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Abstract 

The coupling of bound states in a single-particle effective Hamiltonian 
through the addition of a negative definite imaginary potential is studied, 
both in a stationary and in a time-dependent formalism. Corresponding 
physical cases where this coupling is relevant are exhibited. Properties of 
the imaginary coupling matrix in the representation of the eigenstates of 
the real Hamiltonian are investigated. Consequences of these properties on 
the level widths and level shifts are exhibited on the two level case. Non 
trivial results, like forbidden values of the widths and level attraction are 
underlined. The conditions for the validity of the weak coupling approx- 
imation are examined. In the time-dependent problem, the typical time 
evolution patterns are illustrated both in the two level case and in the more 
realistic case of charmonium decay. When the initial state is an eigenstate 
of the real part of the Hamiltonian, it is shown that mixing of decay modes 
and quantum interference arise as consequences of the non diagonal ima- 
ginary coupling. Finally, the non locality of the imaginary potential corre- 
sponding to a diagonal imaginary coupling matrix in the state 
representation is also briefly studied and illustrated. 

1. Introduction 

It is very common in the non relativistic quantum mechani- 
cal description of two-body scattering or of the widths of 
(quasi) bounds states, to account for the loss of flux or of 
probability, due to the neglect of an explicit treatment of 
some channels, by means of an optical model potential with 
an imaginary part. A very popular example is provided by 
the description of the elastic scattering of hadrons by nuclei, 
using an optical model with a complex potential, the ima- 
ginary part of which coming from the loss of flux due to the 
coupling to inelastic channels [l]. It is customary to analyse 
the data with a local imaginary potential, in spite of the fact 
that it can be shown on very theoretical grounds [2, 31 that 
the optical model potential is (weakly) non local and energy 
dependent. We will consider this optical model, namely the 
addition of an imaginary part to an effective one-body 
Hamiltonian, for bound states. We will be a little bit more 
general than usual, requiring the imaginary potential to be 
negative definite, allowing it to be local or non local. This 
model is usually studied, for stationary problems, by solving 
the static Schrodinger equation in r-space. When dealing 
with time-dependent problems, one would rather be 
tempted to work in the basis of the eigenstates of the real 
part of the Hamiltonian, at least when these eigenstates are 
easily constructed (like in the Coulomb case). Indeed, the 
problem then arises to solve a set of first order differential 
equations (instead of solving the time-dependent Schrod- 
inger equation in r-space, which is a parabolic partial differ- 
ential equation). What we want to do here is to exhibit the 
relationship between the two descriptions (in r-space and in 
the state representation) and, in particular, to study the 
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properties of the coupling imaginary matrix (in the state 
representation) corresponding to a negative definite imagin- 
ary potential. We want also to investigate briefly the conse- 
quences of these properties on those of the bound states, 
both in a stationary and a time-dependent picture. 

2. Schrodinger equation in configuration space and in state 

To be specific, we start with the time-dependent Schrodinger 
equation 

representation 

x d3r’W(r, r’)$(r’, t) ,  

where W(r, r’) is positive definite. We here restrict the dis- 
cussion to (quasi) bound states. This framework applies to 
many problems in hadron physics as well as in atomic 
physics. For instance, eq. (2.1) is appropriate to describe the 
evolution of a K -  meson [4] or a K -  meson [SI bound to a 
nucleus in a Coulomb orbit, W (in general local in these 
cases) accounting then for the possible absorption of the 
meson due to strong interactions. A similar description is 
applicable to an antiproton bound by Coulomb forces to a 
nucleus, and to the protonium system [6]. Still another case 
corresponds to the charmonium system where V(r) is the 
quark-antiquark potential and a local W stands for the 
coupling to the D-D channels [7, 81. In atomic physics, 
some aspects of the evolution of autoionization states [9] 
can be handled by eq. (2.1). 

Instead of solving eq. (2.1) in r-space, one may be tempted 
to use a representation based on the stationary eigenstates 
of the real part, H,, of the Hamiltonian contained in eq. 
(2.1): 

Assuming that the stationary eigenstates form a complete 
set, eq. (2.1) is then equivalent to the following set of equa- 
tions 

where 
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Searching for stationary states of Hamiltonian (2.1) 
would, in this representation, amount to solve the eigen- 
value problem 

j 

We want to address to ourselves the following questions: 
(a) what are the general properties of the quantities wkj, 

corresponding to a negative definite, imaginary potential in 
r-space?; (b) what are the conditions for using the so-called 
weak coupling formula, corresponding to the neglect of the 
off-diagonal elements of wkj ?; (c) can one derive analytical 
formula from the strong coupling case, at least in simple 
situations?; (d) what is the effect of the matrix W k j  on the 
characteristic time evolution of the coefficients C k ( t ) ,  defined 
in eq. (2.3)? 

