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Abstract. This paper considers finite-automata based algorithms for
handling linear arithmetic with both real and integer variables. Previous
work has shown that this theory can be dealt with by using finite au-
tomata on infinite words, but this involves some difficult and delicate to
implement algorithms. The contribution of this paper is to show, using
topological arguments, that only a restricted class of automata on infinite
words are necessary for handling real and integer linear arithmetic. This
allows the use of substantially simpler algorithms and opens the path
to the implementation of a usable system for handling this combined
theory.

1 Introduction

Among the techniques used to develop algorithms for deciding or checking logi-
cal formulas, finite automata have played an important role in a variety of cases.
Classical examples are the use of infinite-word finite automata by Büchi [Büc62]
for obtaining decision procedures for the first and second order monadic theo-
ries of one successor as well as the use of tree automata by Rabin [Rab69] for
deciding the second-order monadic theory of n successors. More recent examples
are the use of automata for obtaining decision and model checking procedures
for temporal and modal logics [VW86a,VW86b,VW94,KVW00]. In this last set-
ting, automata-based procedures have the advantage of moving the combina-
torial aspects of the procedures to the context of automata, which are simple
graph-like structures well adapted to algorithmic development. This separation
of concerns between the logical and the algorithmic has been quite fruitful for
instance in the implementation of model checkers for linear-time temporal logic
[CVWY90,Hol97].

As already noticed by Büchi [Büc60,Büc62], automata-based approaches are
not limited to sequential and modal logics, but can also be used for Presburger
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arithmetic. To achieve this, one adopts the usual encoding of integers in a base
r ≥ 2, thus representing an integer as a word over the alphabet {0, . . . , r − 1}.
By extension, n-component integer vectors are represented by words over the
alphabet {0, . . . , r − 1}n and a finite automaton operating over this alphabet
represents a set of integer vectors. Given that addition and order are easily rep-
resented by finite automata and that these automata are closed under Boolean
operations as well as projection, one easily obtains a decision procedure for Pres-
burger arithmetic. This idea was first explored at the theoretical level, yielding
for instance the very nice result that base-independent finite-automaton repre-
sentable sets are exactly the Presburger sets [Cob69,Sem77,BHMV94]. Later, it
has been proposed as a practical means of deciding and manipulating Presburger
formulas [BC96,Boi98,SKR98,WB00]. The intuition behind this applied use of
automata for Presburger arithmetic is that finite automata play with respect
to Presburger arithmetic a role similar to the one of Binary Decision Diagrams
(BDDs) with respect to Boolean logic. These ideas have been implemented in the
LASH tool [LASH], which has been used successfully in the context of verifying
systems with unbounded integer variables.

It almost immediately comes to mind that if a finite word over the alphabet
{0, . . . , r − 1} can represent an integer, an infinite word over the same alphabet
extended with a fractional part separator (the usual dot) can represent a real
number. Finite automata on infinite words can thus represent sets of real vec-
tors, and serve as a means of obtaining a decision procedure for real additive
arithmetic. Furthermore, since numbers with empty fractional parts can easily
be recognized by automata, the same technique can be used to obtain a decision
procedure for a theory combining the integers and the reals. This is not presently
handled by any tool, but can be of practical use, for instance in the verification
of timed systems using integer variables [BBR97]. However, turning this into
an effective implemented system is not as easy as it might first seem. Indeed,
projecting and complementing finite automata on infinite words is significantly
more difficult than for automata on finite words. Projection yields nondetermin-
istic automata and complementing or determinizing infinite-word automata is a
notoriously difficult problem. A number of algorithms have been proposed for
this [Büc62,SVW87,Saf88,KV97], but even though their theoretical complexity
remains simply exponential as in the finite word case, it moves up from 2O(n)

to 2O(n log n) and none of the proposed algorithms are as easy to implement and
fine-tune as the simple Rabin-Scott subset construction used in the finite-word
case.

