCe(1)
pr )

)
0
|−1FFF

p(1)−1
(pr)WHFFF

p(1)−1
(pr)VX

−NNN
(1)
QM |

(
ln(CCCe(1)

pr )
)

0
|
−2 (

ln(CCC
e(1)
(pr)OP)

)
0
LLLe

QMHXFFF
p(1)−1
(pr)WHFFF

p(1)−1
(pr)VX.

(E.90)

which gives

∂NNN
(1)
OP

∂FFFjC
=
∂NNN

(1)
OP

∂CCCWV
(FFFjVδδδWC + FFFjWδδδVC). (E.91)

Combining Eqs. (E.89) and (E.91) in Eq. (E.65) leads to the final expression of the derivative
of the equivalent plastic deformation.
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Furthermore, the derivative of Mandel stress can be computed using Eq. (E.18)

∂MMM
e(1)
KL

∂FFFjC
=
∂MMM

e(1)
KL

∂FFFjC
+
∂MMM

e(1)
KL

∂CCCWV

∂CCCWV

∂FFFjC
=
∂MMM

e(1)
KL

∂FFFjC
+
∂MMM

(1)
KL

∂CCCWV
(FFFjVδδδWC + FFFjWδδδVC)

+
∂G

∂FFFjC

(
ln(CCC

e(1)
(pr)KL)

)
0
− 2

∂G

∂FFFjC
∆εp(1)NNN

(1)
KL

− 3
∂K

∂FFFjC
αth(T− T0)δδδKL − 3K

∂αth(T− T0)

∂FFFjC
δδδKL +

1

2

∂K

∂FFFjC
tr
(

ln(CCC
e(1)
(pr))

)
δδδKL

+

[
G(LLLe

KLHX −
1

3
δδδYZLLLe

YZHXδδδKL)FFF
p(1)−1
(pr)WHFFF

p(1)−1
(pr)VX +

1

2
KδδδSU LLLe

SUHXδδδKLFFF
p(1)−1
(pr)WHFFF

p(1)−1
(pr)VX

]
(FFF

(1)
jV δδδWC + FFF

(1)
jWδδδVC)− 2G

∂∆εp(1)

∂FFFjC
NNN

(1)
KL − 2G∆εP(1)∂NNN

(1)
KL

∂FFFjC
.

(E.92)

By combining Eqs. (E.62, E.63, E.64, E.65, E.89, E.91 and E.92) in Eq. (E.61) one gets
the final expression of the derivative of the Piola-Kirchhoff stress tensor with respect to the
deformation gradient.

In the following, the derivative of Piola-Kirchhoff stress tensor with respect of the tem-
perature for the first mechanisms ∂PPP

∂T is developed

∂PPP
(1)
iA

∂T
=
∂(FFFiNFFF

p(1)−1
NM LLLe

KLMSMMM
e(1)
KL FFF

p(1)−T
SA )

∂T

= FFFiN
∂FFF

p(1)−1
NM

∂T
LLLe

KLMSMMM
e(1)
KL FFF

p(1)−T
SA + FFFiNFFF

p(1)−1
NM LLLe

KLMS

∂MMM
e(1)
KL

∂T
FFF

p(1)−T
SA

+ FFFiNFFF
p(1)−1
NM

∂LLLe
KLMS

∂T
MMM

e(1)
KL FFF

p(1)−T
SA + FFFiNFFF

p(1)−1
NM LLLe

KLMSMMM
e(1)
KL

∂FFF
p(1)−T
SA

∂T
.

(E.93)

The term related to the forth term of Eq. (E.93) can be derived as

∂LLLe
KLMS

∂T
=
∂Le

KLMS

∂CCC
e(1)
QV

∂CCC
e(1)
QV

∂FFF
e(1)
EU

∂FFF
e(1)
EU

∂T

=
∂Le

KLMS

∂CCC
e(1)
QV

(
δδδQUFFF

e(1)
EV + FFF

e(1)
EQ δδδVU

)
FFFEW

∂FFF
p(1)−1
WU

∂T
,

(E.94)

where ∂Le

∂CCCe(1) is obtained from the logarithmic approximation. The derivative of the plastic
deformation gradient with respect to temperature reads

∂FFF
p(1)
(n+1)EZ

∂T
=
∂exp(∆εp(1)NNN(1))EI

∂T
FFFp

(n)IZ

=
∂exp(∆εp(1)NNN(1))EI

∂(∆εP(1)NNN(1))OP

∂(∆εp(1)NNN(1))OP

∂T
FFF

p(1)
(n)IZ

=ZZZEIOPNNN
(1)
OP

∂∆εp(1)

∂T
FFF

p(1)
(n)IZ,

(E.95)
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which immediately gives the derivative of the inverse of the plastic deformation:

∂FFF
p(1)−1
XY

∂T
= −FFF

p(1)−1
XE

∂FFF
p(1)
EZ

∂T
FFF

p(1)−1
ZY . (E.96)

In order to get
∂∆εp(1)

∂T
, the derivative of the residual Ω(1), Eq.(E.52), with respect to the

temperature should be computed

∂Ω(1)

∂T
|∆εp(1) +

∂Ω(1)

∂∆εp(1)

∂∆εp(1)

∂T
= 0 (E.97)

=⇒ ∂∆εp(1)

∂T
= −

(
1
−1
) ∂Ω(1)

∂T
|∆εP(1) . (E.98)

We need to calculate the derivative of the residual Ω(1) with respect to the temperature T.
From Eq. (6.61) one has

∂Q(T)

∂T
= − 1

2∆
(Qgl −Qr)(1− tanh2(

1

∆
(T− Tg)). (E.99)

From Eq. (6.54), one also has

∂ν(T)

∂T
= − 1

2∆
(νgl − νr)(1− tanh2(

1

∆
(T− Tg)), (E.100)

and from Eqs. (6.52), one has

∂G(T)

∂T
=

{
− 1

2∆(Ggl −Gr)(1− tanh2( 1
∆(T− Tg))−Mgl if T ≤ Tg,

− 1
2∆(Ggl −Gr)(1− tanh2( 1

∆(T− Tg))−Mr if T > Tg.
(E.101)

The derivative of the bulk modulus, Eq. (6.55), reads

∂K(T)

∂T
=
∂G(T)

∂T

2(1 + ν)

3(1− 2 ν)
+ G(T)

2
∂ν

∂T
(1− 2 ν) + 4

∂ν

∂T
(1 + ν)

3(1− 2 ν)2

 , (E.102)

and the derivative of the thermal strain Eq. (6.53), reads

∂αth(T− T0)

∂T
=

{
αgl if T ≶ Tg and T0 ≤ Tg,
αr if T ≶ Tg and T0 > Tg.

(E.103)

The derivative of The derivative of Eq. (E.48), reads

∂L(T)

∂T
= ε

...(1)
0 ∆t exp (− 1

ξgl
) exp (− Q

KBT
)(
−∂Q(T)

∂T
KBT + QKB

K2
BT2 ) if T ≤ Tg, (E.104)

The derivative of Eq. (E.48) reads

∂L(T)

∂T
= ε

.(1)
0 ∆t exp (− 1

(ξgl + d(T− Tg))
) exp (−Q(T)

KBT
)

d

(ξgl + d(T− Tg))2

+ε
.(1)
0 ∆t exp (− 1

(ξgl + d(T− Tg))
) exp (−Q(T)

KBT
)(
−∂Q(T)

∂T
KBT + QKB

K2
BT2 ) if T > Tg.

