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Summary

A ccording to the International Air Transport Association and Air Trans-
port Action Group, 51.3 million metric tons of goods were transported

by airlines in 2014. To transport luggage, freight and mail, special containers,
called Unit Load Devices (ULD), are used. The method of loading packages
into ULDs represents a key element for cargo safety and aircraft weight and
balance, as well as for the economy of airline companies.

This thesis aims to solve the problem of packing a set of boxes into con-
tainers of various shapes without wasting loading space. The goal is to select
the best set of ULDs to pack all the boxes achieving a minimum unused
volume. As for all the packing problems, geometric constraints have to be
satisfied: items cannot overlap and have to lie entirely within the bins. The
richness of this application is to manage additional and common constraints:
the bin weight limit, rotations, stability and fragility of the boxes, and weight
distribution within a ULD. In practice, this problem is manually solved with
no strict guarantee that the constraints are met.

First, the problem is formulated as a mixed integer linear program. As
this problem is NP-hard, it opens the way to heuristics. A second approach
makes use of the formulation to apply three matheuristic methods, combining
exact approaches and heuristics. Third, a tailored two-phase constructive
heuristic is developed for this specific problem; it aims to find good initial
solutions in short computational times. These approaches contain parameters
that have been tuned using the irace parametrisation technique. For the
experiments, several instances have been created on the basis of a box data
set which stems from a real world case.
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Chapter 1

Introduction

A ir freight has been evolving for more than a hundred years. On November
7th 1910, the first cargo flight transported silk from Dayton to Columbus

in Ohio, USA. However, freight flights remain rare before the First World War
(Allaz (2005)). Due to World War II, aircraft had been improved enough to
be able to directly cross the Atlantic. Thanks to this, air transportation for
cargo and passengers has experienced a huge growth since the 1970s. How-
ever, this growth was not steady and faced several setbacks due to recessions
(1973-1975; 1980-1984; 1990-1991; the Asian Crisis of 1997; 2008-2009) or
geopolitical instability (Gulf War of 1991; September 11 2001). The dra-
matic growth can also be explained by the increase in carried volume as well
as in the average travelled distance. Moreover, the development of passen-
ger services tends to induce freight demand as each additional plane usually
offers additional cargo capacity (Rodrigue et al. (2013)).

Efficient and affordable air freight has contributed to many changes (Ro-
drigue et al. (2013)). Among others, one can first notice a dietary change
by the increasing availability of new products or products in seasons during
which they would not normally be available. Second, changes in retail can
be observed. For instance, merchandise can be purchased online and shipped
promptly by air transport. This trend will certainly continue to increase in
the future due to the development of e-business. A third change occurs in
manufacturing. Let us consider the example of a computer manufacturer de-
pending on the global shipment of various components in the manufacturing
and assembly processes. The increased importance of time-based competi-
tion ensures that the specific benefits of air cargo augur well for the future
growth of air transportation.

According to the International Air Transport Association (IATA) (IATA
(2016a)) and Air Transport Action Group (ATAG) (ATAG (2016)), 51.3
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million metric tons of goods were transported by airlines in 2014, which
represents more than 35% of global trade by value, but less than 1% of world
trade by volume. Indeed, goods shipped by air are typically very high value
commodities that are often perishable or time-sensitive. This is equivalent to
$6.8 trillion worth of goods annually, or $18.6 billion worth of goods every day.
Air freight is particularly suitable for supporting “just-in-time” production
and distribution strategies with low inventory levels. Air cargo also has a
niche market for emergency situations where the fast delivery of supplies
prevails over cost issues (Rodrigue et al. (2013)).

To transport luggage, freight and mail, special containers are used. These
are called Unit Load Devices (ULD) and can be described as an assembly
of components consisting of a container or of a pallet covered with a net,
whose purpose is to provide standardised size units for individual pieces of
baggage or cargo, and to allow for rapid loading and unloading (Limbourg
et al. (2012)). ULDs may have specific shapes to fit inside aircraft, such as
truncated rectangular parallelepipeds. Two common ULDs are illustrated in
Figure 1.1.

Figure 1.1: Different shapes of ULDs

Good packing of these ULDs is crucial for different reasons. First, a cor-
rect and stable loading of the ULDs prevents damage to their contents. In
particular, the possible fragility of some boxes has to be taken into account.
Second, ULDs are the primary cause of aircraft damage among all ground
operations equipment. For this reason, IATA develops and maintains stan-
dards and procedures concerning the specifications, handling, restraint and
maintenance of ULDs (IATA (2016b)). For instance, an unbalanced ULD
can lead to mistakes in the centre of gravity calculation of the aircraft and to
instability of the cargo. This shows how important it is to correctly pack the
contents of these ULDs. Third, with around 900,000 aircraft ULDs in service
representing a replacement value of over $1 billion, ULDs are expensive assets
that require correct handling. Every year, the total cost of both repair and
loss of aircraft ULDs is estimated to be about $300 million, excluding flight

16



delays and cancellations due to their unavailability, and aircraft damages
caused by improper ULD handling (IATA (2016b)). Therefore, efficiently
using the volume inside each ULD is crucial in order to reduce the number
required. For these reasons, the method of loading packages into the ULDs
represents a key element for the safety of the cargo and of the aircraft, as
well as for the economy of airline companies. However, in practice, this load-
ing phase is manually achieved with no strict guarantee that the constraints
are met and without ensuring that the volume inside the ULDs is correctly
exploited.

The subject of this thesis is to solve the problem of packing a set of cuboid1

boxes into containers of various shapes without wasting loading space. There
are few identical boxes and they all have to be loaded. With regard to the
containers, this thesis deals with the specific case of air cargo. In this context,
containers are ULDs and thus, there are only several types of available bins.
The aim is to select the best set of ULDs to pack all the boxes achieving a
minimum unused volume. In this way, the volume of the ULDs is not wasted.
Depending on the chosen application, other objectives can be defined such
as minimising the costs of the selected ULDs. At the same time, a formal
description of the proposed solution, called a loading pattern, is provided.
Obviously, this work can be extended to many other packing applications.
For instance, ULDs can be replaced by simple Euro pallets or by the loading
volume of vehicles.

This problem is a combinatorial optimisation problem which belongs to
the family of Cutting and Packing problems (C&P). As will be detailed in the
next chapter, this has been labelled as a three-dimensional Multiple Bin Size
Bin Packing Problem using the typology defined by Wäscher et al. (2007).
Since our problem is a packing problem in three dimensions, it therefore
also belongs to the family of Container Loading Problems according to the
definition given in Bortfeldt and Wäscher (2013).

One of the main contribution of this thesis is the set of constraints taken
into account. In the final loading pattern, all the boxes have to be packed
without overlap and lie within the ULD. The weight capacity of each loaded
ULD has to be respected. The boxes can orthogonally rotate, i.e., the edges
of the boxes have to be either parallel or perpendicular to those of the ULDs.
Sometimes only a limited number of orientations are allowed due to the con-
tents of the boxes. For the same reason, some boxes may be fragile and thus
are not able to support other boxes. Each box of the loading pattern has to
be correctly supported to be stable. In air transportation, when ULDs are

1a regular six sided solid form
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packed inside the airplane, the centre of gravity is computed assuming each
ULD has a centre of gravity close to the geometrical centre of its basis, i.e.,
the weight distribution is uniform. This is therefore included in our problem
as a hard constraint. All these constraints as well as those not considered in
this thesis will be extensively explained in Chapter 2. This thesis is the first
work studying the three-dimensional Multiple Bin Size Bin Packing Problem
that takes into account all these constraints simultaneously.

The second important contribution of this thesis is the set of methods
used to solve this problem. In Chapter 3, a Mixed Integer Linear Program-
ming (MILP) formulation for this specific three-dimensional Multiple Bin Size
Bin Packing Problem is developed. Such complete linear formulation cannot
be found in the existing literature and the proposed research is the first to
take up this challenge. As expected, considering this problem is NP-hard,
this formulation cannot be efficiently solved. For this reason, Chapter 4
makes use of this model to apply three matheuristic methods, namely the
Relax-and-Fix, the Insert-and-Fix and the Fractional Relax-and-Fix heuris-
tics. Matheuristics combine exact approaches and heuristics. This is the first
time that these three matheuristics are extended to packing problems. In
order to compare the efficiency of these matheuristics, Chapter 5 proposes a
tailored two-phase constructive heuristic. This heuristic is specially designed
for the specific problem studied in this thesis and is thus developed to take
into account all its features.

The third contribution is a practical one. Until now, there have been
no benchmark instances for the problem considered in this thesis. Several
box instances have been created on the basis of a box data set which stems
from a real world case. These instances are available online to allow other
researchers to compare their results. Information about these data sets is
provided in Chapter 6 and they are used in computational experiments to
tune the parameters of each method, to make a sensitivity analysis and then
to compare all the methods. Finally, Chapter 7 of this thesis will draw some
conclusions and give some insights about future work.

The outline of this thesis is represented in Figure 1.2.
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Chapter 2

State of the art

T he present chapter aims to review the literature around the Cutting and
Packing (C&P) problems. More precisely, typology from Wäscher et al.

(2007) is described in order to emphasise the differences between the types
of problems in Section 2.1. Some descriptions of the existing constraints
based on Bortfeldt and Wäscher (2013) are provided in Section 2.2. The
contribution of this thesis is highlighted within this section. Afterwards,
several insights about the methodologies used in C&P problems are drawn
up in Section 2.3. In Section 2.4, some related problems are presented to show
the importance of C&P problems in the operations research area. Finally, the
problem definition is provided in Section 2.5. The following literature review
is not exhaustive but aims to represent a broad view of the state-of-the-art.

The current position in the thesis outline is shown in bold in Figure 2.1.

2.1 Typology of Cutting and Packing problems

Cutting and Packing problems have plenty of applications and have been
considerably studied during the last 30 years. In order to unify definitions
and notations and thus also facilitate the communication between researchers
in the field, a typology has been developed in Dyckhoff (1990) and later
improved in Wäscher et al. (2007). Moreover, this typology aims to identify
possible blank spots. According to Wäscher et al. (2007), C&P problems
have a similar structure which can be summed up as follows:

Given are two sets of elements, namely a set of large objects
(input, supply) and a set of small items (output, demand), which
are defined exhaustively in one, two, three or more geometric di-
mensions. Select some or all small items, group them into one
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or more subsets and assign each of the resulting subsets to one of
the large objects such that the geometric conditions hold, i.e., the
small items of each subset have to be laid out on the corresponding
large object such that

� all small items of the subset lie entirely within the large object
and

� the small items do not overlap,

and a given (single-dimensional or multi-dimensional) objective
function is optimised.

The large objects may be real containers but also pallets which can be
filled or the loading space of a truck for example.

The improved typology uses five criteria to classify the problems:

1. Kind of assignment: two objectives may exist: the output maximi-
sation and the input minimisation. In the case of output maximisation,
the set of large objects is not sufficient to accommodate the set of small
items. A selection among the small items has thus to be done. On
the contrary, if the aim is the input minimisation, then the set of large
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objects is sufficient and all the small items are assigned to a selection
of the large objects.

2. Assortment of small items: the typology considers three possibili-
ties. There can be identical small items, a weakly heterogeneous assort-
ment of small items (they can be grouped into relatively few classes for
which the items are of identical size and shape) or a strongly hetero-
geneous assortment of small items (only a few elements are of identical
size and shape).

3. Assortment of large objects: there can be only one large object or
several. If there are several large objects, as for the small items, there
are three possibilities: they are identical, there is a weakly heteroge-
neous assortment or a strongly heterogeneous assortment.

