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INTRODUCTION

Le ‘présent rapport fait suite d un rapport antérieur traitant des
structures incompressibles en statique [ 1 ] » Son objet essentiel est.
de présenter la construction de la matrice des masses de 1'@lé&ment de
tore traingulaire basé sur la formulation de HMERRMANN, Les hypothéses
etkles €quations sont décrites dans le rapport cité et nous n'y revenons

pas.

La condenéﬁtion des degrés de liberté de pfessiOn est le probléﬁe
pratique le plus d&licat pour l'utilisateur. Dans la plupart des applica-
tions statiques, on peut ne retenir que les pressions pour la résolution,
ce qui résout le probléme : en dynamique, par contre, il est nécessaire
de retenir un certain nombre de déplacements pour représenter correctement

1'énergie cinétique. D&s lors, le nombre de degrés de liberté de pression

- devient rapidement une entrave intolérable. C'est pourquoi le premier

chapitre est consacré 3 l'étude détaillée de la condensation des pressions.

Le second chapitre présente rapidement la construction de la matrice
des masses, qui ne différe d'ailleurs pas de celle d'un &lément cinémati-

quement admissible.

Ensuite , on présente un certain nombre d'exemples destinés i vérifier
le fonctionnement correct du programme. Dans un de ceux~ci, on montre en
détail comment condenser les pressions dans le cas incompressible.

. -

Une autre maniére d'aborder les structure incompressibles consiste
d utiliser des €léments cinématiquement admissibles, avec des valeurs
du coefficient de POISSON peu différentes de 0,5, dans l'espoir que les
résultats seront eux aussi trés proches des résultats exacts. Pour certains
problémes, cette technique a été mise en &chec. Dans le chapitre 4, on
démontre que le modéle doit respecter certaines conditions pour pouvoir
converger vers la solution incompressible. L'analyse détaillée d'un
exemple semble confirmer que ces conditions sont les vraies responsables

des difficultés rencontrées prédédemment.
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Chapitre 1. Condensation des pressions

1. Condensation des'pressions ddns le cas Incompressible

Dans le cas incompressible, la pression n'a pas de flexibilité

propre. Elle est couplée aux déplacements par le terme

AT ‘ ) va Di. Yy UdV , : "

Montrons d'abord que si le flux des déplacements est nul, le

terme constant de pression ne travaille pas., On a en effet

1 pDy,u, dV = f p n, u; ds -'f u, D, p dvV,

L'intégrale de volume du second membre est nulle, puisque Dip = 0 par

hypothése. Dans ces conditions, 1l'intégrale de surface s'annule si le flux

¢ = J n, u, dS =0
S i1

Cette propriété entraine qu'il est impossible de condenser ,)
le terme constant de pression en méme temps qu'un mode sans flux. En
particulier, on ne peut condenser le terme constant de pression d'un

élément en méme temps qu'un mode nul sur toute la frontidre.

Ce probléme ne se pose pas pour les modes linéaires de pression,

car pour p = x,




On peut donc condenser les modes linéaires de pression avec des modes
de déplacements nuls sur la frontidre 3 condition que ces déplacements

aient une moyenne non nulle,

Lorsqu'on assembie plusieurs élémenﬁs, le probléme change de
physionomie :

a) lors de l'assemblage de deux élémenég du troisiéme degré,
on peut condenser les pressions avec les deux déplacements normaux 3
1'in£erface commuhe(figure 1). En effet; sur chaque triangle, il existe
un mode de déplacement de flux nul sur la surfacé,‘sauf sur l'interface.

Pour un tel-mode, on a
f

J pl Di.ui dv + J P, Di u, av = f (pl - p2)ni,1 uy ds # 0,
V1 V2 I

si Py # P,+ On peut donc condenser ces deux multiplicateurs
avec les deux deplacement gcneralises normaux. .Ce procédé permet

d'obtenir des quadrilateres quelconques (figure 2).
b) on peut obtenir des polygones convexes en assemblant autant
de triangles du second degré qu'il y a de cdt@s, Le raisonnement est le

méme (figure 3).

