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Abstract: The 'S, superfluidity of neutron matter and nuclear matter is studied by solving the gap
equation exactly for two realistic nuclear potentials, namely the Paris and the Argonne v,, potential.
For neutron matter, the predicted domain of superfluidity is very close to previous results, whereas
differences appear in the predicted value of the maximum gap. The results are, however, very close
to each other for the two potentials mentioned above. The role of the large momentum component
is underlined and the accuracy of several approximations is discussed. The temperature dependence
is exhibited. For nuclear matter, the superfluidity disappears at smaller density. The gap is rather
small for equilibrium density. The condensation energy estimated through a local-density approxi-
mation is dominated by the surface contribution. The definition of the pairing interaction is discussed
and an illustrative calculation for an effective interaction is presented.

1. Introduction

It was already pointed out a long time ago 1), that the spectrum of even-even
nuclei presents an “energy gap”, that could be described in a manner similar to the
one invented by Bardeen, Cooper and Schrieffer %y (BCS) for superconductivity.
Soon after, Cooper, Mills and Sessler 3} showed that the BCS method can be applied
to infinite systems of strongly interacting fermions. It was also realized that nuclear
matter and, even better, neutron matter could in fact exist in a superfluid state for
a wide class of nucleon-nucleon potentials *) in some density range. Nuclear matter
superfluidity is perhaps a somewhat academic problem, since ordinary uniform
nuclear matter can show a lot of various instabilities °) which are expected to mask
superfluidity in a broad range of densities (see our remark below, however). Neutron
matter superfluidity is expected to lead to interesting macroscopic phenomena in
neutron stars, as was first pointed out by Migdal ) as early as thirty years ago.
According to modern views '), nucleonic superfluidity enters in three aspects of
neutron star physics. First, at the surface of the star, a neutron gas, pervading a
lattice of neutron-rich nuclei and a sea of relativistic electrons, exists at densities
allowing strong pairing of neutrons in the 'S, state. More inside the star, nuclei
dissolve and the fluid is a mixture of neutrons, protons, electrons and muons. The
density is such that 'S, pairing of protons is foreseeable. The inner part of the star



410 M. Baldo et al. | Supeifluidity

contains high-density neutron matter, which is presumably the seat of anisotropic
°P,’F, pairing.

Superfluid properties have been studied for a long time ®*°), mainly with
phenomenological forces and using simplifying approximations, like the introduc-
tion of a cut-off in solving the gap equation encountered in BCS theory. However,
realistic interactions have been used in most recent works '), Furthermore, several
investigations have been made to cast BCS theory in a sophisticated many-body
theoretical scheme. Yet, it is remarkable that all calculations yield qualitatively
similar results for the 'S, pairing, namely that neutron matter is superfluid for
densities with a Fermi momentum ke less than ~1.3-1.5 fm~'. However, the value
of maximum gap at the Fermi surface as well as the condensation energy vary quite
importantly from one calculation to another, even if one restricts to so-called realistic
interactions. In particular, the effect of the polarization interaction seems to be very
important *') (see discussion below, however).

Recently, the interest in superfluid properties of neutron matter as well as nuclear
matter has been revived by several works. In ref.?'), the authors study neutron
matter superfluidity in the frame of the so-called correlated basis formalism. In
ref. ?%), thermodynamics of nuclear matter is studied with the use of Skyrme forces.
In ref. ), the gap equation is solved without limiting assumptions for the effective
Gogny force **). Let us also mention the interesting work of ref. *°), which attempts
to derive a formalism for describing superfluidity without violating particle-number
conservation, like it is the case in BCS theory.

Our purpose is to study superfluidity, both in neutron and nuclear matter using
the Paris potential *°). The latter, one of the most modern nucleon-nucleon poten-
tials, has been shown to describe correctly the nucleon-nucleon data and to yield
reasonable results for nuclear-matter binding energy (with the help of three-body
forces ”’)) as well as for single-particle properties within nuclear matter **). It is
thus natural to look whether or not this interaction gives good results for collective
properties like pairing. Theoretically, the superfluidity problem can be tackled by
sophisticated many-body formalisms. However, most of them are not suited for
numerical investigations and, in practice, one is reduced to use the conventional
BCS theory, using more and more refined pairing interaction by adding successive
corrections to the nucleon-nucleon interaction. This paper deals with the simplest
problem of this program, namely the study of the 'S, pairing, using conventional
BCS theory and solving exactly the gap equation, for the bare interaction mainly
{see discussion in sect. 2.2 for this choice). This is not without practical interest, in
view of the scattered results obtained previcusly within this scheme. In addition,
in this first approach, we want also to concentrate on some technical points concern-
ing the gap equation. Furthermore, as it turns out that the Paris potential exhibits
special features which make the solution of the gap equation a delicate task (see
below), we also used another realistic interaction (the v,, Argonne potential *)) for
the sake of comparison and of supplementary check.
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Our paper is organized as follows. Sect. 2 is a reminder of the formalism feading
to the gap equation and elaborates on the effective interaction. In sect. 3, we show
our results for the Paris and Argonne potentials, concerning superfluidity properties
of neutron and nuclear matter. In sect. 4, we discuss some of the properties of the
gap equation. Sect. 5 contains an analysis of our results and a discussion of their
implications. We compare with related works in sect. 6. Finally, sect. 7 contains our
conclusion.