4. Dimensionality: the problems can be considered in one, two or three
dimensions.

5. Shape of small items: the typology distinguishes the regular small
items (rectangles, circles, boxes etc.) and irregular items.

The first two criteria define what is called the basic problem types, adding
the third criterion clarifies the intermediate problem types. Considering all
the five criteria gives the refined problem types. Replacing the assumptions
with different ones (e.g., multiple objectives, stochastic problems, higher di-
mensions, etc.) leads to problem types which will be considered as problem
variants. More details about each criterion and deeper classification are pro-
vided in Wäscher et al. (2007).

Considering the two first criteria, the typology defines six basic problem
types which can be represented with a hierarchical structure as shown in
Figure 2.2. Note that for the input minimisation, the large objects can have
all their dimensions fixed or it may be possible to consider that one has a
variable dimension. In this case, the problem consists in fixing the value of
this variable dimension. As has been explained in the previous chapter, the
aim of this thesis is to provide a method to pack a set of different cuboid
boxes into a selection of ULDs. Thus, it deals with an input minimisation
where all dimensions are fixed and the assortment of boxes is strongly het-
erogeneous. Therefore, as shown in Figure 2.2, the problem appears to be a
Bin Packing Problem (BPP). The difference with the Cutting Stock Problem
is the assortment of small items: the symmetry of small items is taken into
account to solve those problems.
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Figure 2.2: Basic Cutting and Packing problem types (from Wäscher et al.
(2007))
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For each basic problem type, several intermediate types are defined de-
pending on the assortment of large objects. For the BPP, the intermediate
types are provided in Figure 2.3. Since there are few types of ULDs, the
intermediate type of our problem is a Multiple Bin Size Bin Packing
Problem (MBSBPP). With the five criteria of the typology, the thesis deals
with a three-dimensional rectangular MBSBPP.

Bin Packing Problem

identical large objects

weakly heterogeneous

assortment of large objects

strongly heterogeneous

assortment of large objects

→ Single Bin Size Bin Packing Problem

→ Multiple Bin Size Bin Packing Problem

→ Residual Bin Packing Problem

Figure 2.3: Intermediate types of the Bin Packing Problem

Bortfeldt and Wäscher (2013) define Container Loading Problems as C&P
problems in three dimensions, where small items are called cargo and large
objects are called containers. This work also corresponds to this definition.

2.2 Constraints in Container Loading Problems

In the following, the geometric and the specific constraints are distinguished.
The typology from Wäscher et al. (2007) does not consider the specific con-
straints of the problem, which represent one distinctive feature of the work.

2.2.1 Geometric constraints

The geometric constraints include that all boxes lie entirely within the ULDs,
they do not overlap and are assumed to be placed orthogonally, i.e., the edges
of the boxes have to be either parallel or perpendicular to those of the ULDs.

To lie entirely within the ULDs does not seem complicated but, in this
thesis, ULDs may have a special shape to fit in the fuselage of the aircraft:
some of them look like parallelepipeds that have been cut as shown in Fig-
ure 2.4. In Figure 2.4, one can see an aircraft cross-section where three ULDs
are represented; two of these are on the lower deck and the third on the main
deck. It is clear that the boxes must lie within the ULDs and therefore one
should pay attention to their particular shapes (e.g., Chan et al. (2006)).
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Figure 2.4: Special shapes of some ULDs to fit in the fuselage: ULDs are
represented in gray

This uncommon container shape makes the problem a variant of the MB-
SBPP. However, if this feature is dropped, the work can be extended to more
general applications in fields other than air transportation.

2.2.2 Specific constraints

Twenty-two years ago, Bischoff and Ratcliff (1995) stated the lack of consid-
ered constraints in most papers about Container Loading Problems. Later,
Bortfeldt and Wäscher (2013), on the basis of the paper by Bischoff and
Ratcliff (1995), present a broad set of additional constraints that might be
encountered in practical packing situations. Each type of constraint is ex-
plained in the following, and the selection of those taken into account in this
thesis is clarified.

Container weight limit Usually, containers have a maximal weight limit,
thus items can be loaded as long as this weight capacity is not exceeded. This
type of constraint is quite common in the literature (e.g., Fraser and George
(1994), Terno et al. (2000), Chan et al. (2006), Ceschia and Schaerf (2013))
and is particularly important when there are some high density items.

In our case, ULDs indeed have a maximum weight capacity and thus, the
sum of the weights of the packed boxes cannot exceed this limit.

Weight distribution constraints in the containers Weight distribu-
tion constraints, also called load balance constraints, ensure that the weight
of the cargo inside a container is evenly distributed as much as possible across
the floor. A balanced cargo reduces the risk of shifting when the container is
moving and thus lowers the risks of accidents. Some operations such as crane
lifting may even become impossible if the weight is too unevenly distributed
(Bischoff and Ratcliff (1995)). As done in Fraser and George (1994), Davies
and Bischoff (1999), Jin et al. (2003), Techanitisawad and Tangwiwatwong
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(2004), Chan et al. (2006), Moon and Nguyen (2013), Costa and Captivo
(2016), Trivella and Pisinger (2016) among others, the centre of gravity (CG)
of the load should be close to the geometrical mid-point of the container floor.
This type of constraint can also be met in road transportation: the loaded
truck has to respect a precise distribution of the cargo over the axles of the
vehicle (Lim et al. (2013), Pollaris et al. (2015), Alonso et al. (2017)). Legis-
lation about axle weight limits varies between countries and more details for
European countries can be found in International Transport Forum (2016).

In the context of air cargo, once the ULDs have been filled, they are
loaded into a compartmentalised cargo aircraft with some technical and safety
constraints. The ULDs are loaded in such a way that the CG of the loaded
plane is as close as possible to a recommended position determined by safety
and fuel economy considerations and that a weight limit is satisfied at each
inch slice of the aircraft (e.g., Amiouny et al. (1992), Mongeau and Bès
(2003), Limbourg et al. (2012), Vancroonenburg et al. (2014), Lurkin and
Schyns (2015)). According to the control and loading manual of some airline
companies such as Boeing (Boeing (2008)), the CG of each ULD must lie in a
determined area (depending on the ULD type) around the geometrical centre
of the ULD and below a maximum height. This implies some uniformity in
the weight distribution inside the ULDs. Based on this, the CG of each ULD
is considered as a point in the centre of the position occupied to calculate
the CG of the plane and to ensure some weight constraints. Therefore, the
uniform weight distribution constraints are crucial and have to be taken into
account in this thesis.

Loading priorities for the items In the case of an output maximisation
problem, a subset of the small items is loaded and the others are left behind.
In practice, some of the available items can have higher priority than the
loading of others (Junqueira et al. (2012)), for example because of delivery
deadlines or for limited shelf life products. Some loading priorities can thus
be defined.

This type of constraint is not considered in this thesis since this deals
with an input minimisation problem, i.e., all the boxes have to be packed in
the studied case.

Orientation constraints for the items Boxes are assumed to be placed
orthogonally, i.e., the edges of the boxes have to be either parallel or perpen-
dicular to those of the containers. If the box can rotate and if each dimension
can be in a vertical position, then six orientations are possible as shown in
Figure 2.5. In practice, however, some boxes may not rotate in all directions
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Figure 2.5: Six possible orientations

because of their contents. These constraints are called orientation constraints
(Fraser and George (1994), Chen et al. (1995), Terno et al. (2000), Jin et al.
(2003), Techanitisawad and Tangwiwatwong (2004), Lin et al. (2006), Chan
et al. (2006), Almeida and Figueiredo (2010), Junqueira et al. (2012), Ceschia
and Schaerf (2013)).

In this thesis, it is considered that some dimensions/edges may not be in a
vertical position. Every time a dimension cannot be vertical, two orientations
are no longer possible. A parameter is thus defined for each dimension to
describe whether it can be in a vertical position or not.

Stacking constraints Also called load-bearing constraints, this type of
constraint describes how many boxes can be placed on top of each other.
More generally, load bearing strength refers to the maximum pressure that
can be applied over the top face of a box without damaging it. How much
pressure or weight a box can hold depends on the material and the construc-
tion of the boxes. Different strategies have been developed to manage this
feature of the cargo (Terno et al. (2000), Techanitisawad and Tangwiwatwong
(2004), Lin et al. (2006), Junqueira et al. (2012), Ceschia and Schaerf (2013)).
This constraint is quite important in practice because it prevents damage to
products contained in a fragile box.

In this work, a box is said to be fragile if no box can be placed on its top
face.

Complete shipment constraints As for the loading priority constraints,
the complete shipment constraints appear only with the output maximisation
objective. Since there is a selection of small items, some are left behind. This
type of constraint states that if one item of a subset is loaded, then all other
items of the same subset have to be packed as well. Inversely, if one box of
a subset cannot be packed, then no item of the same subset can be loaded
(Eley (2003)). This kind of constraint may arise, for example, when parts of
a piece of furniture are packed separately and have to be assembled on site
at a customer’s location.
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This constraint is not considered in this thesis as all the boxes must be
packed.

Allocation constraints This type of constraint arises when there are sev-
eral containers in the problem (Tsai et al. (1993), Terno et al. (2000), Eley
(2003), Chan et al. (2006), Almeida and Figueiredo (2010)). One can distin-
guish between the connectivity and the separation constraints. The connec-
tivity constraints demand that items of a particular subset go into the same
container, for example because they go to the same destination or because
a customer wants to receive their order in a single consignment. Conversely,
the separation constraints require that some items are accommodated in dif-
ferent containers for safety reasons. For example, food and perfumery have
to be separated during shipping.

These constraints are not considered in this thesis because they represent
particular cases. However, they could be an interesting extension of this work
in the future.

Positioning constraints These constraints limit the location of items
within the container either in absolute or in relative terms (Terno et al.
(2000), Lin et al. (2006)). On the one hand, absolute positioning constraints
specify where items should or should not be located within the container. For
instance, volatile liquids or explosives should be packed near the opening of
the bins so that they can be accessed and removed quickly if necessary. On
the other hand, relative positioning constraints state whether items should
or should not be located close to each other. For instance, items which alter
the quality of other items (like food and petrol) must not be placed next to
each other.

Note that multi-drop constraints are a combination of absolute and rela-
tive positioning constraints. These constraints arise when a Vehicle Routing
Problem is combined with the packing problem and thus subsets of items
go to different customers. The arrangement of the subsets of items should
reflect the sequence according to which they will be delivered in order to
avoid unnecessary unloading and reloading operations (e.g., Junqueira et al.
(2012), Ceschia and Schaerf (2013), Alvarez-Mart́ınez et al. (2015)).

This type of constraint is not considered here, because the journey is
direct and thus all the ULDs are unloaded at the destination. Nevertheless,
as for the allocation constraints, it could be a possible extension of this thesis.

Stability constraints Load stability is one of the most important types
of constraint. Indeed, unstable loads may result in damaged cargo and even
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in injuries of personnel during handling operations. Cargo stability involves
the vertical (or static) and the horizontal (or dynamic) stability (Terno et al.
(2000), Jin et al. (2003), Techanitisawad and Tangwiwatwong (2004), Lin
et al. (2006), Chan et al. (2006), Junqueira et al. (2012), Ceschia and Schaerf
(2013)). For the sake of vertical stability, the bottom side of each box needs
to be supported by the top face of other boxes or by the container floor. This
constraint is also called static stability as it deals with static containers. The
vertical stability excludes floating boxes. Deeper analysis of static stability
can be found in Ramos et al. (2016). The horizontal stability refers to the
capacity of the box to withstand the inertia of its own body when being
moved. The boxes remain in their position with respect to x and y axes,
hence the name horizontal stability.