However, it is intuitively surprising that handling reals is so much more
difficult than handling integers, especially in light of the fact that the usual
polyhedra-based approach to handling arithmetic is both of lower complexity
and easier to implement for the reals than for the integers [FR79]. One would
expect that handling reals with automata should be no more difficult than han-



dling integers1. The conclusion that comes out of these observations is that
infinite-word automata constructed from linear arithmetic formulas must have a
special structure that makes them easier to manipulate than general automata
on infinite words. That this special structure exists and that it can exploited to
obtain simpler algorithms is precisely the subject of this paper.

As a starting point, let us look at the topological characterization of the sets
definable by linear arithmetic formulas. Let us first consider a formula involving
solely real variables. If the formula is quantifier free, it is a Boolean combination
of linear constraints and thus defines a set which is a finite Boolean combina-
tion of open and closed sets. Now, since real linear arithmetic admits quantifier
elimination, the same property also holds for quantified formulas. Then, looking
at classes of automata on infinite words, one notices that the most restricted
one that can accept Boolean combinations of open and closed sets is the class
of deterministic weak automata [SW74,Sta83]. These accept all ω-regular sets
in the Borel class Fσ ∩ Gδ and hence also finite Boolean combinations of open
and closed sets. So, with some care about moving from the topology on vec-
tors to the topology on their encoding as words, one can conclude that the sets
representable by arithmetic formulas involving only real variables can always be
accepted by deterministic weak automata on infinite words. If integers are also
involved in the formula, there is no established quantifier elimination result for
the combined theory and one cannot readily conclude the same. A first result
in this paper closes this loophole. It establishes that sets definable by quantified
linear arithmetic formulas involving both real and integer variables are within
Fσ∩Gδ and thus are representable by deterministic weak automata. Rather than
using a quantifier elimination type argument to establish this, our proof relies
on separating the integer and fractional parts of variables and on topological
properties of Fσ ∩ Gδ.

The problematic part of the operations on automata needed to decide a
first-order theory is the sequence of projections and complementations needed
to eliminate a string of quantifiers alternating between existential and universal
ones. The second result of this paper shows that for sets defined in linear arith-
metic this can be done with constructions that are simple adaptations of the
ones used for automata on finite words. Indeed, deterministic weak automata
can be viewed as either Büchi or co-Büchi automata. The interesting fact is
that co-Büchi automata can be determinized by the “breakpoint” construction
[MH84,KV97], which basically amounts to a product of subset constructions.
Thus, one has a simple construction to project and determinize a weak automa-
ton, yielding a deterministic co-Büchi automaton, which is easily complemented
into a deterministic Büchi automaton. In the general case, another round of
projection will lead to a nondeterministic Büchi automaton, for which a general
determinization procedure has to be used. However, we have the result that for
automata obtained from linear arithmetic formulas, the represented sets stay

1 Note that one cannot expect reals to be easier to handle with automata than integers
since, by nature, this representation includes explicit information about the existence
of integer values satisfying the represented formula.



within those accepted by deterministic weak automata. We prove that this im-
plies that the automata obtained after determinization will always be weak.

Note that this cannot be directly concluded from the fact that the repre-
sented sets stay within those representable by deterministic weak automata.
Indeed, even though the represented sets can be accepted by deterministic weak
automata, the automata that are obtained by the determinization procedure
might not have this form. Fortunately, we can prove that this is impossible. For
this, we go back to the link between automata and the topology of the sets of
infinite words they accept. The argument is that ω-regular sets in Fσ ∩Gδ have
a topological property that forces the automata accepting them to be inherently
weak, i.e. not to have strongly connected components containing both accepting
and non accepting cycles.

As a consequence of our results, we obtain a decision procedure for the theory
combining integer and real linear arithmetic that is suitable for implementation.
The fact that this theory is decidable was known [BBR97], but the results of this
paper move us much closer to an implemented tool that can handle it effectively.

2 Automata-Theoretic and Topological Background

In this section we recall some automata-theoretic and topological concepts that
are used in the paper.

