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Abstract: The P, neutron superfluidity and the 'S, proton superfluidity in neutron star matter are
investigated by solving the gap equation exactly for a realistic nucleon-nucleon potential, namely
the Argonne v,, potential. For the *P, case, our results point to a nearly isotropic pairing function,
in close analogy with the rigorous result obtained by Balian and Werthamer for § =1 pairing
without J-dependence. The proton abundance and the 'S, proton gap are calculated and their
relationship with the symmetry energy is discussed.

1. Introduction

There is presumed a realization of superfluidity in three different regions of a
neutron star ). In the inner crust, the 'S, neutron superfluid pervades an array of
neutron rich nuclei. In the core, the neutrons are superfluid, due to the °P, pairing.
In a region beginning in the inner crust and extending far inside the core, the protons
form a superfluid owing to 'S, pairing. The main properties of these superfluids
have been grossly known for a long time. Yet, there is a renewed interest in these
problems >~°), either because of recent developments in many-body theories or
because of a possible re-examination in the light of sophisticated modern two-body
interactions. We are engaged in a program related to the second aspect. In a preceding
paper *), we have recalculated the 'S, pairing properties both for neutron and nuclear
matter, using standard BCS theory and Paris or Argonne v, potentials. We found
that these potentials yield roughly the same results, similar to those obtained with
other realistic potentials, although there are significant differences as far as the
boundaries of the domain of superfluidity (in density and in temperature) and the
maximum value of the gap are concerned. In this paper, we pursue this program
and examine the P, neutron pairing and the 'S, proton pairing in neutron star
matter. In the future, we will calculate the effect of corrections to the pairing
interaction. The results presented here are thus only indicative and should be
compared to other calculations neglecting induced interactions.

The pairing in all cases ('S, *P, neutrons, 'S, protons) is important for the cooling
of neutron stars. Besides that, *P, neutron superfluidity might influence the coupling
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between the rotational energy of the core and that of the crust. The importance of
proton superfluidity for neutron star dynamics is less clear. Although the proton
fluid is superconducting, it seems to have little influence on the magnetic properties
of the star >%7).

The paper is organized as follows. In sect. 2, we discuss the *P, neutron pairing,
both in the so-called |m|=2 and m =0 configurations. We also discuss qualitatively
more general configurations. In sect. 3, we investigate the 'S, proton pairing, taking
account of the neutron background, and discuss its relationship with the symmetry
energy. In sect. 4, we briefly comment on the implications of our results and present
our conclusion.

2. °P, neutron pairing

2.1. GENERAL EQUATIONS

The structure of the gap equation for anisotropic pairing is well known *°). For
the *P,-°F, channel, it can be simplified, as the °F, phase is so small that a pure
°P, wave can safely be considered °). The gap equation still involves five components.
In general, they can be written as:

4,.(k)= —-72; J:o dk' Kk VCPy)IK) J dk’ % An(K) Trig?{ff,)Gi(k')} , (2.1)
where the generalized gap function is defined as
A(k)=;Am(k)Gm(l€), (2.2)
with
Gn(k) =3 T (1m1my|2m) YT/ (k) (o 3oz [1m,) (2.3)

my omyg

The latter quantity is a matrix in the spin indices o, and o, of the two pairing
particles. The quasi-particle energy E(k) is given by

E(k)=[(e(k)—u)*+ D*k)]"?, (2.4)

where e(k) is the Brueckner-Hartree-Fock single-particle energy, u is the chemical
potential and D?(k) is given by

D) =3Y 3 A% () A,.(k) Tr {G5(R) G (B)} . (2.5)

m m’
One can show that time-reversal invariance implies that

A% (k)= (=)"4_,(k). (2.6)
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22. |m|=2 AND m=0 CONFIGURATIONS

As far as we know, equations (2.1) have not been solved in their full complexity.
Many authors have argued 89 that a simple configuration

A(K) = 4,(k)(Gy(k) + GE(K)) (2.7)

is favoured. This configuration, denoted as the |m|=2 configuration is consistent
with requirement (2.6). In such a case, eq. (2.1) reduces to a single equation. It
implies nevertheless an integration over the angles.