To make our motivation clearer, we do not pretend here 
to analyze all the physical effects linked with the imaginary 
part, as the underlying physical problem amounts to diago- 
nalize a Hamiltonian with a real coupling in a larger space, 
but we rather want to investigate primarily the mathemati- 
cal properties of the eigenvalue problem (2.5), which, as we 
said, is often encountered in physics, because the many 
channel problem is often intractable. In particular, we want 
to point out the conditions that the quantities wkj should 
satisfy and that one should enforce if one intended to mod- 
elize the coupling by eq. (2.5) from the very beginning, 
requiring however that this corresponds to the physical situ- 
ation of a local negative definite imaginary potential. Never- 
theless, we will also point out some physical consequences 
of the imaginary coupling. 

We will also pay some attention to the somehow reverse 
problem. Assume that in the basis of the functions $ k  

defined in (2.2), the absorption is diagonal, i.e. that one has 
the following set of equations, for the stationary problem 
(one may easily generalize to the time-dependent problem). 

where the E,‘s are real. Translated into r-space, this equa- 
tion writes 

A + V(r)  $(U) - i W(r, r’)$(r’) d3r’ = E$@), (2.7) I S  
with 

In other words, if the “absorption is diagonal” in the state 
representation, it is in general non local in r-space. We will 
investigate the following questions : (a) what are the general 
properties of the quantity W(v, r’) defined by eq. (2.8)?; (b) 
what would be the conditions for this quantity to be local or 
almost local? 

3. Properties of the quantities Wki 

If the potential W(r, r‘) is given, the quantities wkj can be 
calculated easily. However, it is worthwhile to find out the 
properties of the matrix wkj. This may be helpful in cases 
where one would like to use the optical model in the formu- 
lation (2.5) from the beginning and where the imaginary 

part is not known in full detail and thus has to be postu- 
lated. 

We consider (semi) positive definite W(r, r’)’, i.e. functions 
which satisfy 

d3r d3r’$*(r)W(r, r‘)$(r‘) 2 0, s s  
for any $(r), because it leads to a decrease of the norm of the 
wave function $(r, t )  in eq. (2.1), or to complex eigenvalues 
of the energy with negative imaginary parts in the stationary 
Schrodinger equation. For a positive definite operator, the 
matrix representing this operator in any basis is also posi- 
tive definite [lo]. Therefore, all the principal minors are 
positive definite [ l l ]  : 

y j  2 0, (3.2) 

yj wkk - wzj > 0, (3.3) 

(3.4) 

q j  wkk wl + yk wkl c“;i + yl wkj &k 

- wj Wkk wj1 - wk, 4, q ‘ j  - w1 y’k wkj 2 0, 
. . .  

Let us remark that the sufficient condition for wkj to  be 
positive definite is that the leading principal minor (i.e. the 
one in the upper left corner) of any rank is positive. 

If W is positive definite and local, i.e. if W(v, r’) = W(r)G(v, 
r’), condition (3.3) can also be obtained from Schwarz’s 
inequality for integrals with a weighted norm [12]. Indeed, 
any matrix element wkj is a scalar product of $ k  by $ j  with 
the positive weight W(r).  In this case, additional relations 
may be derived. One has 

%k 
k 

(3.5) 

which proceeds from the invariance of the trace (let us recall 
that a local operator in configuration space has an infinite 
trace). One also has 

as the wave functions $k can be taken real, and 

1 w;j = I $ k ( r )  W 2 ( r ) $ k ( r )  d3r, 
j 

i r 

(3.7a) 

Wzj < max W2(r) ,  (3.7b) 

(3.8a) 

(3.8b) 

Relation (3.8a) can be obtained by the double commutator 
technique [13] or progenitor technique [14], which generate 
energy weighted sum rules, of which (3.8a) is just an 
example. In that particular case, it is easy to show that the 
1.h.s. of (3.8a) is simply 

i 

The expressions below are written for a semi-positive definite operator 
W ,  although we will not repeat the prefix “semi”. Of course, for a truly 
positive operator the symbol “larger or equal” should be replaced by the 
symbol “larger”. 

