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Abstract. The influence of the internal degrees of freedom 
on the J/q~ suppression in relativistic heavy ion collisions 
is studied in the frame of a quantum-mechanical model. 
The wave function for the internal motion of a c - 6 pair 
obeys a time-dependent SchrSdinger equation with a po- 
tential reflecting the properties of the medium in which 
the pair is travelling. The initial wave function is evalu- 
ated theoretically. An imaginary potential is introduced 
to account for the loss of probability due to the coupling 
to the D- - / 5  channels. The J/q/ survival probability is 
estimated as a function of the time spent inside the plasma. 
The connection with semi-classical approximations based 
on the formation time concept is established. The quan- 
tum-mechanical effects are exhibited and shown to lead 
to a smooth perpendicular momentum dependence of the 
J/q~ suppression, in agreement with the recent reanalysis 
of the NA38 data by Gupta and Satz. Several plasma 
scenarios, including or not the presence of a mixed phase 
are investigated and the effect of the quantum-mechanical 
treatment is analyzed for each of them. It is shown that 
the data do not constraint the plasma scenario very 
strongly, but indicate the possibility of  having a mixed 
phase with a rather long lifetime. 

1 Introduction 

A great deal of interest has been devoted in the last years 
to the J/ q/ propagation in various media. It was triggered 
by the suggestion, done by Matsui and Satz [1 ], that the 
J/q/suppression could provide a signature of the quark- 
gluon plasma. However, most of  the models for the prop- 
agation of a J/q~ rely on the cross-section picture and/  
or on the multiple scattering formalism. They do not pay 
attention to the internal structure of  the J/~, implicitly 
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assuming that the c - 6 pair is formed immediately in the 
J/~u state and remains in this state, except if the J/q~ 
disappears. However, it is expected that the c - 6 pair is 
formed in a state which is not the J/q~ state and it is 
often considered [2, 3] that it resembles the J/q/at later 
times only (this idea is often referred to under the label 
of  "formation time"). Furthermore this state may evolve, 
owing to the interaction with the medium. 

In this paper, we study a model which handles the 
effect of the internal structure of  the c - 6 pair in a simple 
framework. Basically, we assume that the internal degrees 
of  freedom of the c - 6 pair can be described by a time- 
dependent SchrSdinger equation, using a real potential 
which reflects the influence of  the medium and an imag- 
inary part which describes the coupling to the absorption 
channels. This model, without imaginary part, has al- 
ready been proposed in [4, 5], for the propagation in the 
plasma only. Here, we, in addition, will study the evo- 
lution through a mixed phase, for which semi-classical 
concepts (like formation time) have little intuitive mean- 
ing. Adopting a simple scenario for the plasma evolution, 
we will compare our results with those of semi-classical 
approaches, which neglect internal structure and are based 
on the formation time concept. 

The paper is organized as follows. In Sect. 2, we de- 
scribe our model for the propagation of a c - 6 pair and 
display its main properties. In Sect. 3, we discuss the ques- 
tion of the initial state and the possible information on 
this state which can be extracted from both experiment 
and theory. Section 4 presents our basic results for the 
evolution of the c - 6  wave packet as function of time. 
In Sect. 5, we show the J/ q/ content for various plasma 
scenarios, including a mixed phase. We try to disentangle 
the influence of  the plasma lifetime, of the duration of  
plasma-hadron phase transition and of  the finite size of  
the system. We also compare with the semi-classical re- 
sults in the same scenarios, exhibiting in this way the 
importance of the quantum-mechanical treatment. A ten- 
tative comparison with the experimental data of NA38 
collaboration is presented in Sect. 6 and the implications 
on the plasma are briefly discussed. Section 7 is devoted 
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to a discussion of the physics of the model, of its validity 
and of its potentialities. 

2 The model 

Let us consider a c - ?  pair rapidly travelling in some 
environment and let us concentrate on the internal mo- 
tion of the pair. We assume that the latter can be de- 
scribed, as for the static properties of the charmonium, 
by SchrSdinger quantum mechanics. The time evolution 
of the relative motion wave function q/(r, t) can then be 
described by the time-dependent SchrSdinger equation 

ih ~ -  (r, t) 

= I - h Z A +  V(r,t)- iW(r)l  q/(r , t ) ,  (2.1) 
t. m e  

where m c is the mass of the charmed quark. The basic 
premise of the model is the assumption that the influence 
of the medium on the c - 6 pair at time t can be embodied 
by a potential V(r, t), changing with time when the con- 
ditions of the environment are changing. This assumption 
implies that the translational motion of the pair is de- 
coupled from its internal motion, which seems reasonable 
for a rapidly moving pair in a homogeneous medium. 
The same assumption has been proposed in [4, 5], where 
a similar model is studied for propagation in a plasma 
only. 

In the present model, we introduce an imaginary part 
W(r), which aims at describing the loss of probability 
from the pure c - 6 channel, due to the coupling to D - D 
channels [6, 7]. As explained in our previous work [6], 
the introduction of an imaginary potential of the type 

W = W 0 0 ( r -  L) ,  (2.2) 

where 0 is the Heaviside function, in the static charmo- 
nium hamiltonian is able to reproduce the hadronic widths 
of the charmonium (and bottonium) states above the 
D - / )  ( B - / } )  channels. The r-dependence of the imagi- 
nary part is in keeping with the picture of string breaking: 
the string linking the c and ? quarks has to be stretched 
sufficiently to be broken. We here assume for simplicity 
that the imaginary potential can be taken as time-inde- 
pendent. The values of the parameters W 0 and L are given 
in [6]. 

Let us consider a c - 6  pair created in a relativistic 
heavy ion collision. We assume that this pair is produced 
in a nucleon-nucleon collision at the very beginning of 
the process, like in free space. As in [2, 3], we assume 
that the pair is created in the supposedly formed plasma. 
The c -  ? pair under study will spent some time in the 
plasma, and then later on in a mixed phase and finally 
in an environment where it can be considered as in free 
space (see Sect. 5 for details). Therefore, we adopt the 
following time-dependent potential 

V(r, t) = - K 1 f (r )  e_r/ro ' 0 < t < rp (2.3a) 
f 

f (r)  -KI 
r 

exp [-r /rD (1- t - rP '~]  
z,~ /J  

+ Kr t - rp 
- - ,  "rp % t % ' c p + ' r  m . (2.3b) 

"C m 

Between rp and "(p+TJm, the potential interpolates 
smoothly between the Debye screened potential (2.3a) 
prevailing inside the plasma and the usual charmonium 
potential, which is totally restored at time r f  = rp  + r m. 
The parameters K 1 and K and the function f (r) are given 
in [8], while r• is chosen as rz, = 0.3 fro, after [9]. 

