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Abstract. The influence of the internal motion of a c -  
pair on the fate and on the evolution of this pair is 
studied by means of a SchrSdinger model. The coupling 
of the c - ~  internal motion to the inelastic D - / )  chan- 
nels is introduced through an imaginary potential. The 
effect of the change of the surrounding medium in which 
the c - ~  pair is travelling is assumed to be incorporated 
under the form of a time-dependent real potential. The 
model is studied for the case of a c - ~  pair leaving a 
plasma phase for a mixed phase and finally for free space. 
The time-dependent potential is thus assumed to extra- 
polate between the Debye-screened potential and the free 
space charmonium potential in a transition time z. The 
influence of the initial wave packet and of the value of 
the transition time ~ is particularly studied. We exhibit 
the time variation of global properties of the wave packet 
as well as of its components along the stationary states 
of the charmonium. We identify more or less two re- 
gimes: an expansion regime, which occurs for initially 
compact wave packets with large kinetic energy, where 
the wave packet spreads almost freely, and a compres- 
sion regime, which occurs for broad initial wave packets, 
where the wave packet is basically compressed by the 
restoring confining potential. The influence of the im- 
aginary potential is analyzed. The J/O and 0' compo- 
nents are studied. It is shown that the former may be 
increased in some circumstances and that the latter may 
remain surprisingly large. The quantum character of 
these results is underlined. 

1 Introduction 

The so-called J/O reduction (as well as the @enhance- 
ment) has been considered as a possible signature of 
the existence of a quark-gluon plasma in the course of 
relativistic heavy ion collisions [1-4]. However, it is 
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more and more clear that the data concerning J/O reduc- 
tion can be explained by a rescattering of the J/O in 
a hadronic phase, be it composed of nucleons as in [5-7] 
or of pions as in [8-9]. The average (p~} and to some 
extent the pt-dependence of the J/O yield require gluon 
rescattering prior to fusion in the frame of the fusion 
model for charm production. In order to distinguish be- 
tween the two scenarios, one should probably wait for 
experiments performed at much higher energy: it is then 
expected that the pt-dependence is not the same in the 
two scenarios [-4]. 

In any of both approaches, the J/O is usually sup- 
posed to be :structureless. Once it is created, it is consid- 
ered to be an ordinary ("asymptotic") J/O, after some 
formation time perhaps in some works [2-3], and it is 
assumed either to stay in this state or to possibly disap- 
pear in some subsequent interaction. Our goal here is 
to remedy to this situation. We want to take account 
of the structure of the c -  6 wave packet and of its quan- 
tum-mechanical evolution when it is not in a pure state. 
To carry out this program, we adopt a very simple ap- 
proach, though of good potentialities as we will see. As 
for the charmonium, we assume that the internal motion 
of a c - 6  pair may be described by a non relativistic 
time-dependent Schr6dinger equation. The influence of 
the medium where the J/O is propagating is conveyed 
by the potential acting between the c and g quarks. In 
a plasma, it is basically the Debye-screened potential 
and in vacuum, it is the usual charmonium potential. 
The potential will depend on time for a changing envi- 
ronment. 

Such a model has already been proposed in [10] 
(without the important feature of the coupling to the 
inelastic channels that we include here for the first time), 
where it is applied to the propagation of a O-c pair 
experiencing a Debye screened potential only, and where 
the influence of the asymptotic J/O state is particularly 
studied. Here, we will use this model in a situation where 
the confining potential between the c and ~ quarks is 
restored and which may be physically relevant at the 
end of the plasma phase. We will make a thorough inves- 
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tigation of the model, paying much attention to the many 
aspects of the evolution of the wave packet in the physi- 
cal case under consideration. We are furthermore pri- 
marily interested in two effects, never studied previously, 
namely the effect of a time dependent potential and the 
effect of the coupling to the inelastic channels. We post- 
pone the analysis of the heavy ion data at the light of 
this model to a separate paper. 

The paper is organized as follows. In Sect. 2, we pres- 
ent the model for the evolution of the c -  6 wave packet 
and describe how a real time-dependent potential can 
account for a situation where the c - g  pair is moving 
inside a plasma which undergoes a phase transition to 
the hadronic phase. We also describe how the coupling 
to the inelastic channels can be introduced by a simple 
imaginary potential. In Sect. 3, we present our numerical 
results for the evolution of the global properties of the 
wave packet, like the rms radius and the average poten- 
tial and kinetic energies. We show the interplay between 
the expansion of the wave packet and the action pro- 
duced by the restoring confining force. We also discuss 
the evolution of the wave packet in terms of its compo- 
nents along the stationary states of the charmonium. 
In Sect. 4, we focus on the initial and final probabilities 
of finding a J/O or a 0', and show that these probabilities 
can be increased or decreased by the evolution process, 
depending upon the initial conditions. Finally Sect. 5 
contains our conclusion. 

2 The model 

2.1 General description 

The internal motion of a c - g  pair is assumed to be 
described by the following equation 

631// h 2 ih~=(-~ A+ V(r,t)+iW(r))~, (2.1) 

where r is the relative distance between the c and g 
quarks, and #=  mc/2 is the c-g-reduced mass. The po- 
tential V(r, t) is the c - (  potential energy, whose time 
dependence is assumed to reflect the nature and the effect 
of the surrounding medium wherein the c -  g pair is tra- 
velling. A great deal of work with (2.1) concerning char- 
monium spectroscopy (in the static case and with 
W(r) = 0) have established the well-foundedness of the 
model, justified also by the heavy mass of the charmed 
quarks. Finally, W(r) is an imaginary part, whose form 
is described below, introduced to account for the loss 
of probability due to the coupling to the D - / )  channels, 
which so need not be described explicitly. In another 
work [11], we have shown that this imaginary part well 
reproduces the widths of the charmonium states above 
the D - / )  threshold. In the first approach, we keep W 
constant in time. 