However, in ref. '°) it has been argued that the m =0 configuration

A(k) = Bo(k) Go(k) (2.8)

could be favoured energetically. We first looked at solving the gap equation for
these two configurations, using the separable version ™ of the v,, Argonne poten-
tial '?) and the single-particle spectrum e(k), as calculated in the frame of the
first-order g-matrix Brueckner theory. The results for A,(kg) and Aq(kg) at zero
temperature are given in fig. 1. The dots are obtained with a fully self-consistently
determined single-particle spectrum. This procedure cannot be extended beyond,
say kg~2.5fm™", since there are serious concerns about the convergence of the
Brueckner series in this density range. We therefore first check that using a global
fit of the single-particle energy spectrum with a constant effective mass formula (the
resulting effective mass is given in fig. 2) did introduce only minor changes in 4(k),
and then used an extrapolation of our determined effective mass to higher densities.
In practice, we use a linear extrapolation as a function of the baryon density. This
procedure is consistent with the results of ref. 1} and appears quite reasonable in
view of fig. 2. The results for the gap are given by the full lines in fig. 1. We see
that the gap is maximum around ke~2.7 fm™', i.e. at a neutron density around
pp~4p,. Furthermore, for all values of kg, the m =0 gap is larger than that for

Im|=2.

2.3. CONDENSATION ENERGY

We calculated the condensation energy for each configuration. Typical values are
given in table 1. Systematically, the condensation energy is about the same for both
configurations. This result is at variance with that obtained in ref. 19y although the
authors of this work do not give their results for the difference in the condensation
energy for the two configurations. Incidentally, we notice that the approximate
formula ')

E.JA=~-{4a%/TE, (2.9)
where T = #2k%/2m* works rather well for m =0, provided one uses for (4% the

angle-averaged value of the quantity D? (k) entering the expression of the quasi-
particle energy (2.4). The same remark applies to the |m|=2 case (see below).
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Fig. 1. Calculated value of the gap function (eq. (2.2)) at Fermi momentum in the *P, channel for the

m=0 and |m|=2 configurations. The dots correspond to a calculation with the fully self-consistent

single-particle spectrum and the full curves to a constant effective mass approximation for this spectrum.
Note that the gap functions are normalized according to egs. (2.7) and (2.8). See text for details.

2.4. DISCUSSION

All these surprisingly similar results for the condensation energy can be understood
by the following considerations. We can, for instance, rewrite the m = 0 gap equation
as

o

dk’ k(K| V Pk J_ d(cos 0) A°(k')(zlg(1 = 0)/8

Alk)= —4f (2.10)

[¢]

with

1/2
Bk, )= [(e(k’) — W) 1A% (K i (1+3 00526)] . (2.11)
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Fig. 2. Neutron effective mass in neutron matter, as a function of the baryon density, calculated in the
Brueckner-Hartree-Fock approximation, with the v, potential. See text for detail.

As shown in fig. 3, it turns out that the angle dependence of E(K’, 8) is not as
important as one might think at first. The solution, using the average value of the
angle-dependent functions in (2.10), i.e. applying the substitution (both in the
numerator of (2.10) and in expression (2.4) of E(K', 6))

1 1
— (1+3cos” 8)»—, (2.12)
8 4

is rather close to the true solution, the largest discrepancy (5-10%) arising slightly
above kp. (Incidentally, we notice that the gap function vanishes at k=0, as it

TABLE 1

Value of the neutron gap 4,,(kg) (in MeV) and of the condensation energy per nucleon Ec (in keV),
in the m =0 and |m| =2 configurations for various values of k. The last column gives the condensation
energy, as calculated by eq. (2.9). See text for detail.