(E.105)
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Also, the derivative of Eq. (6.70) is expressed as

∂Hb(T)

∂T
=

{
− 1

2∆(Hgl −Hr)(1− tanh2( 1
∆(T− Tg)))− Lgl if T ≤ Tg

− 1
2∆(Hgl −Hr)(1− tanh2( 1

∆(T− Tg)))− Lr if T > Tg.
(E.106)

Eventually from Eqs. (E.42, E.43), we have

∂Sa(n+1)

∂T
=


−

rhaβb

Tg
z(1−

T

Tg
)r−1 (

∆εp(1)

∆tεr
)s∆εp(1)

(1+βha∆εp(1))(1+βg∆εp(1))
if T ≤ Tg,

0 if T > Tg.

(E.107)

After substituting Eqs. (E.99- E.107), in Eq. (E.52), one has

∂Ω(1)

∂T
=

2KB

V
arcsinh

(
∆ε

p(1)
1

L(T)

)m

− 2mKB T

V

1√√√√(∆εp(1)

L(T)

)2m

+ 1

(∆εp(1))m(L(T))−m−1∂L(T)

∂T

− 1√
2

∂G(T)

∂T
|
(

ln(CCCe(1)
pr )

)
0
|+ ∂G(T)

∂T
∆ε

p(1)
1 − 1

2
αp
∂K(T)

∂T
tr
(

ln(CCCe(1)
pr )

)
+ 3 αpK(T)(

∂αth(T− T0)

∂T
) + 3 αp

∂K(T)

∂T
αth(T− T0)

+
∂Hb(T)

∂T
(
√

trCCC/3− 1)a +
∂Sa(n+1)

∂T
.

(E.108)

Therefore, the derivative of the plastic shear strain rate with respect to the temperature can
be evaluated from Eq. (E.98). Finally by substituting Eq. (E.98) in Eq. (E.95) yields the
derivative of plastic deformation gradient.

Eventually, by using Eqs. (E.89, E.101, E.102, and E.103) we can evaluate the missing
term of Eq. (E.93) as

∂MMM
e(1)
KL

∂T
=
∂G(T)

∂T

(
ln(CCC

e(1)
(pr)KL)

)
0
− 2

∂G(T)

∂T
∆εp(1)NNN

(1)
KL − 2G(T)

∂∆εp(1)

∂T
NNN

(1)
KL

− 3
∂K(T)

∂T
αth(T− T0)δδδKL − 3K(T)

∂αth(T− T0)

∂T
δδδKL +

1

2

∂K(T)

∂T
tr
(

ln(CCC
e(1)
(pr))

)
δδδKL

(E.109)

Combining Eqs. (E.95, E.96 and E.109) in Eq. (E.93) yields the final expression of the
derivative of the first Piola-Kirchhoff stress tensor with respect to the temperature.

E.2.2 Predictor-corrector for second mechanism (α = 2)

As explained in Section 6.3.4.3, the second mechanism is purely deviatoric.

E.2.2.1 Flow rule

Let us define the normal direction as

NNN(2) =
MMMe(2)

√
2|MMMe(2)|

. (E.110)
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Then one can write the elastic deformation gradient Eq. (6.13) from the incremental form
of the plastic flow Eq. (6.28) as

F̄FF
e(2)

= F̄FF
(2)

FFF
p(2)−1

(n)

[
exp(ε̇

(2)
0 ∆t(

τ̄ (2)

S(2)(T)
)

1
mNNN(2))

]−1

. (E.111)

Therefore, the elastic right Cauchy tensor reads

C̄CC
e(2)

=
[
exp(∆εp(2)NNN(2))

]−T
C̄CC

e(2)
(pr)

[
exp(∆εP(2)NNN(2))

]−1
, (E.112)

with C̄CC
e(2)
(pr) = FFF

p(2)-T
(n) FFFT

(n+1) FFF(n+1) FFF
p(2)−1
(n)

E.2.2.2 Mandel stress

Using Eq. (6.76), one has

SSSe(2) = J−
2
3µ(2)

(
1− trC̄CC

e(2) − 3

I
(2)
m

)−1{
III− 1

3
(trC̄CC

e(2)
)

[
exp(ε̇

(2)
0 ∆t(

τ̄ (2)

S(2)(T)
)

1
mNNN(2))

]
C̄CC

e(2)−1
(pr)

[
exp(ε̇

(2)
0 ∆t(

τ̄ (2)

S(2)(T)
)

1
mNNN(2))

]T
 .

(E.113)

Thereby, using Eq. (6.79), yields

MMMe(2) = µ(2)

(
1− trC̄CC

e(2) − 3

I
(2)
m

)−1
−1

3
(trC̄CC

e(2)
)III +

[
exp(ε̇

(2)
0 ∆t(

τ̄ (2)

S(2)(T)
)

1
mNNN(2))

]−T

C̄CC
e(2)
(pr)

[
exp(ε̇

(2)
0 ∆t(

τ̄ (2)

S(2)(T)
)

1
mNNN(2))

]−1
 .

(E.114)

E.2.2.3 Shear strain

Combining Eq. (6.25) with Eq. (E.114), yields

τ̄ (2) =
1√
2
|µ(2)

(
1− trC̄CC

e(2) − 3

I
(2)
m

)−1
−1

3
(trC̄CC

e(2)
) +

[
exp(ε̇

(2)
0 ∆t(

τ̄ (2)

S(2)(T)
)

1
mNNN(2))

]−T

C̄CC
e(2)
(pr)

[
exp(ε̇

(2)
0 ∆t(

τ̄ (2)

S(2)(T)
)

1
mNNN(2))

]−1
 |.

(E.115)
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E.2.2.4 Non-linear system of equations

The Mandel stress is the solution of the system for the mechanism 2, which is stated as

MMMe(2) = CCCe(2)SSSe(2) = f(∆εp(2),NNN(2))|
C̄CC

e(2)
(pr)

, J
= f(τ̄ (2),NNN(2))|

C̄CC
e(2)
(pr)

, J
= f(MMMe(2))|

C̄CC
e(2)
(pr)

, J
.

(E.116)

Notice that (C̄CC
e(2)
pr ) and (J) are constant during the resolution of the system. Using the

results here above, Eq. (E.116) is written in the implicit residual form

ΩΩΩ(2) = MMMe(2) − µ(2)(1− trC̄CC
e(2) − 3

I
(2)
m

)−1

{
−1

3
(trC̄CC

e(2)
)III

+

[
exp(ε̇

(2)
0 ∆t(

|MMMe(2)|√
2S(2)(T)

)
1
m

MMMe(2)

√
2|MMMe(2)|

)

]−T

C̄CC
e(2)
(pr)

[
exp(ε̇

(2)
0 ∆t(

|MMMe(2)|√
2S(2)(T)

)
1
m

MMMe(2)

√
2|MMMe(2)|

)

]−1
 = 0.