We are interested in the components of the wave packet 
q/(r, t) along the eigenstates of the static (real) charmo- 
nium hamiltonian q/,.: 

P (t) = I(q/ l q/(r, t)} I 2 , (2.4) 

where i= J/q/, q/', q/",... The potential (2.3)being cen- 
tral, there is no mixing between states of different angular 
momenta. Without the potential W(r), the quantities Pi (t) 
would remain constant for t > r z. In the presence of W(r), 
they then decay regularly, except Ps/~, and P~,,, which 
stay constant, owing to the fact that the absorption region 
(r > L) lies beyond the radial extension of the corre- 
sponding components [6]. 

3 The initial state 

We will assume that the c -  6 pair is formed as in free 
space proton-proton collisions. Therefore, in the Schr6- 
dinger picture, the content of the initial c - ( wave packet 
in J/q~ (and q/') should be given (in intensity) by the 
relative p - p  cross-sections. We here quickly review what 
is known both experimentally and theoretically about the 
initial wave packet. 

3.1 Experimental indications 

We focus our attention on the data at ~ = 20 GeV, which 
is the nucleon-nucleon c.m. energy in the SPS heavy ion 
experiments. What is basically known is the following: 
(i) the total open charm production aoc is equal to 

3 9  19 gb [10]; (ii) the inclusive J/q/production is 

equal to (52.95 • 20.0) nb[  11]. Although it is conceivable 
that open charm production may not simply proceed by 
the creation of a pure c - 6 pair, these data suggest that 
the c -  6 initial packet has a very small J/q/content (a 
few percent at the most). This corresponds either to a 
spherical c - 6 wave packet with a very small overlap with 
the J/q~ wave function or to a non spherical wave packet 
with a small f =  0 wave having possibly a reasonable large 
overlap with the J/q~ wave function. The first case re- 
quires either a very narrow or an unreasonably extended 
gaussian wave packet. There are indications that most 
probably the second case holds. First, the X production 
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rate has been measured at one energy, 62 GeV. It is shown 
that half of the observed J/q/'s are coming from the ?- 
decay of the Z's. From the same ref. [12], one can infer 
the direct q/' cross-section is about the same as the J/q~ 
one. Second, the theoretical considerations that we out- 
line below indicate the initial c -  { wave packet should 
have a non negligible size. 

3.2 Theoretical indications 

One can have indications on the wave packet using the 
most popular model for charm production, namely the 
gluon fusion model [13]. The corresponding transition 
matrix may be expressed in terms of the final momenta 
p{ ,p ; ,  for given x 1 and x 2, defined as usual [13]: 

T =  T(p[,  p;, xt,  x2). (3.1) 

We may use instead the total c - d momentum Ptot and 
the relative c - ~ momentum P~e~ 

T= T(Ptot, Prel,xa,X2). (3.2) 

The quantity 

F(Ptot, P~el) =j" dxl I dx2 G(Xl) G(x2) 

• [ V(Ptot, P~I, xl, Xz)] 2 5 (10) (3.3) 

~ 0.6 )p (200 GeV/c) + Pl 

0 1 2 3 4 
PreJ (GeV/e) 

g 

-:!/ 
~'1 ' ' ~ ' o 2  '~ 'o 0s 

r (fm) 

Fig. 1. Calculated g= 0 wave function, in momentum space (upper 
part, (3.4)) and in r-space (lower part), of the c -  g pair formed in 
proton-proton collision at 200 GeV/c. See text for detail 

is the average probability of producing a pair c - ~ with 
total and relative momenta Ptot,  Prel, the average being 
taken on the gluon distribution functions G (x). The func- 
tion 5 (p) stands symbolically for energy-momentum con- 
servation. The quantity F(Ptot, Prel) may be interpreted 
as the (average) square of  the c - ~  wave packet in Prel 
space, when this pair is produced with the total momen- 
tum Ptot. The function (3.3) is thus rather complicated. 
To have some idea about the wave packet, we numerically 
calculated the quantity 

f (Pre,) = j" dDrel F(Ptot = 0, Prel), (3.4) 

which can be interpreted as the probability of finding the 
c - ~ pair at intermediate XF( = X 1 - -  X2)  with relative mo- 
mentum of magnitude Prel" Details are given elsewhere 
[14]. In other words, the quantity (3.4) can be interpreted 
as the squared modulus of the wave function in momen- 
tum space. If  we identify the initial c - g wave packet with 
the minimum wave packet, i.e. the wave packet with the 
smallest r.m.s, radius, the r-representation of the initial 
wave packet will be given by the Fourier transform of 
the square root of  f (Prel)' We show in Fig. 1 the function 
(3.4) and the squared modulus of  the initial wave packet 
in r-space. Of course, by integrating over the direction of 
Prel, we have selected the g= 0 part of the wave function. 
Figure 1 shows that this g= 0 wave packet is definitely 
(but not dramatically) narrower than the J/q~ wave func- 
tion. 

Since both f(Prel)  and its r-representation are close 
to gaussian wave packets, we will use the latter as a con- 
venient approximation. 

In conclusion, these considerations support the idea 
that the small J/q/ content in the initial wave packet 
comes mainly from the rather small intensity of  the f =  0 
c - ~ component, the latter having possibly a reasonable 
overlap with the J/q/ wave function. For  instance, the 
overlap of  the normalized wave packet of Fig. 1 (scalar 
product squared) with a realistic J/q/ wave function is 
0.44. To give an idea, a normalized gaussian wave packet 

q /=  A e-r2/~2 _ u (r) 1 
r 1 / ~ - '  (3.5) 

with the same overlap, corresponds to o-= 0.22 fro. As a 
consequence, for solving (2.1), we will chose a gaussian 
wave function with a between 0.19fro and 0.25fm, 
allowing so to study the sensitivity to the initial state. 

4 Basic numerical results 

We first present our results for the model described by 
(2.1)-(2.3). The quantities rp and r m should be viewed 
as the time spent in the plasma and in the mixed phase 
or transition region by the c - g  pair, respectively, ex- 
pressed in its proper rest frame. In a specific case, they 
can be related to the intrinsic properties of  the plasma 
and of the transition, and to the kinematical conditions 
of the propagation of the c - g pair with respect to the 
medium. This relationship is discussed in Sect. 5. 