( E j  - E k ) W i j  = t < $ k  I L W ?  [IH, 3 wll 1 $ k ) .  (3.9) 

- 
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Fig. 1. Variation of the quantities Wkj (eq. (4.3)) with the index j, for three 
values of L/b. In each case, the curves correspond to k = 1,3,5,7,9 and 11, 
successively, from the inner most one to the outer most one. The quantities 
Wkj are displayed for odd values of j only (see text). 

Performing the calculation of the double commutator and 
using 

h 
b, WWl = T (VW), 

1 
(3.10) 

one readily obtains relation (3.8). One can in this way gener- 
ate other relations similar to (3.7a) and (3.8a) with any posi- 
tive power of ( E j  - Ek). Let us mention that the “energy 
weighted sum rules” are obtained here for a real local poten- 
tial, V(r). They can be generalized for non local V and non 
local W but then they imply more complicated forms of the 
r.h.s. of relation (3.8a) and similar ones. 

In the case of a bounded local function W(r)  (which 
occurs in many physical cases), relation (3.6) sets bound on 
the values of the diagonal matrix elements, whereas rela- 
tions (3.3), (3.7) and (3.8) set bounds on the off-diagonal 
matrix elements and on the variations of the quantities wkj 

with their indices k and j .  This means that the diagonal ele- 
ments of wkj are all bounded and that the off-diagonal ele- 
ments are constrained by eqs. (3.3), (3.4), and should decrease, 
when one goes farther and farther off the diagonal, suffi- 
ciently fast for the summations (3.7) and (3.8) (or their 
generalizations) to converge. 

Of course, all the conditions (3.2)-(3.4) for non local ima- 
ginary parts and (3.2)-(3.8) for local imaginary parts are not 
sufficient to determine the matrix wkj, but they have to be 
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fulfilled if one wants the matrix W k j  to correspond to a posi- 
tive definite operator. 

4. Illustrative cases 

To give an idea of the typical variation of W ,  with its 
indices, we have calculated the matrix elements in two 
simple but illustrative cases. The first one corresponds to V 
being an infinite square well in one dimension (- R, < x < 
R,) and W being a step function, i.e. W(x)  = WO 8(L - I x I ) .  
One then obtains ( L  -= R,) 

sin [E ( k  - j ) ]  + sin [” RO (k  + j + 1 )  
Wkj = - 

X k - j  k + j + l  

for the positive parity states (k ,  j = 0, 1,2, . . .), and 

[sin [E ( k  - j ) ]  sin [E (k  + j ) ] ]  
(4.2) wkj = - - 

n k - j  k + j  

for the negative parity states (k ,  j = 1, 2, 3, . . .). If k = j ,  the 
first term in the parenthesis of both eq. (4.1) and (4.2) should 
be replaced by zL/R,. Relation (4.2) also applies to the 
three-dimensional case for 1 = 0 waves. 

The second case corresponds to the harmonic oscillator in 
one dimension, V = i m o 2 x 2  and W ( x )  = WOe-X2’L2. One 
then obtains 

1 - k - j .  a2 
x 2F1( - k ,  - j ;  (4.3) 

where 2F1 is the hypergeometric function and where a’ = 
i(1 + b2/L2),  b being the oscillator characteristic length: 
b = d m .  Formula (4.3) applies when k + j is even, 
otherwise wkj vanishes. 

For the square well, the quantities wkj decrease slowly, 
when departing from the diagonal ( k  = j ) ,  i.e. when k is fixed 
and j ( > k )  increases, oscillating between a maximum, 
behaving as l / j  as j increases, and a minimum of opposite 
sign. It is remarkable that this behaviour is barely sufficient 
to ensure the convergence of the summation in (3.7a). For 
the harmonic oscillator, when k is fixed and j is increasing, 
wkj decreases as 

(4.4) 

the quantity in parenthesis always being smaller than unity. 
The quantities (4.3) are displayed in Fig. 1. These examples 
illustrate the fact that the elements of the matrix W k j  are 
decreasing when going further and further apart from the 
diagonal, as eq. (3.7a) implies. They also suggest that the 
large j behaviour (for fixed k )  depends upon the ranges of 
the real and imaginary potentials. 