This thesis only considers vertical stability because horizontal stability
could be obtained by adding a special sheet increasing the friction coefficient,
by adding foam to fill in holes between boxes or by binding unstable boxes.

Complexity constraints The proposed loading patterns sometimes have
to be easy enough for the loading personnel to be able to visualise quickly.
Moreover, more automatic packing technologies are not always suitable
for complex cargo arrangement and thus may require extra labour. This
type of constraint covers these limitations of human and technical resources
(de Queiroz et al. (2012)). The most frequently considered complexity con-
straint is the guillotine cutting constraint. A packing is called guillotineable
if it can be obtained by a series of cuts parallel to the container faces (Liu
et al. (2014)).

However, as explained in Bortfeldt (2012), this kind of constraints is not
always appropriate in practice since it may reduce the stability of the cargo
when being transported. For this reason, these will not be considered in this
thesis.

Summary In order to measure how often the different constraints are con-
sidered, Bortfeldt (2012) listed 163 papers that are publicly available and
published between 1980 and the end of 2011 in English in international jour-
nals, edited volumes and conference proceedings. Among these 163 papers,
only 12 (i.e., 7.4%) addressed the MBSBPP. The authors also present the
number of papers in which constraint types have been addressed. The per-
centages are represented in Figure 2.6.
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Figure 2.6: Percentage of papers in which constraint types have been ad-
dressed (population size = 163) from Bortfeldt (2012)

2.3 Algorithms in Container Loading Problems

Zhao et al. (2016) present a review of the different solution methodologies
and a comparison of algorithm performance across the literature. The authors
made a distinction between placement and improvement heuristics, and exact
methods.

Placement heuristics are commonly known as constructive heuristics. They
are used to decide how to put the boxes in the container, either to generate
an initial solution, or as an embedded method in a more general approach.
If the set of boxes is weakly heterogeneous, boxes of a same type can be
arranged together in rows or columns, leading to wall building (George and
Robinson (1980), Moura and Oliveira (2005)) and layer building (Bischoff
and Ratcliff (1995), Costa and Captivo (2016)) algorithms. Conversely, if
the mix of boxes is strongly heterogeneous, boxes will be placed one at a
time. In addition to the decision of how to pack the boxes, one has to decide
which box (or box type) has to be packed at each step. To answer this ques-
tion, Zhao et al. (2016) make the distinction between static predetermined
ordering (Crainic et al. (2008)) and dynamic ordering (Eley (2003)). The
former uses some sorting criteria such as the volume or the height of the
box, whereas the latter is based on the unused volume remaining after the
next placement. Most placement heuristics model available spaces to decide
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where to pack a box. Martello et al. (2000) and Crainic et al. (2008) choose
to identify placement points. These are the candidate placement positions
for placing the unpacked boxes. This will be applied in Chapter 5.

Improvement heuristics aim to enhance solutions provided by placement
heuristics. In general, they define and explore different neighbourhood struc-
tures (among others, Techanitisawad and Tangwiwatwong (2004), Parreño
et al. (2010), Ceschia and Schaerf (2013)).

Zhao et al. (2016) highlight that the number of exact algorithms in 3D
container loading, e.g.,Tsai et al. (1993), Chen et al. (1995), Junqueira et al.
(2012), is small compared to the number of developed heuristics. According
to Zhao et al. (2016), two elements may justify this observation: first, the dif-
ficulty in representing possible patterns or practical packing constraints and
second, the expected large computational times considering the complexity
of the problem.

2.4 Related problems

Cutting and Packing problems can be applied in many different fields and
sometimes combined with other optimisation problems. Here are three ex-
amples.

Routing Problem The packing problem can be considered in combina-
tion with routing problems with loading constraints, which is called a three-
dimensional Loading Capacitated Vehicle Routing Problem in the literature
(e.g., Gendreau et al. (2006), Iori et al. (2007), Junqueira and Morabito
(2015), Côté et al. (2017)). The idea is the following: a set of goods, packed
into boxes, has to be delivered to different customers. The objective is to find
minimum cost delivery routes for a fleet of identical vehicles that, leaving a
depot, visit all the customers only once and then come back to the depot.
With respect to the packing of the goods, the cargo has to respect the typical
geometric C&P constraints as well as the multi-drop constraints explained in
Section 2.2.2. Some other constraints can also be added such as the stability
of the cargo. The challenge is to simultaneously optimise the planning of the
vehicles’ routes and the cargo arrangement inside the vehicles.

Air Cargo Loading Problem As briefly explained in the weight distri-
bution constraints, a cargo aircraft generally contains multiple decks, each
one being partitioned into distinct positions. A position is simply a particu-
lar aircraft space that accommodates exactly one ULD and can only accept
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some specific types of ULDs, depending on their contour, type and weight.
The structure of the Boeing 747 is shown in Figure 2.7. Aircraft loading is
subject to strict safety constraints, with respect to the stress imposed on the
structure of the plane.

main deck

lower deck

Figure 2.7: Possible positions for the ULDs inside a Boeing 747

As explained in Limbourg et al. (2012), Vancroonenburg et al. (2014), Lurkin
and Schyns (2015) among others, the plane must be balanced longitudinally
and transversally, the loading must respect a weight limit at each one inch
slice of the aircraft. Moreover, the position of the centre of gravity of the
loaded plane highly influences the manoeuvrability but also the fuel consump-
tion of the aircraft. Because of the weight and CG constraints, the loading
problem is sometimes called the Weight and Balance problem. The aim is
that all the ULDs are loaded and the weight restrictions are respected so
that the fuel consumption is minimised.

Because of the typical positions, this problem is not actually a Bin Packing
Problem as it can seem, but it is an Assignment Problem as shown in Lurkin
and Schyns (2015). However, typical constraints of C&P problems can be
applied, for example, the allocation constraints for hazardous goods (Lurkin
and Schyns (2015)).

Master Bay Plan Problem The Master Bay Plan Problem consists of
determining how to stow a set of containers of different types into available
locations of a container ship, with respect to some structural and operational
constraints, related to both the containers and the ship, while minimising the
time required for loading all containers on board (e.g., Sciomachen and Tan-
fani (2003), Ambrosino et al. (2004)). This problem has several similarities
with the Air Cargo Loading Problem such as the compartmentalisation of
the container ship and the structural constraints, typical to the Weight and
Balance problems.
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2.5 Problem definition

The aim of this thesis is to solve the MBSBPP with the following constraints:

� each box has to be assigned to exactly one bin,

� each box respects the limits of the bin, including the possible special
shape of the ULDs,

� boxes do not overlap,

� the total weight of the boxes inside a ULD does not exceed its maximum
capacity,

� orthogonal placement of the boxes including possible orientation con-
straints,

� boxes are vertically stable,

� fragility of the boxes is taken into account and

� the weight is uniformly distributed in the loaded ULDs.

Among the 12 papers addressing MBSBPP listed in Bortfeldt and Wäscher
(2013), most proposed heuristic methods, which is natural since C&P prob-
lems are NP-hard combinatorial optimisation problems (Garey and Johnson
(1979)). Chen et al. (1995), Westerlund et al. (2005) and Westerlund et al.
(2007) propose a linear formulation for the MBSBPP with geometric con-
straints only. Jin et al. (2003) propose a similar linear formulation but use
it only for small instances. For large scale instances, the authors develop a
composite constructive algorithm: the first part based on tabu search meta-
heuristics assigns items to bins and the second part uses sub-volume based
heuristics for packing a single bin. Almeida and Figueiredo (2010) propose a
non-linear formulation for the MBSBPP where boxes cannot rotate, but fo-
cus on constructive heuristics based on placement points from Martello et al.
(2000). As in Jin et al. (2003), the heuristic developed in Lin et al. (2006)
is split into two steps: the box assignment to bins and then the packing
itself. In the genetic algorithm proposed in Techanitisawad and Tangwiwat-
wong (2004), there is a first phase for the container selection and a second
phase for the packing. The remaining papers addressing MBSBPP (Fraser
and George (1994), Arenales and Morabito (1997), Brunetta and Grégoire
(2005), de Queiroz et al. (2012), Ceschia and Schaerf (2013) propose several
types of improvement heuristics. The approaches chosen for each paper are
summarised in Table 2.1.
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Table 2.1: Constraints considered in publications on MBSBPP (H=heuristic,
E=exact)
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Fraser and George (1994) H × × ×
Chen et al. (1995) E × ×
Arenales and Morabito (1997) H

Jin et al. (2003) E/H × ×
Techanitisawad and Tangwiwat-
wong (2004)

H × × × ×

Westerlund et al. (2005) E

Brunetta and Grégoire (2005) H

Lin et al. (2006) H × × × ×
Westerlund et al. (2007) E

Almeida and Figueiredo (2010) H × ×
de Queiroz et al. (2012) H × ×
Ceschia and Schaerf (2013) H × × × × ×
Thesis E/H × × × × ×

Only few of the 12 papers consider specific constraints. The formulations
from Chen et al. (1995), Westerlund et al. (2005, 2007) take into account
the geometric constraints and the rotations of the boxes but do not consider
the container weight limit or any other specific constraints. The formulation
presented in Chapter 3 is therefore the first to deal with all these specific
constraints. The two papers presenting constructive heuristics as well as
all the remaining papers consider only a subset of the specific constraints
inherent to the topic of this thesis. Table 2.1 shows the 12 papers dealing
with MBSBPP and the specific constraints taken into account in addition to
the geometric constraints.

Our approach differs from the existing works by the set of constraints in-
tegrated but also by other factors like the type of problem, its representation,
its method of resolution and its dimensionality. The aim of this thesis is to
provide a rich and realistic resolution method for this extended MBSBPP.
In the literature, the linear formulation from Chen et al. (1995) is used as a
basis for the formulation presented in Chapter 3. The extension of placement
points developed in Crainic et al. (2008) are used in the tailored two-phase
constructive heuristic built in Chapter 5. Regarding the application field,
Chan et al. (2006) also deal with air transportation and therefore with ULDs
as well. They propose a two-phase heuristic for the Multiple Stock-Size Cut-
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ting Stock Problem (the assortment of boxes is weakly heterogeneous) and
do not consider the stacking constraints.

As a conclusion, to the best of my knowledge, this work is the first to pro-
pose a linear mathematical formulation, to apply the Relax-and-Fix, Insert-
and-Fix and Fractional Relax-and-Fix matheuristics and to develop a tailored
two-phase constructive heuristic taking into account all the mentioned con-
straints.
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Chapter 3

Mathematical formulation

T he third chapter proposes a Mixed Integer Linear programming formu-
lation for this specific three-dimensional Multiple Bin Size Bin Packing

Problem described in the previous chapter. This chapter is an extended ver-
sion of the methodology presented in Paquay, C., M. Schyns, and S. Limbourg
(2016). A mixed integer programming formulation for the three-dimensional
Bin Packing Problem deriving from an air cargo application. International
Transactions in Operational Research 23 (1-2), 187-213. In Section 3.1, the
set of parameters is presented. Variables used for the geometric constraints
are described in Section 3.2. The objective function is provided in Section 3.3.
Section 3.4 contains the geometric and specific constraints, as well as the vari-
ables required for the specific constraints. Results for small instances and the
influence of the specific constraints are presented in Section 3.5 and finally,
several areas for improvements are introduced in Section 3.6. This work is the
first to propose a unique linear formulation for all these constraints together.
Moreover, special container shapes are handled in this formulation.

The current position in the thesis outline is shown in bold in Figure 3.1.