Im|=2 m=0
ke Aky) Ee Ak Ee Ec (keV)
(fm™1) (MeV) (keV) (MeV) (keV) eq. (2.9)
2.07 0.99 —0.18 1.42 -~{.192 ~0.229
2.1 1.2 -0.296 1.73 —-(.299 ~0.265

2.28 2.6 -1.2 3.44 —-1.24 -1.028
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Fig. 3. Gap function 4,(k) in the *P, channel and for the m = 0 configuration. The full curve corresponds
to the exact solution of the gap equation, whereas the dotted line corresponds to the solution obtained
by taking angle-average quantities in eq. (2.10). See text for detail.

should be the case for [ =1 waves). Similarly, the |m|=2 gap equation can be written

as

P 5 [ 34,(k')(1—cos” 6)/8w
Ay(k) = 4JVO ak’ KXV ( Pz)\k}J] d(cos ) YT L 13
with

. 3 172

E(k'.8)= [(e(k')—;,e)2+%A§(k’)Z;(l—cosz 0)} . (2.14)

We also checked that using angle-averaged quantities in eq. (2.13), i.e. owing to the
substitution

3

ki

1
(1—cos” 8)>—, (2.15)
2

yields also results very close to the exact results. If the angle-dependence can be
neglected, then very simple results arise:

(i) If we call 8,(k) the solution for the uncoupled m =0 equation, the solution
for the uncoupled |m| =2 equationis 4, = \@50, as one can verify by simple inspection
of egs. (2.10) and (2.13) with the substitutions (2.12) and (2.15), respectively. Our
results, shown in fig. 1, are very close to this simple result.

(ii) Inthe same conditions, the coupled m =0, =2 equations yield 4,=4_,=4,=
V15,

(iii) The totally coupled m =0, £1, £2 equations vield 4,=4_,=—id,=id_, =
Ao=+/15,.
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(iv) In all cases (mixed or not), the condensation energy is the same as in the
pure m =0 configuration and the quasi-particle energy is simply

53(@}‘/2

8

E(k)= [@(k)-mu (2.16)

It seems that, in the actual situation, all the configurations are practically degener-
ate with respect to the condensation energy. For symmetry reasons, an isotropic (or
quasi-isotropic) configuration is expected. Balian and Werthamer '°) proved that
the gap function should be isotropic for § =1 pairing if J-dependence is neglected.
Our calculations showed that this also holds with good accuracy for the specific °P,
neutron pairing. If we examine the structure of egs. (2.10) and (2.13), we see that
the angle dependence is of small importance if the integration is practically restricted
to nearly k'= kg, since it then cancels out (e(k)— =~ 0). This situation is roughly
controlled by the parameter 4(kg)/ TE: the smaller this parameter, the narrower is
the effective integration domain. Therefore the isotropy ultimately arises from a
weak pairing (which gives a small A(kg)) combined with a large TE.

2.5. TEMPERATURE DEPENDENCE

We also solved the m =0 and |m|=2 decoupled gap equations for finite tem-
perature, i.e. introducing a factor tanh (38E) in the gap equation, where 8 is the
inverse temperature. The results are given in fig. 4 for a typical value of kg. One
sees that the critical temperature is the same for both cases {7.=~0.4 MeV). One

1
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Fig. 4. Value of the gap function (in the *P, channel) at k= kg as a function of the temperature T for
m =0 (open dots) and |m|=2 (full dots) configurations. The calculation refers to neutron matter at
k=228 fm %
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can also verify that the approximate formula ')
T.=0.57TA(T=0) (2.17)

gives a quite reasonable approximation to the exact value of T, provided one uses
for A(T=0), the square root of the angle-averaged value of D’(kg). One has
(D(kg)y= A%/87r for m=0 and (D*(kg))y=A3}/4m for |m|=2. Numerically 4,=
A,v/2, which yields about the same value of (D(kg)) in both cases. This is also the
reason why formula (2.9) yields the same result for m =0 and |m|=2 cases.