5. Weak and strong imaginary couplings 
5.1. Introduction 

In many cases of physical interest [4-61, one usually calcu- 
lates the eigenfunctions J l j  by solving the Schrodinger equa- 
tion for the real part of the Hamiltonian H,  (see eq. (2.2)) in 
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r-space and the widths of the bound states are very often 
calculated by using the popular weak coupling formula 

When Schwarz’s inequality is violated, p is negative. The 
eigenvalues are given by 

It is very hard to discuss the validity of this formula in all 
generality. It is better to look at this problem whex it is 
formulated in state representation (eq. (2.3) and (2.4)), since 
then the weak coupling approximation amounts to neglect- 
ing the off-diagonal matrix elements of the matrix wkj. Of 
course, some difficulties appear with this representation. 
One is inevitably led to truncate the (in principle) infinite 
matrix wkj, for practical reasons. The size of the matrix 
which would correspond to the same accuracy as the stan- 
dard techniques of solving Schrodinger equation in r-space, 
is presumably very large. Therefore, it is certainly hopeless 
to investigate the effect of the off-diagonal elements in all 
generality. In our opinion, it is, however, worthwhile to 
study the two level case first. This may appear to be only 
academic, since it would be very exceptional if the dynamics 
would decouple two of the +j states from the rest. Neverthe- 
less, we believe that some features of the two level case, that 
we outline below, may persist in some form in the general 
problem, and that may help us to study the validity of the 
weak coupling, both in the static and the time-dependent 
cases. 

5.2. The static two level case 
The eigenvalue problem (2.5) takes then the simple form 
(El ’ E2) 

-iW12 E, - -iw12 E - iW2, )(;:) = 0 (5.2) 
E, - E - iW,, ( 

As we explained in section 3, if we want the model defined 
in eq. (2.5) to correspond to a negative definite imaginary 
absorption, the quantities wkj are bound to fulfill some con- 
straints. In the two level case (eq. (5.2)), these constraints 
reduce to the non negativity of W,, and Schwarz’s inequal- 
ity 

(5.6) 

The advantage of expression (5.6) is the fact that criterion 
(5.3) enters through the p parameter only: hence, x -  , y and 
p can be varied independently, provided one restricts to 
positive values of p .  

Let us first concentrate on the widths rk ,  i.e. minus twice 
the imaginary parts of the eigenvalues 

= {(J- + p )  2 Im ,/(I - ix-l2 - y2}. r1,2 

IE, - E2I 

(5.7) 

The typical variations of the widths with respect to the 
parameters y and x- (corresponding to the difference of W,, 
and W22) are given in Fig. 2, for p = 0, i.e. for the maximum 
non diagonal coupling just fulfilling requirement (5.3). The 
remarkable result is the forbidden region indicated by the 
shaded area, It is easy to trace back the mathematical origin 
of this forbidden region. Let us consider x-  = 0, for simpli- 
city. The square root in (5.7) has no imaginary part as far as 
y2 < 1: in that particular case, the two widths are identical 
and are represented by the diagonal in Fig. 2. As soon as y 
is larger than unity, the two eigenvalues start to differ. 
Figure 2 tells that, whatever the value of x - ,  when the 
coupling (y) becomes too strong, one of the imaginary parts 
grows at the expanse of a decrease of the other. The for- 
bidden region is thus an intrinsic property of the complex 
coupling. 

When one allows for a departure from p = 0, but in con- 
cordance with Schwarz’s inequality, i.e. p > 0, the pattern 
does not change. There is a mere shift of the curves towards 
the bottom of Fig. 2, i.e. a uniform increase of the imaginary 
parts. When Schwarz’s inequality is violated, p < 0, the 
curves in Fig. 2 are shifted to the top and at least one of the 

w:2 4 1  w22 2 (5.3) 

which requires the non negativity of W2, . It is convenient to 
express the quantities in terms of reduced parameters 

Wll - w22 Wll + w22 

El - E2 El - E2 ’ 
, x -  = El + E2 E = -  E, - E,’ x +  = 

(5.4) 
y=- 2w12 

El - E , ’  

The parameter 

p = x , - J W  (5.5a) 
Y 

expresses the conformity to Schwarz’s Indeed? it Fig, 2. Level widths (divided by L\E = E ,  - E 2 )  for the two level and can be rewritten as for p = 0 (the maximum coupling compatible with Schwarz’s inequality), as 
function of the parameters y and x-  , whose values are indicated close to 

1 the corresponding curves. Note that for x-  # 0, there are two curves, rep- 
resented by the same symbol. For x- = 0 (full curves) the two curves 
coalesce up to y = 1 and diverge for higher values. The shaded area indi- 
cates the forbidden values of the widths. 