3.1 Parameters

A set of n rectangular boxes of dimensions li × wi × hi and weight mi (i ∈
{1, ..., n}) has to be packed into m available ULDs of dimensions Lj×Wj×Hj ,
a maximal capacity, also called maximum gross weight, Cj and a volume Vj
(j ∈ {1, ...,m}) while minimising the unused volume. All these numbers are
assumed integer even if it means changing the scale, i.e., considering very
small size units. In this thesis, dimensions are considered in millimetres.
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Figure 3.1: Current position in the thesis outline

These parameters are referred to as: ∀i ∈ {1, ..., n}, j ∈ {1, ...,m}

n Total number of boxes to be packed,

li × wi × hi Length × width × height of box i, ∀i,
mi Weight of box i, ∀i,
m Total number of available ULDs,

Lj ×Wj ×Hj Length × width × height of ULD j, ∀j,
Cj Maximum gross weight of ULD j, ∀j,
Vj Volume of ULD j, ∀j.

The volume of the ULDs can be deduced from the dimensions most of the
time. However, when the ULD has a special shape as explained in the previ-
ous chapter, the value is not easy to compute.

Hereinafter, the subscripts relate to indices and the superscripts relate
to fixed objects. Moreover, index j denotes the ULDs (j ∈ {1, ...,m}) while
indices i and k denote the boxes (i, k ∈ {1, ..., n}).

Based on these parameters, we can define:

L = max
j∈{1,...,m}

Lj , W = max
j∈{1,...,m}

Wj , H = max
j∈{1,...,m}

Hj .
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To ensure at least one feasible solution, some conditions are assumed to
be satisfied: e.g., the weight of each box is supposed to be less than or equal
to the maximum capacity of the bins: mi ≤ maxj Cj ∀i ∈ {1, ..., n}.

3.2 Variables

The situation can be represented in the three-dimensional geometric space.
Without loss of generality, the coordinate system is placed with its origin on
the front left bottom vertex of the ULDs and the axes such that the length
Lj (resp. width Wj , height Hj) of the ULD j lies on the x-axis (resp. y-axis,
z-axis) ∀j ∈ {1, ...,m}. A representation is given in Figure 3.2.

li

wi

h i

w k

lk

hk

L

H

W• •

•

•

•
(0, 0, 0) (xi, yi, zi)

(x′i, y
′
i, z
′
i)

(x′k, y
′
k, z
′
k)

(xk, yk, zk)

z y

x

Figure 3.2: Representation of some parameters and variables: the ULD is
shown in black lines, the boxes i and k are shown in grey, the coordinate
system is on the right

ULDs with a special shape are considered as full parallelepipeds which
have been cut. Thus, the origin is still placed at the front left bottom vertex
as shown in Figure 3.3. More details about how to express these cuts are
provided further.

The variables used for the geometric constraints and objective function
are defined as follows:

pij =

{
1 if box i is in ULD j,

0 otherwise,
∀i, j,

uj =

{
1 if ULD j is used,

0 otherwise,
∀j,
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•
(0, 0, 0)

Figure 3.3: Coordinate system for ULDs with a special shape

(xi, yi, zi) Location of the front left bottom vertex of box i, ∀i,
(x′i, y

′
i, z
′
i) Location of the rear right top vertex of box i, ∀i,

riab =

{
1 if the side b of box i is along the a-axis,

0 otherwise,
∀i,

xpik =

{
1 if box i is on the right of box k(x′k ≤ xi),
0 otherwise(xi < x′k),

∀i,

ypik =

{
1 if box i is behind box k(y′k ≤ yi),
0 otherwise(yi < y′k),

∀i,

zpik =

{
1 if box i is above k(z′k ≤ zi),
0 otherwise(zi < z′k),

∀i.

Note that the variables (xi, yi, zi) and (x′i, y
′
i, z
′
i) are also assumed integer.

This assumption is reasonable because, in practice, the position of a box is
described with a finite precision. These variables describe the position of box
i inside a ULD. They are represented in Figure 3.2.

Since the boxes can rotate orthogonally, variables riab are introduced to
describe the orientation of box i inside a ULD. Index b indicates the side of
the box, i.e., b ∈ {l := 1, w := 2, h := 3}, whereas a indicates the axis, i.e.,
a ∈ {x := 1, y := 2, z := 3}. Variables riab specify which side of box i is along
which axis. For example, these variables are equal to

ri11 = 1 ri12 = 0 ri13 = 0 rk11 = 0 rk12 = 0 rk13 = 1
ri21 = 0 ri22 = 0 ri23 = 1 rk21 = 0 rk22 = 1 rk23 = 0
ri31 = 0 ri32 = 1 ri33 = 0 rk31 = 1 rk32 = 0 rk33 = 0

in Figure 3.2.
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To ensure that there is no overlap, we need to know the relative position
of two boxes. To this purpose, the variable xpik (resp. ypik, z

p
ik) is equal to

1 if box i is on the right (resp. behind, above) of box k. These variables
describe all the situations. Indeed, for instance if box i is on the left of box
k, it means that box k is on the right of box i and then xpki = 1.

In Figure 3.2, one has

xp i k yp i k
i 0 1 i 0 0
k 0 0 k 0 0

Even if the definition of the zpik is the same as xpik and ypik, we will see in
Section 3.4.1 they are not fully determined since it is not necessary. Indeed,
only half of the definition will be guaranteed by the constraints: if zpik = 1,
then we are sure that z′k ≤ zi. On the contrary, if zpik = 0, then we have no
information.

3.3 Objective function

The objective function consists in minimising the unused volume of the se-
lected ULDs

m∑
j=1

ujVj −
n∑
i=1

li wi hi. (3.1)

Since li, wi, hi are parameters that are initially given, the term
∑n

i=1 li wi hi
is a constant. Therefore, the volume of the used ULDs is minimised:

m∑
j=1

ujVj . (3.2)

As mentioned already, Vj represents the volume of the ULD j. However,
other objective functions could be easily considered. For instance, if Vj rep-
resents the cost of ULD j, then the objective function would become a cost
minimisation.

3.4 Constraints

As explained in Section 2.2, constraints can be split into geometric and spe-
cific ones.
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3.4.1 Geometric constraints

The geometric constraints of the model are as follows: ∀a, b ∈ {1, 2, 3}
n∑
i=1

mi pij ≤ Cj uj , ∀j, (3.3)

m∑
j=1

pij = 1, ∀i, (3.4)

x′i ≤
m∑
j=1

Lj pij , ∀i, (3.5)

y′i ≤
m∑
j=1

Wj pij , ∀i, (3.6)

z′i ≤
m∑
j=1

Hj pij , ∀i, (3.7)

x′i − xi = ri11 li + ri12 wi + ri13 hi, ∀i, (3.8)

y′i − yi = ri21 li + ri22 wi + ri23 hi, ∀i, (3.9)

z′i − zi = ri31 li + ri32 wi + ri33 hi, ∀i, (3.10)

3∑
a=1

riab = 1, ∀i, b, (3.11)

3∑
b=1

riab = 1, ∀i, a. (3.12)

The maximum capacity of each ULD j cannot be exceeded, which is
ensured by constraints (3.3). This set of constraints, in conjunction with the
minimisation of the objective function, fully determines the values of variables
uj . Constraints (3.4) verify that each box is allocated to exactly one ULD.
Constraints (3.5)-(3.7) ensure that the boxes do not exceed their ULD size.
Constraints (3.8)-(3.12) describe that the boxes can rotate orthogonally in
the ULD. Note that (3.8)-(3.10) imply xi < x′i, yi < y′i, zi < z′i.

The following constraints ensure that there is no overlap, i.e., two boxes
cannot occupy a same portion of the space:

xpik + xpki + ypik + ypki + zpik + zpki ≥ (pij + pkj)− 1, ∀i, k, j, (3.13)

x′k ≤ xi + (1− xpik) L, ∀i, k, (3.14)

y′k ≤ yi + (1− ypik) W, ∀i, k, (3.15)
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z′k ≤ zi + (1− zpik) H, ∀i, k. (3.16)

When variables xpik, x
p
ki, y

p
ik, y

p
ki, z

p
ik or zpki equal 1, the two boxes i and k

do not overlap along one of the axes. To prevent having two boxes occupying
a same portion of space, it is sufficient to allow no overlap along at least
one of the axes, i.e., at least one of these variables must equal 1. It leads to
constraints (3.13). An overlap can happen only if two boxes are in the same
bin, which is expressed by the right-hand side of constraints (3.13).

To describe additional variables for the vertical stability in Section 3.4.2,
a unequivocal definition of variables xpik and ypik will be necessary. For this
reason, constraints (3.17) and (3.18) are added to the model. In this way,
constraints (3.14)-(3.18) ensure that xpik = 1 if and only if xi ≥ x′k and ypik = 1
if and only if yi ≥ y′k:

xi + 1 ≤ x′k + xpik L, ∀i, k, (3.17)

yi + 1 ≤ y′k + ypik W, ∀i, k. (3.18)

Constraints (3.17) and (3.18) would need to be adapted if coordinate vari-
ables xi, x

′
i, yi, y

′
i were continuous variables.

Note that the parameters L, W, H are used in these constraints because
we do not know in which ULD the boxes i and k have been packed.

3.4.2 Specific constraints

As mentioned in the previous chapter, applying the MBSBPP to the real
world situations implies some specific constraints.

Orientation constraints Some boxes may not rotate in all directions be-
cause of their contents; for instance, some products may not turn upside-
down. To this purpose, some new parameters are introduced for each box
i:

l+i =

{
1 if the length of box i could be in a vertical position,

0 otherwise,

w+
i =

{
1 if the width of box i could be in a vertical position,

0 otherwise,

h+i =

{
1 if the height of box i could be in a vertical position,

0 otherwise.

43



If all these parameters are set to one, each box is free to rotate in any
direction. More precisely, constraints (3.8)-(3.12) allow in this case six ori-
entations for each box. If one parameter is set to zero, two of these six
orientations are forbidden. For example, only the four orientations depicted
in Figure 3.4 should remain feasible with l+i set to 0.

hi

wi

li

li

wi

hi
li

hi

wi

wi

hi li

Figure 3.4: Possible orientations for box i if its length could not be along the
z-axis (l+i = 0)

Likewise, if two parameters equal 0, only two orientations of the box
remain possible. Unless at least one of these parameters equals one, there is
no possible orientation. Keeping in mind that variables ri3b describe which
side of box i is along the z-axis, i.e., determine the value of z′i, constraints
(3.19)-(3.21) come naturally

ri31 ≤ l+i , ∀i, (3.19)

ri32 ≤ w+
i , ∀i, (3.20)

ri33 ≤ h+i , ∀i. (3.21)

Special shapes of the ULDs As explained in the previous chapter, some
ULDs may have a special shape to fit into the fuselage of the aircraft. These
special ULDs can be described as full parallelepipeds whose one or several
corners have been cut. There exist four possible cuts for a ULD. Each cut
can be described by a linear equation and the front left bottom vertex of the
ULD before truncation lies at the origin of the coordinate system as shown
in Figure 3.5. To describe these cuts, eight new parameters (two for each
cut σ, σ ∈ {1, ..., 4}) are added for each bin j: aσj , bσj ∈ R+ as shown in
Figure 3.5.

To lie inside these types of ULDs, each box has to satisfy constraints
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zi + a1jxi = b1j zi − a2jx′i = −b2j

z′i + a3jx
′
i = b3jz′i − a4jxi = b4j

Figure 3.5: Possible cuts (projection on the XZ plane)

associated to the cuts of the bin it is put in:

cut 1: zi + a1jxi ≥ b1j −M(1− pij), ∀i, j, (3.22)

cut 2: zi − a2jx′i ≥ −b2j −M(1− pij), ∀i, j, (3.23)

cut 3: z′i + a3jx
′
i ≤ b3j +M(1− pij), ∀i, j, (3.24)

cut 4: z′i − a4jxi ≤ b4j +M(1− pij), ∀i, j. (3.25)

The value ofM has to be computed such that, when pij = 0, these inequations
are unconstrainted. For this reason,

� for the cut 1: if pij = 0, then z + a1jx − b1j ≥ −M for all values of
z and x. In particular, minx,z(z + a1jx − b1j) = −b1j ≥ −M . Thus,
M ≥ b1j .