2. Formalism

2.1. REMINDER OF BCS THEORY

The description of the original BCS theory can be found in standard
textbooks *°*?). We just here recall the main aspects and point out the difficulties
when dealing with strongly interacting fermions. The basic premise of the BCS
approach is the assumption that in first approximation, the system can be described
by a wave function of an uncorrelated state lpo), a Slater determinant of plane waves
for occupied single-particle states of momentum k, with [k| less than the Fermi
momentum kg and of energy e(k), possibly including an average field contribution.
According to BCS theory, superfluidity appears when correlations, leading to Cooper
pairs (with vanishing spin and momentum), give rise to an extra binding energy
which overcompensates the increase of kinetic energy due to the accompanying
depopulation of the Fermi sea. In other words, one looks for a correlated state of
the form

M)ZQ(uk“FUkaZTaiu)!(f)o% (2.1

giving an expectation value of the operator H —uN — TS smaller than the one given
by |¢o) (the quantity u is the chemical potential and the free Fermi gas entropy S
is usually introduced at nonzero temperature T). This happens when the gap equation
(here readily particularized to isotropic pairing)

&k Ay
Ap=— J (—2‘;)7 Vier: ZEI\k» tanh GBE) (2.2)

has a non-trivial solution for the gap function 4A,. In this equation, 8 is the inverse
temperature, E; is the quasi-particle energy

E.=[(e(k)—u)’+ 411", (2.3)
and V- is the pairing matrix element
Vi = (kK1 = K V(So) [T = k'), (2.4)

where V ('S,) is the basic interaction in the 'S, channel. In the last equation, there
is no dependence upon the directions of the k and &’ vectors.
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2.2. THE PAIRING INTERACTION

We will not enter now into a discussion of the pairing interaction (we posipone
it to sect. 7). This point is not very often discussed in the many works calculating
the pairing properties. Furthermore, the proper definition of the pairing interaction
does not appear clearly from the variational derivation of the gap equation. The
Green function formalism ***") gives, however, an unambiguous answer to this
problem, namely that the pairing interaction should be taken as the sum of all
irreducible graphs in the two-particle channel. In the lowest order, it reduces to the
bare interaction. The next order involves the so-called polarization interaction. Its
calculation is not obvious and previous calculations yield contradictory predictions
for its effect. Therefore, we restrict ourselves in this paper to the lowest order,
leaving the investigation of the polarization graph for a forthcoming publication.
Even in lowest order, the calculations with realistic interactions are rather scarce.

In spite of the indications provided by the Green function approach, some authors
(see e.g. refs. "»''%)) introduced a “medium-renormalized” interaction, as the
Brueckner g-matrix or a more or less equivalent interaction in the so-called
variational and hypernetted-chain approaches. In view of this situation and for the
sake of illustration, we also solve the gap equation for the g-matrix in some particular
cases. Of course, medium renormalization should be accounted for in the single-
particle energies e(k). Below, in every case, they are calculated in the Brueckner-
Hartree-Fock approximation.

2.3. HIGH-MOMENTUM COMPONENTS

The gap equation is usually solved by iteration (see below), where an estimate
of the function 4, at some step is introduced in the denominator of the kernel of
the integral equation (2.2) to get another (better) estimate of 4,. The difficulty arises
from the fact that the kernel is very sensitive to a modification of 4, for k' close
to kg, whereas it is much less for large k. In other words, eq. (2.2) is almost linear
in the high-momentum regime, whereas it is highly nonlinear in the small-momentum
range (k= kg). Therefore, it is advisable, as advocated by Anderson and Morel *%),
to more or less disconnect the two momentum regimes. This can be done by
introducing a reduced interaction V

~ &’k 1 -
View = Vi — o @) K IEL Vi (2.5)
in which case the gap equation reduces to (for T=0)
&EL Vi
A= — KA, 2.6
g L'<kc (277)3 2E. § (26)

if it is solved self-consistently with eq. (2.5). The solution of (2.6) is exactly equal
to the solution of eq. (2.2} for k <k.. The interest of this formulation is that V.
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is almost independent of the gap and that the iterative solution of eqg. (2.6) is much
more stable when the range of k' is limited. We checked that all our results below
do not depend upon the choice of the cut-off momentum k.. We want to stress that
for the Paris potential, the integration in eq. (2.5) has to be carried out numerically
up to large values of k" (50 fm '). The v,, potential is easier to handle since the
integral (2.5) converges much more rapidly (see discussion in sect. 4).

