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1. INTRODUCTION

If correlations can be defined as a non factorizability of the two-body
distribution function (we will use this terminology here covering classical
distribution functions as well as Wigner functions) into a product of two
one-body distribution function, there are basically four sources of
correlations, namely :

(1) conservation laws

(2) dynamics

(3) quantum statistics

(4) "spurious" correlations.

The first three sources are rather familiar. We will illustrate the fourth case
by a few examples in section 4. Mathematically, correlations are present
whenever the following function

o - )= :2 (;151 ' ;252) (1.1}
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is non vanishing. Usually, one turns to simpler functions, obtained by

integrating over some of the arguments of the function C in (1.1). For

instance, one often considers
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[ d’r, (515, 510

EeNA )] &[5 7))

C[py. )= (13)

One may also integrate on more variables, but one has then to consider
always these variables symmetrically on the indices 1 and 2. Otherwise, the
function C can be different from zero even if f, factorizes.

In section 2, we describe the effect of dynamical correlations in
Boltzmann systems, both in equilibrium and non-equilibrium situation. In
section 3, we do the same thing for bosons and fermion systems and make a
review of our present knowledge of dynamical correlations in nuclear
matter. In both cases, we critically examine the interferometric methods
which are currently used.

2. CORRELATIONS FOR BOLTZMANN PARTICLES
2.1. Systems at Equilibrium

(a) Infinite systems
In this case, the translational and rotational invariances impose that

3.3 = T2
j d'pdprfy (r1P1 ’ rsz) =n" (1 +v(r) (2.1a)
and ;
Clry 7o) = v @.1b)

where n is the (uniform) equilibrium density and r= ;1 - ;2 . The function
v(r) is intimately connected to dynamics. It vanishes for independent
particles. For a normal fluid, it vanishes at some finite distance r , which
usually allows to define a correlation length. The pair correlation function
v(r) is related to density fluctuations through the relation

2 -2

P ;-)p =1+nfdrvm . 22)

Density fluctuations are in turn related to the isothermal compressibility :

KT (gri} =1+n)drve), 2.3)
9/t .

where p is the pressure and T the temperature.
The calculation of the pair correlation function is quite complicated
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and require fancy methods [1]. These are obtained by summing selected
terms in the cluster expansion of the joint distribution function nyy=1+v.
In the Percus-Yevick approach, one ends with the following integral
equation

2@ VO 10 [ (VO 1)y 2Bl (F-9)-1], 0

where V(r) is the two«body interaction potential and B = 1/kT. An
alternative approach is provided by the hypernetted-chains method, which
yields a similar, but somewhat different, integral equation

tn n;,() =- V() +n J‘ dSS [nlz(s) -1-4nn,(s)- BV(S)} [nlz ( ] r- ;l ) - 1] .(2.5)

In first order, both methods give the same well-known results :

np(r) = exp (BVQE)) . (2.6)

In second order, for a hard sphere gas, one obtains
np{ =0 , r<d

' 3
=1+§nd3 (1-21 i(—r—) ) ,d<r<2d

4d 16id
=1 , r>2d, @)

d being the diameter of the spheres. The non-trivial value for d<r<2d is
due to the shielding due to a third partner . :

(b) Finite systems .
In this case, the equivalent of ny; , i.e. the pair distribution func‘aon,

influenced by the geometry even in the absence of correlations. One has
then

ny@ =] &’ [a’p, [0, 6,75 7y + 7.5, = [ o [r)o[f +) . o

For a spherical system of radius R , one obtains

o 5
ny T )=h) =3Nm-1){1—%(§-)+%(i” , T<2R

=0 , r>2R
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and
2
h() = N1 = (2.10)
(v2r R) 2R

for a gaussian shape.
2.2, Non Equilibrium Systems

(a) Generalities

The evolution of the correlations can be handled classically by the
BBGKY formalism and quantum mechanically by the density matrices
formalism. Using Wigner transforms, the two formalisms have the same
structure. The relevant equation can write (in the weak coupling limit)

(at'Lg'Lg}fz(’ﬁ'X2}=L12f2(x1"‘2)+J'd"3([‘13“’1*23)f3{"1'xzrxs) , (211a)

where L? is the free Liouvillian for particle i {(x; stands for the set of

coordinates r, ,Ei) and where

Ly=P¥; V- B ¥y 2.11b)

classically. It has a more complex structure in the quantum case (see ref. [1])
for detail).