In this work, we will assume that the medium does 
not bring any anisotropic effect. Therefore, V and W 
depend upon r only and the partial waves decouple as 
in the eharmonium. We nevertheless introduce spin-spin 

and spin-orbit tensor couplings but we disregard the off- 
diagonal tensor term, which is not important for char- 
monium states. We will be concerned here with the 
3S 1 ("J/t)") channel only. Introducing the reduced radial 
wave function u(r, t), (2.1) becomes in this channel 

ih Ou(r, t) 
63t 

[ h2 ~2 ] 
= 2# 63r 2 q- V(r, t)+iW(r) u(r, t). (2.2) 

The form of the imaginary potential W(r) is chosen as 
in [11], in the spirit of the flux tube fragmentation model. 
If the flux tube between the c and g quarks is stretched 
too much, it is supposed to break into pieces and lead 
to the formation of a D - D  pair. The quantity W(r) 
should then represent the probability of breaking a flux 
tube of length r. In common fragmentation models, the 
probability may be a complicated function of the length 
and of the past history of the flux tube. Here, we simply 
consider that W should be different from zero for a suffi- 
ciently large value of r only. As in [11], the following 
simple choice is made: 

W(r) = O, r < L, 
= - W o ,  r > L ,  (2.3) 

with Wo=38 MeV and L =  1 fm. These values roughly 
reproduce the widths of the high lying charmonium 
states. 

Equation (2.2) has been solved numerically by the 
Crank-Nicholson method, starting at initial time with 
a given wave packet and imposing u(r, t) to vanish at 
r = 0 and at some large but finite distance. 

2.2 The physical case 

The model outlined above can be applied to many differ- 
ent physical cases, corresponding to many different time- 
dependances of the function V(r, t). We chose here to 
exhibit the features of the model in only one case, which, 
however, has not been studied up to now. Since we have 
primarily in mind a quark-gluon scenario, we single out 
the situation when a c - g  pair leaves the plasma and 
enters the hadronic phase, or is sitting in a plasma which 
undergoes a phase transition to the hadronic phase. In 
both cases, at the initial time, the potential between the 
c and g quarks will by the Debye-screened potential. 
Ultimately, the potential experienced by the c - 6  pair 
will be the full charmonium potential with the confining 
part. We will thus consider a time-dependent potential 
interpolating continuously between the two situations, 
in a finite time interval: 

V(r, t)= Voa~(r) e - "(')~ 

+ ( 1 - - ~ )  Kr, (2.4) 

where VOG E is the one-gluon exchange part of the static 
c--6 potential, K is the so-called string tension and 



where #(t) is taken as 

# ( 0 = ( 1  _t)]'/max" (2.5) 

The quantity #max can be considered as the mass parame- 
ter corresponding to the Debye screening prevailing in- 
side the plasma. In the following, we chose /~max 
=0.6 GeV, according to [12]. For  both VooE and K we 
adopted the Richardson's parameters [13]. The quantity 

can be viewed as the time required for the phase transi- 
tion to be complete, or more precisely, as the time after 
with the full charmonium potential is restored. We do 
not pay too much attention to its numerical value for 
the moment and we will present calculations for different 
values of this parameter. 

To complete our model, we have to provide the initial 
conditions. We will take 

[ 0(r, t ) - u ( r '  t) Ao exp - , (2.6) 
r 

where A o is the normalization constant. If r o=0,  one 
has a purely Gaussian packet, but we allow ro =t=0 to 
make a more general study of the model, and in particu- 
lar to study the case of a c - 5  pair with welt separated 
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quarks. One may expect that at the end of the plasma 
phase, one can find two reasonably separated quarks 
with a relative momentum uncorrelated to their inter- 
distance. This cannot be described with a purely Gaus- 
sian wave packet (to = 0), for which the average momen- 
tum is uniquely determined by the average inter-distance. 

For  later purpose, we will denote the charmonium 
Hamiltonian as 

H o = T +  Vo, (2.7) 

where Tis the kinetic energy and where V o can be written 
as  

Vo (r)= V(r, T), (2.8) 

with the notation of (2.4). 

3 Numerical results 

3.1 Alternative parametrization of the initial wave packet 

Instead of using the parameters ro and o-, we found more 
interesting in some cases to discuss the results in terms 
of the initial rms radius and the initial kinetic energy 
(formulae are given in Appendix 1) or the initial total 
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(kinetic+Debye screened potential) energy. The rela- 
tions are illustrated in Fig. 1. Although the introduction 
of the parameter ro allows to handle wave packets with 
kinetic energy and rms radius which are not automati- 
cally linked, as it is the case for pure gaussian ones, 
it is not possible to have in this representation a wave 
packet with arbitrarily small values of the kinetic energy 
Eki n and of the rms radius (see bottom of Fig. 1). This 
is of course forbidden by the Heisenberg uncertainty 
principle. It is reminded that the limit consistent with 
this principle is realized for the pure Gaussian wave 
packets (see Appendix 1). The value of the total energy 
Eto t is significantly different (smaller) from Eki n for small 
values of r0 and relatively small values of Ekin, only. 

We will first study the global properties of the wave 
packets. As we will see, this is helpful for the analysis 
of their various components. 

3.2 Time evolution of the rms radius 

As an illustrative example, we take an initial wave packet 
with ro = 0.4 fm and Eitont (the initial value of the total 
energy) = 200 MeV, i.e. with a=0.344 fro. The time evo- 
lution of the rms radius is given in Fig. 2 for several 
values of the transition time v. For a very short v, the 
rms radius slightly increases. For large values of r, the 
rms radius starts to increase with a rate which is almost 
independent of �9 and then further decreases. This behav- 
iour is explained as follows: the initial expansion of the 
wave packet is dictated by the average kinetic energy 
and the further inflexion and decrease of the rms radius 
for large ~ is due to the slowing down and the subsequent 
compression of the wave packet produced by the restora- 
tion of the linear confining potential. In fact, the physical 
situation is close to the one of a particle moving in a 
potential increasing linearly in time (V= I?t), for which 
it is possible to derive an analytic formula for the evolu- 
tion of the root mean squared radius at small time (see 
Appendix 2). For a real initial wave packet, it writes 
(disregarding the imaginary potential) 

(rZ) = (r2)o + 2  ( T)o t2-- ~--~ (r(V (/) )o t3 + ..., (3.1) 

where the symbol ( )0 stands for the average of the 
operator over the initial wave packet and where T is 
the kinetic energy operator. If we consider the special 
case of a confining potential restoring linearly in time 

t 
V(r, t) = K r  - ,  (3.2) 

T 

we obtain 

Fig. 2. a Time variation of the root  mean  square radius (upper 
part) and of the mean value of r (lower part) for an initial wave 
packet of indicated parameters,  for three values of z (1, 4 and 8 fm/ 
c). In  each case, the calculation is done with an imaginary potential 
of type (2.3) and with a vanishing imaginary potential, b Same 
as a, for an initial wave packet of type (2.6) with r o = 2  fm and 
cr = 0.364 fm 

(r2)=(r2)o+2(T)o t~ (1 2K(r)o ) 
3 ( T ) o  + .... 