If  q/j/~, (r) is the static J/q/ wave function, we con- 
centrate here on the quantity 
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Fig. 2a, b. a Time evolution of the J/~ probability (quantity (4.1)) 
for an initial wave function (3.5) with cr = 0,25 fm and for different 
values of the parameters rp, ~,,. In each group, the lower heavy line 
gives to the quantity P (t, t, 0) for t __< 2 fm/c, i.e. the time evolution 
of the J~ ~y probability in a pure plasma phase. In the upper graph, 

the narrow full lines give the quantity P(t, rp, r,,), for r e =  1 and 
rp 

for various values Ofrp (0.1, 0.2, 0.3, 0.5, 0.7, 1, 1.5 and 2 respec- 

. . . .  , . . . .  r . . . .  , . . . .  I ' ' 

o = 0 . 4 7 2 f m  

. . . .  i . . . .  L . . . .  i . . . .  i , , 

1 2 3 4 5 

0 .2  

0 

~ W  =0"472 tm 

~'m / ~p=2 

=0 

, i , _ 1  , i _  , r i i 

1 2 3 4 5 6 

1 . 2 ~  , . -  , , , , . 

1 L o '=0.472fm 

I~ ~m/~P=4 

0 .6  . . . . .  W = O  

~ I 0 . 2  

~ ~ ~ 6 8 ~o ' ~  2 
t ( fro/c)  

tively). The corresponding value of rp can be identified as the ab- 
scissa of the point where the narrow line departs from the lower 
heavy line. The upper heavy line merely represents the final values, 
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of calculations with a vanishing imaginary part. See text for detail. 
b Same for an initial wave packet (3.5) with a = 0.472 fm 

2 

P(t, ~,,,, era)- I <q/,/~, (r) I q/(r, t)> i ~' 
I<q/s/~, (r) l q/(r, o)> 

(4.1) 

for  var ious values of  vp and r m. The latter is given in 
Fig. 2 for  several values of  the rat io r,~/Zp and for  var ious 
values of  ~p. I t  should be noticed that,  for  the range of  
pa ramete rs  under  study, (i) the J/q~ content  always de- 
creases in the p lasma;  (ii) the J/q/content m a y  decrease 
or  increase in the mixed phase;  (iii) the final J/q~ content  
is always smaller than  initially. 

The  first result is expected since it is reminiscent o f  
the case of  a freely expanding gaussian wave packet .  The 
second result m a y  be quali tat ively unders tood  as follows. 
I f  the wave packet  is very na r row when entering the mixed 
phase, it will mainly  expand. I f  on the cont ra ry  it is 

b roade r  than  the J/q~ one, it m a y  be compressed  by the 
restoring confining potent ia l  and the overlap with the 
J/q~ m a y  increase. This behav iour  as m a n y  other  features 
are well documented  in [7], where the evolut ion of  a wave 
packet  in a restoring potent ia l  is extensively studied. 

In  Fig. 2, the effect o f  the coupling to the inelastic 
channels is also illustrated. It  turns to be very negligible 
for  the wave  packets  studied here. I t  m a y  not  be the case 
for  other  wave  packets  (see [7]). The  physical  reason m a y  
be unders tood  as follows. Depending  u p o n  the value of  
rp + r,~, the initial ra ther  compac t  wave packet  expands 
more  or less impor tant ly ,  but  continuously.  However  the 
over lap with the J/q~ is mainly  given by the small r par t  
o f  the wave  funct ion ( ~< 1 fm) and is thus not  very much  
influenced by the absorp t ion  which roughly damps  the 
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Fig. 4. Contour plot of the survival J/q/ probability (4.2). The 
values corresponding to the contour lines increase from 0.2 to 0.9 
when going from left to right 

given total time r e + Tm, the largest final J/q~ abundance 
is obtained when all this time is spent in the mixed phase. 
For  small rp and rm, one has roughly S(0, rm) 

/ rm \ 
~ S  k r p = ~ - ,  0) .  This is qualitatively understood 

by noticing that the departure from the static charmo- 
nium potential in the mixed phase is on the average half  
the one prevailing in the plasma phase. For  a large time 
spent in the plasma, the final J/q~ abundance does not 
depend very much upon the time spent in the mixed phase. 
Actually, a good numerical fit of  the calculated value of 
S is given by 

S (Tp, Tm) = ]~14" b Tg 
1 - F a r  2 ' 

with 

(4.3) 

Z-g -- ~ 4- z'~, (4.4 a) 

a = 1.3748 - 0.6880 0, (4.4b) 

wave for r > 1 fm. A strong influence of the absorption 
would occur if the final small r part  of  the wave function 
resulted from the evolution of  a wave packet entirely 
situated in the absorption zone at earlier times [7]. 

In Fig. 3, we display the final value of  the J/q~ content, 
namely the quantity 

S(rp, 'Cm)= P(rp  4, Tm, rp,72m) (4.2) 

for various values of  the ratio rm/rp. This picture illus- 
trates the sensitivity of  the results upon the width of the 
initial gaussian wave packet. It turns out that the sensi- 
tivity is rather weak around the value of o- recommended 
in Sect. 2. It is also remarkable that if one starts with a 
value of a = 0.472 fm, giving a r.m.s, radius equal to the 
one of the actual J/q~, the relative depletion is much 
smaller. For  o- = 0.25 fm, the quantity S(rp, Tm) is shown 
in Fig. 4 as iso-intensity curves. It can be seen that for a 

b = 0.935 0 4- 1.815, (4.4c) 

c = 4.835 - 3.116 ] / (0  - 0.278) 2 4, (0.40146) 2 , (4.4d) 

O=atan ( rm'] , (4.4e) 
\ "cp/ 

for cr = 0.25 fm. This parametrization is valid only in the 
range of  variation of  the variables indicated in Fig. 4. 

In the following, we will concentrate on S (7;, 0) and 
S (0, r m) that we will rewrite by introducing characteristic 
times 

0), (4.5a) 

@). S (0, rm) = S 0, rs/~, (4.5b) 
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There is no mathematical need to do so, but this will be 
helpful for introducing dimensionless physical parame- 
ters. Of course, r3/~, and rj~/~, can be chosen arbitrarily, 
but we may fix them such that S is equal to 1/2 when 
zp = r~/v, or r~ = rj~/~,, and think of them as the time spent 
in the plasma or the mixed phase, after which the J/q~ 
content of the wave packet is significantly reduced. With 
our choice for the initial wave packet, r~/~, = 0.7 fm/c  
and r~/~, = 2 fm/c. 