(E.117)

The associated Newton-Raphson scheme reads

ΩΩΩ(2) +
∂ΩΩΩ(2)

∂MMMe(2)
|
C̄CC

e(2)
(pr)

, J
∆MMMe(2) = 0. (E.118)

Let us define Jaccobian matrix as 222 =
∂ΩΩΩ(2)

∂MMMe(2)
|
C̄CC

e(2)
(pr)

, J
, which leads to

∆MMMe(2) = −−1
2 ΩΩΩ(2). (E.119)

The solution is then updated by

MMMe(2) ←MMMe(2) + ∆MMMe(2), (E.120)

and the iterations continue until convergence to a specified tolerance is achieved.
One has now to compute the Jacobian using Eq. (E.117), leading to

∂ΩΩΩ
(2)
US

∂MMM
e(2)
CD

=
∂

∂MMM
e(2)
CD

(MMM
e(2)
US − µ

(2)(1− trC̄CC
e(2) − 3

I
(2)
m

)−1

{
−1

3
trC̄CC

e(2)
δδδUS

+

[
exp(ε̇

(2)
0 ∆t(

|MMMe(2)|√
2S(2)(T)

)
1
m

MMMe(2)

√
2|MMMe(2)|

)

]−T

UR

C̄CC
e(2)
(pr)RQ

[
exp(ε̇

(2)
0 ∆t(

|MMMe(2)|√
2S(2)(T)

)
1
m

MMMe(2)

√
2|MMMe(2)|

)

]−1

QS

 .

(E.121)

Let us successively compute the derivatives of the components of ΩΩΩ(2). First one has

∂trC̄CC
e(2)

∂MMM
e(2)
CD

=
∂trC̄CC

e(2)

∂C̄CC
e(2)
YZ

∂C̄CC
e(2)
YZ

∂MMM
e(2)
CD

= δδδYZ
∂C̄CC

e(2)
YZ

∂MMM
e(2)
CD

, (E.122)
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with Eq. (E.112)

∂C̄CC
e(2)
YZ

∂MMM
e(2)
CD

=
∂

∂MMM
e(2)
CD


[

exp(ε̇
(2)
0 ∆t(

|MMMe(2)|√
2S(2)(T)

)
1
m

MMMe(2)

√
2|MMMe(2)|

)

]−T

YI

C̄CC
e(2)
prIJ[

exp(ε̇
(2)
0 ∆t(

|MMMe(2)|√
2S(2)(T)

)
1
m

MMMe(2)

√
2|MMMe(2)|

)

]−1

JZ

 .

(E.123)

Let us define y =
ε
(2)
0 ∆t S(2)(T)

−1
m

√
2

m+1
m

, then one gets

∂
[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]−T

YI

∂MMM
e(2)
CD

=
∂
[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]−T

YI

∂
[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]
AB

∂
[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]
AB

∂(y|MMMe(2)|
1−m

m MMM
e(2)
KL )

∂(y|MMMe(2)|
1−m

m MMM
e(2)
KL )

∂MMM
e(2)
CD

.
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To evaluate this derivation, we use

∂
[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]−T

YI

∂
[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]
AB

= −
[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]−T

YB

[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]−T

AI
,

(E.125)

∂
[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]
AB

∂(y|MMMe(2)|
1−m

m MMM
e(2)
KL )

= ZZZABKL, (E.126)

∂|MMMe(2)|
∂MMMe(2)

=
∂
√

MMMe(2) : MMMe(2)

∂MMMe(2)
=

MMMe(2) : III
|MMMe(2)|

, (E.127)

and

∂(y|MMMe(2)|
1−m

m MMM
e(2)
KL )

∂MMM
e(2)
CD

= y

(
∂(|MMMe(2)|

1−m
m )

∂MMM
e(2)
CD

MMM
e(2)
KL + |MMMe(2)|

1−m
m
∂(MMM

e(2)
KL )

∂MMM
e(2)
CD

)

= y

(
1−m

m
|MMMe(2)|

1−3m
m MMM

e(2)
CD MMM

e(2)
KL + |MMMe(2)|

1−m
m IIIKLCD

)
,

(E.128)

where IIIKLCD = 1
2(δδδKDδδδLC +δδδKLδδδCD). Then by inserting Eqs. (E.125- E.128) in Eq. (E.124)

we have

∂
[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]−T

YI

∂MMM
e(2)
CD

= −
[
exp(y |MMMe(2)|

1−m
m MMMe(2))

]−T

YB

[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]−T

AI

ZZZABKL y

(
1−m

m
|MMMe(2)|

1−3m
m MMM

e(2)
CD MMM

e(2)
KL + |MMMe(2)|

1−m
m IIIKLCD

)
.

(E.129)
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By the same way as to derive Eq. (E.124), we can compute the following derivative

∂
[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]−1

JZ

∂MMM
e(2)
CD

=
∂
[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]−1

JZ

∂
[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]
AB

∂
[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]
AB

∂(y|MMMe(2)|
1−m

m MMM
e(2)
KL )

∂(y|MMMe(2)|
1−m

m MMM
e(2)
KL )

∂MMM
e(2)
CD

.
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By combining the above result, we have

∂C̄CC
e(2)
YZ

∂MMM
e(2)
CD

= −y
[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]−T

YB

[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]−T

AI
ZZZABKL(

1−m

m
|MMMe(2)|

1−3m
m MMM

e(2)
CD MMM

e(2)
KL + |MMMe(2)|

1−m
m IIIKLCD

)
C̄CC

e(2)
(pr)IJ

[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]−1

JZ

− y
[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]−T

YI
C̄CC

e(2)
(pr)IJ

[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]−1

JA[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]−1

BZ
ZZZABKL(

1−m

m
|MMMe(2)|

1−3m
m MMM

e(2)
CD MMM

e(2)
KL + |MMMe(2)|

1−m
m IIIKLCD

)
.
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Combining Eqs. (E.123, E.131) leads to the final expression of Eq. (E.121), and the system
Eq. (E.119) is iteratively solved using the Jaccobian matrix

222 =
∂ΩΩΩ

(2)
US

∂MMM
e(2)
CD

= IIIUSCD −
µ(2)

I
(2)
m

(1− trC̄CC
e(2) − 3

I
(2)
m

)−2∂trC̄CC
e(2)

∂MMM
e(2)
CD

{
−1

3
trC̄CC

e(2)
δδδUS

+
[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]−T

UR
C̄CC

e(2)
(pr)RQ

[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]−1

QS

}
−µ(2)(1− trC̄CC

e(2) − 3

I
(2)
m

)−1

[
−1

3

∂trC̄CC
e(2)

∂MMM
e(2)
CD

δδδUS − y
[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]−T

UB[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]−T

AR
ZZZABKL

(
1−m

m
|MMMe(2)|

1−3m
m MMM

e(2)
CD MMM

e(2)
KL + |MMMe(2)|

1−m
m IIIKLCD

)
C̄CC

e(2)
(pr)RQ

[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]−1

QS
− y

[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]−T

UR
C̄CC
e(2)
(pr)RQ[

exp(y|MMMe(2)|
1−m

m MMMe(2))
]−1

QA

[
exp(y|MMMe(2)|

1−m
m MMMe(2))