3. 'S, proton superfluidity

3.1. THE ABUNDANCE OF THE PROTON CONTAMINANT

We first determine the proton abundance in uniform neutron star matter for the
interaction we have chosen. For this purpose, we minimize the energy per baryon
of uniform neutron star matter, composed of neutrons, protons and electrons at
baryon density pg, W(ps,x) with respect to the proton abundance x = Z/A. The
matter being electrically neutral, x is also the ratio of electron number density to
baryon number density. If we assume that the electron energy can be approximated
by the relativistic gas expression and if the various components have uniform
densities, the energy per baryon can be written as

(m.c*)*

W - W, T L i
(szx) B(PB»X) ’iTz(flC)3pB

X [+ 1) —fxe(xp+ DY —gn (xe+Vxp+1)],  (3.1)

where the first term is the baryon average energy and where

hk
xF:(Zx)l/S;i:E, (3.2)
2
PB:—*’iHﬂ (33}

3w

The quantity kg is the Fermi momentum the matter would have if it was symmetric
(N = Z). The neutron and proton (as well as electron) Fermi momenta are respec-
tively given by

E=[201-x)1"ke,  kR=ki=(2%)"ke. (3.4)

For Wy, we used the first-order g-matrix Brueckner expression calculated with the
v,4 Argonne potential. It can then be written as

E , )
Ws(pgp, x) = "/f (pp)+(1 _zx)zEs(PB) + Mncz(l —x)+ MpC2X s (3.5)
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where the first term is the binding energy per nucleon for symmetric nuclear matter,
and where E, (pg) is the so-called symmetry energy. The quadratic dependence
upon B = (N —Z)/A=1-2x is not dictated from first principles. However, it follows
from the numerical results with a very good accuracy, even for 8 close to one
(x« 1), as described by the work of ref. '°). The proton abundance x is then given
by the solution of the equation:

aw 2 2 2
’é; (sz x) = '4(1 - ZX)ES( pB) - (Mu - Mp)c2+ mec~\/(2x)~/3(‘hkl:/ mec)__*_l =0.

(3.6)

Its numerical value is given in fig. 5, along with previous results from Nemeth and
Sprung ') and from Chao et al '*). The origin of the rather large differences lies
basically in the strong dependence upon the symmetry energy, as it appears clearly
when both the limit of small x in Wy (neglect of x in the first term of (3.6)) and
the ultrarelativistic expression for the electron energy (neglect of unity under the
square root sign) are employed. One then simply obtains

1/ 4E.\
x»i(ﬁckl) . (3.7)

It is interesting to note that the domain of ke (from ~0.8 to ~2 fm™!) where we
made our numerical investigations, the ultrarelativistic approximation is quite good:
see the difference between the open dots and the lozenges in fig. 6 (the difference
between the full calculation and its ultrarelativistic approximation are not even
distinguishable on the scale of the figure). The small x approximation, which amounts

pg lfm?)
O.{OOEI) OiOZ 0.105 Oi1 O.I2 O.[3 Oil; Oi5

0.08f

0041

ke (fm™)

Fig. 5. Proton fraction x of neutron star matter as a function of the baryon density pg (upper scale) or
of the Fermi momentum kg (lower scale). The results of this work (full dots) are compared with those
of ref. 1) (NS) and of ref. 1) (CCY).
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Fig. 6. Proton fraction x of neutron star matter in various calculations: exact calculation with the vy,

potential (full dots); calculation using a simple parametrization (eq. {3.8)) of the symmetry energy

(plusses); calculation with v,, potential, but using the ultrarelativistic expression for the free electron

gas and neglecting the factor (1 —2x) in expression (3.6) (open dots}; calculation neglecting this factor
only (lozenges).

to neglect the factor 1—2x in the first term of eq. (3.6) is less accurate (difference
between the full dots and the lozenges).

In our calculation, the behaviour of x at the lowest values of kr investigated is
different from that of refs. '7'*) and seems to indicate a non-zero value of x at large
dilution. This seems even more apparent in fig. 6. Although this issue is of no
important consequence for neutron stars, it is nevertheless interesting to discuss.
Indeed, in fig. 6, we also show the result obtained using a simple parametrization
of E,, namely