5 J/q/suppression 

5.1 Introduction 

In this section, we apply our model to the so-called J/q~ 
suppression in relativistic heavy-ion collisions. We will 
assume that the c -  ~ pair is formed at the beginning of 
the plasma phase and that this phase lasts for some time. 
Our main goal is then to calculate the J/q~ survival prob- 
ability for a given plasma scenario and to compare it to 
the quasi-classical approximation based on a J/q/ for- 
mation time rF, as introduced in previous analyses. 
According to this approximation, the c - ~  pair forms 
a J~ q~ after re only. If  at that time, the c - ~ pair is sitting 
inside the plasma, it will be dissolved. If it is sitting out- 
side, the J/q/ will survive. In order to disentangle the 
effects of the plasma itself, of its finite size and of the 
mixed phase, we will consider several plasma scenarios, 
including the case of an infinite plasma. 

In this section, we will concentrate on the pa depen- 
dence of the quantity S(rp, rm) for specific scenarios. We 
postpone the comparison with experimental data to the 
next section. 

5.2 Infinite plasma o f finite lifetime 

We start with the simplest case of an infinite homoge- 
neous plasma becoming suddenly an ordinary phase (no 
mixed phase) after a time tp, seen in its rest frame. Let 
us consider a c -  ? pair formed at time t = 0 with a mo- 
mentum p• and let us call F(p• the ratio of the prob- 
ability of forming asymptotically ( t~oo )  a J/q~ to the 
initial probability. According (4.1), (4.2) and (4.5), the 
latter can simply be written as 

F(p• = S  ( tp 
7.  r~/v, 

with 

~ + M  "~ 
), '~-- 

M 

- - - - ,  0 ) ,  (5.1 a) 

(5.1b) 

M being the mass of the c - ~ system, that we take as the 
J/q/ mass. The quantity rp= tp/?. is the proper time 
spent in the plasma by the c - ~  pair of perpendicular 
momentum P l .  In this case, the P_L dependence of the J/ 
q/survival follows a universal curve given in Fig. 5 and 
depending upon the dimensionless parameter 

el-- r,/rS/~, (s.2) 

1.2 

O,8r ~ mixed phase 

F \ J l  
0.4 

"~= f / I ", plasma 

0 t~  T, J , , I  
m I p 0.1 

JFF ~J~ 

xp, "tm (fm/c) 

Fig. 5. Survival J/~u probability in a pure plasma phase (lower 
curve) and in a mixed phase (upper curve). Note that the horizontal 
scale is increasing from right to left (in order to correspond to a 
p• scale increasing from left to right). The values of r~'/~ and 
rw are indicated by the arrows on the horizontal scale. The step 
function curve gives the semi-classical approximation (5.4) for 
T F ~ TP/~  

i.e the ratio of the proper time spent inside the plasma 
to the typical "decay" time of the J/q~ component. If one 
focuses on the Pl  range extending from 0 to M, one may 
be interested in the quantity 

F ( M ) - F ( 0 ) = S (  tp , 0 ) _ ~ (  tp O) 
r slv, 

~ q ( 0 . 7 1  tp 0 ) - ~ q (  tp ,0)  (5.3) 

One clearly sees from Fig. 5 that this quantity cannot be 
larger than ,-~0.2. (Graphically, (5.3) is given by the dif- 
ference of the ordinates of two points whose abscissa are 
separated by a constant length in Fig. 5, whatever the 

value of ~ is). Furthermore, if F(M)~ 1 (which can 

occur if tp is very small), (5.3) is also very small. This is 
illustrated by Fig. 6, which shows the function F(p 1) for 
tp = 0.5 fm/c. This figure also shows the relative insen- 
sitivity upon the width of the initial wave packet (around 
a ,~0.2 fm). Our calculated function F(p• ) is compared 
in this case with the prediction of the semi-classical model, 
which is 

\ YJ_ / 

where 0 (x) is equal to unity if x > 0 and vanishes 
otherwise. 

This ideal example singles out the spectacular effect 
of quantum mechanics, which smoothens the function 
F(p• efficiently. Let us notice that both (5.1) and (5.4) 
can be put into the form 
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1 Fig. 6. Transverse momentum 
distribution of the J/gt survival 

0.8 probability for an infinite 
homogeneous plasma of finite lifetime 

0.6 tp = 0.5 fm/c (upper left), 1 fm/c 
(lower left) and 2 fm/c (upper right), 

0.4 respectively. The calculation has been 
done with the initial wave packet 

0.2 (3.5) and for a =0.19 fin and 0.25 fro. 
The curves indicated SC correspond 

0 to the semi-classical approximation 
(5.4) for rF taken equal to rP/~. The 

1 quantity M is the mass of the J/q/. 
The lower right part of the figure 

0.8 corresponds to the case where the 
infinite plasma transforms into a 

0.6 mixed phase after time tp, which in 
turns transforms into a hadronic gas 

0 . 4  
at time tp + tin, equal to 1 fm/e. The 

0.2 curves correspond to tp=O, 0.25, 0.5 
and 1, respectively, when going from 
top to bottom 

exhibiting a single relevant physical parameter. In our 
picture, zx characterizes the decrease of  the J/ q/ intensity 
inside the plasma, whereas in the semi-classical picture, 
it is to be identified to the so-called formation time. The 
basic difference between the two approaches is that the 
function f may display strong variations in the semi- 
classical picture, whereas it is rather smooth in our pic- 
ture. 

We may also consider the simple case of  an infinite 
plasma phase of vanishing lifetime giving rise (at t = 0) 
to an infinite mixed phase of  duration time tm (in its rest 
frame). The quantity F(p 1) will then be given by 

where the function S (0, x) is shown in Fig. 5. For  t~ = tp, 
the reduction is larger in a pure plasma phase than in the 
mixed phase. Since S (x + y, 0) < S (x, y) < S (0, x + y) 
(see Fig. 4), for a given total interaction time, the reduc- 
tion will always be the largest in the plasma phase and 
the smallest for the mixed phase and intermediate be- 
tween these two extremes for a plasma phase followed by 
a mixed phase. This is shown in Fig. 6. This property 
holds in all the cases below. We henceforth will only show 
the pure plasma and the pure mixed phase cases. 

5.3 Finite size plasma of infinite lifetime 

In order to simplify the calculations, we will consider an 
homogeneous cylindrical plasma of  transverse radius R0, 
but of  inifinite length and of infinite lifetime. Since we 
are considering transverse motion and since the plasma 

which is possibly formed in heavy ion collisions is likely 
of elongated shape, neglecting end effects is justified in 
first approximation. 