]−1

BS
ZZZABKL(

1−m

m
|MMMe(2)|

1−3m
m MMM

e(2)
CD MMM

e(2)
KL + |MMMe(2)|

1−m
m IIIKLCD

)]
.
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E.2.2.5 Converged solution

Let us now compute the tangent for the second mechanism. From the first Piola-Kirchhoff
stress defined in Eq. (6.23), one can get its derivative with respect of the deformation
gradient as

∂PPP
(2)
iA

∂FFFjC
=
∂(FFFiW FFF

p(2)−1
WD SSS

e(2)
DB FFF

p(2)−T
BA )

∂FFFjC

= δδδijδδδWC FFF
p(2)−1
WD SSS

e(2)
DB FFF

p(2)−T
BA + FFFiW

∂FFF
p(2)−1
WD

∂FFFjC
SSS

e(2)
DB FFF

p(2)−T
BA

+FFFiW FFF
p(2)−1
WD SSS

e(2)
DB

∂FFF
p(2)−T
BA

∂FFFjC
+ FFFiWFFF

p(2)−1
WD

∂SSS
e(2)
DB

∂F̄FF
e(2)
qM

∂F̄FF
e(2)
qM

∂FFFjC
FFF

p(2)−T
BA

+FFFiWFFF
p(2)−1
WD

∂SSS
e(2)
DB

∂F̄FF
e(2)
qM

∂F̄FF
e(2)
qM

∂J

∂J

∂FFFjC
FFF

p(2)−T
BA + FFFiWFFF

p(2)−1
WD

∂SSS
(2)
DB

∂J

∂J

∂FFFjC
FFF

p(2)−T
BA

+FFFiWFFF
p(2)−1
WD

∂SSS
(2)
DB

∂µ(2)(T)

∂µ(2)(T)

∂Tg

∂Tg

∂FFFjC
FFF

p(2)−T
BA

+FFFiWFFF
p(2)−1
WD

∂SSS
(2)
DB

∂S(2)(T)

∂S(2)(T)

∂Tg

∂Tg

∂FFFjC
FFF

p(2)−T
BA ,
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where the derivative of plastic deformation gradient can be computed by using Eq. (6.81,
6.82)

∂FFF
p(2)
(n+1)EZ

∂FFFjC
=
∂ exp(∆DDDp(2))EZ

∂FFFjC
FFF

p(2)
(n)IZ

=
∂exp(∆εp(2)NNN(2))EI

∂FFFjC
FFF

p(2)
(n)IZ

=
∂exp(∆εp(2)NNN(2))EI

∂(∆εp(2)NNN(2))OP

∂(∆εp(1)NNN(2))OP

∂FFFjC
FFF

p(2)
(n)IZ

=ZEIOP

[
NNN

(2)
OP

∂∆εp(2)

∂FFFjC
+ ∆εp(1)∂NNN

(2)
OP

∂FFFjC

]
FFF

p(2)
(n)IZ.

(E.134)

The derivatives of the inverse of the plastic deformation gradient FFFp(2)−1 and of the elastic
deformation mapping FFFe(2) are obtained similarly to mechanism 1, Eq. (E.62) and Eq.
(E.63) respectively. Therefore, the deviatoric part derivative reads

∂F̄FF
e(2)
qM

∂FFFjC
= J−

1
3

∂FFF
e(2)
qM

∂FFFjC
= J−

1
3

(
δδδqJFFF

p(2)−1
CM −FFFqGFFF

p(2)−1
GX

∂FFF
p(2)
XY

∂FFFjC
FFF

p(2)−1
YM

)
. (E.135)
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Further, the derivative of the fourth term in Eq. (E.133) is computed as follows

∂SSS
e(2)
DB

∂F̄FF
e(2)
qM

∂F̄FF
e(2)
qM

∂FFFjC
=
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2
3µ(2)

∂(1− trC̄CC
e(2)−3

I
(2)
m
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∂F̄FF
e(2)
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[δδδDB −
1

3
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e(2)
)C̄CC

e(2)−1
DB ]

+ J−
2
3µ(2)(1− trC̄CC

e(2) − 3

I
(2)
m

)−1(−1/3)
∂(trC̄CC

e(2)
C̄CC

e(2)−1
DB )

∂F̄FF
e(2)
qM


J−

1
3

(
δδδqJFFF

p(2)−1
CM + FFF

(2)
qG

∂FFF
p(2)−1
GM

∂FFFjC

)
.

(E.136)

Let us first compute

∂(1− trC̄CC
e(2)−3

I
(3)
m

)−1

∂F̄FF
e(3)
qM

= −(1− trC̄CC
e(2) − 3

I
(3)
m

)−2∂trC̄CC
e(2)

∂F̄FF
e(2)
qM

(
−1

Im
). (E.137)

Using

∂trC̄CC
e(2)

∂F̄FF
e(2)
qM

=
∂trC̄CC

e(2)

∂C̄CC
e(2)
DF

∂C̄CC
e(2)
DF

∂F̄FF
e(2)
qM

= δδδDF

∂(F̄FF
e(2)
kD F̄FF

e(2)
kF )

∂F̄FF
e(2)
qM

 = 2F̄FF
e(2)
qM , (E.138)

and inserting Eq. (E.138) in Eq. (E.137), yields

∂(1− trC̄CC
e(2)−3

I
(2)
m

)−1

∂F̄FF
e(2)
qM

=
2

Im
(1− trC̄CC

e(2) − 3

I
(2)
m

)−2 F̄FF
e(2)
qM . (E.139)

Then we can compute:

∂(trC̄CC
e(2)

C̄CC
e(2)−1
DB )

∂F̄FF
e(2)
qM

=
∂trC̄CC

e(2)

∂F̄FF
e(2)
qM

C̄CC
e(2)−1
DB + trC̄CC

e(2)∂C̄CC
e(2)−1
DB

∂F̄FF
e(2)
qM

, (E.140)

with

∂C̄CC
e(2)−1
DB

∂F̄FF
e(2)
qM

=
∂F̄FF

e(2)−1
Dk F̄FF

e(2)−1
Bk

∂F̄FF
e(2)
qM

=
∂F̄FF

e(2)−1
Dk

∂F̄FF
e(2)
qM

F̄FF
e(2)−1
Bk + F̄FF

e(2)−1
Dk

∂F̄FF
e(2)−1
Bk

∂F̄FF
e(2)
qM

= −F̄FF
e(2)−1
Dq F̄FF

e(2)−1
Mk F̄FF

e(2)−1
Bk − F̄FF

e(2)−1
Dk F̄FF

e(2)−1
Bq F̄FF

e(2)−1
Mk ,

(E.141)

as
∂FFF−1

Dk

∂FFFqM
= −FFF−1

DqFFF−1
Mk. Then using Eqs. (E.141, E.138), the relation (E.140) becomes

∂(trC̄CC
e(2)

C̄CC
e(2)−1
DB )

∂F̄FF
e(2)
qM

= 2F̄FF
e(2)
qM C̄CC

e(2)−1
DB − trC̄CC

e(2)
(
F̄FF

e(2)−1
Dq F̄FF

e(2)−1
Mk F̄FF

e(2)−1
Bk + F̄FF

e(2)−1
Dk F̄FF

e(2)−1
Bq F̄FF

e(2)−1
Mk

)
= 2F̄FF

e(2)
qM C̄CC

e(2)
DB − trC̄CC

e(2)
(
F̄FF

e(2)−1
Dq C̄CC

e(2)−1
MB + C̄CC

e(2)−1
DM F̄FF

e(2)−1
Bq

)
.