2, Exreur due 3 la condensation simultanée des pressions et d'un nombre

ident ique de déplacements, dans le cas incompressible

-’

Appelons a4 les deplacements restants, q. les déplacements conden-.

ses, p les pressions. Le systeme s'écrit

Kar ¥re Hr R Mg Mre © dr
, . 2 )
KcR 1\cc: Hc 9 = gcR Mee 0 9
T T ‘ ,
HR Hc 0 p o 0 0 P
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La dernidre équation s'écrit

HT

T
-+ me
R qR Hc qc

. Le choix convenable des déplacements entraine que la matrice carrée Hc

est invertible, Il vient donc

Réintroduisons cette valeur dans la seconde gquation : il vient ' vl

2 . -T

¢ 5Tyt _ _ T 4
Rp = Ko H W Hday + H op=ow" (M =M _HH )qR )
ce qui bermet-d'écrire
-1 . ~T T, Sl ~T T
p H," (Kp =Ko Ho Hdap + o™ " (M .- M H"H qp) .

Par conséquent, la premiére &quation devient

- ’ -T T -1, =L, ~T,T
-~ - + .
3 c cC o4 C c ¢Cc ¢ v
(hRR kR H HR HR H ™K R HR H K H HP) 4
2 -T ,T -1 -1 ~T T
w (MkR MRc Hc HR . KRc Hc McR 4 KRC Hc Mcc Hc ) qR

Cette equation donne la solution exacte du probleme.
Examinons A prcvent 1" equatlon obtenue a partir de la condensation de

GUYAN : l'inverse de la matrice

|
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‘a la forme

oli les sous-matrices A, B et C s'obtiennent par identificationi

il vient

K A+M B =1
cC o4 .

- 11-;T~,‘f= 4 e
A=20
() On a donc
1, 0 BT e
I S L




'\‘ |

~1 , ~T . T
p =" Hc (KCR qR hcc Hc HR qR)

On constate qhe les pressions sont mal calculées, tandis que les q, le

sont correctement. .

- Le principe de HAMILTON s'écrit

1 [T T T ' T T
- o { S -+ -
2 qR RRR qR ch KcR qR qc ch qc 2p (HR qR * Hc qc)}‘

1.7 T T
+ = + 2 ¥ +
7 (dp Mpp Qg + 2 dp Mpood  * g M . q) stat

-

Restituons les valeurs obtenues pour q. et p : on remarquera que
T T | %4 '
HR 4 + Hc g 0, ce quil permet d'écrire

T -1, -1 -T .. T
20 = 9g [%RR 2 HRHC th + HR Hc ch Hc HR ] a4

T -1

‘ T ~T T T"]
- +
27T = q [MRR 2 Moo MO Mp o+ Hp WM HT M [ g

I

Ces expressions sont identiques aux expressions exactes. Par
conséquent, on peut affirmer que la condehsation des pressions

avec un nombre identique de déplacements conduit 3 un calcul exact
des qp et des 9.2 mais introduit une erreur dans la restitution des

multiplicateurs,

-

I1 s'agit d'une propriété générale des contraintes lin&aires.
On peut 1'illustrer par un exemple simple : soit un systéme & deux masses

et deux ressorts, les masses &tant astreintes 3 avoir un mouvement identique.

On .2 le systéme

.rkl 0o 1 v ’;nl o of |4,
0 kZ -1 uy =~’0 m, 0 u,
1 -1 © f 0 0O o||f

. 4 L 4 L AL




et les &quations s'écrivent donc

»

kl ul + fA= - ml u1
4 kyuy, = £ =-m, i,
ul - u2 = 0

La variable f est la force de liaison, On-a alors

f = kz'ul + m, ﬁl

et - j
(k14+ kz)ul = - (ml + mz) i)

Ces E€quations constituent la solution exacte. La condensation revient 3

écrire
.r _
u2 0 -1 0
T “1 , : ‘
£ -1 k2 1
soit
{ uz = ul
f = kZ ul

-

On a donc remplacé le systime initial par un systéme oli la masse m, est placi

. 2
sur le degré de liberté 1 (figure 4).
Au point de vue des déplacements, le systéme est équivalent, mais le

multiplicateur, c'est-d~dire la force dans la barre, a une autre valeur.