2.1 Automata on Infinite Words

An infinite word (or ω-word) w over an alphabet Σ is a mapping w : N → Σ from
the natural numbers to Σ. A Büchi automaton on infinite words is a five-tuple
A = (Q,Σ, δ, q0, F ), where

– Q is a finite set of states;
– Σ is the input alphabet;
– δ is the transition function and is of the form δ : Q×Σ → 2Q if the automaton

is nondeterministic and of the form δ : Q × Σ → Q if the automaton is
deterministic;

– q0 is the initial state;
– F is a set of accepting states.

A run π of a Büchi automaton A = (Q,Σ, δ, q0, F ) on an ω-word w is a
mapping π : N → Q that satisfies the following conditions:

– π(0) = q0, i.e. the run starts in the initial state;
– For all i ≥ 0, π(i + 1) ∈ δ(π(i), w(i)) (nondeterministic automata) or π(i +

1) = δ(π(i), w(i)) (deterministic automata), i.e. the run respects the transi-
tion function.

Let inf (π) be the set of states that occur infinitely often in a run π. A run
π is said to be accepting if inf (π)∩F 6= ∅. An ω-word w is accepted by a Büchi



automaton if that automaton has some accepting run on w. The language Lω(A)
of infinite words defined by a Büchi automaton A is the set of ω-words it accepts.

A co-Büchi automaton is defined exactly as a Büchi automaton except that
its accepting runs are those for which inf (π) ∩ F = ∅.

We will also use the notion of weak automata [MSS86]. For a Büchi automaton
A = (Q,Σ, δ, q0, F ) to be weak, there has to be a partition of its state set Q into
disjoint subsets Q1, . . . , Qm such that

– for each of the Qi either Qi ⊆ F or Qi ∩ F = ∅; and

– there is a partial order ≤ on the sets Q1, . . . , Qm such that for every q ∈ Qi

and q′ ∈ Qj for which, for some a ∈ Σ, q′ ∈ δ(q, a) (q′ = δ(q, a) in the
deterministic case), Qj ≤ Qi.

For more details, a survey of automata on infinite words can be found in
[Tho90].

2.2 Topology

Given a set S, a distance d(x, y) defined on this set induces a topology on subsets
of S. A neighborhood Nε(x) of a point x ∈ S is the set Nε(x) = {y | d(x, y) < ε}.
A set C ⊆ S is said to be open if for all x ∈ C, there exists ε > 0 such that the
neighborhood Nε(x) is contained in C. A closed set is a set whose complement
with respect to S is open. We will be referring to the first few levels of the Borel
hierarchy which are shown in Figure 1. The notations used are the following:

– F are the closed sets,

– G are the open sets,

– Fσ is the class of countable unions of closed sets,

– Gδ is the class of countable intersections of open sets,

– Fσδ is the class of countable intersections of Fσ sets,

– Gδσ is the class of countable unions of Gδ sets,

– B(X) represents the finite Boolean combinations of sets in X.

An arrow between classes indicates proper inclusion.

3 Topological Characterization of Arithmetic Sets

We consider the theory 〈R, Z,+,≤〉, where + represents the predicate x+y = z.
Since any linear equality or order constraint can be encoded into this theory, we
refer to it as additive or linear arithmetic over the reals and integers. It is the
extension of Presburger arithmetic that includes both real and integer variables.
In this section, we prove that the sets representable in this theory belong to the
topological class Fσ ∩ Gδ defined relatively to the Euclidean distance between
vectors. This result is formalized by the following theorem.
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Fig. 1. The first few levels of the Borel hierarchy.

Theorem 1. Let S ⊆ R
n, with n > 0, be a set defined in the theory 〈R, Z,+,≤〉.

This set belongs to the topological class Fσ ∩ Gδ induced by the distance

d(x,y) =

(

n
∑

i=1

(xi − yi)
2

)1/2

.

Proof. Since 〈R, Z,+,≤〉 is closed under negation, it is actually sufficient to
show that each formula of this theory defines a set that belongs to Fσ, i.e., a set
that can be expressed as a countable union of closed sets.

Let ϕ be a formula of 〈R, Z,+,≤〉. To simplify our argument, we will assume
that all free variables of ϕ are reals. This can be done without loss of generality
since quantified variables can range over both R and Z. We introduce u < v as
a shorthand for u ≤ v ∧ ¬(u = v).