(3.3) 

This simple formula embodies the time variation of the 
calculated rms radius (for W= 0). One observes indeed 
at small t an increase of (r2), which is closer and closer 
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to the quadratic variation in t (exact for a free expanding 
real wave packet) for larger and larger values of z. But 
for sufficiently large values of t (implying also a large 
T), the cubic term in (3.3) eventually overwhelms the 
other ones. More precisely, one observes a decrease of 

the rms radius as soon as _t> 2 K(r)o. This behaviour 
z ~ 3 ( r )  o 

shows up in the next figures also. 
A similar analysis can be done for the other illustrat- 

ing case of Fig. 2b, which corresponds to t o = 2  fm, Eito~t 
=200 MeV, or a=0.364 fro. The behaviour is qualita- 
tively the same as in the previous case. However the 
effect of the restoring confining potential is proportional- 
ly more important, since the initial wave packet has a 
larger extension. This is in keeping with the presence 
of the ( r )o  factor in the last term of (3.3). For  small 
z, the restoring potential produces a small compression 
of the wave packet. For  large z, it is restored at a smaller 
pace: the wave packet has the time to spread before 
being compressed to a size smaller than the original one. 

It is interesting to note that for a given time t, the 
rms radius is smaller for a smaller value of z. This is 
once again dictated by the cubic term in (3.3). However 
one has to notice that the larger z is, the smaller the 
final value of the rms is. 

It is instructive to compare the time evolutions of 
(r2) 1/2 and ( r ) ,  for the last case. The quantity ( r )  re- 
mains roughly constant when the rms radius is increas- 
ing. This means that the wave packet is spreading rather 
than expanding. In fact, our initial wave packet is real 
and there is no initial current. In the absence of forces, 
a wave packet as (2.6) with r0~>cr will spread and its 
( r )  will remain close to r 0. On the other hand, if r o ~ 0  
(as in Fig. 2a), the spreading of the wave packet will 
increase ( r )  for geometrical reasons. 

The differences between the no absorption case and 
the absorption case result simply from the fact that the 
absorption gives rise to an attenuation of the wave func- 
tion at large r, and thus to a reduction of the rms radius. 

Figure 3 displays two typical situations of initial pure- 
ly gaussian wave packet (ro=0). In the first case, the 
initial rms radius is rather large since the kinetic energy 
is small. The general trend of the evolution is then a 
decrease of the rms radius, which is proportionally faster 
for smaller z, in accordance with (3.3). For  T=4  and 
8 fro/c, one observes oscillations, which correspond to 
the fact that the wave packet is first compressed, 
"bounces"  on r = 0, expands and is further recompressed, 
and so on. This behaviour goes beyond the first terms 
of expansion (3.3). In the second case, the initial rms 
radius is very small in _ (Eto t -  1 GeV, (7 = 0.23 fm) and thus 
the initial kinetic energy is large. Therefore, the behav- 
iour in this case is dominated by the free expansion, 
corresponding to the dominance of the second term of 
(3.3), for sufficiently small time at least. Note  that the 
linear shape of the beginning of the curves in Fig. 3 b 
results from the fact that ( r2)o  is very small and that 
the rms radius, and not (r2) ,  is plotted. 

In all cases, for times larger than T, the rms radius 
will continue to oscillate with however an overall damp- 
ing (when W+0), because of the continuous absorption, 
until it reaches a value ~ 0.4 fro, corresponding to some 
mixing of the J/O and 0'  wave functions. The respec- 
tive weights are of course given by the  dynamic evolu- 
tion. We stress that the time scale of the absorption 
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Fig. 4 a-e. a Variation of the average potential energy for two initial 
wave packets: to=0.4 fm, cr=0.344 fm (upper part) and to=2 fm, 
cr=0.364 fm (lower part). In each case the calculation is done for 
three values of z (1, 4 and 8 fm/c respectively) and for vanishing 
and non vanishing imaginary potentials. In each case the curve 
for H/= 0 lies above the corresponding curve for W4= 0. b Variation 
of the average kinetic energy for the same cases as in a. The calcula- 
tions for W4=0 are given by the dotted lines, e Variation of the 
average total energy for the same cases as in a. For the lower 
part and ~ = 1 fm/c, the curves for W= 0 and W4= 0 are undistinguis- 
hable 

3.3 Time evolution of the average energy 

We will concent ra te  here on  the average values of the 
kinetic, potent ia l  and  total  energy of the c - g  system, 
which are defined as 

(~sIO d ~s) (3.4) (17 i )  (~ 'L~ , )  ' 
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where /=k in ,  pot, tot and Oi=K, V o and Ho (see (2.8)), 
respectively. The time evolution of these quantities is 
depicted in Fig. 4 for the same cases as in Fig. 2. The 
main effect is an increase of the potential energy. In fact, 
it can be shown that, for the case of a confining potential 
restored linearly in time and for an initial wave packet 
with zero mean momentum, the average potential varies 
a s  

t K ( r > o  t Kat ~ 
(V>=K(r> r -  z 12m272 I-C(ts), (3.5) 

and that the kinetic energy varies as 

K 2 t 4 

(T> = (T>o + 12m~r2 + C (ts), (3.6) 

the t 4 and higher order terms in both cases, coming from 
the corresponding variation of (r>. These considerations 
explain why the gain in the potential energy in the sec- 
ond case is not the same for all values of 27. The longer 
27 is, the smaller the final value of (r> (see Fig. 2) is and 
the smaller the value of final potential energy is. In physi- 
cal terms, the restoration of the confining potential raises 
the potential energy but, after some time, drives the wave 
function toward r = 0. For the first case (% = 0.4 fro), the 
situation is more complicated. The linear increase at low 
t corresponding to the first term of (3.5) is not clearly 
observed. This is so because for this initial wave packet 
the contribution of the Debye screened potential is not 
negligible at small t. This is also the reason why the 
initial potential energy is negative. For t <  1 fro/c, the 
variation of the potential energy does not follow at all 
(3.5). The slight minimum observed at t~0 .4  fm/c corre- 
sponds in fact to a small sliding of the wave packet inside 
the increasing Debye potential. Furthermore, in this case, 
one gains more and more potential energy for longer 
and longer 27. This occurs because of the increase of the 
final value of <r> with increasing 27 (see Fig. 2). 