One is often interested in the asymptotic (t — e , i.e. observable)
behaviour of the correlations and more precisely of the correlations between
the momenta of the particles. One can see from Eq. (2.11a) that the
correlations between two particles are eventually due to their mutual
interaction, but also to their interaction with the rest of the system. Eq.
(2.11a) is of few practical use. The problem is usually approached by
assuming a separation of the interactions : first the interaction involves all
the system up to a late time, after which the two particles are assumed to
interact independently of the system. This picture is usually denoted by the
name final state interaction (FSD).

(b} Classification of the FSI

In fig. 1, we schematically depict the possible FSI between say particles 2
and 3 for instance. In this picture, "1" can be viewed as an arbitrary number
of particles and not necessarily as a single one. Case (i) corresponds to no
FSI. Case (iia) is the usual FSI. Case (iib) and (iic) are similar, but are less
important for the pair (2,3) of particles. Finally (ilia) corresponds to a more
complex FSL. It may correspond to just a small perturbation of the FSI
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between 2 and 3, if the interaction between 1 and 3 is weak. Case (iiia} has
some interest when the interaction between 1 and 3 is strong.

b 1

b 1w

(1) . (iia)

(iib)

1

(iia)
Fig. 1. Classification of three-body final-state interactions processes.

The final state interaction (case (iia)) can be used to study the spatial: =~
extension of the system and is then usually treated with semi-classical.
arguments. However, we think that the scattering theory approach is quite:
instructive. It is reviewed in the next paragraph. SE

{¢) Collision theory formalism
We closely follow here ref. [2]. Let us assume that the hamiltonian can
be divided as Lo

H=Hy+V+v 212).

where Hgi is the part which can describe the incoming and outgoing
asymptotic state of fig. 1(i), V is the interaction responsible for the
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transition to these states and where v is the interaction between particles 2
and 3, but which acts only in the final states illustrated by fig. 1(i). It can then
be shown that the transition amplitude for process (ii)a writes

) 0+) (OIS 0(+)
Tg= <¢f vl Wi >+ <\l’f - vl ¥y ! > ’ (2.13)
where

O(+)
Wy, =

(1 +(E +ie-HO-V}'l V)M ) ¢§*’)=(1 +(E +ia-HO-v)'1 v)?xf> )
W§+)=(1 +(E +ie-Hy-V- v) -1 (V+ v))le> , (2.14)

and where ¥, and yx; are unperturbed initial and final states, eigenstates of

H, with eigenvalue E. The (+) and (-) signs and the infinitesimal € refer to
the usual boundary conditions. The second term in (2.13) is generally
negligible since v cannot efficiently create the final states of the primary
interaction. The first term can be specified using plausibility arguments.
First, the interaction V is limited to a finite volume of radius R. Second, if
the coordinates of the system £ are divided between the relative distance r
(between particles 2 and 3) and the remaining coordinates §' , the following

factorization holds
0(+) .
<§ lV‘Vi ' >= her) w(§) -

The transition matrix element (2.13) can then be written as (C is a constant)
T, ~Cldrg @Wnw , (2.152)
fi - gq | :

where g.(r) is the scattering wavefunction due to the interaction v with
the proper boundary condition. The important thing is the fact that the g-
dependence is solely contained in the integral (2.15). One, of course, so
neglects conservation law effects, which is valid if many particles are
emitted. Eg. (2.15) yields

‘ Te ! o [ s | dﬂ' 8q(08q(Ip,(r, 1) (2.15b)
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where p,(r,r) is the density matrix corresponding to the state V | \;{im >

i.e, ® he(t)he(r') . One usually approximates by taking the diagonal value of
P2 only or by assimilating he(r) to pair distribution function as estimated in
Eq. (2.9) or (2.10). One then gets