2.4. FORMULA FOR 'S, PAIRING AND SEPARABLE INTERACTION

Let the interaction in the 'S, channel be separable of rank N
N
Vie= 2 Aygi(k)gi(k), (2.7)
ij=1

where the g; functions are some form factors. Then it is easy to show that Vk,kf can
be written as

Vo= Y Aygi(k)g,(k), (2.8)

=1
with
Ay={A7 =TT}y, (2.9)

where A is the matrix of elements A; and the matrix I" is given by

o k//Z g(ku)g -(k”)
Iy=-4 dk” ' L 2.10
= | ey 2B0) 210

The solution of eg. (2.6) has the form

N

A=Y cgi(k) (2.11)
i=1
and eq. (2.6) itself is now equivalent to:

with

k. , k" (k"
B;= A,.,J dkr jo> EUEDE ), (2.13)
’ o 2Ek”

Below, egs. (2.13), (2.8), (2.9) together with eq. (2.6) have been solved self-
consistently within an iterative procedure. The starting point was taken as the
constant-A approximation, i.e. the value which, imsoduced in the matrix B (eq.
(2.12)), cancels the determinant of the matrix (1 B).
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3. Numerical results for 'S, pairing

3.1. NEUTRON MATTER

3.1.1. Paris potential. We first solved the gap equation for the separable version **)
of the Paris potential °®), using so the bare potential as the pairing interaction. The
most important result is contained in fig. 1, which shows the gap 4A:(= 4, for
k=kg) at the Fermi level as a function of the Fermi momentum. It shows that
superfluidity disappears for kp=1.4 fm™', which corresponds to a density close to
1.5x 10" grem ™. The maximum value of the gap occurs at kr~0.85fm™' and
amounts to 4x=2.76 MeV.

The shape of the gap function 4, is given in fig. 2 for a particular value of the
Fermi momentum, but is typically the same in the whole density range. It is worth
to notice that the gap function is rather rapidly varying close to the Fermi momentum.
Furthermore, it is negative in a wide momentum range, between ~2 and ~6 fm™',
and keeps oscillating farther out. We anticipate on sect. 4 and say that one can
assess the rather slow decay of the gap function when k increases to the (off-diagonal)
high-momentum behaviour of the Paris potential. This rather wild variation of the
gap function 4, is not very apparent in the pairing function D(k)

D<k)=<a}ia£>=2ukuk=2d—gk, (3.1)
which is very well peaked around the Fermi momentum, as shown in fig. 3. Note
that the function D(k) is nevertheless asymmetric as a consequence of the variation
of the gap function 4, with k. The value of a closely related quantity, namely the
condensation energy per nucleon is given in table 1 for several densities. This
quantity has a minimum for kp=0.6 fm ™"

neutron matter

T 1
o Paris
+ VV.
- 2 .
%
=
L
<1 1 N
0
0 05 1 1.5

ke (fm)

Fig. 1. Value of the gap at the Fermi surface Ay of neutron matter as a function of the Fermi momentum,
for the Paris potential (open dots) and for the Argonne v,, potential {crosses).
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Fig. 2. Gap function 4, calculated for neutron matter with a Fermi momentum kp=0.84 fm™!, for
various temperatures {2), and at T =0 for enlarged momentum scale (b).

The variation of the gap parameter at the Fermi momentum kg as a function of
the temperature T is given in fig. 4. In this calculation, the single-particle spectrum
e(k) has been “frozen”, i.e. kept fixed independently of the temperature, which is
an accurate approximation according to refs. >>*%). The critical temperature T, i.e.
the temperature at which the superfluid phase is no longer energetically favoured,
is displayed in fig. 5 as a function of the density. It reaches a maximum of ~1.8 MeV
for the same density as the gap Ar at zero temperature is maximum.

We now turn to the results obtained when using the pairing interaction as given
by the g-matrix. For obvious practical reasons it is impossible to construct the
corresponding reduced interaction (2.6), which in the case of the Paris potential
requires the detailed knowledge of the g-matrix element (k|g|k’) for very large |k
(up to ~40 fm™"). We nevertheless made a calculation assuming that the relationship
between the pairing interaction itself and the reduced interaction in the restricted
range (k < k_.) is the same for the g-matrix as for the bare interaction. More precisely,
we adopt the following reasonable approximation

g§=ag, (3.2)
where

T Vv
v

(3.3)

o =
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Fig. 3. (a) Pairing function D(k) (eq. (3.1)) as a function of momentum &, for various temperatures 7.
This graph refers to neutron matter with Fermi momentum kz=0.6 fm™' and to the Paris potential.
(b) Fourier transform D(r) of the pairing function for v, potential and kp=0.84 fm™".

TABLE 1

Comparison between the exact value of the condensation energy per nucleon in neutron matter and the
value predicted by the weak coupling formula (5.8) (values in MeV)

ke (Ffm™1) 0.1 0.2 0.4 0.6 0.84 1.1 1.3 1.35

Eo/A(exact) —0.018 —0.121 =0232 —0263 -0204 —0.077 —0.0046  —0.00044
Eo/A
{(eq.(5.8))  —0.016 —0.084 —0228 —0261 —0.188 —0.049 ~—0.0030  —0.00086
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Fig. 4. Value of the gap at Fermi momentum kg as a function of the temperature T for various (indicated)
densities. This graph refers to neutron matter and to the Paris potential.

is the ratio of the traces of the reduced V and the bare V interactions, respectively,
in the restricted momentum range (k<k.). Assumption (3.2) is supported by the
observation that the g- and V-matrices are not so different (for k<k.) from each
other for the density range and the channel envisaged here. The results for the gap
function at a typical density (and zero temperature) are given in fig. 6 along with
the results obtained using the bare interaction. The gap at the Fermi surface is now
slightly larger, although the V- and g-matrix elements are roughly similar around
the Fermi surface. Once again, this is linked with the behaviour at (here relatively)

large k'.

neutron matter

x I
o Paris
2r + V14 N
o +
3 o
= 2
(8 1— N
f._
O { {
0 05 1 15
ke (fm)

Fig. 5. Phase diagram of neutron matter for the Paris potential (open dots) and for the Argonne v,
potential (crosses): variation of the critical temperature T, versus the Fermi momentum kg.
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Fig. 6. Neutron matter at zero temperature. (a) Comparison of the gap function 4, calculated with the

g-matrix (dashed curve) with the one calculated with the bare nucleon-nucleon potential (full curve).