(E.142)
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As a result, Eq. (E.136) can easily be obtained

∂SSS
e(2)
DB

∂F̄FF
e(2)
qM

∂F̄FF
e(2)
qM

∂FFFjC
= J−1µ(2) 2

I
(2)
m

(1− trC̄CC
e(2) − 3

I
(2)
m

)−2F̄FF
e(2)
qM [δδδDB −

1

3
(trC̄CC

e(2)
)C̄CC

e(2)−1
DB ]

∂FFF
e(2)
qM

∂FFFjC

−1

3
J−1µ(2)(1− trC̄CC

e(2) − 3

I
(2)
m

)−1[2F̄FF
e(2)
qM C̄CC

e(2)−1
DB − trC̄CC

e(2)
(F̄FF

e(2)−1
Dq F̄FF

e(2)−1
Mk F̄FF

e(2)−1
Bk

+F̄FF
e(2)−1
Dk F̄FF

e(2)−1
Bq F̄FF

e(2)−1
Mk )]

∂FFF
e(2)
qM

∂FFFjC
.

(E.143)

Since

∂J

∂FFFjC
=
∂(det F)

∂FFFjC
= JFFF−T

jC , (E.144)

and since

∂F̄FF
e(2)
qM

∂J
=
∂(J−

1
3FFF

e(2)
qM )

∂J
=
−1

3
J
−4
3 FFF

e(2)
qM =

−1

3
J−1F̄FF

e(2)
qM , (E.145)

The fifth term in Eq. (E.133) is computed as follows, using Eqs. (E.143, E.144, and E.145)

∂SSS
e(2)
DB

∂F̄FF
e(2)
qM

∂F̄FF
e(2)
qM

∂J

∂J

∂FFFjC
= −J

−2
3 µ(2) 2

3I
(2)
m

(1− trC̄CC
e(2) − 3

I
(2)
m

)−2F̄FF
e(2)
qM [δδδDB −

1

3
(trC̄CC

e(2)
)C̄CC

e(2)−1
DB ]F̄FF

e(2)
qM FFF−T

jC

+1

9
J
−2
3 µ(2)(1− trC̄CC

e(2) − 3

I
(2)
m

)−1[2F̄FF
e(2)
qM C̄CC

e(2)−1
DB − trC̄CC

e(2)
(F̄FF

e(2)−1
Dq F̄FF

e(2)−1
Mk F̄FF

e(2)−1
Bk

+F̄FF
e(2)−1
Dk F̄FF

e(2)−1
Bq F̄FF

e(2)−1
Mk )]F̄FF

e(2)
qM FFF−T

jC .

(E.146)

Then for sixth term in Eq. (E.133) is evaluated from Eq. (E.113) and read

∂SSS
(2)
DB

∂J

∂J

∂FFFjC
= −2

3
SSS

(2)
ABFFF−T

jC . (E.147)

The derivative of the glass transition temperature with respect to deformation, i.e. the
seventh term, is already performed in Eq. (E.72). Therefore from the definition of the first
Piola-Kirchhoff stress for the second mechanisms, Eq. (6.76), we have

∂SSS
e(2)
DB

∂µ(2)(T)

∂µ(2)(T)

∂FFFjC
=

∂

∂µ(2)(T)

{
J−

2
3µ(T)(2)(1− trC̄CC

e(2) − 3

I
(2)
m

)−1

[δδδDB −
1

3
(trC̄CC

e(2)
)C̄CC

e(2)−1
DB ]

}
∂µ(2)(T)

∂FFFjC
,

(E.148)

where
∂µ(T)(2)

∂FFFjC
=
∂µ(2)(T)

∂Tg

∂Tg

∂FFFjC
. (E.149)
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Using Eq. (6.75)

∂µ(2)(T)

∂Tg
= Nµ(2)

g exp(−N(T− Tg)) = Nµ(2)(T), (E.150)

which leads to
∂SSS

e(2)
DB

∂µ(2)(T)

∂µ(2)(T)

∂Tg

∂Tg

∂FFFjC
= NSSS

e(2)
DB

∂Tg

∂FFFjC
. (E.151)

By the same way, the eighth term follows from

∂SSS
e(2)
DB

∂S(2)(T)

∂S(2)(T)

∂FFFjC
= J−

2
3

µ(2)
∂(1− trC̄CC

e(2)−3

I
(2)
m

)−1

∂S(2)(T)
[δδδDB −

1

3
(trC̄CC

e(2)
)C̄CC

e(2)−1
DB ]

+ J−
2
3µ(2)(1− trC̄CC

e(2) − 3

I
(2)
m

)−1(−1/3)
∂(trC̄CC

e(2)
C̄CC

e(2)−1
DB )

∂S(2)(T)
]

}
∂S(2)(T)

∂FFFjC
.

(E.152)

We have

∂(trC̄CC
e(2)

C̄CC
e(2)−1
DB )

∂S(2)(T)
=
∂trC̄CC

e(2)

∂S(2)(T)
C̄CC

e(2)−1
DB + trC̄CC

e(2)∂C̄CC
e(2)−1
DB

∂S(2)(T)

=
∂trC̄CC

e(2)

∂S(2)(T)
C̄CC

e(2)−1
DB − trC̄CC

e(2)
C̄CC

(2)−1
DF C̄CC

(2)−1
GB

∂C̄CC
e(2)
FG

∂S(2)(T)
,

(E.153)

also from Eq. (6.85), we have

∂S(2)(T)

∂Tg

∂Tg

∂FFFjC
=

1

2∆2
(S

(2)
gl − S(2)

r )(1− tanh2(
1

∆2
(T− Tg))

∂Tg

∂FFFjC
, (E.154)

and the eighth term becomes

∂SSS
e(2)
DB

∂S(2)(T)

∂S(2)(T)

∂Tg

∂Tg

∂FFFjC
=

(
1

Im
J−

2
3µ(2)(1− trC̄CC

e(2) − 3

I
(2)
m

)−2 ∂trC̄CC
e(2)

∂S(2)(T)
[δδδDB −

1

3
(trC̄CC

e(2)
)C̄CC

e(2)−1
DB ]

−1

3
J−

2
3µ(2)(1− trC̄CC

e(2) − 3

I
(2)
m

)−1

[
∂trC̄CC

e(2)

∂FjC
C̄CC

e(2)−1
DB − trC̄CC

e(2)
C̄CC

e(2)−1
DF C̄CC

(2)−1
GB

∂C̄CC
e(2)
FG

∂S(2)(T)

])
∂S(2)(T)

∂Tg

∂Tg

∂FFFjC
.

(E.155)

Combining Eqs. (E.143, E.143, E.146, E.147, and E.155) leads to the final expression of Eq.