Following [15], we consider that a c - i  pair may be 
formed anywhere in the plasma with a probability p (r), 
depending only upon the radial distance (in cylindrical 
coordinates) and with a direction of Pi at random. 

If  we first assume that the plasma is not surrounded 
by a mixed phase (i. e. the c - g is free as soon as it leaves 
the plasma), the function F(p..) may be written as 

Ro i dO ( d ( r , O )  ) 
F ( p •  j" p(r)rdr - -  S ,0 , 

o o zr fll 71 rP/~, 
(5.7a) 

where 0 is the angle between the vectors Pl and r (per- 
pendicular to the cylindrical axis) and where d is the 
distance between r and the surface, i.e. the (perpen- 
dicular) distance travelled inside the plasma. The distri- 
bution p (r) is normalized according 

Ro 

2zr ~ p(r)rdr=l .  (5.7b) 
0 

Introducing the reduced variable z=d/Ro, we may re- 
write (5.7a) as 

f ( p l ) = 2  j" p(r)rdr dO dz5 
0 0 0 Ro 

zR ~ ) 
• B171~/~'0 , (5.8) 

since d always lies between 0 and 2 Ro, or as 

F(p•  =~ dzg(z)S ( zRs 
o \ fl• 71 ~-P/~, ' 0 . (5.9) 
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Fig. 7. Case of a finite size plasma with infinite lifetime (see Sect. 5.3). 
The upper part gives the distribution of the path lengths (divided 
by the radius) travelled by the c - g  pairs inside the plasma, for 
three different distributions, (a), (b), (c), of the c - ~ pairs at initial 
time, corresponding to (5.12a), (5.12b) and (5.12c), respectively. 
The middle part gives the J~ gt survival probability in function of 
the parameter ~2 p (5.11) for the three distributions mentioned above. 
The lower part gives the p~-distribution for various values of the 
radius R0 of the plasma and for the distribution (5.12a) 

The function 

Ro ( d(,,o)) 
g ( z ) = 2  I P(r ) rdr i  dO~ z-- Ro / 

0 0 

(5.10) 

simply represents the distribution of the distances to be 
travelled in order to get out of  a circle when one is sitting 
at a distance r of  the centre, with a probability p (r), and 
one is choosing a direction at random. For  a given dis- 
tribution g (z), the quantity F(p.)  is a function of the 
single parameter  

~ _  RoM _ rest (5.11) 
p• rw rS/~,' 
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Fig. 8. Semi-classical approximation for the cases investigated in 
the middle and lower parts of Fig. 7, assuming r F= rw See text 
for detail 

where r~s o is the time necessary for escaping from the 
center of  the plasma. Figure 7 shows the function g (z) 
for three different distributions p (r), namely 

1 
p (r) - rcR02, (5.12a) 

3 ] / l _ ra /R  2 (5.12b) p (r )  = 

2 
p (r) = zrR~ (1 - r2/Rg), (5.12c) 

and the corresponding distributions F(p• as expressed 
in terms of the variable (P, and in terms for p• for dif- 
ferent values of  R0. Note  that here F(0)  is always equal 
to zero, since an infinitely slow pair will spend an infinite 
time in the plasma. This can occur only in scenarios with 
an infinite plasma lifetime. 

In Fig. 8, we show the function Fsc (pz)  when cal- 
culated within the semi-classical approximation, i.e. with 
a function Ssc given by (5.4). Note  that here quantum 
mechanics introduces a much more reduced effect com- 
pared to the case of  Fig. 6. This, of  course, comes from 
the smoothing through the distribution function g (z). 
Note also the rough insensitivity of  both F(p_L ) and 
Fsc (p• on the distribution function p (r). 

5.4 Finite size plasma of finite lifetime 

We consider now a plasma with the same geometry as 
above, but which transforms suddenly in a hadronic phase 
after a time tp. Mathematically, F(p• is now given by 
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Fig. 9. Perpendicular momentum dependence of the J~ ~, survival 
probability in the case of a finite size plasma with a finite lifetime 
tp (upper part of the figure). Calculations have been carried with 
tp = 0.5, 1 and 2 fro/c, respectively. For each case, the upper, middle 
and lower curves correspond to a radius R 0 = 1 fm, 3 fm and infin- 
ity, respectively. The lower part of the figure corresponds to the 
case of a finite size mixed phase with a finite lifetime. The calcu- 
lations have been carried out with the initial c - f  density distri- 
bution (5.12a). See text for detail 

2 

F(p•  = J" dzg(z)S(min[  ~,p'~I , z'wP]"~ 2 . b  0), (5.13) 
0 

We consider that the interface is a cylindrical surface with 
a radius R (t) going continuously from the initial radius 
R 0 to zero (corresponding to the disappearance of the 
plasma), in a finite time tp. In this case, (5.7) becomes 

RO i dO '~ 
F ( p •  J" p(r)rdr - -  

7"g 
0 0 0 

8 ( d - R )  ~ (  t 0)  d t ,  (5.16) x 
t y j_ r } /~ -~  ' 

where d is the distance of  the axis of a c - ~ pair at time 
t, which has been initially created at a distance r and 
travelling with a perpendicular momentum p• in the di- 
rection 0" 

P" , t )  d 2 (r ,  0, 

. .2.  p2 t 2 , 2 rp. t 
=,-  c o s 0 .  (5.17) 

We may rewrite (5.16) with the reduced variables x =  
r/Ro, ~ = d/R o 

1 tp 

F ( p . ) = 2  J ' ~ ( x ) x d x  i dO I 
0 0 0 

•  @ (x,  0, p• t) R ( t ) )  
MRoY• -Ro-o / 

where ~1; and ~ have been defined in (5.2) and (5.11), 
respectively. The results are then given in Fig. 9. The 
effect of  the finite size appears less important than the 
effect of  the finite lifetime in the indicated range of values 
for the parameters p• R0, rP/~,. In Fig. 9, we also show 
the values of  F(p• given this time by 

2 

F(p.  ) = ~ dzg(z)  S(0, min [ ~ ' ,  z ~ ' ] ) ,  (5.14) 
0 

with 

~ -  t ~  ~;,,_ reso (5.15) 
m ' m ' y• r j /~  rj/~, 

corresponding to a finite size mixed phase becoming a 
hadron phase in a time tm. The function F(p• ) so ob- 
tained is always larger than the corresponding one of the 
plasma, for t m = tp, and can be considered as an upper 
limit, if one starts with a plasma evolving in a mixed phase 
and in a hadronic phase in the same time span. 