(b) Same as (a) for the gap at the Fermi momentum 4, as a function of the Fermi momentum kg. See
text for detail.

The variation of the zero-temperature gap 4r with the density is given in fig. 6b.
The shape is roughly the same, but the magnitude is larger for the g-matrix.

3.1.2. The Argonne v,, potential. A similar study has been undertaken for this
potential. More exactly, we used a separable approximation of the actual Argonne
potential, constructed with the help of the so-called method of Gamow states '),
which turns out to be more convenient than the standard Ernst, Shakin and Thaler

method ).
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The value of the gap at the Fermi surface, using the bare potential as pairing
interaction, is given in fig. 1 for various densities. The domain of superfluidity does
not seem to depend upon the interaction, whereas the influence of the latter is
slightly more important for the value of the gap: it is smaller for the Argonne as
compared to the Paris potential. The value of the gap function 4, is shown in fig.
7 and should be compared with fig. 2. In both cases, the gap function has roughly
the same nodes, i.e. at k=2fm™' and at k~6 fm~'. The relative importance of the
minimum (around 3.5 fm '), compared to 4,_, is the same in both cases. However,
for v, the A, decreases faster at large k than for the Paris potential. We will come
back to this point. The temperature properties are roughly the same as for the Paris
case. Therefore we do not discuss them further.

3.2. NUCLEAR MATTER

We also solve the gap equation for 'S,, 7 =1 pairing in nuclear matter. If the
bare interaction is used, the only difference with calculation of sect. 3.1 is the
modification of the single-particle spectrum. When the latter is roughly characterized
by an effective mass, nuclear matter corresponds to a smaller effective mass. It is
well known that such a modification gives rise to a decrease of the gap. The results
are shown in fig. 8 for the Paris potential. (Results for vy, are expected to be very
close, see fig. 1).

We tentatively make the connection with finite nuclei, a question which has not
been seriously investigated so far, by evaluating the pairing interaction energy of a
nucleus Ec of mass A in a local density approximation

EC:JE;yzp(r) d&r, (3.4)

neutron matter

T H T H
W ke=084 fm? -
Vi,
3 T-0MeV
=
=
0
i ! ] 1
-2 2 . 6 8 )
K {fm™h)

Fig. 7. Gap function calculated with the v,, potential for the case of cold (T =0) neutron matter with
a Fermi momentum of 0.84 fm™".
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Fig. 8. Gap Ap at the Fermi momentum kg as calculated with the Paris potential: comparison between
nuclear matter {open dots) and neutron matter (full dots).

where the E~(p)/ A is the condensation interaction per nucleon in nuclear matter
at density p. This procedure may be questionable, since it is not clear that a system
with a discrete single-particle spectrum can be approximated by a system with a
continuous spectrum when one deals with a quantity so sensitive to the detail of
the spectrum in a very narrow region. In ref.*®), it is shown that the local-density
approximation reproduces quite well the average condensation energy calculated
by sophisticated Hartree-Fock-Bogoliubov calculations in finite nuclei. Our results
are shown in fig. 9. One can see that the Paris potential yields good results for the
condensation energy for light nuclei (A =< 60) but underestimates it for heavy nuclei.
This is of course due to the fact that Paris potential gives almost vanishing gap at
p = p,. Compared to the Gogny force *), this is partly compensated by a larger gap
at small densities. This is why the Paris potential yields good results in light nuclei,
for which the surface is proportionally more important.

4. Gap equation and off-shell behaviour

4.1. PRELIMINARIES

The 'S, gap equation writes, for T=10

1 (= o(k, k&)
dp=—7— dk' k? ——— A, 4.1
k f T (1)

where v(k, k') is the 'S, part of the pairing potential. Mathematically this integral
equation is of Hammerstein type. It has a unique non-trivial solution if *°): (i) the
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Fig. 9. Condensation energy in nuclei: Hartree~Fock-Bogoliuboyv (in spherical symmetry) results with
the Gogny force of ref. *°) (full dots), Hartree-Fock + BCS calculation of ref. “°) (crosses) and our results
for the Paris potential with the local-density approximation (eq. (3.4), full line).

kernel v(k, k') belongs to the L, class; (ii) the kernel is symmetric; (iii) the kernel
has all negative eigenvalues; (iv) the function

k;z

B OGRS

Sk, u) (4.2)

is a non-decreasing function of u for all k', which is always satisfied. Condition
(iii) corresponds physically to an attractive interaction. Note, however, that non-
trivial solutions exist for potentials having some positive eigenvalues. What is needed
in practice is the dominance of one or a few negative eigenvalues of v(k, k).