The first step of our proof consists of modifying ϕ in the following way. We
replace each variable x that appears in ϕ by two variables xI and xF representing



respectively the integer and the fractional part of x. Formally, this operation
replaces each occurrence in ϕ of a free variable x by the sum xI + xF while
adding to ϕ the constraints 0 ≤ xF and xF < 1, and transforms the quantified
variables of ϕ according to the following rules:

(∃x ∈ R)φ −→ (∃xI ∈ Z)(∃xF ∈ R)(0 ≤ xF ∧ xF < 1 ∧ φ[x/xI + xF ])

(∀x ∈ R)φ −→ (∀xI ∈ Z)(∀xF ∈ R)(xF < 0 ∨ 1 ≤ xF ∨ φ[x/xI + xF ])

(Qx ∈ Z)φ −→ (QxI ∈ Z)φ[x/xI ],

where Q ∈ {∃,∀}, φ is a subformula, and φ[x/y] denotes the result of replacing
by y each occurrence of x in φ. The transformation has no influence on the set
represented by ϕ, except that the integer and fractional part of each value are
now represented by two distinct variables.

Now, the atomic formulas of ϕ are of the form p = q + r, p = q or p ≤ q,
where p, q and r are either integer variables, sums of an integer and of a fractional
variable, or integer constants. The second step consists of expanding these atomic
formulas so as to send into distinct atoms the occurrences of the integer and of the
fractional variables. This is easily done with the help of simple arithmetic rules,
for the truth value of the atomic formulas that involve both types of variables
has only to be preserved for values of the fractional variables that belong to the
interval [0, 1[. The less trivial expansion rules2 are given below:

(xI + xF ) = (yI + yF ) −→ xI = yI ∧ xF = yF

(xI + xF ) ≤ (yI + yF ) −→ xI < yI ∨ (xI = yI ∧ xF ≤ yF )
(xI + xF ) = (yI + yF ) + (zI + zF ) −→ (xI = yI + zI ∧ xF = yF + zF )

∨ (xI = yI + zI + 1 ∧ xF = yF + zF − 1)
(xI + xF ) = (yI + yF ) + zI −→ xI = yI + zI ∧ xF = yF

xI = (yI + yF ) + (zI + zF ) −→ (xI = yI + zI ∧ yF + zF = 0)
∨ (xI = yI + zI + 1 ∧ yF + zF = 1)

After the transformation, each atomic formula of ϕ is either a formula φI

involving only integer variables or a formula φF over fractional variables. We
now distribute existential (resp. universal) quantifiers over disjunctions (resp.
conjunctions), after rewriting their argument into disjunctive (resp. conjunctive)
normal form, and then apply the simplification rules

(QxI ∈ Z)(φI α φF ) −→ (QxI ∈ Z)(φI) α φF

(QxF ∈ R)(φI α φF ) −→ φI α (QxF ∈ R)(φF ),

where Q ∈ {∃,∀} and α ∈ {∨,∧}.
Repeating this operation, we eventually get a formula ϕ that takes the form

of a finite Boolean combination B(φ
(1)
I , φ

(2)
I , . . . , φ

(m)
I , φ

(1)
F , φ

(2)
F , . . . , φ

(m′)
F ) of

subformulas φ
(i)
I and φ

(i)
F that involve respectively only integer and fractional

variables.

2 In these rules, the expression p = q +r+s is introduced as a shorthand for (∃u)(u =
q + r ∧ p = u + s), where the quantifier is defined over the appropriate domain.



Let x
(1)
I , x

(2)
I , . . . , x

(k)
I be the free integer variables of ϕ. For each assignment

of values to these variables, the subformulas φ
(i)
I are each identically true or

false, hence we have

ϕ ≡
∨

(a1,...,ak)∈Zk

(

(x
(1)
I , . . . , x

(k)
I ) = (a1, . . . , ak) ∧ B(a1,...,ak)(φ

(1)
F , . . . , φ

(m′)
F )

)

.