5.5 Contracting plasma 

We now consider the case where we start with an ho- 
mogeneous plasma of  cylindrical symmetry (and infinite 
axis) transforming at its surface into a hadronic phase. 

X 
 oo/ 

& ~ (  t , 0 ) d t ,  (5.18) 
Y• rP/~, 

where fi is normalized as p and thus depends upon x 
only. We below consider three models for R (t), namely 

R(t )=RoO ( 1 - ~ ) ,  (5.19a) 

R ( t ) = R o ( l ~ ( t _ ~ 2 ~  1/2 \ tpJ J ' (5.19b) 

and 

  19c) 

As an example, for a linear variation, one obtains, intro- 
t 

ducing y = 
t~ 
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F(p.)=2 ~ fi(x)xdx dO 
0 0 0 

R o M ? ~  , y - l + y 

x ~@+1 S (  ytp , 0 )  dy.  (5.20) 
Yi rP/~ 

Whatever the function R ( t )  is, the distribution de- 

pends upon the two dimensionless parameters ~ and 
~ introduced previously. For the purpose of illustration, 
we can take the limit R0~oo. This corresponds to the 
unphysical case of an interface coming from infinity with 
infinite speed. Note that mathematically, this is equiva- 
lent to having a finite Ro, but an infinite mass M of the 
c -  d pair. The physical situation close to this limit cor- 
responds to an interface travelling much faster than the 

pair (~p~ >> ~ ) .  In that limit, the distribution depends 

upon the single parameter, ~P. The results are plotted in 
Fig. 10 as function of this parameter (the choice of the 
scale corresponds to a monotonously increasing P_L ). In 
the same figure, the results for the semi-classical model 
(with Ssc of (5.4)) are also displayed. Once again the pz 
-dependence is much smoother in the quantum case. Fur- 
thermore, one may notice that the smoother the variation 
of R(t) is (from (5.19a) to (5.19c)), the smaller the sup- 
pression is and the smoother the function F(p• is. 

The results for a finite initial volume (finite Ro) are 
given in Fig. 11, both for the quantum and the semi- 
classical models. Once again, the results are similar, but 
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Fig. 18. Perpendicular momentum dependence of the J/~u survival 
probability in the case of a "shrinking" plasma, for three time 
dependences o f the plasma radius R (t), given by (5.19 a), ( 5.19 b) 
and (5.19c) respectively and for three possible distributions of the 
c -  ~ pair density p (r) inside the plasma, corresponding to (5.12a), 
(5.12b) and (5.12c), respectively. The calculation corresponds to 
the limiting case of an initial infinite radius. The upper part of the 
figure displays the quantum results, versus the parameter ~f (5.2). 
The lower part corresponds to the semi-classical results, as func- 
tions of the same quantity as in the upper part, where the quantity 
r r  has been substituted to r~,/~. See text for detail 
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dependence of the J/~" survival 
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lifetime tp = 1, 2, 3 fm/c, 
respectively and with an initial 
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The initial c - ( density 
distribution is given by (5.12a) 
and the time evolution of the 
radius is taken from (5.19c). The 
lower parts display the results for 
an initial c -  ( density distribution 
(5.12b) and the time evolution of 
the radius given by (5.19b), with 
the same conventions 
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smoother in the quantum case, so much that there is 
no strong variation of F (p •  between p• = 0  and 
p• = 3 GeV/c  for any of  the values of  R o and of  tp in- 
dicated on the figure. However, one may notice a signif- 
icant variation with tp. Mathematically, this comes from 
the fact that, in the domain of  variation of  the parameters 
P l ,  R0, tp investigated here, the function F(p• is more 
rapidly varying with ~f than with ~f. Physically, and in 
illustrative words, one may say that the J/q/ survival 
observed in Fig. 11 is due more to the shrinking of the 
surface (variation with tp) than to the escape from the 
plasma (variation with p• 

5.6 Contracting mixed phase 

In order to contrast with the previous scenario, we con- 
sider (with the same geometry) the case of a mixed phase 
changing into a hadronic phase with an interface moving 
from R 0 to 0 in a time tm. Mathematically, this corre- 

{ t 0"~ in (5.16)and follow- sponds to replacing \ Y• TP/~,  ' / 

( ros ,t  a.e s ow. i. ing ones by ~q 0,7• 

Fig. 12, both for infinite and finite R o. Comparing the 
upper parts of  Figs. 10 and 12 respectively, one sees, as 
expected, that the suppression is smaller in the mixed 
phase, practically in the ratio given by the one of the 
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Fig. 12. Upper part: same as the upper part of Fig. 10a for a 
"shrinking" mixed phase. The quantity ~ '  is defined in (5.15). 
Lower part: perpendicular momentum dependence of the J/q/ 
survival for a "shrinking" mixed phase of duration tm= 1, 3, and 8 
fm/c and of initial radius R0= 1, 3 and 10 fm, respectively. The 
initial c - ~  density distribution is given by (5.12a) and the time 
evolution of the radius, by (5.19c). For t m = 1 fm/c, the curves for 
the three different values of R 0 are indistinguishable 

1 

- -V-0.5C, Ro=3fm l 
0.9 --v=O.Sc, Ro=lfm 

- - -V=0.1r Ro=3fm 
- - -v=0.1c, Ro= lfrn 

0 . 8 ~  

0.7 

t =1 fm/c m 
~.4 0.6 ~ , , ~ J , ~ , , I , , , , 

I.I. t =3 fm/c m 
0.8 

0.6 / ~  I ~  

0.4 - -v=05c,  P.o=3fm 4 
- - v =  05c, R ~ = 1 fm 

0 ,2  - - ~v=0 lc, Ro=3fm 
- - - v = 0  Ic, Ro= m 

. . . .  i . . . . . . . .  
1 2 3 

p• (GeV/c) 

Fig. 13. Perpendicular momentum distribution of the J/q/survival 
probability for an expanding mixed phase (see Sect. 5.7). The initial 
radius R0, the velocity v of the linearly growing radius and the 
duration time of the mixed phase t,~ are indicated 

functions S(x,  0) and S(0, x) (see Fig. 5). Comparing the 
lower part of Fig. 12 with the upper left part of  Fig. 11, 
one notices that the variation with tm in the mixed phase 
scenario is less important than with tp in the plasma sce- 
nario. 

5.7 Expanding mixed phase 

As a last illustrative case, we consider a finite mixed phase 
that expands for a while (tm) and then suddenly trans- 
forms into a hadronic phase. The results are shown in 
Fig. 13, for several values of the initial radius Ro, of 
the expanding velocity and for two values of t,,. The 
pa-dependence is rather flat, and the average value of 
F(px) decreases with increasing tm. 