E, =30 (kg/kg,)” MeV, (3.8)
where kg, is normal nuclear matter Fermi momentum (=1.36 fm™"). Expression
(3.8), proposed in ref. '), has been obtained by fitting numerical results for nearly
symmetrical matter in the p, range, where it agrees more or less with the results of
ref. %) used here. For ~0.2<pp<1.0fm >, the value of E,, calculated in ref. '®)
and used in our calculations, is smaller than that given by eq. (3.8). For 0.03 <pp=<
0.2 fm ™, the converse is true. This explains our rather large value of x in this density
range. Note that at still smaller density, E, (pp) will eventually be given by the
Fermi gas approximation only, i.e. E, (pg) =6ks, when E, is expressed in MeV and
ke in fm™'. This will give (see eq. (3.7)) a decreasing value of x. But this regime
sets in around p =< 0.01 fm™>. Ultimately, when the density is smaller than 107" fm ™,
the electron gas will be nonrelativistic, only the mass terms are important in eq.
(3.6), and x tends to unity.
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The above discussion about the low-density behaviour pertains to uniform matter
only and aims to assess the adequacy of our numerical results. It is somewhat
academic since at pp=< 0.8 p,, where neutron star matter is expected to nucleate.

3.2. PROTON SINGLE-PARTICLE ENERGY

The single-particle spectrum has been calculated self-consistently and simul-
taneously for protons and neutrons. The results for the average field are given in
fig. 7 for pp=0.17 fm™. The corresponding Fermi momentum for protons k% is
0.571 fm™"'. The average field is split into contributions due to the interaction with
each kind of nucleons

U,=UPP+ Ul . (3.9)

The value of U, is compared with the average field U, in pure proton matter
(without Coulomb forces) with the same k&. The main effect is a dramatic increase
of U, due to the interaction with the neutron background. The quantity UT® is
roughly twice as large as the average field felt by a neutron in pure neutron matter

single-particle field pg=0.17 fm™3
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Fig. 7. Single-particle field in neutron star matter at baryon density pg=0.17fm™ as a function of

momentum £k, calculated in Brueckner-Hartree-Fock approximation and with v,, potential. The quantity
U™ (resp. U(ppp’) is the average potential felt by a neutron (resp. proton) due to its interaction with
the other neutrons (resp. protons). The quantity U (res, U;“")) is the average potential felt by a
neutron (resp. proton) due to neutron-proton interaction. The quantity U(é, is the proton single-particle
potential in pure proton matter with the same proton Fermi momentum. The values of the proton Fermi
momentum kP and of the neutron Fermi momentum k¢ are indicated by the arrows.
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U with the same k2 (see ref. *°)), which is about the same as that felt by a neutron
in the neutron star matter under consideration. The big difference between U (p“p)
and U? is due to the relaxation of the Pauli operator for the np pair when one
calculates in first-order g-matrix and, more importantly, to the allowance of T=0
channels for this pair. The factor one-half between Up and UY™ does not come
simply when inspecting the mathematical formula, but is consistent with the quad-
ratic dependence of Wy(pg, x) upon x and the numerical values of the average
fields in nuclear matter and in neutron matter. Indeed, as indicated in ref. %), for
a given baryon density, if Wy is quadratic in x, the following form of the mean field
is expected:

U(k, 7, x) = Uy(k) —57(1 =2x) Uy(k) , (3.10)

where r=+1 for protons and —1 for neutrons. The quantity U, is the mean field
in nuclear matter. For p = py and k=0, U,=~ —~80 MeV. The quantity U, =120 MeV
for k==0. Therefore, for x« 1, U,=50 MeV, whereas U,=110 MeV.

Note also the small reduction of U Lpp), compared to U g, due to the nonlinearity
coming from the simultaneous self-consistency requirements in defining the nucleon
spectrum and solving the g-matrix equation for pp, nn and np pairs.