2

(2.16)

do __ 2|f 3
d—q—*x q Ud rg q(r)h(r)

Two cases are of interest : )

(1) At small q , an attractive (repulsive) interaction gives an
amplification (depletion) of the wavefunction g r) for r<a , the range of
the interaction. However, at very low q , this effect is not important, since
the wavefunction have no nodes for r 5 2R. In that case, the wavefunction
is well approximated by k

sin §
qr

gq(r) =

where one has made use of effective range theory. Using also the effective
range expansion of the phase shift

[1 #or 42’1y r)} , @17

kecot§=¢ +% Tgq + ey (2.18)
one obtains in first order for

dc;)
C@=Cfp, py+q)=rdl g, (2.19)
:

where {%} is the cross-section without FSI, the following expression
0

C@=rt . 220

(oc + qz} R2

In conclusion, the g-dependence is simply related to the scattering length
a1 . Note that this is only true if the third term in (2.17) is neglected, which
is only valid if aR << 1. In other words, if the scattering length is large, the
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correlation is not sensitive to the other typical lengths as r; and R. Note
however that if q is not so small, Eq. (2.20) is no longer valid and the
correlation will be sensitive to the sign of o and therefore to the atiractive
or repulsive nature of the interaction.

Small q correlations dominated by the behaviour expressed by Egq.
(2.20) has been observed in n-n [3] and in n-p correlations [4]. For n-n
correlations, (2.20) should be corrected for quantum statistics, see section 3,
but this does destroy the enhancement, but just reduces it. For p-p, the
Coulomb interaction makes this enhancement since then C(q) ~ 0 for g — 0.

(2) At large q , the interaction v may generate resonance states. In
this case, using the simplest approximation, one gets

do_nfr+1) TT

TR z
q (E—EO)2+—Z

(2.21)

where I is proportional to the probability of forming the resonant state by
the primary interaction. The physical link between Eq. {2.15) and (2.19) is
due to the fact that the scattering wavefuncton is considerably enhanced in
the inner region with a Breit-Wigner coefficient. Eq. (2.21) however neglects
the structure of h{r) , i.e. finite size effects. The effects have been studied in
ref. [5], where the authors used the structure of the wavefunction and the
statistical modification of the density of states. They show that both
approaches lead to the same conclusion which is not surprising, since the
density of states is determined by the number of nodes of the wavefunction.
They arrive at

3 01 ddy (q)
Cl@=2——(20 +1) . (2.22)
2372 dg

This however neglects the fact the resonant state wavefunction is formed in
a finite volume. The influence of this fact has been worked out at long time
ago [6] and leads to the following modification

3 1 dg, (q) dcpﬁ(q)) :
Cl@=c—>28 +1 (———~—-—-+———- {2.23)
03zt
where
-1y (QR) ‘
¢y (@) = tan 1h 4 (2.24)

ny (qR)
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In most practical cases, this additional term is however small.

It should be noticed that the range a of the interaction does not enter
Eq. (2.22), but is rather replaced by a length A =d&/dq , which at the
resonances reaches Ag,, =q! E*/T , where E* is the energy of one of the
particles in the c.in. system. For narrow resonances, Ap,, may reach
several fm's and be as large as R. The physical meaning of A is the range
within which the incoming and outgoing waves interfere constructively
(even if this interference builds up within a only). In other words if
particles 2 and 3 are within A at the right energy (E), they will interfere
strongly.

This leads naturally to the question to know whether the resonance is
formed at once or whether particles 2 and 3 are first formed and interact
later. This question is irrelevant if A is larger or comparable to R. As
stressed in refs. [6, 7], this is also reflected by the fact that taking interaction
into account appears as modifying the density of states of the compound
(2+3) system.

The case of broad resonances (like the A's) appears as the opposite case.
Then A~ 1-2 fm and is much smaller than the size of the system. This is
why the effect of correlated pairs is small compared to the background in the
analysis of ref. [8]. Here, the question of whether the A is formed or not is
pertinent. There is however not so clear a separation between pnmordxal
and final state interaction in the reactions involving A's.