5.8 Discussion 

The difference between the quantum-mechanical treat- 
ment and the semi-classical one is intrinsically important 
as demonstrated by Fig. 5. We here discuss scenarios 
involving the plasma only, since the semi-classical ap- 
proximation has been defined in this context only. Quan- 
tum-mechanical and semi-classical treatments roughly 
yield the same results when the proper time spent in the 
plasma is either very short or very long compared to 
rP/~, (provided one identifies T F with rP/~,). This intrisic 
difference between the results of  the quantum and semi- 
classical approaches can be observed in the scenarios of 
an infinite plasma with finite lifetimes illustrated in Fig. 6. 
On the contrary, it may be obscured and very much at- 
tenuated in more realistic scenarios, which introduce some 
kinds of average over short, long and intermediate proper 
times spent by the c -  ~ pairs inside the plasma. This is 
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particularly true for the finite size plasma of infinite life- 
time investigated in Sect. 5.3 and illuminated by the com- 
parison of the middle and lower graphs in Fig. 7 on the 
one hand with the two graphs in Fig. 8 on the other hand. 
The difference between the results of the two treatments 
is still remarkable for the scenario involving a "shrink- 
ing" plasma (Sect. 5.4) for a variation of R(t) which is 
not smooth, like the one given by (5.19), and that for an 
"infinite" initial radius (see Fig. 10) as well as for the 
finite case (see Fig. 11). 

The main effect of the quantum treatment is a flat- 
tening of the p~_ dependence in the 0-3 GeV/c range. As 
we already explained in Sect. 5.3, this range in p• trans- 
lates in a small relative variation in the time spent in the 
plasma. A strong variation in p• may be obtained semi- 
classically when the domain of variation in proper time 
encompasses re ,  in contradistinction with the quantum- 
mechanical case (see Fig. 5). The only scenario in which 
the quantum treatment yields a large variation in p .  is 
the one involving a plasma of finite size with an infinite 
lifetime, because it involves very short (in large p+ and 
small radii) and very long (for p• = 0) times spent in the 
plasma. 

One may qualitatively do the same discussion for mixed 
phase scenarios, introducing a semi-classical "formation 
time" and a semi-classical survival function Ssc 

= 0 (1 - r~F) quite similarly to the plasma case. 

We have seen that the presence of a mixed phase gives 
systematically, for the same total evolution time, less sup- 
pression. 

When considering the plasma alone, the most realistic 
scenario is the one of Sect. (5.5). However, it is expected 
that the plasma "evaporates" in a mixed phase which is 
presumably first expanding and later on disappears. In 
the absence of any serious quantitative indications on this 
scenario, we gave, for the purpose of illustration, the 
results obtained for an expanding mixed phase. The main 
result is that, if this mixed phase lasts for some time, the 
suppression will be significantly increased. 

6 Comparison with experiment 

The NA38 collaboration [16, 17] basically produces two 
kinds of experimental data concerning the J~ q~ suppres- 
sion in relativistic heavy ion collisions: the suppression 
versus the transverse energy and suppression versus the 
perpendicular momentum. The theoretical description of 
the second one demands a model for the J/q~ evolution 
and a model for the plasma evolution. For the first kind 
of data, one needs in addition a theoretical model for the 
production of transverse energy. Since this introduces an 
additional uncertainty, we will concentrate here on the 
pz distribution only. 

The comparison of our results with the experimental 
data on the p_~-distribution of the J/q~ suppression is 
nevertheless made difficult by several facts: 

(1) what is in fact measured in [17] is the ratio of the 
J/q~ over continuum ratio for the bin of highest trans- 

verse energy (Er  > 78 GeV) and the one for the bin of 
lowest transverse energy (E T < 34 GeV). It seems rea- 
sonable [18] to consider that the continuum does not 
change (this is in keeping with the absence of significant 
A-dependence in the Drell-Yan yield observed in [19]). 
Therefore, what is basically measured is the ratio of the 
J/q/ yield for high and low transverse energy. We will 
assume that the J/q/suppression is negligible for periph- 
eral collisions and identify the latter with the low trans- 
verse energy events. Although this seems acceptable, we 
should emphasize that there is no formal proof of this 
statement. Within this assumption, the measurements can 
be considered as giving the J/q/ suppression in central 
collisions, the latter being identified with the high trans- 
verse energy events. 
(2) Our results of Sect. 5 deal with the evolution of the 
c - 6 pair after its production, assuming that its transverse 
momentum is not modified. This seems reasonable in 
view of the large mass of the J/q~ and of the probable 
expansion of the system (nor only the plasma). However, 
the initial state interaction (i.e. prior to c -  6 formation) 
may influence the observed p• The gluons 
prior to fusion are expectedly scattered more in central 
collisions than in peripheral collisions. This problem has 
recently been investigated by Gupta and Satz [20]. For- 
tunately enough, they corrected the data for these initial 
state interactions. We can so directly compare our results 
with the corrected data. 
(3) The observed J/q/'s are not only coming from initial 
f =  0 c -  ~ pairs. Some of them are coming from X reso- 
nances. We will disregard first this aspect and comment 
on it later on. 
The remarkable feature of the S -  U data of [17] is that 
the J/q/ suppression curve appears quite flat, after cor- 
rection of [20] for initial state interaction, in the 0-3 
GeV/c range. This is to be compared with our results 
with the quantum-mechanical treatment, which produces 
the same effect, except for the very special scenario of 
Sect. 5.3 with a small radius (~< 1 fro) and very large (in- 
finite) lifetime. 