Examinons i présent le premier it8ré : il s'agit

solution du systéme

Kpr K

Re H

De la troisidme équation, on

!
13

9e

de. la deuxid

La premiére

-T T 1
B By %
me,
-1
= ~H " [K

I

devient donc

qP

-1 (v e
ol SRR KGR S

;T T
[Kpp = Kg B,” Hp - H, H

2 ~T

w. LMRR MRc Hc

ce qul ﬁontre-que

1._ o

PR = 9

1_ o

9% = 9

1

1

de la
o | Mer Mpe O R
2. o
.w Mcl_{ Mcc 0 qc
0 0 0 p°
tire
H
1 2 o] o
* K c9 TY (McR g * Moo qc)]
=T Ty 1 2 T, T, o
ce H )qR T (MCP - Mcc i l)qR.]
-1 ~1 ~T T 1
z +*
c th HR Hc . ee ¢ Hk ]qR
-1 1. =T .T+.o0
HR Hc Mﬁ HR Hé Mcc Hc HR ]qR

valeur exacte de p.,
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Dans le premler 1{téré, on retrouve donc la valeur exacte du multplicateur.

-~

Ce résultat est facile 3 vérifier sur notre petit exemple : lors de la
.recherche du premier itéré&, on redistribue exactement les masses, et on

. o o) : -
impose les déplacements u, et u,. Comme ceux~ci sont les déplacements

1 2°
exacts, 1l est naturel de retrouver la valeur exacte de la:force:

“ 3. Condensation des pressions dans les systémes franchement compressibles

Un systéme franchement compressible méne 3 un probléme aux

valeurs .propres.du type ' v .

HY -A p| ~ Y

ol la matrice A est définie positive., On peut donc &crire

. p= Anl HTq ,

.ce qui entraine
® + 1A 1 = 0’ kg

La matrice condensée

F=r+mtal :

‘est définie positive et on est donc ramené A un probléme aux valeurs

propres classiques, Le spectre n'est pas altéré puisque la pression n'a

-

pas de masse, :
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Ré sumé

CONDENSATIONS POSSIDLES

MATERIAU CONDENSATION DE LA CONDENSATION

‘ PRESSION SEULE g " ‘P + DEPL.NORM.
COMPRESSIBLE EXACTE L " APPROCHEE
INCOMPRESSIBLE - IMPOSSIBLE : 170 EXACTE POUR Q

| )
ASSEMBLAGES SIMPLES
DEGRE - ASSEMBLAGH
1 ‘ g
2 et 3 N —-GONES CONVEXES : N ELEMENTS
3 QUADRILATERE QUELCONQUE : 2 ELTS ~
)




Chapitre '2 Formulation de 1'&lément pouvant &tre incompressible

1. Description géométrique ct discrétisation des champs

I1 s'agit d'un @lément de tore trilangulaire. Sa géométrie

est définie par trois noeuds dans le plan méridien (figure 5).

‘Les champs de déplacements ont la forme

k 2 :
u. = I z ajl rj zﬂ'“J :
=0 j=o
u =0
' k
u = I LB, e A : )
z =0 i=o0 i . ‘

oli k, degré du champ, est &gal 3 1, 2 ou 3, au gré de l'utilisateur.
Clibcun ‘de ces champs est donc un, polynGme complet de degré k en r et z,

Sﬁil%ikigl coefficients. Les déplacements sont connectés

et comporte
aux trois noeuds et en (k-1) points sur chaque interface, de manidre &
garantir une vdleur unique sur chaque c8té&. Au troisiéme degré, il -
subsiste cependant deux paramétres'de'champ correspondant 3 des modes
nuls sur toute la frontigre ("bulles")..On €limine ces derniers indépen~-
damment dans chaque é&lément,

Le champ de pression moyenne ﬁ'est soumis i aucune condition
de compatibilité sur les interfaces et peut donc étre défini indépen-
damment dans chaque &lément.