Each subformula φ
(i)
F belongs to the theory 〈R,+,≤, 1〉, which admits the

elimination of quantifiers [FR79]. The sets of reals vectors satisfying these for-
mulas are thus finite Boolean combinations of linear constraints with open or
closed boundaries. It follows that, for each (a1, . . . , ak) ∈ Z

k, the set described

by B(a1,...,ak)(φ
(1)
F , . . . , φ

(m′)
F ) is a finite Boolean combination of open and closed

sets and, since any open set is a countable union of closed sets, is within Fσ.
Therefore, the set described by ϕ is a countable union of Fσ sets and is also
within Fσ.

4 Representing Sets of Integers and Reals with Finite

Automata

In this section, we recall the finite-state representation of sets of real vectors as
introduced in [BBR97].

In order to make a finite automaton recognize numbers, one needs to establish
a mapping between these and words. Our encoding scheme corresponds to the
usual notation for reals and relies on an arbitrary integer base r > 1. We encode
a number x in base r, most significant digit first, by words of the form wI ⋆ wF ,
where wI encodes the integer part xI of x as a finite word over {0, . . . , r − 1},
the special symbol “⋆” is a separator, and wF encodes the fractional part xF of
x as an infinite word over {0, . . . , r − 1}. Negative numbers are represented by
their r’s complement. The length p of |wI |, which we refer to as the integer-part
length of w, is not fixed but must be large enough for −rp−1 ≤ xI < rp−1 to
hold.

According to this scheme, each number has an infinite number of encodings,
since their integer-part length can be increased unboundedly. In addition, the
rational numbers whose denominator has only prime factors that are also factors
of r have two distinct encodings with the same integer-part length. For example,
in base 10, the number 11/2 has the encodings 005 ⋆ 5(0)ω and 005 ⋆ 4(9)ω, “ ω”
denoting infinite repetition.

To encode a vector of real numbers, we represent each of its components
by words of identical integer-part length. This length can be chosen arbitrarily,
provided that it is sufficient for encoding the vector component with the highest
magnitude. An encoding of a vector x ∈ R

n can indifferently be viewed either as
a n-tuple of words of identical integer-part length over the alphabet {0, . . . , r −
1, ⋆}, or as a single word w over the alphabet {0, . . . , r − 1}n ∪ {⋆}.

Since a real vector has an infinite number of possible encodings, we have to
choose which of these the automata will recognize. A natural choice is to accept
all encodings. This leads to the following definition.



Definition 1. Let n > 0 and r > 1 be integers. A Real Vector Automaton
(RVA) A in base r for vectors in R

n is a Büchi automaton over the alphabet
{0, . . . , r − 1}n ∪ {⋆}, such that

– Every word accepted by A is an encoding in base r of a vector in R
n, and

– For every vector x ∈ R
n, A accepts either all the encodings of x in base r,

or none of them.

An RVA is said to represent the set of vectors encoded by the words that
belong to its accepted language. Efficient algorithms have been developed for
constructing RVA representing the sets of solutions of systems of linear equations
and inequations [BRW98]. Since it is immediate to constrain a number to be
an integer with an RVA and since, using existing algorithms for infinite-word
automata, one can apply Boolean operations as well as projection to RVA, it
follows that one can construct an RVA for any formula of the arithmetic theory
we are considering.

5 Weak Automata and their Properties

If one examines the constructions given in [BRW98] to build RVA for linear
equations and inequations, one notices that they have the property that all
states within the same strongly connected component are either accepting or
nonaccepting. This implies that these automata are weak in the sense of [MSS86]
(see Section 2).

Weak automata have a number of interesting properties. A first one is that
they can be represented both as Büchi and co-Büchi. Indeed, a weak Büchi
automaton A = (Q,Σ, δ, q0, F ) is equivalent to the co-Büchi automaton A =
(Q,Σ, δ, q0, Q \F ), since a computation eventually remains within a single com-
ponent Qi in which all states have the same status with respect to being ac-
cepting. A consequence of this is that weak automata can be determinized by
the fairly simple “breakpoint” construction [MH84,KV97] that can be used for
co-Büchi automata. This construction is the following.