W l l  + W22) p = -  
El - E2 

- JWll + w22)2 + 4(w:2 - WllW22)I. (5.5b) 
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imaginary parts can become positive. Therefore, in the two 
level case, Schwarz's inequality is equivalent to a sufficient 
criterion for having absorption only and not creation of 
flux, whatever the values of the parameters, as we explained 
in Section 3.  

The role of Schwarz's inequality (or more generally of 
conditions (3.2)-(3.4), . . .) is thus rather clear. Would one 
wish to study the coupling of bound states in H,  with other 
channels by model (2.5) from the very beginning, arbitrary 
values of the matrix W k j  are not permitted. In the two level 
case, only those consistent with Schwarz's inequality (and of 
course with the positive definiteness of W,, and W2J would 
lead to the same physics as a negative definite imaginary 
potential, i.e. to pure absorption. 

The introduction of the parameter p is very convenient to 
exhibit the consequences of Schwarz's inequality, but for the 
subsequent discussion, it is preferable to stick with the 
parameters x ,  , x -  and y. The widths are then given by 

= x ,  Im J(1 - ix-j2 - y 2 .  (5.8) l-1. 2 

( E ,  - E21 

They are represented in Fig. 3, which actually displays the 
1.h.s. of eq. (5.8) after subtraction of x ,  , i.e. the average of 
W,, and W,, , divided by E ,  - E ,  (see eq. (5.4)). The for- 
bidden zone in this representation is also visible. The limi- 
tations imposed by Schwarz's inequality take the form y < 
,,6-, i.e. restrict the allowed values of y, for fixed x ,  
and x- . It can be checked that, under these conditions, the 
quantities Ti are positive. 

Let us say a few words on the real parts of the complex 
eigenvalues. They are given by 

( E  & Re J(1 - ix-I2 - Y,},  (5.9) 
E ,  - E2 Re L?,, = ~ 

2 

or 

E ,  + E2 Re L?,, - - 
= *$ Re J(1 - ix-)2 - y 2 .  (5.10) 

2 
El - E2 

They are thus symmetric with respect to ( E ,  + E2)/2 .  The 
numerical values are given in Fig. 4. The most remarkable 
result is that the imaginary coupling introduces an attrac- 

i 

0 1 2 3 4 5 
Y 

Fig. 3. Level widths (divided by AE = E ,  - E ,  prior subtraction of x+), as 
functions of the parameters y and x- , whose values are indicated. The 
exact values of the widths (eq. (5.8)) are given by the full curves, while the 
dotted curves correspond to approximation (5.1 1). 
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Fig. 4. Real part of the eigenvalues for the two level case (with respect to 
the mean value of the unperturbed energies, see eq. (5.9b)), as functions of 
the parameters y and x- , whose value is indicated close to the correspond- 
ing curve. For x- = 0 and y > 1, the two real parts are vanishing. 

tion of the eigenvalues, in contrast with the real coupling 
case which produces a repulsion of the eigenvalues [l5]. For 
x -  = 0, i.e. for W,, = W,, , the two eigenvalues coalesce for 
y > 1 (the quantity (5.9b) then vanishes). For x- # 0, they 
almost coalesce for large values of y. 

In summary, we found the following non trivial behaviour 
of the eigenvalues: ( i )  the real parts are pulled toward one 
another by the imaginary coupling (level attraction); (ii) 
these are forbidden regions for the imaginary parts of the 
eigenvalues, whose consequence is the growth of one of the 
imaginary parts at the expanse of the other when the ima- 
ginary coupling is increased. It is more appropriate to say 
that there are strictly forbidden values of the difference of 
the widths at strong coupling, as illustrated by Figs 2 and 3. 