Similar considerations help to understand the varia- 
tion of the (average) kinetic energy (Fig. 4b). For 
27 = 1 fro/c, and r o = 2 fm, the wave packet hardly changes 
except for a small compression (see Fig.2b), which indi- 
cates the presence of an inward current and thus an 
increase of the kinetic energy (also in agreement with 
(3.6)). For  larger 27's, the situation is qualitatively the 
same, but the inward global motion of the wave packet 
occurs later and is more pronounced. For the first case 
(ro = 0.4 fro) and ~ = 1 fm/c, the kinetic energy does not 
change very much. The small bump is due to the Debye 
potential. 

The slow decrease for t up to ~ 2  fm/c (for larger 
z) is due to a slowing down of the global motion com- 
pared to free expansion, as is demonstrated in Fig. 2a. 
The further modifications are too involved to be de- 
scribed by simple considerations. 

The variation of the total energy (Fig. 4c) can be un- 
derstood on the basis of the following formula 

z]Ntot =--K f (r)(t)dt,  (3 .7 )  
27 o 

which is nothing but as K multiplied by the time average 
value of (r>, after inspection of Fig. 2. 

We want to draw the attention on the influence of 
the Debye potential observed for ro = 0.4 fm, which can 
only show up in particular circumstances, when the ini- 
tial wave packet is inside the Debye potential range with 
a small average kinetic energy. 

Other typical cases, corresponding to initial purely 
gaussian wave packets are given in Fig. 5. They are both 
illustrative of the situation where the first term of (3.5) 
and (3.6) are rapidly dominated by the other terms. Actu- 
ally, in the first case and for 27 = 1 fm/c, the t 4 term can 
be clearly seen. In the first case, the dynamics is domi- 
nated by the effect of the restoration of the confining 
potential. This is particularly clear for 27 = 1 fm/c, where 
the gain of the potential energy is no longer linear in 
time for t >27/2: it is limited by a decrease of the size 
of the wave packet. The behaviour for the other values 
of ~ (at least for the first part of the time interval) can 
be explained in the same manner, in concordance with 
the time evolution of the rms radius (see Fig. 3 a). Similar 
considerations are sufficient to explain the behaviour of 
the average kinetic energy (Fig. 5 b), which increases due 
to the inward motion of the wave packet. 

The other case (%=0, i n_  E t o  t - -  1 GeV, a = 0.229 fm) is 
dominated by the spreading of the initially compact 
wave packet. The potential energy increases steadily with 
time. Furthermore, the larger 27 is, the larger the gain 
in potential energy is, because of a large spreading of 
the wave packet. Correlatively, the kinetic energy is 
steadily decreasing corresponding to a continuous slow- 
ing down of the wave packet for all values of ~. There 
is a little kink in all curves at t ~0.2 fm/c because the 
initially very compact wave packet starts to leave the 
Debye potential. The influence of the Debye potential 
is also reflected in the negative value of the initial poten- 
tial energy. For broader initial wave packets, the effect 
of such a small detail in the potential is washed out. 

From Figs. 4 and 5, we may draw the following con- 
clusion. If one starts with a small kinetic energy or a 
large %, the evolution is dominated by the compression 
of the wave packet: therefore, the longer r is, the smaller 
the average value of <r> is and the smaller the gain 
in total energy is, accordingly with (3.7). On the opposite, 
if one starts with a large kinetic energy or a small %, 
the characteristic evolution corresponds to the spreading 
of the wave packet: therefore, the longer z is, the larger 
the average value of <r> is and the larger the gain in 
total energy is. 

3.4 Time evolution of the wave function 

The evolution of the wave function is much more compli- 
cated that the one of the global properties we just studied 
before. Therefore, we restrict ourselves to some illustra- 
tions. 

The shape of the wave function at initial and final 
times is given in Fig. 6 for ro = 0.4 fin and in Eto t = 200 MeV 
(same case as top of Fig. 2). The most important feature 
is the appearance, for W= 0, of oscillations at large r, 
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Fig. 5a-e. a Same as Fig. 4a for two Gaussian initial wave packets 
with ~=0.997 fm (upper part) and e=0.299 fm (lower part). The 
curves for W= 0 are lying above the corresponding curves for W:# 0. 
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which, of  course,  resul t  ma in ly  f rom the high m o m e n t u m  
con ten t  of  the ini t ial  wave  funct ion,  bu t  also f rom the 
interferences caused by  the " re f l ec t ion"  of  the  wave  func- 
t ion on  the res tor ing  l inear  potent ia l .  The  effect of  the 
imag ina ry  po ten t i a l  is to d a m p  the wave  funct ion  for 
r > l  fm. 

It  is in teres t ing  to look  at  the  c o m p o n e n t s  of  the  wave  
funct ion a long the s t a t i ona ry  states of  the e h a r m o n i u m  

H a m i l t o n i a n  H0 (2.7) (i.e. the  real  pa r t  of the H a m i l t o n -  
ian at  final time). The i r  t ime evo lu t ion  is dep ic ted  in 
Figs.  7 and  8, for two cases. The  first case co r r e sponds  
to a wave packe t  of a size s imi lar  to the  one of  the 
J/O with a re la t ively  smal l  average  kinet ic  energy.  The  
wave packe t  r emains  on  the low c o m p o n e n t s  of the char -  
m o n i u m  H a m i l t o n i a n ,  as ind ica ted  in Fig.  7. The  c o m p o -  
nents  on  the J/~ and  0 '  s tates  r ema in  i m p o r t a n t  all 
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Fig. 7. The histograms give the (squared modulus of the) compo- 
nents of the wave function along the various stationary states of 
the real part  of the charmonium Hamiltonian given at the bot tom 
of the figure, for t = 0, 1, 2, ..., 8 fm/c. The upper part  corresponds 
to an initial wave packet with ro=0.4  fm and ~=0.344 fm and 
the lower part, to % = 2  fm and ~r=0.364 fin. The calculations are 
done with a vanishing imaginary part. To guide the eye, the time 
variation of the J/O and ~/,' components is given by continuous 
curves. The norm of the wave function in the subspace spanned 
by the five lowest states is also given by continuous curves 

the time. There is a typical (slightly damped) quantum 
oscillation between these states. In the second case, the 
initial wave function is much broader, the high energy 
component of the charmonium Hamiltonian are much 
more excited. There is an increase of the t)' component, 
but the J/t) one remains at a very low level. 