Let A = (Q,Σ, δ, q0, F ) be a nondeterministic co-Büchi automaton. The de-
terministic co-Büchi automaton A′ = (Q′, Σ, δ′, q′0, F

′) defined as follows accepts
the same ω-language.

– Q′ = 2Q × 2Q, the states of A′ are pairs of sets of states of A.
– q′0 = ({q0}, ∅).
– For (S,R) ∈ Q′ and a ∈ Σ, the transition function is defined by

• if R = ∅, then δ((S,R), a) = (T, T \ F ) where T = {q | ∃p ∈ S and q ∈
δ(p, a)}, T is obtained from S as in the classical subset construction, and
the second component of the pair of sets of states is obtained from T by
eliminating states in F ;

• if R 6= ∅, then δ((S,R), a) = (T,U \ F ) where T = {q | ∃p ∈ S and q ∈
δ(p, a)}, and U = {q | ∃p ∈ R and q ∈ δ(p, a)}, the subset construction
set is now applied to both S and R and states in F are removed from U .



– F ′ = 2Q × {∅}.

When the automaton A′ is in a state (S,R), R represents the states of A that
can be reached by a computation that has not gone through a state in F since
that last “breakpoint”, i.e. state of the form (S, ∅). So, for a given word, A
has a computation that does not go infinitely often through a state in F iff
A′ has a computation that does not go infinitely often through a state in F ′.
Notice that the difficulty that exists for determinizing Büchi automata, which is
to make sure that the same computation repeatedly reaches an accepting state
disappears since, for co-Büchi automata, we are just looking for a computation
that eventually avoids accepting states.

It is interesting to notice that the construction implies that all reachable
states (S,R) of A′ satisfy R ⊆ S. The breakpoint construction can thus be
implemented as a subset construction in which the states in R are simply tagged.
One can thus expect it to behave in practice very similarly to the traditional
subset construction for finite word automata.

Another property of weak automata that will be of particular interest to us
is the topological characterization of the sets of words that they can accept.
Consider the topology on the set of ω-words induced by the distance

d(w,w′) =

{ 1
|common(w,w′)|+1 if w 6= w′

0 if w = w′,

where |common(w,w′)| denotes the length of the longest common prefix of w
and w′. In this topology, weak deterministic automata accept exactly the ω-
regular languages that are in Fσ ∩ Gδ. This follows from the results on the
Staiger-Wagner class of automata [SW74,Sta83], which coincides with the class
of deterministic weak automata, as can be inferred from [SW74] and is shown
explicitly in [MS97]. Given the result proved in Section 3, it is tempting to
conclude that the encodings of sets definable in the theory 〈R, Z,+,≤〉 can always
be accepted by weak deterministic automata. This conclusion is correct, but
requires shifting the result from the topology on numbers to the topology on
words, which we will do in the next section. In the meantime, we need one more
result in order to be able to benefit algorithmically from the fact that we are
dealing with Fσ ∩ Gδ sets, i.e. that any deterministic automaton accepting a
Fσ ∩ Gδ set is essentially a weak automaton.

Consider the following definition.

Definition 2. A Büchi automaton is inherently weak if none of the reachable
strongly connected components of its transition graph contains both accepting
(including at least one accepting state) and non accepting (not including any
accepting state) cycles.

Clearly, if an automaton is inherently weak, it can directly be transformed into
a weak automaton. The partition of the state set is its partition into strongly
connected components and all the states of a component are made accepting or
not, depending on whether the cycles in that component are accepting or not.

We will now prove the following.



Theorem 2. Any deterministic Büchi automaton that accepts a language in
Fσ ∩ Gδ is inherently weak.

To prove this, we use the fact that the language accepted by an automaton
that is not inherently weak, must have the following dense oscillating sequence
property.

Definition 3. A language L ⊆ Σω has the dense oscillating sequence prop-
erty if, w1, w2, w3, . . . being words and ε1, ε2, ε3, . . . being distances, one has that
∃w1∀ε1∃w2∀ε2 . . . such that d(wi, wi+1) ≤ εi for all i ≥ 1, wi ∈ L for all odd i,
and wi 6∈ L for all even i.