Condition (i) demands that v(k, k') decreases faster than k'~ for any k when k' 0,
if one restricts to integer powers of k',

42. IMPORTANCE OF THE POTENTIAL AT LARGE MOMENTUM

Because of the peak observed in the function 4,/2E; (see fig. 3), it is customarily
stated that only the values of potential v(k, k') around k'=kg are sufficient to
determine the value of the gap, at least at k = kp. We would like to argue that this
is not true in general.

First, if v(k, k') ~k™* for any k' when k-0, it is evident from eq. (4.1) that
A(k)~ k™ at large k. In the least favourable case (« =1+¢, where ¢ is a positive
infinitesimal number), integral (4.1) barely converges, which means that the large
k' domain may be overwhelmingly important. In more favourable cases, this may
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be less critical (see below). In any case, one can show how this comes up. We will
study two cases to illustrate this point.
(i) Separable interaction. Let us assume that

v(k, k') = —&g(k)g(k’) . (4.3)

Let us also assume that k(> k) is sufficiently large for having |4, |<]e(k’) — | for
any k'> k.. Then it is easy to show that the elimination of the large k' component
amounts to use in k<k_ a reduced interaction

5k, k') =—Eg(k)g(k'), (4.4)
with
,.,- _i o0 , klng(k,) —1
5‘5[1 zwzjkcdk 2I€(k’)-MJ ' (43)

It is clear that high momenta can play an important role if either ¢ is important or
the form factor g(k') extends very far in momentum.

(ii) Effective-mass approximation. If e(k)= h’k’/2m*+ e(k =0) and if, further-
more, one assumes that one can use Ay =4, ;. =4 in the expression of the
guasi-particle energy, one can use the following relation

1 8 1 9

(4.6)

where the remaining term is at most linear in a. This relation is derived (not in this
general form) in ref. **), where it is used to derive an approximate value of Ar (see
also below). Eq. (4.1) can then be written (for k= kg) as

*

1 m 4H%k?
AFx -——2772 -ﬁ_z [kF In (mxA:)v(kF kF)AF

+ JY dk' [klzv(kx:, k’)Ai\;_k%U(kF, kF)AF]J ) (4.7)
0 |k — kg
This equation clearly illustrates our point. If v(ky, k') extends very far, the value

of A is less and less determined by v(kg, k) only (first term).

4.3. HIGH-MOMENTUM COMPONENTS OF THE PARIS AND v, POTENTIALS

The matrix elements of the Paris potential (separable form) for the 'S, partial
wave are given in fig. 10. The striking feature is the long tail at large k. Analytically
it behaves like k'™ as the original Paris potential. A maximum occurs at k' =10 fm ™'
for a particular value of k (1 fm™") mentioned in fig. 10c. In the original Paris
potential, this maximum occurs at an even larger momentum *'). The quantity v(k, k')
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Fig. 10. Matrix elements v(k, k') of the interaction in the 'S, channel as functions of momentum k' for

indicated values of k (infm™'); (a) Bare nucleon-nucleon Paris interaction (finite-rank version),

(b) g-matrix based on the same potential in neutron matter with momentum kr=0.84 fm™!, (c) Bare
interaction for an enlarged k’-momentum scale and k=1fm™".

has a zero at k'=6fm~' almost independently of k and nearly vanishes for k'=
1.5-3.0 fm ', depending on the value of k. These properties can be related to the
fact that the form factors entering expression (2.6) have practically the same nodes.
This fact is a direct consequence of the repulsive core exhibited by any realistic
interaction. The size of the core is ¢ ~0.5 fm and shows up in every form factor in
r-space. In k-space, each form factor must display a full oscillation within k~ 7/c=
6 fm~". The matrix elements of the g-matrix for kg=0.84 fm~' are also shown in
fig. 10 for the sake of comparison.

The matrix elements of the v, potential are displayed in fig. 11 for two particular
values of k. Comparison between figs. 10 and 11 reveals a strong contrast between
the behaviour of the two potentials. The matrix elements of v, are dying off much
more quickly than those of the Paris potential. Despite this strongly different
behaviour, the two potentials yield the same phase shifts, i.e. the same on-shell
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Fig. 11. Matrix elements v(k, k') for the Argonne v,, potential.

T-matrix. Furthermore, as analyzed in ref. *'), the off-shell behaviour of the T-matrix
is not drastically different, if one restricts to deviations {(in momentum as well as
in energy) within about 1-2 fm™' from the on-shell point.

4.4. ANALYSIS OF THE GAP FUNCTION

The considerations above enlightens our results. First the gap function 4, has
the same asymptotic behaviour as the potential. In particular, it shows a node at
k=6 fm~' which is precisely at the same place as in v(k, k') for both Paris and v,
potentials. For the Paris potential, there is another node at a smaller k-value
(~2fm™") which comes from the almost coincident zeros in the form factors. The
presence of the zero at practically the same place for the v,, potential is of less
clear mathematical origin. In any case, the oscillations in the gap function 4, can
be attributed physically to the presence of a hard core. Indeed, 4(k) has the same
nodes as D(k) (eq. (3.1)). The Fourier transform D(r) shows a ‘“hole” at small
relative distance (r=<0.5fm) due to this core (see fig. 3b), similarly as the form
factors. When Fourier-transformed back in momentum space, this generates an
oscillation in D(k) and, thence, in the gap function. The “hole” appears for the
Paris and the v,, potential as well.