It is clear from Sect. 5 that there should be no difficulty 
to find a plasma scenario and numerical values of the 
parameters reproducing the data of Fig. 14. We do not 
intend to produce here the best fit, but we will roughly 
determine the values of the parameters for the most re- 
alistic scenarios. First of all, we should not consider the 
radius of the plasma as a free parameter, but more or 
less given by the radius of the incident nucleus, say 3 fm. 
Let us consider first pure plasma scenarios (no mixed 
phase). If  we have a plasma of fixed radius and finite 
lifetime (see Fig. 9, top), the data are reproduced with a 
short lifetime (tp~0.6 fm/c, see Fig. 14). If  we consider 
the scenario of a shrinking plasma (see Fig. 11), the data 
are reproduced with a lifetime of tp~ 2 fm/c  if it shrinks 
with the time dependence (5.19c) (see Fig. 14) or of 
tp~ 1 fm/c, with (5.19b). It is to be noticed that in this 
scenario, the data cannot be reproduced by the semi- 
classical formalism, with reasonable values of the param- 
eters at least. We should also underline that in these two 
scenarios, the results would be largely insensitive to a 
modification of the parameter R 0. 
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Fig. 14. The heavy dots with the error bars give the values of the 
ratio R, as defined and measured by the NA38 collaboration [16, 17] 
and corrected by [20] to get rid of the initial state interactions. The 
smooth curves correspond to our calculations for three scenarios: 
finite plasma of finite lifetime (triangles, R 0 = 3 fro, tp = 0.6 fm/c, 
see Fig. 9), "shrinking" plasma (dotted line, R 0 = 3 fm, tp = 2 fm/c, 
see Fig. 11, p (r) given by (5.12a)) and "shrinking" mixed phase 
(open dots, R o = 3 fm, t~ = 5 fm/c, see Fig. 12) 
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Fig. 15. Survival probability for a ,g state inside a plasma (see 
Sect. 6), for two values of the parameter a 

Let us now comment on scenarios with a mixed phase. 
It is obviously more realistic to introduce this phase. 
However, very little is known about it. According to re- 
cent investigations, based on dynamical models for the 
phase transition [21, 22], this phase would last for a rather 
long time (several fm/c's). If we consider a finite size 
plasma, becoming a mixed phase, but keeping the same 
geometry, it is clear from Fig. 9 (bottom) that a global 
suppression of ~0.6 can only be obtained with a short 
total interaction time. If  we consider the scenarios with 
mixed phase only, the data can easily been reproduced 
in a finite and constant size mixed phase (see Fig. 9) dis- 
appearing after a time t m ~ l . 5 f m / c  as well as in a 
"shrinking" mixed phase (see lower part of Fig. 12 and 
Fig. 14) with a lifetime tp~5-6 fm/c  and with an evo- 
lution profile of type (5.19 c). The expanding mixed phase 
of Fig. 13 is probably not very relevant at the SPS energy. 
It is clear however that there is no difficulty to find values 
of the parameters in order to agree with the data. 

One has to keep in mind that a large fraction of the 
J/g,'s comes from the )~-decays [12]. This presumably 
does not affect our conclusions. Indeed, we have calcu- 

lated the ;g suppression in the plasma. This is illustrated 
in Fig. 15. We used a radial wave function of the type 

u(r)~ - ~ 5  , with different values of a. The 

curves are very similar to the J/~, one (see Fig. 5) and 
rather insensitive to the parameter a.  Of course, one 
should in principle follow the evolution of the Z in the 
various scenarios. But it is clear that the change will not 
be important. These considerations are however indica- 
tive only, since we did not calculate the initial :~ wave 
function as for the J/~u, we neglected the spin effects and 
we have no indication for the value of W(r) in this chan- 
nel [6]. 

7 Discussion, conclusion 

We have investigated here the effect on the internal struc- 
ture of the c - 6 pair on the J/~, suppression by means 
of a model which may be considered as the quantum- 
mechanical analog of the formation time model, as de- 
scribed in [3, 15]. In this quantum-mechanical model, the 
c - 6  internal wave function fulfills a time-dependent 
Schr6dinger equation. The effect of the surrounding me- 
dium is taken into account by means of a time-dependent 
real interaction potential. The same model had already 
been proposed in [4, 5, 7]. However, we improve the 
model on three points: (i) we use a "realistic" initial wave 
packet (see Sect. 3); (ii) we introduce an imaginary part 
accounting for the loss of probability due to the D - / 5  
coupling; (iii) we study the effect of a mixed phase in the 
plasma scenario. 

The most important result of our investigation is the 
fact that the pj_-dependence of the suppression factor is 
very flat. This was already underlined in [4]. We have 
shown that this is really due to the quantum-mechanical 
description, even though the difference between the quan- 
tum-mechanical results and the semi-classical ones is less 
pronounced in the suppression factor (the quantity plot- 
ted in Fig. 13) than in the intrinsic survival probability 
of the J/~, content in the plasma (see Fig. 5). 

The realistic initial wave packet yields a stronger sup- 
pression in the plasma than for an initial J/q/wave packet 
(see Fig. 2). As a result, the lifetimes involved (for the 
plasma and/or  the mixed phase) should be rather small 
in order to reproduce the observed suppression ratio. 

The coupling to the D - / 5  channels plays a minor role 
(see Fig. 2), because, as already explained, the wave packet 
initially narrow, expands continuously and is absorbed 
when entering the absorption region. The J/~u content, 
implying the wave packet at small r (<~ 1 fm) is not very 
much affected by the absorption happening at larger r. 
The situation is expectedly different for the q/' or for 
other kinematical regions, as illustrated in [7]. 

The presence of a mixed phase produces of course 
addit ional ,  but limited, suppression. However, it is dif- 
ficult to find information on its presence and on its life- 
time from the comparison with experiment. The reason 
is that the data are not very sensitve to the plasma + mixed 
phase scenario. Since the flatness of the Pi-distribution 
results mainly from quantum mechanics, only the abso- 
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lute value of the suppression factor can serve as a con- 
straint. Several unrealistic scenarios envisaged in Sect. 5 
can be ruled out, but it is hard to discriminate between 
reasonable scenarios. The data seem to be compatible 
with a finite size plasma shrinking in a short time, pos- 
sibly surrounded by a mixed phase also of  short time. Let 
us notice however that in pure mixed phase scenarios, 
the data can accommodate a longer lifetime. 

We want to discuss shortly some of the aspects of  the 
model. The decoupling of the centre of  mass motion from 
the relative motion is certainly an approximation, whose 
justification is yet to be done. Note that this problem has 
not been studied previously. The time-independence of 
the absorption potential is questionable also. One may 
wonder whether the coupling to the D - / 5  channels 
changes inside matter. This question deserves to be in- 
vestigated. On the other hand, the threshold of these 
channels are not expected to change drastically, because 
of the large mass of charmed quarks. 

The Schr6dinger model used here, although question- 
able, represents a definite improvement on the previous 
approaches. It  seems to confirm the compatibility be- 
tween the data and the plasma picture. The small lifetimes 
obtained in this work might indicate that the conditions 
for plasma formation are barely realized at the SPS 
energy. Of  course, this does not rule out the alternative 
explanations. We plan to use this model to investigate 
the other charmonium states (X, qJ', ~/c) and, at higher 
energies, the bot tonium states also. 
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