We conjecture that these results hold qualitatively in the 
general (many level) case. Indeed, property ( i )  holds for an 
imaginary coupling of any strength. It is opposite to the 
result for real coupling case and it is well known that level 
repulsion occurs in the many-level case, giving rise to a 
larger dispersion of the eigenstates. We emphasize that the 
level attraction linked to the imaginary coupling should be 
viewed as a mathematical property. In an actual physical 
case, when the underlying full many-channel problem is 
solved with a real coupling, only level repulsion occurs. 
However, when the full problem is reduced to the equivalent 
one-channel problem with a complex coupling, the real part 
of the coupling would lead to a too strong level repulsion, 
which would be corrected by the level attraction due to the 
imaginary coupling. Property (ii) is a genuine property of 
the imaginary coupling. If this property holds for the many- 
level case, it may lead in the strong coupling case to a 
strong increase of one or a few widths. We have verified (see 
below) on a specific case that the properties of the decay of 
an eigenstate of the real part of the Hamiltonian (mode 
mixing) are still valid on a more general case. The correlated 
decrease of the remaining widths should be reflected by an 
enhancement of the small width part of the width distribu- 
tion in a small energy interval. This is embodied by the so- 
called Porter-Thomas distribution for the widths [ 161, and 
verified experimentally [17]. As far as we know, the possible 
link between the results of the above two state model and 
the Porter-Thomas distribution has never been discussed or 
alluded to. 
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5.3. W e a k  coupling 
As we said above, we are interested in knowing under which 
conditions the widths can be accurately estimated by the 
first order (in the diagonal coupling) formula (5.1). It is very 
hard to answer this question in all generality with argu- 
ments based on perturbation theory. Indeed, the next order 
approximation to rk in terms of the non diagonal matrix 
elements wkj (i.e. including the diagonal elements in the 
unperturbed energies), is given by 

I- 2 
y 0.2 

f 

, \  

I 

(5.11) 

and therefore implies complicated properties of the wkj’s 
and of the unperturbed spectrum. The two level case can 
thus be of some help to illustrate the situation when a level 
is perturbed by its very near neighbors only. 

In the two level case, approximation (5.1 1) corresponds to 
the first order approximation in y2 in eq. (5.8), keeping x, 
and x- fixed, while approximation (5.1) corresponds to 
y = 0. Approximation (5.11) is compared to the exact result 
in Fig. 3. It is quite accurate up to y = 2W12/(E1-E2) 5 0.5, 
irrespective of the value of x- and surprisingly good for 
larger values of the coupling y, when x- is large. Note 
however the complete failure for x- = 0 and y > 1, where 
the problem becomes suddenly non perturbative. 

The second term in (5.1 1) gives also an idea of the accu- 
racy of the weak coupling approximation (5.1). In the two 
level case, it is equal to x- yz/l  + (x- )~) .  It is interesting to 
note that for a given value of y2, this term is small when x- 
is either very small or very large, and is the largest for x- = 
1. 

From the last result, it may be expected that the first cor- 
rection to (5.1), i.e. the second term in eq. (5,11), may be 
considered as providing an accurate result, as far as the 
equivalent of the y parameter for the many level case is 6 
0.5. We propose the following straightforward extension of 
the y parameter 

(5.12) 

In summary, one expects that when the last quantity is 5 
0.5, expression (5.1 1) is quite accurate. 

5.4. Time-dependent problem 
We want here to investigate the time evolution of the wave 
function $(r, t )  (eq. (2.1)) when one starts at t = 0 with an 
eigenstate of Ho (eq. (2.2)), or equivalently the time evolu- 
tion of the coefficients ck(t) (eq. (2.3)) when, at t = 0, all of 
them vanish but one, which is equal to unity. 

Let us first start with the two level case, with c1 
(t = 0) = 1 and c2 ( t  = 0) = 0. As we explained in section 
5.2, the two relevant parameters are x- and y. So we illus- 
trate the typical behaviours of I c1 l 2  and I c2 1’ for various 
values of the parameters x- and y in Fig. 5. They can be 
understood when one notices that the general solution of eq. 
(2.3) can be written as ( h  = 1) 

(5.13) 

(::I and (::) where q, are the complex eigenvalues (5.6), 

are the corresponding eigenvectors and where al and a2 are 

0 1 2 3 4 5  
t (fdc) 

x- = 0.2 

0 4 8 1 2  1 6  

t (fdc) 
I 

F i g .  5. Time evolution of the 1 ci(t)  ( *  (eq. (5.13)) for various values of the 
parameters x- and y (and p = 0) in the two level case. Note the different 
vertical scales and the different time scale for the upper left part of the 
figure, indicated at the top of the figure. 

standing to guarantee the initial conditions. Therefore, one 
has 

I c , ( t )  I 2  = I a1 l 2  I d ,  I2eWr1‘ + I a2 I 2  I b,  12e-r2f 

+ 2 R~ (Cr*ld* 1 2 1  b , i R e ( b i - 8 z ) r e - ( r i + r z  ) t /2) .  (5.14) 