The gap equation may be considered as a Lippman-Schwinger equation when
only a pole approximation at E =2u is retained (when the inhomogeneous term is
dropped). Therefore it is expected that the gap function bears some resemblance
with the half off-shell T-matrix at £ =2u. As we have seen, the properties of the

latter are expected to be largely potential-independent in the |k|<2 fm ™' range.
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Therefore, the gap at the Fermi surface is expected to be the same for Paris and
v14. On the same grounds, one may expect a rather limited dependence for all
realistic potentials. We note however that the difference between Paris and v, should
be attributed to the off-diagonal behaviour of these potentials. Furthermore, as the
gap at k=kg is about the same for the two realistic potentials and since these
potentials are quite different at large k' (for fixed k) they have also to be different
at k=~ k'~ ke. This is in keeping with the behaviour of the Paris and v,, potentials
as illustrated by figs. 10 and 11.

In conclusion, 4, at large k is governed by the off-diagonal behaviour of the
potential. At small k and particularly at kg, it is more or less independent of the
potential and is expected to be roughly the same for all potentials reproducing
correctly the low-energy phase shift. Its value is, however, not directly related to
v{ke, kp) and may involve large k-components of the interaction.

5. Analysis of the results

5.1. APPROXIMATION FOR THE GAP 4¢

If in eq. (4.1), one makes the reasonable approximation E(k')~=
V(e(k')—u)*+ A%, the value of Ag can be obtained by imposing the full kernel
K (k, k') of the integral equation to have an eigenvalue equal to unity. If the kernel
is discretized in K;; = K (k;, k}), this condition is equivalent to

det(1-K)=0. (5.1)

Another more transparent approximation can be obtained by assuming that E (k')
has the same value as above and furthermore that (i) the spectrum e(k) corresponds
to an effective mass (ii) the integration is effectively limited in an integral 8k around
ke (iii) the interaction is constant in this interval. One then obtains (from (4.1))

S8k , TE
Ap=4Tf—exp|dmr — 3|, 5.2
T [ " olke, anaJ 52
with T% = #2k%/2m*. This approximation shows the right functional dependence
upon the important parameters, but contains an arbitrary (a priori unknown) quantity
5k. In the literature, formulae are usually given with 8k =0.5kg.
Using eq. (4.7) with 4, proportional to v(k’, k) in the last term, one obtains

A.=8 T PP S — 5.3
- Fe"p[” ?:v(kF,m“]’ (5.32)

with

e=1+—7 X (5.3b)

1 Zm*_icf_j’co x2v(kF,kFx)2—~(U(kF,kF))2
ar® 1 oles k) Jo 1-x7] '
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Neglecting the integral in (5.3b) gives approximation (5.2) with, this time, 8k = 2k.
This apparent contradiction between these approximations can be removed if one
isolates in the integral entering (5.3b) the contribution for k close to kg. One finds

2T T
Ap=——=—t—ex [4w2—~f~——)al}, (5.4a)

exp
V1= (6k/4ks)’ kiv(ke, ke

with

o, =1+

1 2m* ke J"Lﬁk/kF x*(v(ke, kex)) = (v(ke, ki)’

47* h? v(ke, k) 1~8k/ kg \1 "Xz‘
+(J“6k/kF +F’ )xz(v(kp, kex))? (5.4b)
0 148K/ kg !1 —x2| ' .

The various approximations are compared in table 2 along with the exact value
of Ay for a typical case. The “constant gap approximation” (eq. (5.1)) is particularly
good. Approximation (5.2) looks more or less satisfactory in the middle of the
superfluidity domain (large gap), but is quite bad at large k. Similarly the approxi-
mation of egs. (5.3) and (5.4) is worse and worse as the Fermi momentum increases.
Surprisingly, it is even worse compared to approximation {5.2), whilst it is expected
to improve upon the latter by accounting for large-momentum effects by means of
the last term in (5.4b). The latter introduces (at kr=0.84 fm ') a reduction of the
gap by a factor 0.7 (for 8k =0.5kz). The deficiencies of approximation (5.3) come
either from neglecting higher-order terms in egs. (4.6) and (4.7) or from a crude
treatment of the k = ky contribution (2nd term in eq. (5.4b)), especially for potentials
like the Paris potentials, which are characterized by a large variation of v(kg, k')
for k'= kg and for the values of kr under investigation. In our opinion, the second
possibility is the most likely.

There is also a popular approximation **) for the (Fermi momentum) gap 4(T)
at finite temperature 7, which may be written as

- 27T oyt
A(T)~A(O)[1 A(O)e 0 } (5.5)

TABLE 2

Comparison between the exact value of the gap A in neutron matter and various approximations
(in MeV). See text for detail

ke (fm™") Ap (exact) Ag (approx. (5.1)) Ap (approx. (5.2)) Apf{eq. (5.3))
0.6 2.28 2.31 2.05 4.20
0.84 2.73 2.70 4.23 6.21

1.1 1.83 1.90 5.38 7.08
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for T< A(0Q) and

8 ZTZ 1 1/2
il } (5.6)

7£(3) In[v4(0)/wT]

for T'> A, where { is the Riemann function and y the Euler constant. The approxi-
mate value of the transition temperature is then given by

_v4(0)

T

A(T)x[

T. =0.574(0) . (5.7)
Qur calculated values do not deviate significantly from this approximation, an
observation which is also made in refs. ">*').