� for the cut 2: if pij = 0, then z − a2jx′ + b2j ≥ −M for all values of
z and x′. In particular, minx′,z(z − a2jx′ + b2j) = −a2jL+ b2j ≥ −M .
Thus, M ≥ a2jL− b2j .

� for the cut 3: if pij = 0, then z′ + a3jx
′ − b3j ≤ M for all values of z′

and x′. In particular, maxx′,z′(z
′ + a3jx

′ − b3j) = H + a3jL− b3j ≤M .
Thus, M ≥ H + a3jL− b3j .

� for the cut 4: if pij = 0, then z′ − a4jx − b4j ≤ M for all values of z′

and x. In particular, maxx,z′(z
′ − a4jx − b4j) = H − b4j ≤ M . Thus,

M ≥ H − b4j .
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Therefore, M is equal to max{maxj b1j ,maxj a2jL − b2j ,maxj H + a3jL −
b3j ,maxj H − b4j}. Another possibility would be to consider different values
of M for the different constraints.

This part of the formulation could be easily extended to any bins which
are convex polytopes.

Note that cuts 1 and 2 will influence the vertical stability since a box can
be supported by these cuts as shown in Figure 3.6. This will be explained in
the following.

Figure 3.6: A box supported by another box and an inclined wall

Vertical stability As explained in Section 2.2.2, the bottom face of each
box has to be supported by the top face of other boxes, by a cut or by
the ULD floor. Thus, the boxes are not displaced with respect to z-axis.
Especially, the vertical stability excludes floating boxes.

In this model, we do more than just verify if a box is supported. Physically
speaking, an object is stable if its centre of gravity (CG) lies within its support
base. The weight inside the boxes is assumed to be uniform, therefore the
CG corresponds to the geometric centre of the box. Boxes are also assumed
rigid and unbreakable. By definition, the support base is the convex hull of
all the contact points. The stability constraints of this model rely on this
idea: if a box is not on the ground, then the four vertices of its base must be
supported. In this way, the application point of the applied forces will always
lie in the support base because the support base is the entire box base. This is
the condition for vertical stability (Ramos et al. (2016)). This assumption is
technically sufficient but in practice, an improved stability could be achieved
by ensuring that the base is better supported, for instance, by forcing a given
percentage of its area to be supported. Note that supporting the four vertices
is a restrictive condition and it may be possible to obtain a stable pattern
with only three supported vertices. To achieve the stability, with the help of
some variables, we determine whether a box is on the ground and whether
a vertex of the bottom face is correctly supported. A vertex of the bottom
face of a box i is correctly supported if there is another box k that has the
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suitable height to support the vertex, i.e., the coordinate along the z-axis of
the top face of box k equals the coordinate along the z-axis of the bottom face
of box i (z′k = zi), and with a particular overlap of the projections of these
two boxes on the XY plane. To define this overlap, we consider that the
vertices of box i are assigned to a number in the following way: (xi, yi) := 1,
(x′i, yi) := 2, (x′i, y

′
i) := 3 and (xi, y

′
i) := 4. As shown in Figure 3.7, the vertex

1 (resp. 2, 3, 4) is supported if there exists a box k in the same bin, with the
suitable height, such that

xk ≤ xi < x′k and yk ≤ yi < y′k (3.26)

(resp. xk < x′i ≤ x′k and yk ≤ yi < y′k, (3.27)

xk < x′i ≤ x′k and yk < y′i ≤ y′k, (3.28)

xk ≤ xi < x′k and yk < y′i ≤ y′k). (3.29)

x

y

|
xi

•
1 2

34

—yi

|
xk

|
x′k

—yk

—y′k

Figure 3.7: Vertex (xi, yi) from box i (in solid lines) is supported by the box
k (in dashed lines) (projection on the XY plane)

For this purpose, new variables are introduced:

gi =

{
1 if box i is on the ground(zi = 0),

0 otherwise,
∀i,

hik =


0 if box k has the suitable height to support box i

(zi = z′k),

1 otherwise,

∀i, k,
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oik =


0 if the projections on the XY plane of the boxes

i and k have a non-empty intersection,

1 otherwise,

∀i, k,

sik =

{
1 if box k supports box i and are in the same bin,

0 otherwise,
∀i, k,

η1ik =

{
0 if xk ≤ xi,
1 otherwise,

∀i, k,

η2ik =

{
0 if yk ≤ yi,
1 otherwise,

∀i, k,

η3ik =

{
0 if x′i ≤ x′k,
1 otherwise,

∀i, k,

η4ik =

{
0 if y′i ≤ y′k,
1 otherwise,

∀i, k,

βlik =


1 if vertex l of box i base is supported by

box k,

0 otherwise,

∀i, k, l,

γ1i =


1 if box i lays on cut 1 of the bin in which

it lies,

0 otherwise,

∀i,

γ2i =


1 if box i lays on cut 2 of the bin in which

it lies,

0 otherwise,

∀i,

i, k ∈ {1, ..., n}, l ∈ {1, ..., 4}.
As developed previously, stability constraints could be written as follows

4∑
l=1

n∑
k=1

βlik + 2γ1i + 2γ2i ≥ 4(1− gi) ∀i ∈ {1, ..., n}. (3.30)

If box i is not on the ground, constraints (3.30) ensure that the four
base vertices are supported, either by another box k, or by an inclined wall.
Indeed, if

∑n
k=1 β

l
ik = 1, then it means that there is a box k supporting

vertex l. Besides, if a box i relies on a cut, then two vertices on the same
edge are supported. If we want to require only three supported vertices, then
the factor 4 in the right-hand side of constraints (3.30) has to be equal to 3.
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To define these new variables, constraints (3.31)-(3.52) are added:

zi ≤ (1− gi) H, ∀i, (3.31)

z′k − zi ≤ vik, ∀i, k, (3.32)

zi − z′k ≤ vik, ∀i, k, (3.33)

vik ≤ z′k − zi + 2H(1−mik), ∀i, k, (3.34)

vik ≤ zi − z′k + 2Hmik, ∀i, k, (3.35)

hik ≤ vik, ∀i, k, (3.36)

vik ≤ hik H, ∀i, k, (3.37)

oik ≤ xpik + xpki + ypik + ypki ≤ 2oik, ∀i, k, (3.38)

(1− sik) ≤ hik + oik ≤ 2(1− sik), ∀i, k, (3.39)

pij − pkj ≤ 1− sik, ∀i, j, k, (3.40)

pkj − pij ≤ 1− sik, ∀i, j, k, (3.41)

βlik ≤ sik, ∀i, k, l, (3.42)

xk ≤ xi + η1ik L, ∀i, k, (3.43)

yk ≤ yi + η2ik W, ∀i, k, (3.44)

x′i ≤ x′k + η3ik L, ∀i, k, (3.45)

y′i ≤ y′k + η4ik W, ∀i, k, (3.46)

η1ik + η2ik ≤ 2(1− β1ik), ∀i, k, (3.47)

η2ik + η3ik ≤ 2(1− β2ik), ∀i, k, (3.48)

η3ik + η4ik ≤ 2(1− β3ik), ∀i, k, (3.49)

η1ik + η4ik ≤ 2(1− β4ik), ∀i, k, (3.50)

(1− γ1i )M ≥ zi + a1jxi − b1j − (1− pij)M, ∀i, j, (3.51)

(1− γ2i )M ≥ zi − a2jx′i + b2j − (1− pij)M, ∀i, j, (3.52)

i, k ∈ {1, ..., n}, j ∈ {1, ...,m}, l ∈ {1, ..., 4}.
By constraints (3.31), if gi equals 1, then box i is on the ground. Con-

straints (3.32)-(3.37) define variables hik by using vik which represent the
absolute value |z′k−zi| and mik which is equal to 1 if z′k ≥ zi and 0 otherwise.

Constraints (3.38) are based on the fact that boxes i and k share a part of
their orthogonal projection on the XY plane if xpik+xpki+y

p
ik+ypki = 0. A full

determination of variables oik is required in the hereinafter. If the bottom face
of box i is supported by the top face of a box k, it implies hik+oik = 0. This is
represented by constraints (3.39). A full determination of variables sik is also
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required. A box i can be supported by a box k only if these two boxes are in
the same bin, which is guaranteed by constraints (3.40)-(3.41). Constraints
(3.42) certify that a box k supports one vertex of the base of box i only if
this one is supported by box k, i.e., if sik = 1. Constraints (3.43)-(3.46) are
similar to constraints (3.17) and (3.18). Constraints (3.47)-(3.50) ensure the
second part of equations (3.26)-(3.29) is satisfied to define a supported vertex.
Constraints (3.51) and (3.52) express that a box i is supported by a cut if
this box satisfies the cut at equality. In practice, xi, zi, x

′
i and z′i are integer

numbers and most of the time, the equations of the cuts 1 and 2 do not hold
points with integer coordinates. For this reason, constraints (3.51) and (3.52)
are softened by introducing a precision ε, which can represent the thickness of
the ULD material for example, such that γ1 = 1 if zi+a1xi ∈ [b1−ε1, b1+ε1]
and γ2 = 1 if zi− a2x′i ∈ [b2− ε2, b2 + ε2]. To make it reasonable, a deviation
of 0.45 units (here millimetres) is allowed along the x and z-axes. Thus, ε1
(resp. ε2) is set to 0.45(1 + a1) (resp. 0.45(1 + a2)). Several constraints have
to be adapted:

� (3.22) becomes zi + a1jxi ≥ b1j − ε1 −M(1− pij), ∀i, j,

� (3.23) becomes zi − a2jx′i ≥ −b2j − ε2 −M(1− pij), ∀i, j,

� (3.51) becomes (1− γ1i )M + ε1 ≥ zi + a1jxi − b1j − (1− pij)M,∀i, j,

� (3.52) becomes (1− γ2i )M + ε2 ≥ zi − a2jx′i + b2j − (1− pij)M,∀i, j.

The two sets of constraints (3.51) and (3.52) require an update of the
value of M . Indeed, if pij or γ1i are equal to 0, then the inequations must be
unconstrained, which is ensured if M ≥ max(z+a1jx− b1j) = H+a1jL− b1j
and M ≥ max(z − a2jx′ − b2j) = H + b2j . Thus, M is equal to

M = max{max
j
b1j ,max

j
a2jL− b2j ,max

j
H + a3jL− b3j ,max

j
H − b4j ,

max
j
H + a1jL− b1j ,max

j
H + b2j}. (3.53)

If the ULD j is a parallelepiped that has no cut, then the value of γ1i and
γ2i should equal 0 for all the boxes i located in ULD j. For this reason, the
following constraints are added:

pij + γ1i ≤ a1j + b1j + 1 ∀i, j, (3.54)

pij + γ2i ≤ a2j + b2j + 1 ∀i, j. (3.55)
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Fragility As explained above, some boxes can be fragile, that is they cannot
support boxes on their top face. This can be caused by the nature of the
contents of these boxes. To express that a box i is fragile, a new set of
parameters is introduced:

fi =

{
1 if box i is fragile

0 otherwise
∀i ∈ {1, ..., n}.