Note that one has a , d l  + a2 b l  = 1. The variation of I c l ( t )  I z  
shows the two exponential decays due to the first two terms 
in eq. (5.14), plus oscillations (of quantum nature) due to the 
last term in eq. (5.14) which are damped rapidly if the widths 
are sufficiently large. The oscillations are the most impor- 
tant when y 5 1 and x- is close to zero. One can see that in 
all cases, the quantity I c,(t) 1’ decreases exponentially by 
several orders of magnitude before changing of slope, except 
for very strong coupling. Therefore, the strong coupling 
does not only change the imaginary parts of the eigenvalues 
(compared to simplest approximation (5.1)), but also intro- 
duces a rapid turn-over from one decay mode to the other 
one. Let us notice that in the weak coupling approximation 
(5.1), 1 c l ( t )  l 2  is purely exponential and c2(t) vanishes. 

In Fig. 6, we illustrate the behaviour of the 1 ci( t )  1’ for a 
more realistic problem: the charmonium model of Ref. [7]. 
The potential V(r)  is the usual charmonium potential and 
W ( r )  is taken as a constant value, WO, for r > l.0fm and 
zero below, reflecting the idea that a quark-antiquark string 
breaks into a D-D system, if the length is long enough. At 
t = 0, the system is supposed to be in the so-called $‘2) state, 
and then evolves under the imaginary coupling. Equation 
(2.1) is solved with a very large mesh in r-space (step 
size z 0.01 fm), which amounts to solve (after appropriate 
projection yielding the coefficients ci(t)) eq. (2.3) in a very 
large basis. When the coupling is small, the initial state 
decays exponentially several orders of magnitude before a 
change of slope takes place. When the coupling is strong, 
the various modes are mixed more rapidly. It is remarkable 
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1 0 '  

order to reproduce a diagonal imaginary coupling matrix. 
They are: 

1 0 '  

U - 
h 1 0 "  
.c, 
v - 
U - 1 0 '  

10"  

WO I 200 MeV WO I 200 MeV ' 

3 
-! 

2 1 r nnr nnr' 
R ,  4n rr R ,  R ,  

W(r,  r') = - - 1 < sin - sin -. 

t (fm/c) 

Fig. 6. Time evolution of the quantities I tit) l 2  for the case of the charmon- 
ium system (see text and Ref. [7]), for various values of the imaginary 
coupling parameter WO. 

that the typical behaviours observed in the two level case 
are reproduced in this realistic case. If one considers the two 
states $(2) and $' only, the cases illustrated by the central 
and bottom part of Fig. 6 correspond to x -  = 0.23 and 
y = 0.39 and to x-  = 0.58 and y = 0.98, respectively. There 
is indeed a strong resemblance, as far as the variation of the 
quantity I ci( t )  l 2  is concerned, with respectively the upper 
and central parts of Fig. 5 (second column), for which the 
values of the coefficients x-  and y are similar. Let us finally 
mention that the first value of the imaginary strength, WO, is 
the closest to the actual physical value [7]. 

6. Properties of W(r, r') associated with a diagonal 

In this section, we make some remarks on the (reverse) 
problem stated in the end of section 2. Let the effective 
bound state problem be expressed by eq. (2.6) in the repre- 
sentation of the eigenstates of the real one-body Hamilto- 
nian. We first here list the main properties of the 
corresponding imaginary potential (see also eqs. (2.7) and 
(2.8)), 

imaginary coupling matrix 

to be added to the real part of the one-body Hamiltonian, in 
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(1) W(r, r') = W(r', r), W(r, r) 2 0. 

(2)  1 W(r, r)  d3r = - 1 Tj. 1 

2 3  
This results from the invariance of the trace of an operator. 

1 
(3)  1 [W(r, r')12 d3r' = - 1 rf t+bf(r). 

(4)  11 [W(r, r')I2 d2r d3r' = - 1 rf . 

(6.4) 

(6.5) 

4 ,  
1 

4 ,  
The latter proceeds from the invariance of the norm. 

( 5 )  [W(r, r')12 < W(r, r)W(r', r'). (6.6) 
This is a consequence of Cauchy's inequality [lo]. 