(d) Proximity scattering

The relevant graph (iiia) of fig. 1 has been evaluated by Aitchison and
Kacser [9], who arrive at the following expression for low q ( for particles 2
and 3)

(3o e+ |
=S o SLgn| L2 METE

U afEee |

where C, K are constants, « is the inverse scattering length, q ¢ and py
are quantities fixed by the kinematics. When the second term is neglected,
the Watson formula {2.11a) is recovered. Apparently, the application of .
formula (2.25) reduces the correlation at low q [10]. ‘

, (2.25)

3. CORRELATIONS FOR FERMION (BOSON} PARTICLES
3.1. At Equilibrium

(a) Infinite homogeneous systems SR
Just like for Boltzmann particles, one can write Eq. (2.1). But for
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quantum statistics, v is different from zero, even for independent particles,
at least for parallel spin directions. In nuclear matter, summing over spin
states, one obtains

=71 3.1
3 5 3.1

6
ZkF r T

g {sin kFr kF cos kFr 2
Ny, - .

This behaviour is illustrated in fig. 2. It should be stressed that correlation

1.2 1 i 1 7 1 i f

——
-
P
-

0.8

e 0.6

O { ! ! i ! H !
0 1T 2 3 4 5 6 7 8
r (fm)

Fig. 2. Correlated pair distribution function in a Fermi gas of nucleons (Eq. (3.1)).

effects increase when the density decreases. This is however in keeping with
the fact that the particles are restricted to smaller and smaller momentum
and thus to larger and larger de Broglie wave lengths.

For interacting fermions, the function ny,(r) is given by

2
np®=3 % v (3.2)

K<kpj<kg

where v, . is the correlated wavefunction for particles k and 3

Calculations [11] of nj; in the Brueckner-Hartree-Fock approximation for
the Paris potential are shown in fig. 3. The remarkable fact is that the
attractive interaction reduces considerably the correlation length.
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DYNAMICAL CORRELATIONS
1 1
10 5

i I ]

p=017fm3 -

P=0.06fm3 -~

=

~ ——

£=0023 fm3 -

r {fm}

Fig. 3. Correlated pair distribution function in nuclear matter as calculated in ref. {11}, for T=0
(full lines) and T=10 MeV (dashed lines).

Interactions are also responsible for modifying the momentum
distribution, giving rise to a depletion of the Fermi sphere and a consequent
population above the Fermi level. A calculation [12] of the momentum
distribution n(k) at the same level of approximation as np;(r) is given in
fig. 4. It should be noted that the depletion is quite large (~ 20 %). The
recently measured occupation probability in finite nuclei supports this
strong effect [13]. However, it is not clear that finite size effects are not
cooperating to this depletion. The relation between n(k) and gy (in
second order) is given by (k < L

n@) =3, 5—:@ J oy, 7)-1). (33)
i
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occupation probability at T=0
H i T

, -
= Ca — — plk} ren)
05+ - — - plkl, cond. (39)
NS
! ! L= .
05 1.0 15 2.0 2.5
kifm™

Fig. 4. Occupation probability in cold nuclear matter, as calculated in ref. [12] (full curves).
Slashed curves correspond to less accurate approximations. The experimental data of ref. [13]
for Pb and Ca nuclei are schematically given.

The correlations are also responsible for corrections to the nucleon mean
field beyond the (Brueckner)Hartree-Fock approximation (see ref. [11] for
detail). For this correction Vs , one has the following approximate
relation

Veo®) =-x Vpo) x=jk<an<k>, 3.4

where Vpg is the lowest order Brueckner-Hartree-Fock contribution.

