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Optical Model for the Width of Heavy-Quarkonium States. 
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(received 4 March 1992; accepted in final form 14 July 1992) 

PACS. 13.25 - Hadronic decays of mesons. 

Abstract. - A simple optical-model description of the width of heavy-quarkonium states is 
proposed. It is based on the string fragmentation picture. Experimentally known widths are 
fairly well reproduced. Predictions are made for other states. 

It is well known that charmonium and bottonium states can be calculated by using a 
nonrelativistic Schrodinger equation [l-61. The basic reasons are: 1) the mass of the charm 
and bottom quarks is much larger than the QCD scale, which makes this system free of 
strong renormalization effects and 2) the binding energy is small comparatively to the mass 
energy. One may wonder whether the widths of the high-lying states (above the D-B 
threshold in charmonium and above the B-B threshold in bottonium) can be described by a 
nonrelativistic approach. In such an approach, the calculation of the widths may be tackled by 
explicitly introducing the D-b (or B-B) channels (and the appropriate couplings) or  by 
introducing an optical model phenomenologically. In this note, we adopt the second choice 
and show that the widths can be reproduced by a simple-complex optical-model potential, 
with a physically plausible imaginary part. 

The model corresponds to  the following Schrodinger equation: 

where p is the reduced mass of the system, V(r) is the usual charmonium (or bottonium) 
potential (including spin-orbit, spin-spin and tensor parts) and W(r) accounts for the possible 
loss of flux, due to  the coupling of Q-G relative motion to the D-b or B-B channels. Although a 
microscopic derivation would very likely yield a nonlocal and energy-dependent imaginary 
potential, it is expected that in a limited range of energy a local, energy-independent 
imaginary part will give a good description of the loss of probability, similarly with the 
hadron-nucleus case where this situation holds and is well documented [7]. The r-dependence 
comes naturally in the string or colour flux tube model. If the string is stretched too much, it 
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is expected to break up and lead to the formation of a D-D or B-B system. Since the breaking 
requires some excitation energy, it is natural to consider that it will break if its length 
exceeds some critical value. These simple considerations are embodied in the following form 
of W(r): 

(2) 

where O(x) is equal to unity if x > 0 and zero otherwise. In many (classical) fragmentation 
models [8], the breaking probability increases with the length of the string, an effect which 
will appear here as a result of the quantum average. Indeed, the width Ti of a state $i can be 
written, in frst order, as 

W(r) = WO€+- - L )  , 

Although the two experimentally known widths of the S states of charmonium can be 
fairly well reproduced with a single value of WO and L, namely 38MeV and l . l fm,  
respectively, we prefer to incorporate in our description angular-momentum effects and mass 
effects in the final states, in order to provide a more complete picture as well as a better 
quantitative agreement. 

A rotating string of a given length contains more excitation energy than a 1 = 0 one. 
Furthermore, the semi-classical phase space, i.e. the number of possible final relative 
angular-momentum states of the final pieces issued from the breaking of the original system 
in a given orbital angular momentum I, is increasing with 1, if 1 is smaller than twice the spin 
of the final fragments, and is independent of I otherwise. In brief, there are good reasons to 
consider that the quantity WO should increase with 2. We found that the latter form is the 
most adequate, 

W 0 = W 1 ( l +  $),  (4) 

if 1 is the orbital angular momentum. 
The string tension is fairly independent of the flavour of the quarks joined by the 

string [l, 91. This is reflected by the fact that the spectrum of charmonium and bottonium is 
obtained with the same potential. (Here we used the Richardson potential [6].) However, it is 
expected that the widths of the states of the two systems are influenced by the parameters of 
the D - n  and B-B channels, respectively, by the masses of the respective mesons, a t  least. 
One of the indications is irovided by the abscissa r, of the classical turning points a t  the 
opening of the D-n  or B-B channels. Despite the fact that the Q-Q potential is the same in 
charmonium and bottonium, the turning points are not the same: for S-states, r, = 1.21 fm in 
charmonium and 1.26fm in bottonium; for D-states, the figures are 1.04fm and 1.22fm, 
respectively. This suggests that the minimum length L for break-up is state dependent. To 
keep in with this observation, we adopt to take, for any state, 

L = r , .  (5 )  

If we had used a more general form, with L = r, + a, the best fit would occur for 
a = - 0.03 fm (see fig. 1). 

Furthermore, the mass of the final mesons may have another effect, as  the phase space 
depends upon the mass of the fragments, for a given available energy above the threshold. In 
our fitting procedure, we allowed a different value of W,  for charmonium and bottonium. It 
turned out that the best values are Wl = 40MeV for charmonium and Wl = 72MeV for 
bottonium. It is interesting to note that the ratio of these values is very close to the square 
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Fig. 1. Fig. 2. 