5.2. IMPLICATIONS OF OUR RESULTS

As for neutron matter, our results corroborate previous results and point to the
fact that the neutron gas penetrating the nuclei lattice in the inner crust of neutron
stars should be superfluid. There is only limited quantitative difference with previous
estimates as far as the value of the gap and the phase diagram are concerned.

We also presented the gap function 4, up to large values of k. Especially for the
Paris potential, this gap function fluctuates of sign and dies off at large k-values
only. As a consequence, the pairing function D(k) is asymmetric. Therefore, it is
expected that the weak-coupling formula for the condensation energy per particle

2
Ee_34 (5)
A 8T
is not very accurate in our case. This is illustrated by table 1, at least for one
potential. Except in the region around the maximum value of the gap, where eq. {5.8)
introduces only a 1-2% error, it is rather bad for the remaining range.

For nuclear matter, our calculation shows that the gap does not vanish at saturation
density (kp=1.35fm™ "), although it has a small value (4z~0.3 MeV). This value
is intermediate between the ones obtained in ref.”") for Reid and Bethe-Johnson
potentials and the one given in ref. >*) for the effective Gogny potential. In nuclei,
the condensation (pairing) energy would then come mainly from the nuclear surface.

6. Comparison with other works

As far as realistic potentials are used and the gap equation is fully solved, our
work can be compared with that of refs. ’*'), although the schemes may be quite
different (semi-realistic interactions, g-matrix or equivalent interactions, inclusion
of higher-order terms, . ..). In this section, we limit ourselves to a discussion of the
works disregarding the second-order (polarization) interaction. The latter is briefly
discussed in the next section.
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Surprisingly enough, there are very few calculations using bare realistic interac-
tions. The work of ref. ') is one example, although the interaction used consists of
a one-pion exchange part supplemented by a gaussian soft core (OPEG) and cannot
really rival with the Paris potential for fitting two-nucleon data. Also, as we did,
Takatsuka ') introduces the Brueckner single-particie energies. The comparison is
given in fig. 12a. There is a rather small difference between our calculation for the
Paris (and also v,,) potential and the similar calculation of ref. '°) for the OPEG
potential. The calculation of ref.’’), also shown in fig. 12a, deals with the same
OPEG potential but uses single-particle energies which are obtained in the Hartree
approximation. This amounts to modifying the effective mass, but also the chemical
potential. Due to the structure of the gap equation [egs. (2.2) and (2.3)], the
modification of the latter emphasizes a slightly modified momentum range.

Infig. 12b, we compare results for the gap obtained with renormalized interactions,
all obtained in the context of correlated wave functions, either in the simple
variational (Jastrow-like) approach or in the hypernetted-chain approach. For OPEG
potential one has a direct comparison between a calculation with the bare interaction
and a calculation with the variational effective interaction, keeping the single-particle
spectrum unchanged (except possibly for slight changes, due to the self-consistent
determination of the occupation probabilities entering in the Hartree approxima-
tion). It can be seen from fig. 12a, b that the introduction of the effective interaction

bare N-N potential
3.0 ' , ]
(o]
" oFEG effective interaction
O Paris
(b} S
a -3
2.0
< 4.0
Q
E —
=~ S
@
u 2
< .
1.0 <" 2.0
OPEG |
(H s-p spectrum)}
[o] by
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Fig. 12. Comparison between various works concerning neutron matter superfiuidity. (a) For bare

interaction: Paris potential {open dots), our work, OPEG potential with Brueckner-Hartree-Fock

single-particle spectrum (black squares), ref. 16); same potential with Hartree spectrum (open squares),

ref. 7). (b) For effective interaction: Reid soft-core potential (triangles), ref.'”), Reid soft core (full

dots), ref. 2!}, Bethe-Johnston {(open dots), ref. 2') and OPEG (full line), ref. 7). The dotted line represents

the results obtained in second order by Niskanen and Sauls (ref.?%)), as quoted in ref.'”). See text
for detail.
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enhances the maximum gap value and broadens the superfluidity domain (in kg).
This likely results from the fact that Jastrow correlations cut the short-range (repul-
sive) part of original interaction in building the effective one. However, the two
calculations mentioned RSC in fig. 12b have been obtained with the same Reid
soft-core interaction. One (indicated by triangles) is done with the effective interac-
tion in the simple Jastrow scheme with Hartree-like single-particle energies, and
the other uses a more refined (hypernetted) scheme, including for the single-particle
spectrum. According to ref. '*), this should only introduce minor changes. The strong
differences may be attributed (in the opinion of the authors of ref.??)) to the
“omission of the correlation kinetic energy portion of the effective interaction” by
the authors of ref. '), which leads to an overestimation of the gap. Unfortunately,
the size of this effect is not quantitatively known. Therefore, without resorting to
the appropriateness of using effective interactions, one can in the actual situation
not determine very precisely in which proportion the gap is changed, in comparison
with a calculation using bare interactions. To say the least, even in the lowest order,
the situation is rather obscure and our work appears (at this order) as one of the
rare well-defined and precise calculations. It should be noticed however that within
a particular scheme realistic interactions yield very similar results. This is corrobor-
ated by our results (fig. 1) and also by the results of ref. *') (open and full dots of
fig. 12b).