(b) Finite systems

The correlations at small p are connected to the spatial extension of
the system, as the correlations at small r are connected to the momentum
extension of the system. Indeed, for independent particles, the two-body
Wigner function reads
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£ (Elgl . i22152) =f kli;l) f (Ezgz)
<4 3 ) BB 3B R R

R R AT A (oS B

Actually, these are rather Fourrier transforms (on the spatial variables) of
the Wigner function. One then has, assuming f; (r , p) = w(r)(p(p}

f d3k1 f d31‘2 f (Elgl ’ Ezgz} = j ds’l j d3’2 £ {;151 ’ ;252) =
o (B o2 P2 £ [ v (R-2 1Bl v R+ £ 3)

Pi+Py el [P1*Pr Bz
fd3kcp(‘ Z-Ek)cp(pl pz--ﬁ-k). 3:6)

2 4 2 4

Assuming ¥ and ¢ to be gaussian functions (with a radius R for y ), one
obtains

| 2
3 3 e s —~ 51“—1;2 i M
fdkldszz{klppkzpz)W(Pl)‘P@z)‘-‘“’( 2 )| °

2R
2fpi-p)
=9 ({51) ¢ (Ez} e 2% |. 3.7)

This is at the basis of the Hanbury-Brown/Twiss interferometry [14,19].
3.2. Non Equilibrium Situations

The dynamical evolution of the correlations can be handled in
principle with the help of Eq. (2.11) (or similar ones obtained with Green
functions), with however a more complicated definition of L'i;‘ {(see ref. [1]

for detail). However, these equations are not tractable. We just discuss two
physical aspects of the dynamical evolution below.
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(a) Decay rate of correlations , »
Instead of single-time correlation function, one can consider two times

correlations. The simplest quantity in this perspective is
- 303 -~ e LT
S(r,t)—:jd p;d pzfz(r2+_r,p1,t2+'r,r2,p2,t2) . (3.8)

where we disregard the -1:2 and t, dependence (correct for a large system).

S (; , 'c) can then be considered as

-

S(r,1)=p(;2+;,t2+’t)p(;2,tz}, _ (39)

i.e. the correlation between densities a some point in space-time and the
density in a near-by point. The bar indicates a quantum average over the
state of the system. This quantity also enters in the description of the
evolution of density fluctuations. [20]. In a classical (boltzmannian) fluid, it

can be shown that the time evolution of the quantity S(;,"c) (for long
distance r or rather, for a small wave vector) behaves like

a-2 1\ a2

)™

d, * d/2
2
where 1m' is the viscosity coefficient, I the sound attenuation coefficient
and d is the dimensionality of the system. It is natural to find that
correlations decay with the viscosity coefficient (i.e. they are destroyed by
collisions in heavy ion collisions). The surprising aspect is the power law
involving the dimension of the system. Typical values of I and 7' are of
the order of 2-5 (fm/c)"l. Relation (3.10) is valid for Boltzmann systems. For
Fermi systems, a smaller damping of sound waves is expected. Therefore, a
typical survival time could be of the order of 2-3 fm/c. Initial correlations
are thus not so much important. This does not mean that correlations are
vanishing. They are rebuilt regularly by the collisions themselves.

, ‘ (3.10)

(b) Remarks on interferometry
For fermions, interferometry is usually based on Koonin's formula [18],
which writes

C@:N‘ljd&' d3Pl d3rll\y(;,i”2 <p(;1 ,51)<p<;1 +1,p; +§)- 1 (3.11)

where N is the uncorrelated integral. Once again, this formula assumes a
decoupling between FSI and primordial interaction. As we indicate in
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section 2, the basic aspect is the fact that the distribution of the relative
distance r is a function of the radial extension of the system, even for
independent particles. Formula (3.11) neglects Fermi statistics. At very low
density, as it is often referred to, and for two proton interferometry, say
p =po/2 (kg=0.9 fm?), the Fermi correlations will extend up a few fm's.
This would have introduced a sizeable error in relation (3.11). Fortunately,
as we showed, dynamics reduces the correlation up to say r ~ 2 fm. The
wavefunction in (3.11) is more extended and the net effect is rather small.

4. SPURIOUS CORRELATIONS

We discuss a few examples of situations where correlations (which
should be redefined in any case) are observed even if there is a priori no
knowledge of the two-body distribution function.