(E.133). However, the following terms are missing: ∂∆εp(2)

∂FFFjX
,
∂FFF

p(2)
EZ(n+1)

∂FFFjC
. In order to get the

missing derivatives, let us compute the derivative of the residual Eq. (E.118)

∂ΩΩΩ
(2)
US

∂FFFjC
+

∂ΩΩΩ
(2)
US

∂MMM
e(2)
CD

∂MMM
e(2)
CD

∂FFFjC
= 0. (E.156)
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Thereby

=⇒
∂MMM

e(2)
CD

∂FFF
(2)
jC

= −222−1
CDUS

∂ΩΩΩ
(2)
US

∂FFF
(2)
jC

|MMMe(2) . (E.157)

Let us now compute
∂ΩΩΩ

(2)
US

∂FFFjC
from Eq. (E.117)

∂ΩΩΩ
(2)
US

∂FFFjX
=

∂

∂FFFjX
(MMM

e(2)
US − µ

(2)(1− trC̄CC
e(2) − 3

I
(2)
m

)−1

{
−1

3
trC̄CC

e(2)
δδδUS

+

[
exp(ε̇

(2)
0 ∆t(

|MMMe(2)|√
2S(2)(T)

)
1
m

MMMe(2)

√
2|MMMe(2)|

)

]−T

UR

C̄CC
e(2)
(pr)RQ

[
exp(ε̇

(2)
0 ∆t(

|MMMe(2)|√
2S(2)(T)

)
1
m

MMMe(2)

√
2|MMMe(2)|

)

]−1

QS

 = 0.

(E.158)

The derivative of the terms dependent on C̄CC
e(2)
(pr) are obtained through the derivative with

respect to Cauchy strain tensor as

∂

∂C̄CCAB
=

∂

∂C̄CC
e(2)
(pr)HT

: FFF
p(2)−1

(pr)AHFFF
p(2)−1

(pr)BT, (E.159)

and reads

ΩΩΩ
(2)

MMMe(2), C̄CC
= FFF

p(2)−1
(pr) ·ΩΩΩ(2)

MMMe(2), C̄CC
e
(pr)
·FFFp(2)−T

(pr) . (E.160)

The derivative of C̄CC with respect to FFF is

∂C̄CC

∂FFFjX
= J−

2
3IIIABWV(FFFjVδδδWX + FFFjWδδδVX), (E.161)

where we have used in the previous equation the following result

∂C̄CC
(2)
AB

∂CCC
(2)
WV

= J−
2
3
∂CCC

(2)
AB

∂CCC
(2)
WV

= J−
2
3IIIABWV. (E.162)

Let us define GGG = (ε̇
(2)
0 ∆t(

|MMMe(2)|√
2S(2)(T)

)
1
m

MMMe(2)

√
2|MMMe(2)|

). Therefore, combining Eqs. (E.158,
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E.160) yields

∂ΩΩΩ
(2)
US

∂FFFjX
= FFF

p(2)−1
AHpr

−µ(2)
∂(1− trC̄CC

e(2)−3

I
(2)
m

)−1

∂C̄CC
e(2)
(pr)HT

{
−1

3
trC̄CC

e(2)
δδδUS + [exp(GGG)]−T

UR C̄CC
e(2)
(pr)RQ [exp(GGG)]−1

QS

}

− µ(2)(1− trC̄CC
e(2) − 3

I
(2)
m

)−1

∂(−1
3trC̄CC

e(2)
)δδδUS

∂C̄CC
e(2)
(pr)HT

+ [exp(GGG)]−T
UR

∂C̄CC
e(2)
(pr)RQ

∂C̄CC
e(2)
(pr)HT

[exp(GGG)]−1
QS




FFF
p(2)-1
BTpr

J−
2
3IIIABWV(FFFjVδδδWX + FFFjWδδδVX)

−µ(2)
∂(1− trC̄CC

e(2)−3

I
(2)
m

)−1

∂FFFjX

{
−1

3
trC̄CC

e(2)
δδδUS + [exp(GGG)]−T

UR C̄CC
e(2)
(pr)RQ [exp(GGG)]−1

QS

}
− µ(2)(1− trC̄CC

e(2) − 3

I
(2)
m

)−1

{
∂(−1

3trC̄CC
e(2)

)

∂S(2)(T)

∂S(2)(T)

∂FFFjX
δδδUS

}

− µ(2)(1− trC̄CC
e(2) − 3

I
(2)
m

)−1

{
[∂ exp(GGG)]−T

UR

∂S(2)(T)

∂S(2)(T)

∂FFFjX
C̄CC
e(2)
(pr)RQ [exp(GGG)]−1

QS

+ [exp(GGG)]−T
UR C̄CC

e(2)
(pr)RQ

[∂ exp(GGG)]−1
QS

∂S(2)(T)

∂S(2)(T)

∂FFFjX

}

−∂µ
(2)(T)

∂Tg

∂Tg

∂FFFjX
(1− trC̄CC

e(2) − 3

I
(2)
m

)−1

{
−1

3
trC̄CC

e(2)
δδδUS + [exp(GGG)]−T

UR C̄CC
e(2)
(pr)RQ [exp(GGG)]−1

QS

}
.

(E.163)

Let us calculate the required derivatives for the previous equation components. We have

∂trC̄CC
e(2)

∂C̄CC
e(2)
(pr)HT

=
∂trC̄CC

e(2)

∂C̄CC
e(2)
FM

∂C̄CC
e(2)
FM

∂C̄CC
e(2)
(pr)HT

= [exp(GGG)]−T
MK IIIKLHT [exp(GGG)]−1

LM ,

(E.164)

∂(1− trC̄CC
e(2)−3

I
(2)
m

)−1

∂C̄CC
e(2)
(pr)HT

=
1

Im
(1− trC̄CC

e(2) − 3

I
(2)
m

)−2 ∂trC̄CC
e(2)

∂C̄CC
e(2)
(pr)HT

=
1

Im
(1− trC̄CC

e(2) − 3

I
(2)
m

)−2 [exp(GGG)]−T
MK IIIKLHT [exp(GGG)]−1

LM .

(E.165)

Let us define WWW = (ε̇
(2)
0 ∆t(

|MMMe(2)|√
2

1
m MMMe(2)

√
2|MMMe(2)|

), which leads to

∂C̄CC
e(2)

∂S(2)(T)

∂S(2)(T)

∂FFFjC
=

∂

∂FFFjC

{[
exp(WWW (S(2)(T))

−1
m )
]−T

YI
C̄CC
e(2)
(pr)IJ

[
exp(WWW (S(2)(T))

−1
m )
]−1

JZ

}
.