La pression est prise constante pour k = 1 ou 2, linéaire

pour k = 3, Dans ce dernier cas, les deux paramétres supplémentaires

sont condensés avec les modes "bulles". On sait que dans le cas incom-

pressible, cette condensation est rigoureuse,

12,
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2, Mise 3 é€chelle de la pression

Pour des raisons de bon conditionnement de la matrice du systéme
il est préférable d'utiliser comme variable un multiple de la pression
dépendant de la raideur moyenne et de la dimension de 1'élément. En pratique,

on utilise.la variable

% _ 2
P p‘h
N UTI
ol h =% [‘111 * Wy, + Hyy HM] 2
9 = [? X aire du triangle] 2 ‘ ’ >

De cette fagon, on peut garantir que le conditionnement de la matrice ne
dépend pas des unités choisies.

C'est cette variable qui apparalt dans les résultats.

3, Calcul de 1la matrice de raideﬁr mixte

-~

Ce calcul est strictement identique 3 celui qui est exposé dans

[1] pour le cas de la statique.

4, Calcul de la matrice des masses

Les déplacements ayant la forme
u = Ma,
on a donc
21 = I pal M M adV =a [J oM’ 1 av] a .
\Y \Y

Etant donné les relations de connexion

q=2C a,




on obtient

T dV‘)cnl q

2T = q- ¢ ¢ j pM
v .
ce qui définit la matrice des masses

M=c T (I o My dv) ¢t

5, Condensation

Au troisiéme degré, on condense les deux modes nuls sur la
¢y frontidre en mémei temps que les paramdtres liés aux deux modes linEalres

de pression., Le schéma est classique :

. !
kRR KRR KRC ch'KcR

' , -1 - -1 -1
5 = M - K - ( + Y » i
MﬁR IIRR th ch McR MRc ch IcR KRc'ch Mcc I\cc c

; ‘ On a vu que cette condensation n'entraine pas d'erreur sur la fréquence.

14,

On notera cependant qu'une certaine masse peut Etre assocife 4 la pression

restante qui sera dés lors restipﬁée.

B e U




Chapitre 3 Applications numériques

Les applications décrites ci~dessous ont éﬁé faites dans le but
" de vérifier le comportement de 1' 8lément dans diverses configurations,
Dans la plupart des cas, les résultats sont comparcs i ceux que donne
1'élément & symetrie axiazle basé sur la discrétisation des deplacements
(Type 13 dans la biblioth&que SAMCEF),.-

Dans un de ces exemples, on montre en dctail comment condenser

les’ multiplicateurs lorsque la structure est incomoressible.

e’

1. Raidisseur i section carrée o '
i | | )
Ii s'agit d'un anneau de diamétre égal 3 1 m.
Sa section est un carré de 0,lm de cBté, L'anneau est représenté en
figure A/1l. Les propri&tés du mat&riau sont
2.1011 bar
0]
8.10%  kg/m S

4

Module de YOUNG " E
Coefficient de POISSON v

n

Densité de masse’ p

La valeur v = O est destinée i restituer 1'@tat uniaxial de
tension, On a comparé trois idéalisations la premiére utilise un él&ment
de raidisseur (figure 2), la deuxime deux &léments de tore compressible ,
la troisiéme deux &léments de tore bas@s sur la formulation de HERRMANN .
On remarquera que pour v = 0 , les matriceg de Hooke ont pour expressiors

respectives

{=¢l

dans le cas compressible,

=
o
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dans la formulation de HERRMANN. Par conséquent, les résulpats

doivent €tre identiques. Sur la figure A/3, les noeuds fictifs 5 et 6
sont réservés aux pressions, . :

Ils ne sont &videmment définis que pour 1'@lément T.I. (%)

On trouvera dans le tableau ci-dessous les résultats obtenus lors d'um
passage au degré 1., Seuls les deux premiers modes sont indiqués, car le
raidisseur ne peut représenter les modes supérieurs qui correspondent i

une déformation de la section

I1ément - . -
Pulsation

. 3,536,107 3,537.10° 3,537.10°

) 5,000,10° 5,002.10° 5,002,10°

L'identité des résultats des &léments T.C. et T.I. est
effectivement obtenue, ce qui prouve le bon fonctionnement de ce dernier,

Ces résultats ne diffdrent pratiquement pas de ceux qu'i donné 1'élément R.