Constraints (3.56) ensure that if a box is fragile, then it does not support
any other box on its top face:

n∑
i=1

sik ≤ n(1− fk) ∀k ∈ {1, ..., n}. (3.56)

Indeed, the term
∑n

i=1 sik represents the number of boxes supported by
box k and thus should be equal to 0 if box k is fragile.

Weight distribution As said in the definition of the problem, we would
like to ensure some uniformity about weight distribution. More exactly, ac-
cording to the control and loading manual of Boeing (Boeing (2008)), the CG
of the ULDs must lie within a specific area. Horizontally, this area is defined
around the geometric centre of the ULD base. Vertically, the CG must lie
below a given level.

Physically speaking, it is known that:

1. a system of particles moves as if the resultant external force were applied
to a single particle of mass M (mass of the system) located at its centre
of gravity.

2. the x coordinate of the centre of gravity of n particles is defined to be

xCG =

∑n
i=1mixi∑n
i=1mi

(3.57)

where xi is the x-coordinate of the ith particle and mi its mass.

This means that each box i can be considered as a point located at the

coordinate (
xi+x

′
i

2 ,
yi+y

′
i

2 ,
zi+z

′
i

2 ) of mass mi, because the weight is uniformly
distributed in the boxes. The second quotation states that the CG of the
contents of ULD j is located at the coordinate

1∑
i|pij=1

mi

 ∑
i|pij=1

mi(
xi + x′i

2
),
∑

i|pij=1

mi(
yi + y′i

2
),
∑

i|pij=1

mi(
zi + z′i

2
)


:= (xCGj , yCGj , zCGj ), (3.58)

51



the sums being applied only to the boxes i inside ULD j.

Here is the approach for the x-axis. Since
Lj
2 is the x-coordinate of the

geometric centre of ULD j, we want xCGj to lie in the neighbourhood of
Lj
2 .

To define the allowable range of the xCGj , a new parameter αLj depending on
the type of ULD and on the type of aircraft is introduced. Then, xCGj must

fall into the interval [
Lj
2 − α

L
j ,

Lj
2 + αLj ]. To select only the boxes which are

in bin j, some new real variables are introduced

Xij ≡ pij
(
xi + x′i

2

)
.

According to this definition, they have to satisfy the following constraints

Xij ≤ L pij , ∀i, j, (3.59)

Xij ≤
xi + x′i

2
, ∀i, j, (3.60)

Xij ≥
xi + x′i

2
− L (1− pij), ∀i, j, (3.61)

which are linear. To ensure that xCGj is in the neighbourhood of Lj/2,
constraints (3.62) are added(

Lj
2
− αLj

)
≤
∑n

i=1Xij mi

(
∑n

i=1mipij)
≤
(
Lj
2

+ αLj

)
∀j. (3.62)

For the ULDs with a type 1 or type 2 cut, the constraint (3.62) has to be
adapted. Indeed, xCGj must lie close to the geometrical centre of the base of
the ULD. If the ULD has a type 1 cut, the centre is not Lj/2, but

b1j
a1j

+
1

2

(
Lj −

b1j
a1j

)
=
Lj
2

+
b1j

2a1j

as shown in Figure 3.8. Similarly, if the ULD has type 1 and type 2 cuts, the
centre becomes

b1j
a1j

+
1

2

(
b2j
a2j
− b1j
a1j

)
=

1

2

(
b2j
a2j

+
b1j
a1j

)
.

Note that the value of αLj remains the same since it is linked to the type of
the ULD.
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−

b1j
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×

Figure 3.8: If the ULD has a type 1 or type 2 cut, then xCGj must lie close
to the geometrical centre of the ULD base

The weight distribution along the y-axis can be managed in the same
way. A parameter αWj is introduced and yCGj must lie within the interval

[
Wj

2 − α
W
j ,

Wj

2 + αWj ]. Therefore, the real variables Yij defined as

Yij ≡ pij
(
yi + y′i

2

)
are introduced. The corresponding constraints, similar to (3.59)-(3.62), are

Yij ≤W pij , ∀i, j, (3.63)

Yij ≤
yi + y′i

2
, ∀i, j, (3.64)

Yij ≥
yi + y′i

2
−W (1− pij), ∀i, j, (3.65)(

Wj

2
− αWj

)
≤
∑n

i=1 Yij mi

(
∑n

i=1mipij)
≤
(
Wj

2
+ αWj

)
, ∀j. (3.66)

About the weight distribution along the z-axis, the reasoning is the same
except that the CG has to lie below a given ceiling. Then, a parameter αHj ,
which is the maximal value of zCGj , is introduced. This means that zCGj
must lie within the interval [0, αHj ]. Therefore, the real variables Zij defined
as

Zij ≡ pij
(
zi + z′i

2

)
are introduced. The corresponding constraints, similar to (3.59)-(3.62), are

Zij ≤ H pij , ∀i, j, (3.67)

Zij ≤
zi + z′i

2
, ∀i, j, (3.68)

Zij ≥
zi + z′i

2
−H (1− pij), ∀i, j, (3.69)
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0 ≤
∑n

i=1 Zij mi

(
∑n

i=1mipij)
≤ αHj , ∀j. (3.70)

The weight distribution constraint along the z-axis can become more restric-
tive for the ULDs with a cut of type 1 or 2. Note that this constraint may
prevent the ULDs from having a high filling rate. More precisely, as can be
seen in Chapter 6, αHj has a value around 40%-50% of the height of the ULDs
considered in this thesis.

Variables Xij , Yij and Zij are the only non-integer variables in the formu-
lation.

3.5 Preliminary results

In order to check the validity of the presented formulation and to test the im-
pact of the specific constraints on the solution values and the computational
times, the formulation has been tested on sets of small preliminary instances.
All tests were performed on a workstation with 32.0 GB RAM and an Intel
Xeon processor E5-2620 v4 running 64-bit Windows 10 Pro. The formula-
tions were implemented in Java using IBM ILOG CPLEX 12.6 library as
Branch-and-Bound (B&B) solver with default parametrisation. The compu-
tation time has been limited to one hour for every run. The samples have
30 instances containing 6, 7, 8, 9 and 10 boxes each. A set of six distinct
ULDs is proposed to pack the sets of boxes. More details about the data are
provided in Section 6.1.

First, the complete formulation with all the specific constraints has been
tested for all the sample sizes in Section 3.5.1. Then, the influence of the
fragility constraint, the orientation constraint, the special shape of the ULDs
and the uniform weight distribution constraint has been measured on in-
stances from 6 to 9 boxes in Section 3.5.2.

3.5.1 Complete formulation

The formulation has been solved at optimality for the 30 instances with
6, 7 and 8 boxes, for 27 instances with 9 boxes and 15 instances with 10
boxes. Because of the limited computational time, it has been suboptimally
solved for 3 instances (over 30) with 9 boxes, with an average CPLEX GAP1

equal to 48.28%, and suboptimally solved for 15 instances (over 30) with 10
boxes, with an average CPLEX GAP equal to 39.56%. Information about

1The CPLEX GAP is the relative difference between the objective value of the best
feasible solution and the best-known lower bound.
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the computational times, the number of used ULDs and their filling rates is
provided in Table 3.1.

Table 3.1: Results of the complete formulation resolution (calculations are
made over the 30 instances)

Sample size Times [s.] # ULDs Filling rates [%]

Avg. Min. Max. Avg. Avg. Min. Max.

n = 6 7.73 0.47 139.25 1.10 33.28 6.78 53.43

n = 7 30.59 0.85 517.37 1.23 39.07 7.58 72.09

n = 8 30.59 1.04 274.26 1.27 39.93 6.46 59.20

n = 9 570.99 7.57 3600.00 1.33 36.21 8.71 58.49

n = 10 2085.58 28.99 3600.00 1.53 40.63 10.77 67.12

Sometimes the formulation requires large amounts of computational time
to solve instances even with a small number of boxes. This computation
time becomes a limitation with instances with more than 8 boxes. This
observation will be useful in Chapter 6 for determining the ranges of the
matheuristic parameters.

3.5.2 Influence of the specific constraints

In order to observe the influence of the specific constraints, several adapted
versions of the initial formulation have been created. In each version, one
specific constraint is dropped and the adapted formulation is then solved on
the same small preliminary instances from 6 to 9 boxes as in Section 3.5.1.
Four versions are built: the first version ignores the fragility constraint, the
second does not take into account the orientation constraints, the third does
not consider the cuts of the ULDs (ULDs are then full rectangular paral-
lelepipeds) and the fourth drops the uniformity of the weight distribution.
Figure 3.9 shows the average computational times and the average objective
function values over the 30 instances of each sample size for the different
versions and the complete formulation.

The four adapted formulations are able to optimally solve all the 30 in-
stances with 6, 7 and 8 boxes. The adapted formulation without the fragility
constraint is able to optimally solve 26 instances and suboptimally solve the
remaining 4 instances with 9 boxes (average CPLEX GAP equal to 51.13%).
The formulation without the orientation constraint is able to optimally solve
27 instances, suboptimally solve 2 instances (average CPLEX GAP equal to
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Figure 3.9: Influence of the specific constraints on the computational times
and the objective function values

36.38%) and fails to solve the remaining instance with 9 boxes. The formu-
lation without the special shapes of the ULDs is able to optimally solve 28
instances, suboptimally solve one instance (CPLEX GAP equal to 18.68%)
and fails to solve the remaining instance with 9 boxes. The adapted formu-
lation without the weight distribution constraint is able to optimally solve
26 instances with 9 boxes and suboptimally solve the remaining 4 instances
(average CPLEX GAP equal to 49.44%). The two instances for which the
formulation without the orientation constraint and the formulation without
the special shapes of the ULDs are unable to find a feasible solution in one
hour of computational time are ignored in the average calculations for the
instances with 9 boxes, i.e., only 28 instances of 9 boxes are considered in
Figure 3.9.

When the orientation constraint is dropped, every box is free to orthog-
onally rotate in all the directions. This means that the number of possible
loading patterns increases and this tends to increase the average computa-
tional times to optimally solve the problem as well. However, it may also
create better solutions with respect to the objective function as shown in
Figure 3.9. The same reasoning can be applied to the adapted formulation
without the fragility constraint. Without this constraint, the number of pos-
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sible loading patterns also increases and this may explain why the formulation
needs a larger amount of time to be solved optimally. However, the num-
ber of patterns seems to be smaller than without the orientation constraint,
leading to a smaller average computational time than without the previous
adapted formulation and thus also a smaller improvement of the objective
function values. The formulation without the weight distribution constraint
is, on average, slower than the complete formulation, surely for the same
reason as previously. The average objective function values are slightly im-
proved in comparison to the complete formulation. This improvement can
perhaps be more noteworthy if the number of boxes to be packed is larger
since the weight distribution constraint becomes restrictive when the volume
to be packed is more important.

Conversely, the consideration of the special shapes of the ULDs seems
to increase the average amount of computational time needed to solve the
problems. The average objective function values are smaller when the special
shapes are dropped. This observation is clearly expected: this adapted for-
mulation drops the constraints with the cuts and the support they offered but
the parameter describing the volume (or the cost) of the ULDs have not been
adjusted. The program is thus able to pack more boxes in a ULD with the
same volume (or cost). Even if this parameter is updated, then the proposed
ULDs are not identical to those proposed to the other original and adapted
versions and therefore, the average function values can still not be compared
to the others.