The effect of the imaginary part is illustrated in Fig. 8: 
the most obvious effect is, of course, a continuous de- 
crease of the norm of the wave function. But, from the 
inspection of Figs. 7 and 8, it is clear that the imaginary 
potential mainly cuts the high energy components. The 
physics is particulary transparent: when the wave func- 
tion contains high energy (or momentum) components, 
it will expand easily and reach the absorption region, 
where the highest energy components will be progres- 
sively cut. 

We also display in Figs. 9 and 10 the evolution of 
the components for the two cases studied in Fig. 3. In 
the first case, corresponding to a rather broad initial 
wave packet, the J/t) component increases whereas the 
t)' decreases. There is a quantum (damped) oscillation 
between these two coefficients, reminiscent of the two- 
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level case, similar to the one observed in Fig. 7. In the 
second case, corresponding to an initial wave packet of 
small size and with rather high momentum components, 
much more components along the charmonium station- 
ary states are involved. As a matter  of fact, the decrease 
of the J/O content is due to the overall population of 
higher energy components, as shown in Fig. 9. 

The overall evolution of the J/O component in Figs. 9 
and 10 can be understood in terms of overlapping wave 
packets (see Fig. 3). In the case of Fig. 9, the initial wave 
packet is somewhat broader than the stationary J/O, 
but its size slightly decreases as time evolves (Fig. 3). 
In the case of Fig. 10, the size of the wave packet rapidly 
reaches values which are much larger than the one of 
J/O. Therefore, the J/O content remains low. We have 
however to remind that these arguments based on geo- 
metrical overlap are not valid in general since the wave 
function may acquire rapidly varying phases. In the pres- 
ent context, they can be considered as provinding an 
upper limit for the J/O content. Figure 7 gives a clear 
illustration of these considerations since the J/O compo- 
nent has a very different intensity in both cases while 
the final size of the wave packet is rather similar (see 
Fig. 2). 

It is remarkable that the final J/O abundance is not 
much affected by the presence of the imaginary part in 
the two cases illustrated in Fig. 10, despite the fact that 
the wave function is considerably modified, at least for 
the second case. The reason is that in both cases, the 
probability moves basically from the lowest states (J/O 
and 0') to the higher states, as time goes on. An influence 
of the absorption potential could appear only when the 
J/O is populated from higher lying states (like for in- 
stance for an initial wave packet (2.6) with a large to, 
and as illustrated by the bot tom of Figs. 7 and 8. 

In conclusion, we have shown that the variation of 
the c - g  potential can induce a large variation of the 
J/O, O' components. The total variation of those compo- 
nents can be understood in a qualitative way in terms 
of the global properties of the wave packet. However, 
we have shown that details of the variation are of purely 
quantum nature. 

The time evolution of the norm is also illustrated 
in Fig. 11. It is interesting to note that in the first case 
the loss of norm seems to be limited: it is so because 
the restoring linear potential compresses the wave packet 
and tends to keep it confined within the region of space 
free of absorption. On the contrary in the second case, 
the large initial kinetic energy gives rise to a continuous 
expansion: the wave packet enters almost freely in the 
absorption region and the loss of norm is proport ional  
to the outward flux, roughly proport ional  to the norm. 
This results as an almost exponential decrease with time. 

4 J/~ and ~' final abundances 

We now concentrate on the final J / 0  and 0'  abundances 
and study them as functions of the initial conditions 
and of the restoration time z. We first consider a pure 
Gaussian wave packet (% = 0). The results are contained 
in Fig. 12. For  the J / 0  survival, there are two character- 
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istic regimes: one corresponding to a decrease, with in- 
creasing z, of the J/t) content, for in Eto t ~> 100 MeV and 
the other one corresponding to an increase of the J/t) 
content, for Eitont~<50 MeV. The first regime is easy to 
understand in terms of overlapping wave packets: the 
initially compact wave packet is expanding and has thus 
little chance to resemble a J/t) when times goes on. This 
is more and more true for increasing values of r. On 
the other hand, for Eitnt ~ 50 MeV, the initial wave packet 
is broader than the J/t), the restoration of the linear 
potential tends to make it alike. However, this reasoning 
does not seem to be valid for large values of ~. As a 
matter of fact, for larger and larger values of ~, one 
should approach the adiabatic limit. The latter may be 
discussed as follows. Let t)"x~o(t) and ,d Ea/o(t ) be respecti- 
vely the wave function and the energy of the stationary 
eigenstate of the instantaneous Hamiltonian H(t) ((2.2), 
with W= 0), which turns into the actual J/t) when t is 
changed continuously into z. 

Let us consider the quantity 

Pad = l im  I (t) (m) I t)J/O) 12, (4.1) 

where t) (z) is the wave packet at the end of the evolution 
and where t)x/0 is the actual J/t). The latter is also equal 
t o  a d  t)xm,(T). We can then write successively (for H real) 

Pad = lira ](t) (m)I t)s/O)12 
~ o o  

= lim l( (e-~! n(t)d t)+ t)(0)i t)}dp (z)> [2 

= lira I(t)(0)le+i! H(t) dt t)~do(.c))lz 
~ --+ o9 

I<t)(O)l .d z = t) j /~(O)>l  , (4 .2)  

since in the limit �9 oo, the ket in the third line corre- 
sponds to the backward propagation in time of aa 
The quantity P~d is given in Fig. 12a by the small tri- 
angles. In our case, it is rather large at small energy 
(below 10 MeV) since our Debye-screened potential ((2.4) 
for t=0)  accommodates a single weakly bound state, 
with a binding energy of a few MeV. 