2, Essal d'anisotropie

Péur vérifier la construction de la matrice de HOOKE anisotrope,
on a effectué l'essai suivant : pour une géométrie strictement identique,
on a constrult d'une part un &lément T.C., d'autre part un &lément T.I.

ol 1'on définit la matrice spéciale

'

{%) Dans ce qui suit, nous utiliserons constamment les abréviations

suilvantes pour désigner les éléments :

1

R, = raidisseur 3 géométrie de révolution .
T.C, = tore compréssible basé sur la discrétisation des déplacement:

T.I, = tore pouvant 8tre incompressible (déplacements et pression)




ol H est la matrice de HOOKE de 1'@lément T.C. Il va de soil que dans.

17.

ces conditions, les matrices de raideur et de masse doivent @tre identiques

“pour la partie relative aux déplacements, peuplées de zéros au droit
des multiplicateurs., '

Ce résultat a été effectivement obtenu,

3. Coque éylindrique [2]

it

11 s'agit d'un cylindre creux de diamétre moyen &gal a 20,
d'@paisseur égale 3 2 (figure A/4).Le matériau est caractérisé par les
données suivantes:

AN

Module de YOUNG E = 400

Coefficient de POISSON v = 0,25
Densité de masse - p =10

PN

L'idéalisation est représentée i la figure A/5., Le méme probléme a &té

pésolu de 6 manidres différentes :

1) Par des &léments T.I. de degré 1
2) Par des &léments T.C. de degré 1
2

3) Par des &léments T.I. de deg -
4) Par des &léments T.I. de deg 2, avec la matricé de HOOKE
spéciale reproduisant les &léments T.C.
5) Par des &léments T.I. de degré 3, en ne conservant que
les ddl relatifs aux noeuds et les pressions
6) Par des &léments T.C. de degré 3, en ne conservant que les

déplacements des noeuds.
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Le mode de translation selon la verticale est laissé libre, et aucune

fixation n'est faite., Les r@sultats sont consignés dans le tableau l.

Ces résultats appellent quelques commentaires, Les deux premiers modes
sont pratiquement confondus et, par conséquent, mal séparés., Dés lors,
on peut seulement constater la bonne correspondance de l'ensemble des deux

fréquences propres associées.,

Par contfe, le troisilme mode (premier mode de flexion) est
bien s@paré et, sur ce dernier, on peut faire une comparaison plus
fine., - Aux degrés 1 et 2, on constate que 1'élément T.I. est légSrement
plus souple, ce qui est naturel en vertu des hypothéses mixtes dont 4] >
procéde. Par contre au degre 3 condensé, les pulsations sont legerement

supérieures, Il est int@ressant de comparer les bornes inférieures :

Bornes inférieures
T.C. T
M | . e
wy 5,913762.10 5,902375,10
v, 6,269577,10 - 6,263440,107%
-1 -l
W, 8,892417,10 8,875810,10

On constate qu'elles sont légérementmsupérieures.a&ecwlYélément T.C.
Ces faits peuvent s'expliquer de la fagon suivante : la matrice de
raideur de 1'&lément T.I. a des termes plus pefits que les termes
correspondants de 1'élément T.C. Par'conséquent, la condensation de

GUYAN est un peu moins bonne avec 1'élément T.I.
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4, Cylindre composite

Il s'agit d'un cylindre creux bordé de part et d'autre d'une
coque (figure A/6). La coque intérieure est représéntée par des éléments
de membrane de révolution; la coque ext&rieure par des @léments-de coque

de révolution (figure A/7). Les donndes sont :