As far as the gap properties are concerned, the strong enhancement of the average
proton potential is not as important as it might appear at first sight. What matters
indeed is the possible modification of its curvature (with k). The latter can con-
veniently be characterized by a constant effective mass approximation for U ‘g"al {eq.
(3.9)). The extracted effective mass m™ is given in fig. 8, as a function of the total
baryon density pg. The proton effective mass first decreases due to the attractive
interaction with the denser and denser neutron background, and afterward levels
off around 0.7 for pp=02fm™>. We also make a comparison with the neutron
effective mass for pure neutron matter. The latter is substantially larger, as indicated
by fig. 7. We stress that all the calculations of the gap presented below have been
carried out with the true single-particle spectrum and not the effective mass approxi-
mation. Incidentally, we remark that the effective masses indicated in fig. 8 corre-
spond to the local (in k) effective mass close to the Fermi surface. The global
effective mass, i.e. the mass parameter extracted from a global fit of e(k), is larger.
This partly explains the difference between the results given in fig. 8 for the neutron
effective mass and those of ref. *°) (see fig. 7 of this reference), which, however,
uses another interaction, namely the Paris potential.

3.3. RESULTS FOR THE 'S, PROTON PAIRING

Our results for the 'S, pairing using self-consistently calculated single-particle
spectrum and the v,4 Argonne potential are given in fig. 9. The same results are also
plotted in fig. 10, as a function of the baryon density, corresponding to the proton
fraction at the equilibrium with respect to weak interactions (beta decay). There is
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Fig. 8. Neutron (crosses) and proton (open dots) effective mass (in units of nucleon mass) in neutron
star matter, as a function of the latter’s baryon density pg. The full dots give the variation of the proton
Fermi momentum (scale on the right side).
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Fig. 9. Calculated value of the gap function at the proton Fermi momentum for proton '8, pairing in
neutron star matter, as a function of the Fermi momentum (full dots). The open dots refer to the same
quantity, but calculated with a constant effective mass approximation. For the sake of comparison, the
neutron gap in neutron matter (squares) is shown.
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Fig. 10. Gap for the various kinds of superfluidity in neutron star matter at baryon density pg. See text
for detail.

a maximum value of the gap of ~0.8 MeV at kP~ 0.4 fm™". This is roughly a factor
of 3 smaller than the maximum value of the 'S, neutron gap in neutron matter.
Furthermore the gap domain ends at a smaller Fermi momentum (~0.9 fm " against
~1.4fm™" in the latter case). The main reason comes from the smaller proton
effective mass, which reduces the gap, as simple approximations like eq. (5.2) in
ref. *) indicate.

The open points in fig. 9 give the value of the gap when the single-particle spectrum
is approximated by a constant effective mass formula around the Fermi momentum.
One can see that the effect of the true single-particle spectrum or, equivalently, of
the non-constant effective mass is not negligible.

3.4. THREE-BODY FORCES

In this section, we have considered the binding energy of neutron star matter
using two-body forces only. It is well known that this approach does not yield a
satisfactory binding of symmetric matter. However, it is clear from our discussion
that the proton pairing properties does depend basically upon the proton effective
mass, as the approximate popular formula for 'S, pairing indicates:

hkt [ ) Kk }
Alky) = E—E exp | 4 , 3.11
(ke) = & X | AT e [V ( So) ek (3.11)
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(¢ is a numerical factor of the order of a few units). As indicated by fig. 7, the
effective mass depends moderately on the proton abundance (the proton fraction
is roughly responsible for the U (ppp) part of the proton average potential}, which in
turn depends mainly upon symmetry energy (see eq. (3.7)). Both the effective mass
and the symmetry energy are linked with relative variations of the binding energy
and not so much on its absolute value. Therefore, it is expected that they depend
mainly on two-body forces and weakly on three-body forces, that, for part of them,
are introduced phenomenologically to obtain good saturation properties in nuclear
matter. This statement is certainly valid for the pairing itself. The proton abundance
seems to be more sensitive to the importance of three-body forces, as demonstrated
inref. ?!), especially for py larger than ~1.5 p,. The issue about the proton abundance
value for larger baryon density is far from being settled, since the precise knowledge
of the three-body force is not under complete control. For illustrative purpose, we
refer to the results of ref. '), where it is shown that the introduction of the three-body
forces quoted in ref.>°) does not practically change our proton abundance value
for p=0.11-0.4 fm ™. For smaller densities, it is lowered. Furthermore, in the same
range, our values are close to that obtained in ref. 2} with what is called UVII
three-body interactions.