For continuity reason, whatever the value of E~o", is, 
the J/t) final probability should ultimately decrease to- 
ward the adiabatic value. 

The final t)' abundance is given in the lower part 
of Fig. 12 a. The most remarkable feature is the minimum 
observed around 100 MeV total initial energy in the ini- 
tial t)' abundance: this occurs because the t)' wave func- 
tion has a node and thus the overlap with a Gaussian 
of a similar size leads to a cancellation associated with 
the maximum in the J/t) component. Here, the behaviour 
of the final abundance is more involved, but one also 
clearly observes two depletion regimes bracketing a re- 
population regime. 

Comparison between Fig. 12a and b reveals that the 
imaginary part does not play a very important role for 
the J/t) and for the t)' abundance for small ~. In fact, 
our results show that it has a strong influence on the 

wave function when the total initial energy is very large 
only (see Fig. 11). In general, its net effect is to cut the 
high energy components and to reduce the norm, but 
not so much to perturb the J/t) component. On the other 
hand, for low initial energy, the effect of the imaginary 
part on the high energy components and on the total 
norm is not very much important, but its effect on the 
J/t) component is proportionally more important. This 
occurs because, in this particular case, the wave function 
mainly enters the absorption zone before being compres- 
sed to roughly the J/t) size. Furthermore, the imaginary 
potential has the strongest influence on the t)' compo- 
nent for large z. 

As another illustrative case, we consider a wave pack- 
et of the type of (2.6) with in Eto t = 200 MeV and a variable 
initial value of rms radius, which, in this case (see Fig. 1), 
cannot be smaller than ~0.35 fm. The initial and final 
J/t) and t)' abundances are given in Fig. 13. Here again, 
we observe a depletion regime and a repopulation regime 
of the J/t). They can also be explained in terms of over- 
lapping wave packets. A broad initial wave packet is 
reduced in size when the linear potential is restored and 
its overlap with the J/t) wave function will be increased. 
On the other hand, if the initial wave packet is narrow, 
the main effect is a spreading of the wave packet and 
a decrease of the J/t) component. Similar considerations 
can explain the ~s' component, which may be has high 
as 0.8. This behaviour is consistent with the expected 
continuity with the adiabatic limit (shown in Fig. 13a) 
when ~ increases and tends to infinity. Finally, the imagi- 
nary part has some importance for large ~ only, espe- 
cially for the t)' component. 

A general view of our results is contained in Fig. 14. 
It shows the initial probability of finding a J/t) in the 
initial state (upper part) and the ratio between final and 
initial probabilities (middle part), for a restoration time 
of ~ = 8 fm/c (and for W= 0). The plane (ro, a) can be 
divided into two regions, corresponding to an increase 
or a decrease of the probability, respectively. Typically, 
low r0 and low a wave packets, i.e. compact wave packets 
with large kinetic energy correspond to a decrease of 
the J/t) probability. These are typical of the expanding 
regime: the wave packet spreads very quickly and the 
overlap with the J/t) is bound to decrease. On the other 
hand, very broad wave packets with small ro or very 
spiky wave packets with large ro and small a or broad 
wave packets with large ro correspond to a decrease of 
the J/t) probability. These are typical of the compression 
regime: the wave packet is expected to be compressed 
by the restoring potential and to resemble more and 
more to the J/t). It is remarkable that the dividing line 
in Fig. 14b corresponds to ( rZ)~0.5  fm 2. 

We have shown the probabilities for r = 8 fm/c only, 
but we checked that the J/t) final probability changes 
smoothly when ~ is changed. Qualitatively, the final to 
initial probability plot remains the same for other values 
o f  "C. 

In Fig. 14c, we plot the J/t) final to initial probability 
ratio with absorption (W:#0). By comparing Fig. 14b 
and c, one may notice that the absorption has little effect 
in the expansion regime. This observation is not contra- 
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Fig. 14. Upper part: curves of equal initial J/~ probability as a 
function of the parameters ro and ~ (the values of the probability 
are given by the numbers). Middle part: curves of equal values 
for the ratio of the final to initial J /0 probability for a vanishing 
imaginary potential IV. Lower part: same as middle part for a 
non vanishing imaginary potential. The calculations are done for 

= 8 fm/c 

dic tory with the s t rong effect of  the abso rp t ion  on the 
wave funct ion in this regime (see Fig. 11 e.g.). In the 
latter, the wave packet  is spreading  very quickly. W h e n  
W +  0 it is abso rbed  as soon as it penet ra tes  the absorp-  
t ion zone. The  spreading is so i m p o r t a n t  (and basical ly 
one way) tha t  its over lap  with the J/O (at shor t  distance) 
is not  influenced by the behav iou r  at long distances. 

The  impor t ance  of the absorp t ion  in the compress ion  
regime is, as expected, more  p ronounced :  one starts with 
a wave  packet  which is par t ia l ly  in the abso rp t ion  zone. 

It  m a y  be surprising that  the abso rp t ion  does not  
p lay a very i m p o r t a n t  role for the J/O, at least in the 
range of the pa rame te r s  shown in Fig. 14. However ,  one 
has to keep in mind  tha t  the absorp t ion ,  because of its 
act ion at large r only, influences the h igh-energy c o m p o -  
nents (i.e. those a long the high-lying levels of  Ho). There-  
fore the influence will be the s t rongest  when one starts  
with a wave  packe t  with h igh-energy c o m p o n e n t s  that  
are depopu la t ed  in favour  of low-energy c o m p o n e n t s  in 
the dynamica l  process. This seems to h a p p e n  for the 
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upper right corner of Fig. 14c. As a consequence, it is 
expected that in this regime the imaginary potential has 
a stronger influence on the ~b' final probability: that is 
what we observe in Fig. 13 for large rms radii. 

5 Discussion 

Our purpose here was to study the J/O propagation mo- 
del described by (2.2) and to exhibit its dynamics in a 
particular example, but for quite general initial wave 
packets. We want to postpone the discussion of the im- 
plications of our model to the possible formation of the 
quark-gluon plasma in heavy ion collisions to a forthco- 
ming publication, but we will examine some physical 
aspects of our results in the next section. We will here 
discuss the assumptions of the model. 