The fact that the language accepted by an automaton that is not inherently
weak has the dense oscillating sequence property is an immediate consequence of
the fact that such an automaton has a reachable strongly connected component
containing both accepting and non accepting cycles. Given this, it is sufficient
to prove the following lemma in order to establish Theorem 2.

Lemma 1. An ω-regular language that has the dense oscillating sequence prop-
erty cannot be accepted by a weak deterministic automaton and hence is not in
Fσ ∩ Gδ.

Proof. We proceed by contradiction. Assume that a language L having the dense
oscillating sequence property is accepted by a weak deterministic automaton A.
Consider the first word w1 in a dense oscillating sequence for L. This word
eventually reaches an accepting component Qi1 of the partition of the state set
of A and will stay within this component. Since ε1 can be chosen freely, it can be
taken small enough for the computation of A on w2 to also reach the component
Qi1 before it starts to differ from w1. Since w2 is not in L, the computation of
A on w2 has to eventually leave the component Qi1 and will eventually reach
and stay within a non accepting component Qi2 < Qi1 . Repeating a similar
argument, one can conclude that the computation of A on w3 eventually reaches
and stays within an accepting component Qi3 < Qi2 . Carrying on with this
line of reasoning, one concludes that the state set of A must contain an infinite
decreasing sequence of distinct components, which is impossible given that it is
finite.

6 Deciding Linear Arithmetic with Real and Integer

Variables

We first show that the result of Section 3 also applies to the sets of words
encoding sets defined in 〈R, Z,+,≤〉. In order to do so, we need to establish that
the topological class Fσ ∩ Gδ defined over sets of reals is mapped to its ω-word
counterpart by the encoding relation described in Section 4.

Theorem 3. Let n > 0 and r > 1 be integers, and let L(S) ⊆ ({0, . . . , r−1}n ∪
{⋆})ω be the set of all the encodings in base r of the vectors belonging to the set
S ⊆ R

n. If the set S belongs to Fσ ∩ Gδ (with respect to Euclidean distance),
then the language L(S) belongs to Fσ ∩ Gδ (with respect to ω-word distance).



Proof. Not all words over the alphabet {0, . . . , r−1}n∪{⋆} encode a real vector.
Let V be the set of all the valid encodings of vectors in base r. Its complement
V can be partitioned into a set V 0 containing only words in which the separator
“⋆” does not appear, and a set V + containing words in which “⋆” occurs at least
once.

The set V 0 ∪ V is closed. Indeed, each element of its complement is a word
that does not encode validly a vector and that contains at least one separator.
Such a word admits a neighborhood entirely composed of words satisfying the
same property, which entails that the complement of V 0∪V if open. In the same
way, one obtains that the set V + ∪ V is open.

Let now consider an open set S ⊆ R
n. The language L′ = L(S) ∪ V + is open.

Indeed, each word w ∈ L(S) has a neighborhood entirely composed of words in
L(S) (formed by the encodings of vectors that belong to a neighborhood of the
vector encoded by w), and of words that do not encode vectors but contain at
least one separator. Moreover, each word w ∈ V + admits a neighborhood fully
composed of words in V +. Since L(S) = L′ ∩ (V 0 ∪V ), we have that L(S) is the
intersection of an open and of a closed set.

The same line of reasoning can be followed with a closed set S ⊆ R
n. The

language L′′ = L(S) ∪ V 0 is easily shown to be closed, which, since L(S) =
L′′ ∩ (V + ∪ V ), implies that L(S) is the intersection of a closed and of an open
set.

We are now ready to address the case of a set S ⊆ R
n that belongs to

Fσ ∩ Gδ. Since S is in Fσ, it can be expressed as a countable union of closed
sets S1, S2, . . . . The languages L(S1), L(S2), . . . are Boolean combinations of
open and of closed sets, and thus belong to the topological class Fσ. Therefore,
L(S) = L(S1) ∪ L(S2) ∪ · · · is a countable union of sets in Fσ, and thus belongs
itself to Fσ. Now, since S is in Gδ, it can also be expressed as a countable
intersection of open sets S′

1, S′
2, . . . . The languages L(S′

1), L(S′
2), . . . belong

to the topological class Gδ. Hence, L(S) = L(S′
1) ∩ L(S′

2) ∩ · · · is a countable
intersection of sets in Gδ, and thus belongs itself to Gδ. This concludes our proof
of the theorem.