Module de YOUNG E = 400,

Coefficlent de POISSON v = 0.5
Densité de masse p = 10,

‘L'idéalisation est représent@e 3 la figure A/7. On notera que

Lo l‘incompréssibilité ne pose pas de problémes pour les membranes et
‘les coques, En effet, en Gtat plan de tension, la dilatation dans la
direction perpendiculgire au feuillet moyen s'accorde librement & tout effe
de POISSON sans produife de tension. Soit ﬁar exemple un corps allongé
dans une direction., In é&tat triaxial de tension, on pourra obtenir la
déformation représentée i la figure A/9.1. Par contre, en &tat plan
de tension, la dila?at%pnfpgrpendicuhaire est libre, et la déformation
sera celle de la figure A/9.2, Cette particularité se tradult dans la
matrice de HOOKE par la présence du dénominateur (l-2v) pour le cas
triaxial et (1-v) pour l'état plan de tension, ce qui signifie que 1'in-
compressiblité ne pose des problémes que pour les solides i trois

dimensions.

La présente application permet de vérifier le comportement de
1'¢élément T.I. en présence des &léments de membrane et de coque de r&vo-

1ution.

De blus, on en a profité pour illustrer la maniére de condenser le
pressions dans le cas incompressible. La structure a &té &tudide au degré
2, Par conséquent, chaque interface comporte un déplacement normal. On
vérifie ais@ment que le découpage en sous-structures représenté i la

figufe A/8 permet de condenser chaq@e ddl de pression avec un déplacement

normal,
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On a effectué deux passages, le premier en conservant tous les ddl,
1e'secoﬁd en utilisant le découpage en sous-structures de la figure A/8
et en condensant les pressions et les interfaces intérieures des sous-
structures. La condensation n'est pas exacte, car les déplacements tan-

gentiels sont eux aussi condensés,

Les résultats sont consignés dans le tableau suivant :

Résultats " ‘avec condénsation sans condensation
; - 4 4
masse 1,256637,10. o 1,256637.10
: . -1 -1 :
wy 6,256304 .10 6,224606,10 )
-1 ' -1
w, 6,198337.10 6,237719.10
: ~1 . ~1
g 9,821679.10 9,817926.10

Dans ce cas-cl encore, les deux premiers modes sont trds proches
en fréquence et se mélangent ; par contre, le troisidme est bien séparé.

On constate que l'accord des fréquences est trds. bon.

e e — e m - . . N . . . - . v




5. Essal de condensation directe des pressions

On a montré dans le chapitre 1 que, selon que la structure est
compressible ou incompressible, on peut ou on ne peut pas condenser les .
‘pressions de fagon isolée. Dans le cadre des applications, deux questions

se posent

" 1) i partir de quelle valeur du coefficient de POISSON la structure
doit-elle Etre considérée comme.numériquement incompressible ?
2) quelle est l'influence de cette condensation sur la précision

numérique de l'inversion de la matrice ?

Pour r&épondre d ces questions on a étudié la structure représentée

a4 la figure A/10 pour les valeurs suivantes du coefficient de POISSON :

a) vV = 0,49

b) v = 0,499

)V =0,4999" - o Lo
d) v = 0,49999 | ' :
e) v = 0,499999 .

fyv =0,5

Deux analyses ont &té faltes pour chaque valeur de Q:dans la premiére;

on condense les pressions avec des déplacements, dans la secondé, les '
pressions seules. (Pour arriver i ce dernier résultat, il suffit de retenir
tous les déplacgménts). Rappelons que, du fait de la mise d &chelle des
pressions, les ré@sultats ne dépendent ni du module de YOUNG, ni de la
dimension de 1'@l&ment. Enfin, comme il é'agit d'un probléme de condensation

- .

de la raideur, on a préféré &tudier un probléme statique, On a choisi le

cylindre composite €tudié dans [}] et dont les donndes sont &
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rayon intérieur : : 100 mm
rayon extérieur : - 400 1m
épaisseur de la coque : 10 mm

module de YOUNG du cylindre : E = 23,0769.kg'/mm2
module de YOUNG de la coque : B '2,1.104 kg'/mm2

pression interne : 1 kg'/mm2

[

Les.résultats sont les suivants :

cond. p. et g cond, p. seule
v 10" En . Pot. Noo 10 En.Pot . Mg Pivot min. )

0,49 3,433266 236,8 3,438266  236,8 1,36,10" -
0,499 2,604381. 279,8 2,604381  279,8 1,37.10°
0,4999 2,500965 285,1 2,500965  285,1 1,37.107}
0,49999 2,490377 285,6 .| 2,490377  285,6 1,37.107%
0,499999 2,489316 285,7 | 2,489316 285,7 1,37.10“3
0,5 2,489198 285,7 s = -

Dans ce tableau, N représente l'effort inconférentiel dans la coque.