(E.166)
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and thus

∂
[
exp(WWWS(2)(T)

−1
m )
]−T

UR

∂S(2)(T)

∂S(2)(T)

∂FFFjC
=
∂
[
exp(WWWS(2)(T)

−1
m )
]−T

UR

∂
[
exp(WWWS(2)(T)

−1
m )
]

AB

∂
[
exp(WWWS(2)(T)

−1
m )
]

AB

∂(WWWS(2)(T)
−1
m )KL

∂(WWWS(T))KL

∂S(2)(T)

∂S(2)(T)

∂FFFjC
,

(E.167)

with

∂
[
exp(WWWS(2)(T)

−1
m )
]−T

UR

∂
[
exp(WWWS(2)(T)

−1
m )
]

AB

= −
[
exp(WWWS(2)(T)

−1
m )
]−T

UB

[
exp(WWWS(T)

−1
m )
]−T

AR
, (E.168)

∂
[
exp(WWW(S(2)(T)

−1
m )
]

AB

∂(WWWS(T)
−1
m )KL

= ZZZABKL. (E.169)

∂(WWWS(2)(T)
−1
m )KL

∂S(2)(T)

∂S(2)(T)

∂FFFjC
= −WWW

m
(S(T)(2))

−1−m
m

∂S(2)(T)

∂FFFjC
. (E.170)

Substituting Eqs. (E.167- E.170) in Eq. (E.166), leads to

∂
[
exp(WWWS(2)(T)

−1
m )
]−T

UR

∂S(2)(T)

∂S(2)(T)

∂FFFjC
=
[
exp(WWWS(2)(T)

−1
m )
]−T

UB

[
exp(WWWS(2)(T)

−1
m )
]−T

AR
ZZZABKL

WWW

m
(S(T)(2))

−1−m
m

∂S(2)(T)

∂FFFjC
.

(E.171)

By the same way, we have

∂
[
exp(WWWS(T)

−1
m )
]−1

QS

∂S(2)(T)

∂S(2)(T)

∂FFFjC
=
[
exp(WWWS(2)(T)

−1
m )
]−1

QB

[
exp(WWWS(2)(T)

−1
m )
]−1

AS
ZZZABKL

WWW

m
(S(2)(T))

−1−m
m

∂S(2)(T)

∂FFFjC
.

(E.172)
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Therefore, combining the previous equations gives the derivative Eq. (E.166) as

∂C̄CC
e(2)
YZ

∂S(2)(T)

∂S(2)(T)

∂FFFjC
=

WWWKL

m

[
exp(WWW (S(2)(T))

−1
m )
]−T

YB

[
exp(WWW (S(2)(T))

−1
m )
]−T
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ZZZABKL S(2)(T)
−1−m

m
∂S(2)(T)

∂FFFjC
C̄CC

e(2)
(pr)IJ

[
exp(WWW (S(2)(T))

−1
m )
]−1

ZJ

+
WWWKL

m

[
exp(WWW (S(2)(T))

−1
m )
]−T

YI
C̄CC

e(2)
(pr)IJ

[
exp(WWW (S(2)(T))

−1
m )
]−1

JA[
exp(WWW (S(2)(T))

−1
m )
]−1

BZ
ZZZABKL S(T)(2)

−1−m
m ∂S(2)(T)

∂FFFjC
.

(E.173)

The combination of Eqs. (E.165 and E.173) enables the first derivative of the residual in
term of deformation gradient to be obtained as

∂ΩΩΩ
(2)
US

∂FFFjX
= FFF

p(2)−1
AHpr

[
−µ(2) 1

Im
(1− trC̄CC

e(2) − 3

I
(2)
m

)−2 [exp(GGG)]−T
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IIIKLHT [exp(GGG)]−1
LM

{
−1

3
trC̄CC

e(2)
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UR C̄CC
e(2)
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}
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e(2) − 3

I
(2)
m

)−1
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3
[exp(GGG)]−T

MK IIIKLHT [exp(GGG)]−1
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(E.174)

Thereafter, by using the equation (E.157), one can evaluate the derivative of MMMe(2) with
respect to the deformation gradient.
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Next, the derivative of the plastic deformation increment can be computed from Eq.
(6.84) as
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(E.175)

where we need to compute the following derivatives
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(E.176)

and ∂S(2)(T)
∂FFFjC

is given by Eq. (E.154). Similarly, we can get the derivative of the normal with

respect to the deformation as
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]
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(E.177)

The derivative of the plastic deformation mapping is obtained from its definition Eq. (6.95).
By combining Eqs. (E.177 and E.175) in Eq. (E.134) yields the derivative of plastic defor-
mation with respect to the deformation gradient
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(E.178)

where Z = ∂ expCCC
∂CCC .

By substituting Eqs. (E.143, E.143, E.146, E.147, E.173 and E.178) in Eq. (E.133),
leads to the derivative of the first Piola-Kirchhof with respect to the deformation gradient
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as follows
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(E.179)

E.2.2.6 Derivation of first Piola-Kirchhoff strain with respect to temperature

The remaining part of the tangent is the derivative of the first Piola-Kirchhoff stress in

terms of the temperature
∂PPP(2)

∂T
, which can be deduced by computing the derivative of the

residual Eq. (E.118) with respect to the temperature :
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(E.180)

The derivative of plastic deformation gradient with respect to the temperature is obtained
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by
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(E.181)

which immediately gives the derivative of the inverse of plastic deformation gradient
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In order to get the derivative of the plastic deformation gradient in terms of the temperature,
we need to compute it from the residual defined in Eq. (E.117) as
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which yields
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We need to calculate the derivative of the residual ΩΩΩ(2) with respect to the temperature T
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(E.185)
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Let us define WWW =
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(E.186)

Let us compute the derivative of the components. First let us recall equation (6.75), yielding

∂µ(2)
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g exp(−N(T− Tg)) = −Nµ(2). (E.187)

Also from Eq. (6.85), we have
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Let us start to compute the derivative of the components of C̄CC
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(E.190)



E.2 Predictor-corrector and stiffness computation for SMP 253

where

∂
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also

∂
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Combining Eqs. (E.125, E.192 and E.193) in Eq. (E.190) one gets
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By the same way of (E.190) we can compute
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So with reference to Eq. (E.189), one can get
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We thus have directly
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Combining Eqs. (E.194, E.197 and E.198) leads to the final expression of derivative of
the residual with respect to temperature Eq. (E.186) becomes
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Hence, substituting Eq. (E.199) in Eq. (E.184) one has successively the final expression of
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The components for the derivative of the plastic deformation gradient can be computed
as
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where

∂|MMMe(2)|
1
m

∂T
=

1

m
|MMMe(2)|

1−m
m

∂

√
MMM

e(2)
CD : MMM

e(2)
CD

∂T

= − 1

m
|MMMe(2)|

1−2m
m 222

−1
CDUS

∂ΩΩΩ
(2)
US

∂T
MMM

e(2)
CD .

(E.201)

Substituting Eq. (E.201) in Eq. (E.200), gives
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Moreover, one has
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and

∂τ̄ (2)

∂T
=

1√
2

∂|MMMe(2)|
∂T

= −
MMM

e(2)
CD

|MMMe(2)|
222
−1
CDUS

∂ΩΩΩ
(2)
US

∂T
. (E.204)

Combining Eqs. (E.203 and E.202) in Eq. (E.181) yields the derivative of plastic deformation
gradient with respect to the temperature
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The second term of Eq. (E.180) is obtained as
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As we know
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Eq. (E.206) becomes
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We should calculate the derivatives of trC̄CC
e(2)

and C̄CC
e(2)

with respect to the temperature.