Knowing that the encodings of sets definable in the theory 〈R, Z,+, ≤〉 are
in Fσ ∩ Gδ, we use the results of Section 5 to conclude the following.

Theorem 4. Every deterministic RVA representing a set definable in 〈R, Z,+,
≤〉 is inherently weak.

This property has the important consequence that the construction and the
manipulation of RVA obtained from arithmetic formulas can be performed effec-
tively by algorithms operating on weak automata. Precisely, to obtain an RVA
for an arithmetic formula one can proceed as follows.

For equations and inequations, one uses the constructions given in [BRW98]
to build weak RVA. Computing the intersection, union, and Cartesian prod-
uct of sets represented by RVA simply reduces to performing similar operations
with the languages accepted by the underlying automata, which can be done by
simple product constructions. These operations preserve the weak nature of the



automata. To complement a weak RVA, one determinizes it using the breakpoint
construction, which is guaranteed to yield an inherently weak automaton (The-
orem 4) that is easily converted to a weak one. This deterministic weak RVA is
then complemented by inverting the accepting or non-accepting status of each
of its components, and then removing from its accepted language the words
that do not encode validly a vector (which is done by means of an intersection
operation).

Applying an existential quantifier to a weak RVA is first done by removing
from each transition label the symbol corresponding to the vector component
that is projected out. This produces a non-deterministic weak automaton that
may only accept some encodings of each vector in the quantified set, but generally
not all of them. The second step thus consists of modifying the automaton so as
to make it accept every encoding of each vector that it recognizes. Since different
encodings of a same vector differ only in the number of times that their leading
symbol is repeated, this operation can be carried out by the same procedure as
the one used with finite-word number automata [Boi98]. This operation does not
affect the weak nature of the automaton, which can then be determinized by the
breakpoint construction, which has to produce an inherently weak RVA easily
converted to a weak automaton.

Thus, in order to decide whether a formula of 〈R, Z,+, ≤〉 is satisfiable, one
simply builds an RVA representing its set of solutions, and then check whether
this automaton accepts a nonempty language. This also makes it possible to
check the inclusion or the equivalence of sets represented by RVA. The main
result of this paper is that, at every point, the constructed automaton remains
weak and thus only the simple breakpoint construction is needed as a deter-
minization procedure.

7 Conclusions

A probably unusual aspect of this paper is that it does not introduce new al-
gorithms, but rather shows that existing algorithms can be used in a situation
where a priori they could not be expected to operate correctly. To put it in other
words, the contribution is not the algorithm but the proof of its correctness.

The critical reader might be wondering if all this is really necessary. After all,
algorithms for complementing Büchi automata exist, either through determiniza-
tion [Saf88] or directly [Büc62,SVW87,Kla91,KV97] and the more recent of these
are even fairly simple and potentially implementable. There are no perfectly ob-
jective grounds on which to evaluate “simplicity” and “ease of implementation”,
but it is not difficult to convince oneself that the breakpoint construction for de-
terminizing weak automata is simpler than anything proposed for determinizing
or complementing Büchi automata. Indeed, it is but one step of the probably sim-
plest complementation procedure proposed so far, that of [KV97]. Furthermore,
there is a complexity improvement from 2O(n log n) to 2O(n); experience with the
subset construction as used for instance in the LASH tool [LASH] indicates that
the breakpoint construction is likely to operate very well in practice; and being



able to work with deterministic automata allows minimization [Löd01], which
leads to a normal form.

An implementation and some experiments would of course substantiate the
claims to simplicity and ease of implementation. It is planned in the context of
the LASH tool and will be made available [LASH]. However, this paper is not
about an implementation, but about the fact that, with the help of what might
appear to be pure theory, one can obtain very interesting conclusions about
algorithms for handling the theory 〈R, Z,+,≤〉.
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