Dans le cas oil la giession est condensée de fagon 1solée, on a noté le
pivot minimum correspondant. On constate que le pivbt varie sensiblemént\
comie (0,5 - v ) ce qui découle d'ailleurs logiquement de la siructuré‘"
de la matrice H, (figure~A/11). -

La valeur v = 0,499999 est la valeur la plus prothe.de 0,5 qui, en simple
R:écision IBM, soit encore distingu&e de 0,5,

Les résultats montrent que, méme pour cette valeur, la condensation peut

encore se faire.

On notera d'autre part que le mode de condensation n'affecte nullement
q

les résultats.
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Enfin, pour les valeurs de v proches de 0,5, les

résultats ne
différent quasiment pas des ré&sultats obtenus pour v = 0,5. La figure

A/12 1illustre le fait que pour v > 0,499, l'erreur sur 1l'énergie est
inférieure a 5%,
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Chapitre 4, Utilisation d'éléments cinématiquement admissibles faiblement

compressibles

Une ‘autre fagon d'aborder les structures incompressibles consiste 3
utiliser des €lément cinématiquement admissibles, pour des valeurs du
coefficlent de POISSON proches de 0,5, Les résultats obtenus de cétte
fagon ont, dans bien des cas, &té décevants [b,é ].

Ces difficultés ont généfalement été attribuBes 3 un mauvais conditionnement
de la matrice de raideur. Nous allons montrer qu'en dehors de toute question d

conditionnement, il existe un probléme d'id¢alisation.

D . ° .. Lu
vood .

. 1. L'énergie de déformation a la forme locale

1 ‘ ‘
W(e) =50, € Glegy &5+ 13w Can B14)0 (1)
oi € l=—1--(Du-l~D u,)

i3 "z VLYt Yy

En l'absence de modes rigides, on-peut utiliser sur 1l'espace I des

fonctions admissibles la norme définie par

[] u [|2= 2G e,, e,, dV (2)
| v 11 ®ij

L'ensemble des champs vérifiant la condition €,,= 0

. L8 o
forme le sous-espace linZaire I que nous appellerons "sous-espace inbomp~/§sib

Il est claire que pour tout champ u € I, la forme quadratique.

b(u) = f 2G eiiezzdv - i L E (3)
v : - '

s'annule, Par contre, dans H-I, elle est définie positive., A tout sous-—

espace SCH , nous associerons la grandeur

- gt i e e e 8y = e
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2G € € dv :
fv i1 "8 = inf b , )

e(8) = inf 5
u €8s ||u|[ u €8
| Tu]|=1
dont 1afpropriété essentielle est :
e(s) >0 si SsniI= {01}
= 0 si sni#{0} .

Il est clair que pour tout u ¢ S, l'énergie de déformation -

U(u) = J W(e) av _ - (5)
Y

admet la minoration suivante :
0@ s [l (1 e®] ' (6)
2 1-2v. . . o

L'étude statique de la structure consiste i résoudre le probléme

U(u) ~ P(u) min : | D
u ¢H

ol P(u) est l'énergie potentielle des charges. Il s'agit d'une fonction~
nelle linéaire et, pour les charges admissibles, elle est -bornée, clest—

d-dire qu'il existe une norme

el = swp Lo T
u ¢€H : -

Il est clair que pour tout u ¢ H,

el < [l [lull . L®
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Le probléme statique discrétisé s'écrit :

U(u) -~ P(u) min - (10)
u €S : .

oli S est un sous~espace lin@aire de H, Lorsque le minimum est atteint,
on a (théoréme de CLAPEYRON)

2U@) = P(u) | ' : (11)