4, Discussion and conclusion

In ref. *) and in this paper, we have calculated, using a realistic potential, namely
Argonne vy, potential, and standard BCS theory, the pairing properties of the three
realizations of superfluidity in neutron star matter. They are summarized in fig. 10.
For the *P, pairing, we have plotted the quantity 4o(kg)/+/8m, or equivalently in
our calculation, 4,(kg)/+/4, which is the quantity entering the expression of the
quasi-particle energy (see eq. (2.16)). This procedure allows a meaningful com-
parison with the gap function for the 'S, pairing, as the convention in the latter
case is to define the gap function such that there is no numerical factor in the
expression of the quasi-particle energy.

Although our results are qualitatively similar to those of previous investigations,
there are nevertheless substantial differences. In our case, there is a clear separation
between the 'S, and *P, neutron superfluidity domains. On the other hand, we
predict a stronger °P, pairing than in refs. '®**) and about the same as in the work
by Tamagaki®), who however used a very crude interaction. Furthermore, our
calculations show a proton superfluidity which extends well inside the 'S, neutron
superfluidity domain, which is at variance with previous calculations '7*%).

We also worked out other results. First, we have shown that, for the *P, neutron
superfluidity, the gap function is practically isotropic, which is at variance with
previous results '®*'). Second, we have shown that the proton fraction would
probably remain more important (around 3% ) than previously indicated, for smaller
baryon density (see fig. 6). This is linked with a stronger symmetry energy in this
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density range. Finally, we presented and discussed fully self-consistent neutron and
proton effective masses for neutron star matter.

Concerning the *P, neutron pairing and 'S, proton pairing, our results can be
considered as the only ones which have been obtained with a correct (self-consistent)
single-particle spectrum and a modern nucleon-nucleon potential. We recall that
they are obtained in the frame of the standard BCS theory, using the first-order
(bare) particle-particle interaction as the pairing interaction. As we already discussed
in our previous work ¥), the results are not expected to depend upon the potential,
provided the latter reproduces phase shifts correctly. However, for the proton
superfluidity, the full calculation depends in addition critically upon the symmetry
energy predicted by this potential. Indeed, the gap depends sensitively upon the
proton effective mass, which in turn depends moderately upon the symmetry energy.

As far as neutron star physics is concerned, our results have some (limited)
importance. First, the large proton gap may limit more than previously believed °)
the penetration of the proton superfluid by magnetic fields. Second, the strong °P,
neutron pairing, found in our calculation, may modify the previous estimates of the
cooling rate of neutron stars. Furthermore, it could also influence the coupling
between the crust and core superfluids. However, it is now increasingly con-
sidered >*) that this coupling occurs primarily through the pinning of vortex lines
in the neutron superfluid of the crust by the nuclei of the crust. The crucial parameters
in the coupling would then depend upon the 'S, neutron pairing only.

We keep in mind that, even if our calculation is one of the more detailed ones,
it should be improved before definite conclusions about neutron star physics can
be drawn. First, the approach of the °P, pairing in very dense matter with nucleon-
nucleon potentials is certainly one of the more questionable features. Second, and
more importantly, the whole problem of superfluidity in neutron star matter should
be studied with a more elaborate particle-particle effective interaction **). [It is our
purpose to introduce in a future work the so-called polarization term **) in the
pairing interaction.] It is already clear from the works of refs. »*°) that the so-called
induced interaction in the 'S, channel may have dramatic consequences on the value
of the pairing gap as well as on the extension of the superfluidity domain in kg. In
ref.?), the induced interaction is introduced in first order. It gives a strong reduction
of the pairing. In ref.?®), it is shown that higher-order contributions somehow
counterbalance this reduction. The resulting gap may, however, be a factor 2 smaller
than its value without induced interactions, especially at low density. According to
ref. 2, the maximum value of the 'S, neutron gap would be decreased from 2.7 MeV
(fig. 10) to ~1.3 MeV. On the other hand, it seems that the gap may be increased
at higher densities.
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