(2) Discretization of hydrodynamics
In hydrodynamical calculations, it is customary at the end of the
calculation to shift to a (quasi)-particle description which mocks up the

density and velocity profile (p(r),—‘;(;)} in order to make more specific
predictions. Generally, this is done by dividing the space in cells and filling

the cells with particles at random, but in accordance with p(r) and U(;) . Let
us recall that these quantities are only the zeroth and first moment in v of
the f, (r, P, t) . The procedure amounts to consider a N-body distribution

function of the following type (x = (;, 5))

— -2
N(w -{p. - /
Pufaron)= 22 8ufr)e Pl D
poi=

where N(u) is the number of particles in cell g (N(u) = p(u) x Av(p)), Av
being the volume of the cell and where 8, (r) is a function which is

roughly equal to one inside cell | and vanishes outside. Of course, Fyy is
consistent with the following f; distribution function

e
)= X NG Afry - w)e i) SO (42)
n , :

where the A function means that r; should be inside cell i , and with the

p (r) and v (;) profile. The two-body distribution function issued from (4.1)
reads
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by )= S N () e'(p“mv“)/k<wN(uz)e'{52'mv"2)/mg ,

By
(4.3)

which is obtained by integrating over x3,...,xy . Obviously f, factorizes
into two f; factors and therefore no correlation should be observed from
this procedure, provided f; is constructed as f; ! The only correlations can
come from conservation laws. For instance, conservation of current

- (=) 3
improves J g (r) v(r)d r to be a constant (in the c.m. system). Therefore
v (rl) and ;(rz) are not completely independent and this would indicate a

-

relationship upon Vi and Vi above. In the extreme jet picture one
1 2
would have ;;tl =-;L1 and factorization is badly broken down. The
1 2

correlation mentioned in the hydrodynamical calculation of ref. [21] is a
good example of these "spurious" correlations.

(b) Mean field correlations

The same considerations hold when one looks at two particles,
imposing some constraint on the observables like on the relative angle
between the directions of these outgoing particles. Then the relevant
quantity is

R (18 P29s) ap =) 11 [ a0, & [F1pi®; . 91, 70,80, + A¢) - (40

If f, factorizes (which one has to assume in theories like Landau-Vlassov,
predicting f; only), one has

R (p181/ P29 5 =jd3r1 d3rzjd‘91 £ (;1 /Py ©1/ ‘Pl)fl (;2 /Py 8y 0y Aq’) .
(4.5)

Now, even if there is a decoupling between ;and; coordinates
f1=vy {;) cp(g) , the quantity (4.5) does not factorize into a function of p;
times a function of 52

R(p©,P:0)) ap =] 001 0(F) 0 [5o) 7 F (P01 F[,0) - 4O
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Therefore the quantity R bears some information about the function ¢ (p) .
Sometimes {22], property (4.6) is called improperly mean field correlations
and this was partly justified by the fact that in these particular cases, the
main structures of f; came from the mean field dynamics. -

(c) Reaction_plane correlations
* This refers to a situation similar to (a), which imposes that there exists

a vector n which is such that

npf f,p)dp=0. o @)

The latter correlation is the largest for quasi-free scattering, as it is well
known from two proton correlation experiment at large momentum [23].
See also refs. [24,25] for other examples. ‘ ' '

(d) Impact parametér correlations

Quite often, experiments imply a summation over a certain range of
impact parameter. This implies that the relevant quantity is

)y £, (rlpl,rzpz,b)ﬁ y £ (rlpl,b) S £ {rzpz,b) . (4.8)

be Ab beaAb be &b

even if fp factorizes in fif; for any b. The latter correlation will reﬂéct the
b-dependence of the one-body distribution function.

5. CONCLUSION

We have reviewed the main aspects of the two-body correlations for
both equilibrium and non-equilibrium situations. We have ‘clarified the
physical meaning of low-energy and resonant interferences. We also
presented detailed calculations of correlations and related quantities for both
equilibrium nuclear matter.

Acknowledgement : We are very thankful to the correlated pair B. Remaud-
D. Ardouin for interesting though uncorrelated discussions.
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