Fig. 1. - Variation of the widths, as calculated from eq. (3), with the quantity L,  for four states in 
charmonium and three states in bottonium. The comparison is made with the experimental values 1101 
(squares for bottonium states and dots for charmonium states; see table I for identification of the 
states). Our predictions correspond to L = r, (eq. (5)). 
Fig. 2. - Quantities I cj l 2  (eq. (8)) for the time-dependent problem (eq. (6)). The upper curve 
corresponds to the 35' (4040) state of charmonium. The two lower curves correspond to the 45' (4415) and 
25' (3685) states. 

root of the ratio of the masses of the respective mesons. In summary, we fitted the 
experimentally known widths with the parameters W, (and the I-dependence contained in 
(4)). The results are shown in table I along with our predictions for some yet unknown 
widths. Figure 1 shows the rather large sensitivity of the widths to the parameter L. 

Several comments are in order. The width of the 1D (3770) state of charmonium is very 
small, because of the low energy of this state: almost all the wave function lies within 1 fm 

TABLE I. - Comparison of the predictions of o u r  model with the experimental values of the widths  of 
several charmon ium and bottonium states ( f r o m  r e t  [lo]). Whenever the L value a,nd the energy i s  not  
k n o w n  experimentally, the assignment  is based o n  our calculation of the spectrum. See text  for 
details. 

State Width (exp) (MeV) Width (model) (MeV) 

charmonium 
1D (3770) 
35' (4040) 
2 0  (4160) 
45' (4415) 

23.6 f 2.7 
52 f 10 
78 ? 20 
43 f 15 

22 
45 
81 
51 

bottonium 
45' (10580) 23.8 f 2.2 
2 0  (10644) - 19 
5 s  (10820) - 46 
3D (10860) 110 k 13 73 
6 s  (11020) 79 f 16 118 
40 (11050) - 79 

12 1 
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and thus contributes little to the width. The surprisingly large width of the 20 (4160) state 
compared to the one of the 35’ (4040) state of about the same energy is simply accounted for 
by the Z-dependence indicated in our model by eq. (4). The near equality of the 3s (4040) and 
4s  (4415) states comes out very simply in our model: the 4s wave function extends farther 
inside the absorption (T > L )  region. However, its absolute value is slightly smaller (because 
the overall normalization is unity) and the most external node of the 4s  wave function has 
penetrated the absorption region, making the average value of its modulus inside the 
absorption region less important. We assigned the (4415) resonance as mainly a S-state, 
although this is not totally confirmed experimentally, because it appears like that in our 
computation of the spectrum. In the light of our analysis, it would not easily be another 
orbital angular-momentum state. 

Our local, energy-independent imaginary part provides a nonvanishing width for the 1s 
and 2s  states. This defect is however really minor, as the theoretical widths are very small: 
0.05 MeV for the 1s state. In fact, the ability of the model to produce large widths above 
4000 MeV and very small widths below reinforces the well-foundedness of the r-dependence 
of eq. (2). 

In bottonium, the width of the 6s  state is larger than the 4s one, because of the larger 
extension of the wave function of the former state in the absorption region. Our predictions 
for the 5s  and 6s state reveal the same behaviour as for the 3s and 4s  states in charmonium 
and as the 3 0  and 4 0  states in bottonium. The same explanation holds for all these cases. The 
large width of the 3 0  state in bottonium is due to the Z-dependence. 

We have to note that we attribute the whole of the widths to the D-n  or B-B decay. There 
is no experimental indication on this matter except for the (3770) state only, for which this is 
largely true. 

In spite of the large widths, it can be shown that the approximate formula (3) is quite 
accurate in the physical situations encountered here. The reason is that the widths 
( S  120 MeV) are smaller than the separation distance between the states of same quantum 
numbers (B 400 MeV). In other words, the time scale associated with the decay is generally 
much shorter than the time necessary for two neighbouring states (of the real Hamiltonian) 
to  be considerably mixed. We have verified this point by solving the time-dependent 
Schrodinger equation 

in- ” = ( -  &A + V(T) - iW(r) at 

starting with +(r, 0) = 
Hamiltonian (see ref. [9] for detail). The various curves in fig. 2 show the quantities 

the wave function of the 1D (3770) eigenstate of the real 

cj = I &  I$(r, t)>12 7 (7) 

where the +is are eigenstates of the real Hamiltonian. One can see that ci is decreasing by two 
orders of magnitude in an almost perfectly exponential manner. The decay constant of cj is within 
less than one percent equal to h/Fi, as calculated from eq. (3). Several states are weakly 
populated because W(T> introduces a nondiagonal coupling between the various states $j .  

In conclusion, we have described an optical-model potential, with two free parameters, 
which provides a good description of the known widths in heavy quarkonia. The real success 
of such a simple model gives some credit to the underlying string picture, which should carry 
the main aspects of the physics. Of course, such a model can describe gross properties only. It 
cannot make any prediction for some specific inelastic channels, which may exhibit subtle 
effects. This situation occurs also in proton-nucleus scattering [?I: some collective states can 
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be strongly excited. Nevertheless a simple imaginary part can account for the gZoba2 loss of 
flux. 

A possible application of the optical-model picture deals with the evolution of a J/$ when it 
propagates through (excited or nonexcited) matter. This propagation may be described by 
solving the time-dependent Schrodinger equation for the e-C relative motion [lll. The effect 
of the medium can be accounted for by using a time-dependent e-C potential. The latter will 
produce excitations of the c-C system. One has, however, to include the coupling to the 
inelastic channels. An imaginary part of the type described above is very suitable for this 
purpose. 
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