Our model assumes a decoupling between the c.m. 
motion of the c - ~  pair and the internal motion. This 
seems to be reasonable in the high translational energy 
limit. However, this decoupling may be more general, 
since the c - g  pair appears as a color dipole and there- 
fore the translational motion is not modified (in non 
relativistic mechanics) if the color field does not change 
sizeably on a scale larger or of the order of the size 
of the dipoie. 

Similarly, we assume a deeoupling of the partial waves 
of the internal motion. This seems reasonable for a 
plasma in view of the lattice calculations which indicate 
a strong reduction of the color forces without changing 
their rotational invariance. In a changing environment, 
this should be considered as a first approximation only. 

We also made a linear approximation (2.5) for the 
time restoration of the confining potential. This has the 
great virtue that we were able, for this case, to derive 
analytic expressions for the early time variation of the 
global quantities (rms radius, energy . . . .  ). There is no 
justification of taking a linear dependence. However, we 
checked that the results are not  very sensitive to this 
dependence, provided the latter is smooth and such that 
one can still speak of a practical restoration in the given 
time interval ~. 

We used a time-independent imaginary potential bec- 
ause of the lack of any indication (our model can easily 
handle a time-dependent imaginary potential). The time- 
dependence would be related to the modification of the 
D-- /5  threshold in a changing environment. The latter 
is probably weak since the effective mass of the quark 
c is not expected to change. As an extreme case, one 
may consider that the coupling to D - / 5  channels vanis- 
hes in the plasma. Consequently, one should start the 
calculations in this paper with W = 0  at t=0 .  One can 
therefore consider our results as giving an upper limit 
for the effect of the imaginary part. In any case, this 
time-dependence would have a minor effect on the J/tp 
probability (see Sects. 4 and 6). 

Finally, we use a non relativistic treatment for ob- 
vious practical purposes. The latter may be questionable 
for the  cases with large kinetic energy, at least. In those 
cases, the evolution of the global properties of the wave 
function will certainly be affected by a relativistic treat- 

ment. For  instance, its possible expansion will be slower 
compared to our results. However, as far as the J/~b 
content is concerned, the non relativistic approximation 
is probably good even in these cases. Indeed, the J/O 
probability is given by 

P(t) = I <0J/u, I 0 (t)> 12. (5.~) 

In a relativistic treatment, one has 

P ( t ) =  I <r I u R ( t -  to)l O(0)>l 2 

= I< UR(to -- t) OJ/OI ~b (0)> 12, 

(5.2) 
(5.3) 

where [JR is the relativistic evolution operator. This me- 
ans that it is equivalent for calculating P(t), to propagate 
~b(t) forward in time or to propagate 0J/q, backward in 
time. For  this propagation, a non relativistic approxima- 
tion is probably quite good as calculation of charmo- 
nium spectroscopy indicates. However, it is then impor- 
tant to have a very good J/~ wave function, with the 
right high momentum components. 

6 Conclusion 

The importance of the internal motion on the fate of 
a c - ~  and on its JAb and ~b' content has been studied 
in a very similar model to our one in [10, 14, 15]. All 
these works used a Schr6dinger approach similar to the 
one outlined in Sect. 2. However, none of them introdu- 
ces the coupling to the inelastic channels. Furthermore,  
all of them study the propagation of a c - 6  pair in a 
plasma, either introducing a Dcbye-screened potential 
[10, 14] or a schematic harmonic oscillator potential 
[15]. In [15], it is shown that the J/O content decays 
continuously on a time scale characteristic of the "semi- 
classical" expectation for the formation time of a bound 
state. In a forthcoming work, we will analyze the heavy 
ion data in the light of the propagation of a c - 6  pair 
inside a plasma and a "restoring" phase, as described 
by our model. 

We now comment on the physical results of our mo- 
del for the case of a restoring confinement. One of our 
main and not obvious results is the fact that the J/O 
may be repopulated in the course of the transition. As 
indicated in Fig. 14, this occurs for low-energy, large 
wave packets whose evolution is dominated by the com- 
pression of the wave packet by the restoring potential. 
We have shown that, depending upon the parameters 
of the initial wave packet, many of our results are domi- 
nated by two regimes: the (quasi) free spreading of the 
wave packet (as for narrow, highly energetic wave pack- 
ets and small z) and the compression of the wave packet 
by the restoring confining potential (as for broad wave 
packets). Of course these regimes can be identified for 
the values of r envisaged here. For  much larger z, the 
evolution would be more complex. 

The basic parameters of the model are %, ~ and ~. 
The relevant values of r o and cr should be determined 
in a specific model for the c - g formation. They however 
give rise to broadly varying effects even in the limited 
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range considered here that this deserves further investi- 
gations. The quantity z represents the time necessary 
for the J/~, to pass from the plasma to the hadron phase. 
This time should depend upon the evolution of the 
plasma itself and upon the relative velocity of the J/O 
with respect to the plasma. If one considers a J/~b at 
rest with respect to the plasma, z will be the intrinsic 
time required for the phase transition to be complete. 
There is very few information about the size of this qu- 
antity. In a particle model for the phase transition occur- 
ring in bulk matter, Knoll et al. [16] arrived at a time 
of the order of ~ 10 fm/c. This relatively long time is 
dictated by the fact that the phase transition should cor- 
respond to a strong decrease of the entropy density. In 
a bubble model for the transition, Csernai et al. [17] 
arrived at about the same value. This value should be 
considered as an upper limit for our parameter ~, since 
the J/O may be moving with respect to the matter and 
therefore may "see" the transition in a smaller amount 
of proper time. 

The imaginary potential W acts on the wave function 
for r larger than ~ 1 fro. In the parameter space, it is 
not easy to assess the importance of W. Although the 
norm of the wave function may be substantially attenua- 
ted (see Fig. 11), the imaginary part has a relatively small 
influence on the J/O content (see Fig. 14), except for 
broad initial wave packets. This may not be surprising 
since the absorption acts at "large" r only, and thus 
on the components along the high-lying stationary char- 
monium states only. Because of the same reason, the 
influence on the g,' component should be much more 
important. 