3.6 Areas for improvement

In Section 3.4.2, the fragility of boxes has been taken into account in the
formulation. As an extension, the possibility for boxes to be especially dense
could also be considered and thus those boxes should not be supported by
other boxes. A parameter di equal to 1 indicates that box i cannot be sup-
ported by other boxes. The constraints for this situation would be:

n∑
i=1

ski ≤ n(1− dk) ∀k ∈ {1, ..., n}. (3.71)

This fragility management can be easily extended. We can consider that
a fragile box can support other boxes only if these are also fragile. In this
case, for the possible values of parameters fi and fk, variables sik and ski can
take the following values:
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fi fk sik ski

0 0 0 or 1 0 or 1

0 1 0 0 or 1 box k cannot support box i

1 0 0 or 1 0 box i cannot support box k

1 1 0 or 1 0 or 1

This can be achieved by ensuring that

sikfk ≤ fi ∀i, k.

One step further, we can imagine that the parameter fi is a real param-
eter describing the capacity of supporting boxes. This parameter would be
influenced by the material of the boxes, the orientation of the boxes (as in
Ceschia and Schaerf (2013)) as well as the density of its contents. Consider
that a box with a small value of fi is able to support a lot of weight while
a large value means the box cannot support heavy items. We use this new
parameter definition as follows: a box k can support a box i if and only if
fk ≤ fi. In this way, we can prevent very dense boxes to be supported by less
dense boxes. This can be achieved with the same set of constraints sikfk ≤ fi
for all i, k where fk and fi are real numbers. Similarly, the heuristic proposed
by Techanitisawad and Tangwiwatwong (2004) envisages items with higher
density to be packed below items of lower density.
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Chapter 4

Several MILP-based
constructive heuristics

T he MILP formulation provided in Chapter 3 includes many integer vari-
ables, which partially explains the slowness of its resolution. There-

fore, this fourth chapter presents three constructive matheuristics able to use
the potential offered by the mathematical formulation combined to heuristic
methods: the Relax-and-Fix in Section 4.1, the Insert-and-Fix in Section 4.2
and the Fractional Relax-and-Fix algorithms in Section 4.3. They are iter-
ative procedures which decompose a large-scale MILP problem into several
easier subproblems in order to quickly get an initial feasible solution for the
original problem or to compute bounds on the optimal value. Two specifici-
ties of the developed matheuristics are presented in Section 4.4. Results of
preliminary experimentations are given in Section 4.5. Finally, a direction
for future research is provided in Section 4.6.

These algorithms were originally created to solve lot-sizing problems and
have never been applied to Bin Packing Problems. The application to the
specific three-dimensional MBSBPP described in Chapter 2 is not straight-
forward and needs a deep modification. Thus, the purpose of this fourth
chapter is to adapt these methods to quickly find a feasible solution.

The methodology presented in this chapter has been submitted for pub-
lication in March 2017 as Paquay, C., S. Limbourg, M. Schyns, and J.F.
Oliveira (2017). MIP-based constructive heuristics for the three-dimensional
bin-packing problem with transportation constraints.

For the sake of clarity, the different sets of variables are called fam-
ilies hereinafter. For instance, uj family stands for uj variables for all
j ∈ {1, ...,m}.

The current position in the thesis outline is shown in bold in Figure 4.1.
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Figure 4.1: Current position in the thesis outline

4.1 Relax-and-Fix heuristic

The Relax-and-Fix (R&F) methodology decomposes a large-scale MILP prob-
lem into several easier subproblems, namely by relaxing the integrality restric-
tion of some variables, in order to reduce the computational times.

4.1.1 Literature review

The R&F was originally introduced to solve lot-sizing problems as explained
in Pochet and Wolsey (2006) but has also been used in different areas. For
instance, Kelly and Mann (2004) apply the R&F procedure to develop a flow-
sheet decomposition heuristic. This strategy allows to reduce the time spent
to find good integer-feasible solutions when solving closed-shop scheduling
problems found in the process industries. The basic idea of their algorithm is
to assign units and vessels into equipment-groups. Then they iteratively solve
each group using a separate call to a MILP solver and fix the binary vari-
ables to the best solution found. After that, they proceed to the next group in
the sequence which is primarily determined by the material-flow-path. They
also consider the auxiliary procedure of dropping, hiding or ignoring certain
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constraints. Beraldi et al. (2008) deal with an identical parallel machine lot-
sizing and scheduling problem with sequence-dependent set-up costs. They
use the R&F methodology with four distinct partitions of the set of variables
and develop two types of rolling-horizon heuristic. The authors base their
procedures on a compact formulation relying on the hypotheses of identical
machines. They conclude that the relax-and-fix procedure outperforms the
rolling-horizon heuristics. Ferreira et al. (2010) present a MILP model for
the integrated lot-sizing and sequencing problem found in typical Brazilian
regional small-scale soft drink plants. Considering the possibility of creating
sub-models that are smaller and easier, they apply the R&F methodology.
They propose different strategies for fixing the variables and explore at the
same time the distinct configurations of the CPLEX system. Finally, they
measure the quality of these strategies with a performance profile proposed
by Dolan and Moré (2002). Oliveira et al. (2014) propose a R&F heuristic
procedure to solve a specific vehicle-reservation assignment model. In order
to reduce the potential infeasibility of a subproblem of the R&F heuristic,
they include a constraint based on local branching that enables and controls
changes between iterations. Baena et al. (2015) adapt the R&F methodology
to the Controlled Tabular Adjustment (CTA) which is a technique for tabular
data protection. CTA can be formulated as a MILP problem, but the size of
the data is too important to get a solution quickly. The authors customized
the R&F heuristic to get a good initial solution and lower bounds. They also
add a backtrack mechanism in the algorithm to avoid some infeasible itera-
tions. Furthermore, they combine their R&F with a block coordinate descent
heuristic. To choose the best parameters, the performance profile defined in
Dolan and Moré (2002) is used. To our knowledge, the above mentioned
articles present a good coverage of applications of the R&F heuristics.

4.1.2 Methodology

The first in-depth explanation of the R&F methodology can be found in
Pochet and Wolsey (2006) for logistics problems. A description is as follows.
The original MILP

min cx+ fy

s.t. Ax+By ≥ b (4.1)

x ∈ Rn+
y ∈ {0, 1}p

has to be solved. Let Q = {1, ..., p} be the index set of the y variables.
These variables can be integer instead of binary variables. The authors par-
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tition the index set of integer variables y into R disjoints subsets Q1, ..., QR

of decreasing importance. They also introduce some auxiliary subsets U r ⊆
Qr+1 ∪ . . . ∪ QR for r ∈ {1, ..., R − 1}. The methodology comprises se-
quentially solving R smaller MILPs to find a heuristic solution to the original
MILP. These subproblems are denoted MILPr with 1 ≤ r ≤ R and are as in
(4.2) where yr−1j denotes the value of variable yj obtained at iteration r − 1.
Note that the index j is different from the index j related to the ULDs.

min cx+ fy (MILPr)

s.t. Ax+By ≥ b (4.2)

x ∈ Rn+
yj = yr−1j ∈ {0, 1} ∀j ∈ Q1 ∪ · · · ∪Qr−1

yj ∈ {0, 1} ∀j ∈ Qr ∪ U r

yj ∈ [0, 1] ∀j ∈ Q\(Q1 ∪ · · · ∪Qr ∪ U r)

The idea at iteration r is to fix values of the variables y with index in
Q1 ∪ · · · ∪ Qr−1 at their optimal values from the solution of the previous
subproblem (MILPr−1) and relax the integrality restriction for the remaining
variables (with index in Q\(Q1 ∪ · · · ∪ Qr ∪ U r)). As can be seen, the
subsets U r make the algorithm less myopic as they represent sets of variables
whose values are not kept for the next iteration but still have to be integer.
An example of the types of the y variables during the first three iterations of
the R&F heuristic is illustrated in Figure 4.2.

Therefore, MILPR provides a heuristic solution for the original MILP
(4.1) unless there exists an iteration r for which MILPr is infeasible which
means the heuristic failed.

This methodology is adapted to our MILP. The families Xij , Yij and Zij
represent the real variables x in (4.1), while all the other families represent the
variables y. The first step is to partition the indices of the integer variables y
into Q1, ..., QR subsets of decreasing importance. Their construction is box-
oriented: at each iteration, the variables related to a subset of boxes are not
relaxed, while the variables related to the rest of boxes have the integrality
constraint relaxed. After solving this easier MILP, we keep the values of the
integer variables relative to some boxes to fix them at the next iteration.

We define a block , denoted B, as a selection of families of integer vari-
ables. Indeed, if all the integer variables relative to a subset of the boxes are
relaxed, the solution obtained can be too far from the original problem and
this causes the failure of the heuristic. Then, the parts Qr and U r are built
by selecting elements relative to some boxes within each family of the block.
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Step 1:
integer real
|
Q1
|
Q2
|
Q3
|
Q4
| |

QR−1
|
QR

|

U1

Step 2:
fixed integer real
|
Q1
|
Q2
|
Q3
|
Q4
| |

QR−1
|
QR

|

U2

Step 3:
fixed integer real

|
Q1
|
Q2
|
Q3
|
Q4
| |

QR−1
|
QR

|

U3

Figure 4.2: An example of the types of variables y during the first three
iterations of a Relax-and-Fix algorithm

Note. During the first step, the variables from Q1 ∪ U1 are integer while the others are

relaxed. During the second step, the variables from Q1 are fixed to the values obtained in

step 1, the variables from Q2∪U2 are integer while the others are relaxed. During the third

step, the variables from Q1 ∪ Q2 are fixed to the values obtained in step 2, the variables

from Q3 ∪ U3 are integer while the others are relaxed.

In mathematical terms, the set of indices of the integer variables y, denoted
F , is divided into two parts:

� FB contains the indices of the variables of the families in the selected
block

� F¬B = F\FB contains all the other indices.

Only the subset FB is partitioned in subsets Q1, ..., QR of decreasing impor-
tance. Then one has F = FB ] F¬B and FB = Q1 ] · · · ] QR. The sets
U r ⊆ Qr+1 ∪ · · · ∪QR for r ∈ {1, ..., R− 1} are also introduced. They repre-
sent variables corresponding to some next boxes in the sequence which also
satisfy the integrality condition. Based on these definitions, (4.2) is turned
into the following MILPr which is sequentially solved for r ∈ {1, ..., R}:

min cx+ fy (MILPr)

s.t. Ax+By ≥ b
x ∈ Rn+
yj ∈ Z+ ∀j ∈ F¬B
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yj = yr−1j ∈ Z+ ∀j ∈ Q1 ∪ · · · ∪Qr−1

yj ∈ Z+ ∀j ∈ Qr ∪ U r

yj ∈ R+ ∀j ∈ FB\(Q1 ∪ · · · ∪Qr ∪ U r).

In order to describe the subsets Qr and U r, two integers q and u, with q < u,
are introduced. Because the subsets Q1, ..., QR are of decreasing importance
and because the largest boxes are the most difficult to pack, boxes are first
sorted by decreasing volume. The subset Q1 (resp. U1) is then defined as
the variables relative to the first q boxes (resp. from box q + 1 to u) in the
families of the block, Q2 (resp. U2) to the q next boxes (resp. from box 2q+1
to q+u) in the sequence of boxes and so on. More generally, sets Qr and U r

can be defined as the set of variables relative to the boxes:

Qr from box (r − 1)× q + 1 to r × q
U r from box r × q + 1 to (r − 1)× q + u

Qr ∪ U r from box (r − 1)× q + 1 to (r − 1)× q + u

where r ∈ {1, ..., R} is the index of the iteration. At step r, the variables
relative to the boxes from 1 to (r − 1)× q are fixed to a previous value, the
variables relative to the u next boxes (i.e., from (r−1)×q+1 to (r−1)×q+u)
are integer, but among those, only the values of the variables relative to the
first q boxes (i.e., from (r − 1) × q + 1 to (r − 1) × q + q) are kept for the
next iteration. As a matter of fact, parameter u denotes the number of
boxes whose variables are integer and to be determined and q the number of
boxes whose variables are fixed. The first two steps of Figure 4.2 can thus be
represented as follows:

Step 1:
integer real
|

q
|

q
|

q
|

q
| |

q
|

q
|

u

Step 2:
fixed integer real
|

q
|

q
|

q
|

q
| |

q
|

q
|

u

Since there are a lot of families relative to boxes, there exist many poten-
tial blocks. Only the most representative and intuitive blocks are considered
in this thesis. The chosen blocks are described in Table 4.1. The second col-
umn contains the name given to the blocks which are used hereunder. The
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variables considered in these blocks can be seen as primary variables. Indeed,
the other variables are mainly intermediate variables depending on the values
of the primary ones and defined to handle specific constraints.