These conditions are resting on the positivity of the Tis. 
Other properties are related with the variations of the Tj's 
with the indicesj. Indeed, if all the Tis are equal, W(r, r') is 
diagonal. Of course, this also depends upon the eigen- 
functions +,. So a general discussion is out of scope. We 
illustrate the non locality of W (r, r') in the case of a three- 
dimensional infinite square well of radius R ,  for I = 0 
waves. The corresponding multipole of W(r, r') writes 

Introducing the coordinates R = (r + r')/2, s = r - r', (with 
0 < R < R , ,  0 < s < 2R,), one obtains 

m 

x 1 I-"[ cos (T) - cos (:)I. (6.8) 
n =  1 

Let us consider the three following cases: 
( 1 )  rn  = r/n. One then has: 

In this case, W(r, r') is infinite for r = r', but rapidly 
decreases as s increases, like 

(6.10) 

(2)  rn  = I-/n2. One can then write 

W(r, r') = - 1 7 r [x n2R - - n2R2 - - n21sI +E]. 
R i  2R0 4 R i  4nR0 R 2 - 5  

4 
(6.1 1) 

In this case, W(r, r') is finite for r = r' as it should when 
E, Tj converges (see eq. (6.2)), and for small s, the behaviour 
is the following 

(6.12) 
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(3) r, = T/n4. One has, in this case, 
1 I- 

W(r, r’) = - 
S2 R 2 - -  4nR0 
4 

~ [ ~ ( l - - ~ ~ - - $ $ ( l - - ~ ) ~ ] .  n4R2 (6.13) 

The behaviour for small s is given by 

s2R: 
W(r, I ) )  - 1 - 

4RZ(R0 - R)’ * 
(6.14) 

One sees that the form of the non locality (i.e. the formal 
analytic dependence upon s for small s) is changing with the 
exponent of n in the three cases mentioned above. It can be 
proved that the quadratic dependence on s survives for all 
powers larger or equal to 4. This formal dependence is also 
the one which is phenomenologically considered (see Ref. 
[ l]), as a gaussian form in s is often used. 

It is also interesting to consider the case r, = Tu”, with 
a e 1. One then obtains 

1 r 
W(r, r’) = - - - 

S2 R2 _ -  4nR0 
4 

2nR 1 1 - a  cos (e) 1 - a  cos (z) 
- 

1 - 2a cos (z) + a2 1 - 2a cos (e) + a2 
RO 

(6.15) 

For small s, one obtains the following behaviour 

The usual quadratic dependence with a negative coefficient 
is also obtained. Furthermore, the last expression clearly 
indicates that the faster rn  decreases when n + CO (i.e. for 
smaller and smaller values of a), the larger is the non local- 
ity. 

7. Conclusion 

We have studied the complex coupling between bound 
states in an effective one particle Hamiltonian. This situ- 
ation is often encountered in physics, when a many channel 
problem cannot be solved and when the approach is 
restricted to a one channel problem with an effective inter- 
action. We studied this problem when the coupling occurs 
through a negative definite imaginary potential. We have 
exhibited the properties of the corresponding imaginary 
matrix when the problem is formulated in the representation 

of the eigenstates of the real part of the Hamiltonian. 
We have studied the simple but illuminating two level 

case and underlined the importance of Schwarz’s inequality 
which constrains the value of the non diagonal coupling in 
the state representation. Non trivial results, as level attrac- 
tion and excluded values for the difference of the widths 
have been worked out. 

We have also delineated for the two level case the accu- 
racy of the weak coupling approximation (5.1) to the widths 
(in the first order of the diagonal coupling, i.e. in zeroth 
order in the off-diagonal coupling). It is surprisingly good in 
a large domain of the (x-, y )  parameter plane, especially for 
largely different diagonal elements (large x -). Furthermore, 
the first correction to (5.1), i.e. the second term in (5.11), 
gives a good approximation to the exact result in a wider 
range of the ( x -  , y )  plane. We proposed a qualitative cri- 
terion for a general situation. 

We also investigated the time evolution of an eigenstate 
of the real Hamiltonian in the presence of the imaginary 
coupling. We have shown that decay mode mixing and 
quantum interferences are consequences of the imaginary 
coupling, and disappear in the limit of weak coupling. We 
displayed in one physical case, the interplay of several decay 
modes. 

Finally, we investigated the properties of the imaginary 
potential in r-space, corresponding to a diagonal imaginary 
matrix in the state representation. We derived a qualitative 
relation between the variation of the elements of the matrix 
and the non locality of the corresponding imaginary poten- 
tial. 
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