The possible repopulation of the J/O (see Figs. 13 and 
14) and the time oscillations of the J/O amplitude 
(Fig. 10) clearly show the quantal nature of the J/O evo- 
lution. (A similar problem of the evolution of the wave 
packet under restoring confining walls was studied by 
[14] in the very crude case of a square well). The results 
of Figs. 13, 14 and the even the evolution of the norm 
could not be cast in a simple cross-section picture. 

One has the following expression for the mean squa- 
red radius 

r ) - 
4 rc A2 0_' .f [~3/2 • S xo'l -x~ 

4 ~  ].1~ ~~ m 4 }e 

+]~-~(x{+3x2+3)(l+erfxo)}. (A1.3) 

Similarly, one has 

( d~ ) 
( p 2 ) =  _ h 2 d r  y 

=4~h2A 2 (3  / ~  x o _~ 1 

1 ~ / ~  2 erf Xo}. 

If r o = 0, one readily obtains 

3_ (p2) 3 
( r  2 ) =  0_2 h2 -- 0_2- 

(A1.4) 

(A1.5) 

This corresponds to the minimum spherical wave packet 
in three dimensions, as it should. One has indeed 

3 
<(a r) = = a  

h 2 
((A p)2) = @2) = 3 - -  (A 1.6) 0-2, 

and 

((A r)2> 1/2 <(A p)2)1/2 : 3 ~.  (A1.7) 

For Xo or ro very large, one obtains 
(7 

0_2 (p2)  1 ( a  1.8) 
(r2)=r2+ 4 '  h e -0_2, 

Appendix 1. Formulae related to the wave packet (2.6) 

Let us consider the following wave packet 

[-{r-r~ 2] (AI.1) ( r )=Aexp[  \ a ] J' 

normalized to unity. The quantity A is given by 

A :{4re  (~22)a [(Xo 2 + 1  ) 

�9 ( l+erfxo) J~2~ +Xo 
X2]~ 1/2 

e o]3> , (A1.2) 

where erf stands for the error function and where Xo 

= r o ~ .  
0- 

where only the leading terms have been retained. One 
now has 

0 -2 
((A r) 2) = ( r  2) -- ( r )  2 = ~ - ,  ((zl pr) 2) 

h e 
= - -  (A1.9) = (p2)  0 -2, 

and 

((a r)2) */2 ((A pr)2) */~ = ~ 
2" 

Therefore, as r o--+ 0% the wave packet (AI.I) behaves 
as a minimum wave packet in one dimension (the radial 
one). 

(A1.10) 
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Appendix 2. Small time evolution of expectation values 

Let us assume that we have a time dependent Hamilto- 
nian. For simplicity we limit ourselves to the case of 
a linearly time-dependent potential 

H= T+ Vo+ (/t. (A2.1) 

We look for the small time expansion of the wave func- 
tion 

t 2 t 3 
=00 +01 t+Oa ~-+03 ~.T + ... (A2.2) 

by plugging it into the Schr6dinger equation. By simple 
algebra one obtains for the first terms 

/ ih iVo\ 
0 t = ~ m A - : ~ ) ~ o ,  (A2,3) 

02 = - 120o+ ~(Vo ~o) 

1 Vg # 
+2ram Vo A 0o - ~ -  0o + ]~  0o, (A2.4) 

0 3 = - i  130o§  [-AZ(Vo 0o) 

+ ~(Vo A Oo)+ Vo ~Oo] 

i 
2m h 2 [A (V 2 ~o) + Vo A (Vo ~o) 

+ v g  A 003 + ~  V 3 00 

( h )  3 + 1 + ~ 1 0 o .  (A2.5) - i2mm 13~~ 2m A(120~ m 

We now calculate the expectation value of a Hermitian 
r-dependent operator O(r) as 

t 2 t 3 
(0> = (0>o + 0:1 t + 0:2 ~- + 0:3 ~ + .... (A2.6) 

where ( >o means an average over the initial wave func- 
tion ~o. For 0:1, we readily obtain 

0:1 = h i m  5 A 0a 0 0o d 3 r, (A 2.7) 

which can be rewritten, after application of the diver- 
gence theorem 

o:1 = 5(VO).j(r) d a r. (A 2.8) 

The quantity j defined as 

h Im(0o* V0o) (A2.9) J = ~  

0:2=--2 {ReSA~l* AOOod3r 

+ 2Re ~ A 0" (VO).(VOo) d 3 r} 

1 
- - -  ~ O*(VVo)'(VO) 0o dZr. 

m 
(A2.10) 

The general expression for 0:3 is very long and not very 
transparent. For Vo = 0, it reduces to 

d 
�9 {Im 5 ~9a Ozl 3 00 d3 r - -  3 Im ~ A 0~ 01200 d3 r} 

_ 1  Re~ O*(VO). (V(/) 0o d 3 r. (12.11) 

For O=r 2, one obtains, up to (fl(~2) terms, gathering 
(A2.6), (A2.7) and (A2.10) 

( r2> = ( r2>o + 2 [~ r.j(r) d 3 r] t 

+L4< >o 
~m m 2" 

(A2.12) 

It can be checked that all the remaining terms will in- 
volve the potential (V o or 12). Therefore for a free evolving 
wave packet, one has the exact result 

<r2> = <r2>o + 2 I-j'r.j (r) dar] t + 2 ( T ) o  t 2. (A2.13) 

For a real initial wave packet 0o,J vanishes and one 
then simply obtains 

<r 2 > = <r2>o § 2(T)o t 2. (A2.14) 

We are interested in the case Vo =0, and 0o real Then 
0:1=0 and the imaginary part in (12.11) vanishes. One 
finally gets, up to the t 3 term 

<r2> = <r2> 0 § 2 <  T> 0 t2--3~-  <([7~'-)' r >o t'3- (A2.15) 

For O = r, under the same conditions, one gets 

<r> = <r>o +/~_r~) 2 / h ' ,  

[~A 2 d3 A r d3r] t2 �9 0 0 7 0 0  r+2S  0o7 .V0o 

1 .r)o t3 § 
6m <(gl?) .... (12.16) 

For the special case of a spherical wave packet, the qua- 
dratic term identically vanishes. 

is nothing but as the initial Schr6dinger current. For 
c~2, we obtain 
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