. Les ingalités (6) et (9) entrainent alors -

,,,,,,

el 1> [ 1+ == e ] < |2l [yl S

et, par conséquent,

[u]] < [l . ‘ (12)
. [1 + 122v e(s)] - : '

. N
Pour v + 0,5, le coefflcienpﬁlﬁzv,

siSNI={0},o0ona |lﬁ|| N 0. On peut donc dire que

+ o, D&s lors, si e(S) # 0, c'est-i-dire

"Si le sous-espace S des champs représentés dans la discrétisation et le
sous-espace incompressible I sont ‘disjoints, les déplacements convergent

vers O pour v + 0,5",

Examinons le second membre de (12) : le dénominateur croit d'autént   )
plus vite que e(S) est grand, Dés lors; on peut dire que la décroissance
sera d'autant pius rapide que 1l'id€alisation sera plus grossiére (peu

d'éléments de degré peu élevé).

2, Etat plan de déformation A symétrie de révolution

La plupart des discussions concernant 1'approche de 1'incompressibilité

ont été faites au départ d'états plan de déformation, 3 symétrie de révolu-

tion, Ce genre de problémes est caractérisé par des déplacements en coor=-

données cylindriques de la forme :
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b T o)

La condition d'incompressibilité s'Ecrit alors
]
divu==D (ru) =0 e
r r .
Le sous-espace incompressible est de dimension 1 : . e

I={u | u =

" |

[ B('R} .

Les éléments généralement utilisés sont polynomiaux. On a donc S N I ={0}"

et, par conséquent, la solution numérique converpge nécessairement vers 0

pour v -+ 0,5,

En guise d'illustration, considérons la structure représentée I la
- . . figuxe A, . Cette structure a &té étudi€e a4 1'aide d'éléments 'déplacements-

pression"” et 4 l'aide d'éléments cinématiquement admissibles, pour les

valeurs suivantes du coefficient de POISSON :

v = 0,49 ; 0,499 ; 0,4999 ; 0,49999 ; 0,499999 .

-

Ces résultats ont &té@ comparés avec les résultats de 1'&1ément "déplacement s—
pression" ol v = 0,5, Dans les tableaux qui suivent, on trouvera les
grandeurs suivantes, pour chaque cas : énergie potentielle, effort circonfé-
rentiel dans la coque. -

En outre, pour mesurer la dégénérescence numérique de la solution, on a

indiqué le plus grand résidu
Kq-~-g

et, en regard, une réaction moyenne, Lorsque le résidu est 108 foils plus

petit que la réaction moyenne, on note O,
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Les résultats sont repris aux figures B/l et B/2. Dans ces tableaux et
figures, C signifie : &lément cinématiquement admissible et H : &lément

"déplacements-pression"”,

Ces résultats montrent clairement que la solution converge vers O

et ce, d'autant plus vite que le degré est plus faible. Or, c'est au

premier degré que le systéme i résoudre a la plus petite dimension : le
mauvais conditionnement s'y fait donc peu sentir,

D'ailleurs, les résidus relatifs ne dépassent 1078 que pour le troisiéme
degré, et pour v trés proche de O,S: Mais c'est précisément au troisiéme
degré que la solution dégénére le moins vite, On en conclut donc que ce
n'est pas le conditiohnement du systéme qui est résponsable de la dégéné~l
rescence. Par contre, c'est au premier degré que e(S) est le plus grand. )
Il s'agit donc essentiellement d'un probléme d'idéalisation : la solutiéd)
dégénére parce que INn S ={0} .

Ceci montre que l'utilisation d'éléments cinématiquement admissibles
avec v proche de 0,5 doit §tre.faite avec circonspection., Si 1l'on a une
idée de ia forme des champs incompreséiblesvet s'ils sont représentés,
on peut espérer obtenir une approximation convenable., Mais c'est loin

d'8tre le cas général’et l'utilisation d'éléments spéciaux reste la seule” --

solution siire.
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FIG. 2 ASSEMBLAGE DE DEUX ELEMENTS DU 3% DEGRE

N -~ GONES CONVEXES OBTENUS A PARTIR
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