After defining for simplicity V =
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First we have, after using the definition of WWW =
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with

∂
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and

∂
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Using Eq. (6.85) gives
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By combining Eqs. (E.211, E.212 and E.213) yields
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By the same way, we have
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Altogether, we have
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Finally, we have

∂trC̄CC
e(2)

∂T
=
∂trC̄CC

e(2)

∂C̄CC
e(2)
DB

∂C̄CC
e(2)
DB

∂T
= δδδDB

∂C̄CC
e(2)
DB

∂T
. (E.217)

As a result, we get
∂SSSe(2)

∂T
, thereafter, by combining Eqs. (E.205, E.208, E.216 and E.217),

which leads to the final expression of
∂PPP(2)

∂T
, Eq. (E.180).

E.2.3 Predictor-corrector for third mechanism (α = 3)

As explained in Section 6.3.4.4 only a nonlinear spring is used, accordingly we have
FFFp(3) = III, then FFFe(3) = FFF and we can directly use the relations Eq. (6.90) and Eq. (6.92)
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E.2.3.1 Piola-Kirchhoff stress

The first Piola-Kirchhoff stress tensor can be computed from Eq. (6.90) by
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(E.218)

E.2.3.2 Converged solution

The derivative of the first Piola-Kirchhof stress tensor can be evaluated as
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As we have
∂F̄FFqM
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the derivative of the second term of Eq. (E.219) can be computed as

∂SSS
(3)
AB

∂F̄FFqM

∂F̄FFqM

∂FFFjC
=

∂

∂FFFqM

(
J−

2
3µ(3)(1− trC̄CC− 3

I
(3)
m

)−1[δδδAB −
1

3
(trC̄CC)C̄CC

−1
AB]

)
J−

1
3δδδqjδδδMC

=

J−
2
3µ(3)

∂(1− trC̄CC−3

I
(3)
m

)−1

∂F̄FFqM
[δδδAB −

1

3
(trC̄CC)C̄CC

(3)−1
AB ]

+ J−
2
3µ(3)(1− trC̄CC− 3

I
(3)
m

)−1(−1/3)
∂(trC̄CCC̄CC

−1
AB)

∂F̄FFqM

)
J−

1
3δδδqjδδδMC.

(E.221)

Let us first compute
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with
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Then Eq. (E.222), becomes
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Then we can compute
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with
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as
∂FFF−1
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Using Eq. (E.226) and Eq. (E.223), the relation (E.225) becomes
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Thus Eq. (E.221) is rewritten as
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The third term of Eq. (E.219) can be computed by using
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as
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Combining Eqs. (E.228 and E.230) and replacing FFFiA by J
1
3 F̄FFiA, leads to the final expression

of Eq. (E.219) as
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E.2.3.3 Derivation with respect to temperature

Since the material parameters for this mechanisms are temperature independent, this
leads to

∂PPP(3)

∂T
= 0. (E.232)

E.2.4 Evaluation of the heat source

The derivative of the right side of Eq. (6.36), which will be called w, with respect to the
deformation and temperature can be computed as follows,

W = −ρ0cvṪ + Qr + v

(
τ̄ (1)∆εp(1) 1

∆t
+ τ̄ (2)∆εp(2) 1

∆t

)
, (E.233)

where ∆t is the time step. Now let us define the following variable for simplicity

A(α) = (τ̄ (α)∆εp(α))
1

∆t
. (E.234)

First we derive with respect to the deformation gradient
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and
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=
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By calling Eq.(6.39), yields
∂cv

∂Tg
=

{
c1 if T ≤ Tg

0 if T > Tg.
(E.237)

Then using Eq. (E.234), one has
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For the first mechanisms, we have
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and ∂∆εp(1)

∂FFF have been evaluated in Eq. (E.89). Upon substitution of
∂∆εp(1)

∂FFF
and

∂τ̄ (1)

∂FFF
in Eq. (E.238) one has the derivative of the term related to plasticity with respect to
deformation.
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By the same way of mechanism 1, we compute the derivative of A(2) with respect to the
deformation.

∂A(2)

∂FFF
=

(
τ̄ (2)∂∆εp(2)

∂FFF
+
∂τ̄ (2)

∂FFF
∆εp(2)

)
1

∆t
. (E.240)

The derivative of ∂∆εp(2)

∂FFFjX
has been computed in Eq. (E.200) . As we know τ̄ (2) =

1√
2
|MMMe(2)|,

we have

τ̄ (2)

∂FFFjX
=

1√
2

|MMMe(2)|
∂FFFjC

=
1√
2

MMM
e(2)
CD

|MMMe(2)|
∂MMM

e(2)
CD

∂FFFjX

=− 1√
2

MMM
e(2)
CD

|MMMe(2)|
222
−1
CDUS

∂ΩΩΩ
(2)
US

∂FFFjX
,

(E.241)

where
∂ΩΩΩ

(2)
US

∂FFFjX
has been computed in Eq. (E.174). By substituting Eqs. (E.241) and (E.175)

in the previous equation (E.240), one has its solution.
Secondly, the derivative of the thermal source is

∂W

∂T
= −

∑
ρ0
∂cv

∂T
Ṫ−

∑
ρ0

cv

∆t
+
∑ ∂A(α)

∂T
v, (E.242)

where
∂cv

∂T
=

{
−c1 if T ≤ Tg,
0 if T > Tg,

(E.243)

and
∂A(α)

∂T
=

(
τ̄ (α)∂∆εp(α)

∂T
+ ∆εp(α)∂τ̄

(α)

∂T

)
1

∆t
. (E.244)

For the first mechanism, we have

∂A(1)

∂T
= (τ̄ (1)∂∆εp(1)

∂T
+
∂τ̄ (1)

∂T
∆εp(1))

1

∆t
, (E.245)

where ∂∆εp(1)

∂T has been already computed in Eq. (E.200), then ∂τ̄ (1)

∂T is computed by using
Eq. (E.22)

∂τ̄ (1)

∂T
=

1√
2

|MMMe(1)
0 |
∂T

=
1√
2

MMM
e(1)
0(CD)

|MMMe(1)
0 |

∂MMM
e(1)
0(CD)

∂T

=
1√
2

MMM
e(1)
0(CD)

|MMMe(1)
0 |

∂MMM
e(1)
(CD)

∂T
− 1

3
δAB

∂MMM
e(1)
(AB)

∂T
δCD

 .

(E.246)

By substituting Eq. (E.109) in Eq. (E.246), we can get the derivative of the term related
to placticity with respect to temperature.

By the same way the derivative of A with respect to temperature for the second mecha-
nism is computed as

∂A(2)

∂T
= (τ̄ (2)∂∆εp(2)

∂T
+ ∆εp(2) τ̄

(2)

∂T
)

1

∆t
, (E.247)
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where ∂∆εp(2)

∂T has been computed in Eq. (E.158), and

∂τ̄ (2)

∂T
=

1√
2

|MMMe(2)|
∂T

=
MMM

e(2)
CD

|MMMe(2)|
∂MMM

e(2)
CD

∂T

=−
MMM

e(2)
CD

|MMMe(2)|
222
−1
CDUS

∂ΩΩΩ
(2)
US

∂T
.

(E.248)

By substituting Eq. (E.203) and Eq. (E.248) in the previous equation (E.247), one can get
its expression.
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