If the calculations cited above differ on the maximum value of the gap in neutron
matter, they also disagree on the domain of superfluidity (in kg). Except for the
calculations of ref.'’), using efective interactions, most of them predict a closing
of the domain between ~1.3 to ~1.5fm™". Surprisingly, there are also differences
for the lower limit of the domain. In particular, the authors of ref. *!) (see fig. 12b)
predict this limit to lie around ~0.25 fm~' whereas, for all the other ones, it falls
below 0.1 fm ™.

The gap function 4, is also given in ref. '”). If one compares fig. 3 of this reference
and our fig. 2, one can see that the shape of this function is largely independent of
the force. However, as underlined in sect. 4, the overall decrease of 4, is slower
for the Paris potential compared to other potentials and can be traced back to its
short-range behaviour.

7. Discussion and conclusion

We solved here the gap equation for two realistic potentials, using the bare
potential (and accessorily the g-matrix) and a single-particle spectrum calculated
in the Brueckner-Hartree-Fock approximation. This procedure has been suggested
by Cooper, Mills and Sessler *) and is closely related to the method, advocated by
Emery ***), which identifies the existence of a singularity in the Bethe-Goldstone
equation as the signal for superfluidity. Furthermore, the Green function approach
to superfiuidity leads to a gap equation where the single-particle spectrum should
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contain ordinary (mainly short-range, in neutron and nuclear matter) correlation
effects and where the pairing interaction contains all possible irreducible particle-
particle diagrams. The simplest ones are given in fig. 13. The first term is then the
bare interaction.

Disregarding the results of the Green function, the superfluidity problem has been
attacked by using variational methods, generalizing in some sense the original BCS
theory. In particular, this has been done in the frame of the Jastrow and correlated
wave functions. One then minimizes the free energy in the subspace of wave functions
{2.1) multiplied by some Jastrow-like correlation terms. A gap equation is obtained
with, in lowest order, a pairing interaction which roughly corresponds to the bare
interaction multiplied by the square of the correlation function, very much resem-
bling the Brueckner g-matrix. Note, however, that the variational problem defined
this way is not strictly a Ritz variational principle.

Coming back to the pairing interaction as defined by fig. 13, the first correction
term (called the polarization graph) has been studied in some detail in refs. *>*"),
which arrive at different conclusions. It seems *°) however, that density fluctuations
(i.e. the central part of the interaction exchanged in the second graph of fig. 13)
enhance the gap whereas the spin fluctuations *') reduce it. The prediction of ref. *)
is shown by the dotted line of fig. 12b. It should be compared to the full dots of
fig. 12b, which corresponds to a calculation with the same interaction neglecting
polarization effects. In ref.?'), the first-order pairing interaction is corrected for
higher-order terms, including the polarization graph, leading to a large reduction
of the gap (factor ~4). However, the correction includes, besides the polarization
graph, several other corrections typical to the correlated basis formalism and it is
therefore hard to assess the contribution of the polarization alone. Furthermore, in
ref. ?'), infinite number of loops are introduced through the Landau parametrization
of the residual interaction, whereas the calculation of ref.?') is limited to the one
loop approximation. Therefore, it can be concluded that the effect of the polarization
graph is not quantitatively well known. The issue is thus still open and deserves
further investigation.

As for the astrophysical applications, our results, even when corrected for polariz-
ation, would have minor effects. The inner-crust neutrons do not participate sig-
nificantly to the cooling of neutron stars. However, their superfluid properties may
be more important for the description of the neutron star rotation speed-up in
so-called glitch phenomena '**°). On the other hand, the 'S, proton superfluidity
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Fig. 13. Schematic representation of the pairing interaction, following ref. 3%).
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for the proton component in the neutron background around saturation nuclear
matter density and the *P,°F, superfluidity play a crucial role in the cooling of
neutron stars. These problems are, however, more complicated than 'S, neutron
pairing and they will be tackled in a forthcoming publication. In the first case, one
has to take account of the neutron background influence on the proton-proton
pairing interaction. In the second, one has to work out properly the self-consistency
treatment in the anisotropic gap equations.

For nuclear matter, our calculations seem to indicate that the Paris potential (and
also vy4) gives a too small condensation energy in nuclei (the value of the latter
seems to be fixed by systematical study of binding energy, fission barriers *°) and
Hartree-Fock-Bogoliubov calculations **)). This seems to be linked to a closing of
the superfluid domain at too small density. However, the superfluid properties of
nuclear matter can be due to interactions in other channels than the 'S,. Recently *'),
it has been suggested that nuclear matter at ordinary density could be a very strong
*S,°D, superfluid.

We would like to thank Drs. W. Dickhoft and P. Schuck for helpful discussions.
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