Table 4.1: Blocks tested in the Relax-and-Fix heuristic
Families in the block Name of the block

pij pij

pij , xi, yi, zi, x
′
i, y
′
i, z
′
i Coord & pij

xi, yi, zi, x
′
i, y
′
i, z
′
i Coord

pij , xi, yi, zi, x
′
i, y
′
i, z
′
i, riab, gi, γ

1
i , γ2i All i

In practice, if the block Coord defined in Table 4.1 is examined, then the
variables during the first two steps of the algorithm are as in Table 4.2.

Table 4.2: Types of the variables during the first two steps of the Relax-and-
Fix heuristic with the block Coord

Variables Types Sets

Xij , Yij , Zij ,∀i ∈ {1, ..., n}, ∀j ∈ {1, ...,m} Real

uj , pij , riab, x
p
ik, ypik, zpik, gi, hik, aik, mik,

oik, sik, γ1i , γ2i , η1ik, η2ik, η3ik, η4ik, βl
ik, ∀i, k ∈

{1, ..., n}, ∀j ∈ {1, ...,m}

Integer F¬B

S
te

p
1

x1, y1, z1, x′1, y′1, z′1,..., xu, yu, zu, x′u, y′u, z′u Integer Q1 ∪ U1

xu+1, yu+1, zu+1, x′u+1, y′u+1, z′u+1,..., xn, yn,
zn, x′n, y′n, z′n

Real FB\(Q1 ∪
U1)

x1, y1, z1, x′1, y′1, z′1,..., xq, yq, zq, x′q, y′q, z′q Fixed to
previous
value

Q1

S
te

p
2 xq+1, yq+1, zq+1, x′q+1, y′q+1, z′q+1,..., xq+u,

yq+u, zq+u, x′q+u, y′q+u, z′q+u

Integer Q2 ∪ U2

xq+u+1, yq+u+1, zq+u+1, x′q+u+1, y′q+u+1,
z′q+u+1,..., xn, yn, zn, x′n, y′n, z′n

Real FB\(Q1 ∪
Q2 ∪ U2)

The stopping criterion is based on the number of steps. Indeed, the
algorithm must stop as soon as q × r + u ≥ n, i.e., r ≥ n−u

q .
Algorithm 1 represents the R&F approach. Here are some details about

its content:

� selVar[i] represents all the variables of the block families relative to
box i,
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� results[i] contains the kept values of the selected variables relative
to box i,

� r is the index of the step of the algorithm.

Algorithm 1 Relax-and-Fix heuristic on boxes
r=0
while r < n−u

q do
for i = 1 to q × r do

selVar[i] ← results[i]

end for
for i = min{q × r + u+ 1, n} to n do

selVar[i].integralityRestrictionRelaxed
end for
solveMILP
if MILPHasASolution then

for i = q × r + 1 to min{q × r + q, n} do
results[i] ← value(selVar[i])

end for
r ← r + 1

else
heuristicFailed - STOP

end if
end while

HeuristicSolutionFound

4.2 Insert-and-Fix heuristic

The Insert-and-Fix (I&F) methodology uses an iterative procedure to build
an initial solution. Introduced in Liberalino (2012), this algorithm is similarly
based on the decomposition of a large-scale MILP into smaller subproblems.
However, the I&F and the R&F heuristics are different in their construction
of these subproblems. First, in the subproblems built by the I&F method,
not all the variables are considered at every iteration. Variables are added
step by step along the algorithm. The second difference is the absence of
relaxation of the integrality restriction. At each iteration, all the considered
variables are set to their final type. However, as in the R&F algorithm, at
the end of each iteration the values of a subset are kept to be fixed at the
next step.

We also adapt this methodology to our MILP as follows: let F denote the
set of indices of all the variables x and y in MILP (4.1). F is decomposed into
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two parts: FB and F¬B. FB contains the indices of the variables which are
introduced step by step during the algorithm, while F¬B contains the indices
of the variables which are present in the whole algorithm. FB may contain
integer variables y and non-integer variables x. The families of integer (resp.
non-integer) variables of FB are partitioned into parts Q1, ..., QR (resp. W 1,
..., WR) of decreasing importance. These cells Qr and W r for r ∈ {1, ..., R}
are added iteration after iteration. Some subsets U r ⊆ Qr+1 ∪ · · · ∪ QR for
r ∈ {1, ..., R − 1} are also introduced to make the algorithm more flexible.
Then, the methodology consists of solving sequentially R MILPs, denoted
MILPr with 1 ≤ r ≤ R, to find a heuristic solution to the original MILP
(4.1):

min cx+ fy (MILPr)

s.t. Ax+By ≥ b (4.3)

xi ∈ R+ ∀i ∈ F¬B
yj ∈ Z+ ∀j ∈ F¬B
yj = yr−1j ∈ Z+ ∀j ∈ Q1 ∪ · · · ∪Qr−1

xi ∈ R+ ∀i ∈W 1 ∪ · · · ∪W r

yj ∈ Z+ ∀j ∈ Qr ∪ U r.

Note that the index i is different from the index i related to the boxes. At
step r, integer variables with index in Q1 ∪ · · · ∪ Qr−1 are fixed at their
optimal values from the solution of the previous subproblem (MILPr−1) and
those with index in Qr ∪U r are dealt with. Note that variables in FB\(Q1 ∪
· · · ∪Qr ∪U r ∪W 1 ∪ · · · ∪W r) are totally ignored and there is no relaxation
of the integrality restriction. An example of the integer variables y with
indices in FB considered during the first three iterations of the I&F heuristic
is illustrated in Figure 4.3.

In our MILP, the subset F¬B only contains the family uj because it does
not correspond to boxes. This means that these variables are present along
the whole algorithm. The subset FB holds the families of non-integer variables
Xij , Yij , Zij (split into W 1, ...,WR) and all the remaining families of integer
variables (split into Q1, ..., QR).

The key part of the methodology is the definition of Qr, U r and W r for
all r. Their construction relies on the idea of inserting boxes, step by step,
inside ULDs. Therefore, all the variables, integer or non-integer, are divided
in such a way that each subset Qr and W r represent the variables inherent
to several boxes. At the first step, the idea comprises introducing the first
u boxes. The index set of these variables is the set Q1 ∪ U1 for the integer
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Step 1:
integer
|
Q1
|

U1

Step 2:
fixed integer
|
Q1
|
Q2
|

U2

Step 3:
fixed integer

|
Q1
|
Q2
|
Q3
|

U3

Figure 4.3: An example of the integer variables y with indices in FB consid-
ered during the first three iterations of an Insert-and-Fix heuristic

Note. During the first step, only the variables from Q1 ∪ U1 exist and are integer while

the other y variables from FB are ignored. During the second step, the variables from Q1

are fixed to the values obtained in step 1, the variables from Q2 ∪ U2 are considered and

integer while the others are ignored. During the third step, the variables from Q1 ∪ Q2

are fixed to the values obtained in step 2, the variables from Q3 ∪ U3 are considered and

integer while the others are still ignored.

variables and the W 1 for the non-integer variables: Q1 (resp. U1, W 1) is
defined as the index set of the variables relative to the boxes from 1 to q
(resp. from q+ 1 to u, from 1 to u), with q < u. More generally, sets Qr, U r

and W r can be defined as the set of variables relative to the boxes:

Qr from box (r − 1)× q + 1 to r × q ∀r,
U r from box r × q + 1 to (r − 1)× q + u ∀r,

Qr ∪ U r from box (r − 1)× q + 1 to (r − 1)× q + u ∀r,
W 1 from box 1 to u,

W r from box u+ (r − 2)× q + 1 to (r − 1)× q + u ∀r ≥ 2,

where r ∈ {1, ..., R} is the index of the iteration. As a matter of fact, the pa-
rameter u denotes the number of boxes whose variables are to be determined
and q the number of boxes whose variables are fixed. The first two steps of
Figure 4.3 can thus be represented as follows:
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Step 1:
integer
| |
q

u

Step 2:
fixed integer
|
q
|
q
|

u

Another representation of the first two iterations of the I&F heuristic is
shown in Table 4.3.

Table 4.3: Existing variables during the first two steps of the Insert-and-Fix
heuristic

Variables Types Sets

uj ∀j ∈ {1, ...,m} Integer F¬B

S
te

p
1

Xij , Yij , Zij ,∀i ∈ {1, ..., u}, ∀j ∈ {1, ...,m} Real W 1

xi, yi, zi, x
′
i, y
′
i, z
′
i, aik, pij , riab, x

p
ik, ypik, zpik,

gi, hik, mik, oik, sik, γ1i , γ2i , η1ik, η2ik, η3ik, η4ik,
βl
ik, ∀i, k ∈ {1, ..., u}, ∀j ∈ {1, ...,m}

Integer Q1 ∪ U1

S
te

p
2 xi, yi, zi, x

′
i, y
′
i, z
′
i, aik, pij , riab, x

p
ik, ypik, zpik,

gi, hik, mik, oik, sik, γ1i , γ2i , η1ik, η2ik, η3ik, η4ik,
βl
ik, ∀i, k ∈ {1, ..., q}, ∀j ∈ {1, ...,m}

Fixed to
previous
value

Q1

Xij , Yij , Zij ,∀i ∈ {1, ..., q + u}, ∀j ∈ {1, ...,m} Real W 1 ∪W 2

xi, yi, zi, x
′
i, y
′
i, z
′
i, aik, pij , riab, x

p
ik, ypik, zpik,

gi, hik, mik, oik, sik, γ1i , γ2i , η1ik, η2ik, η3ik, η4ik,
βl
ik, ∀i, k ∈ {q + 1, ..., q + u}, ∀j ∈ {1, ...,m}

Integer Q2 ∪ U2

We need to be careful with the weight distribution constraints. Indeed,
in a subproblem, some constraints could become meaningless if other related
variables have not yet been included. Therefore, those constraints are consid-
ered at each iteration for the boxes present at that moment of the algorithm.
It is rather restrictive, but enforcing them all at the last step would tend to
make the problem infeasible.

Algorithm 2 represents the I&F methodology. In this algorithm,
intVar[i] (resp. realVar[i]) represents the integer (resp. non-
integer) variables associated to box i and the method add(intVar[i]) and
add(realVar[i]) consists of adding the variables and the constraints associ-
ated to box i.

69



Algorithm 2 Insert-and-Fix heuristic
r=0
while r < n−u

q do
for i = 1 to q × r do
intVar[i] ← results[i]

end for
for i = q × r + 1 to min{q × r + u, n} do

add(intVar[i])
add(realVar[i])

end for
solveMILP
if MILPHasASolution then

for i = q × r + 1 to min{q × r + q, n} do
results[i] ← value(intVar[i])

end for
r ← r + 1

else
heuristicFailed - STOP

end if
end while
HeuristicSolutionFound

4.3 Fractional Relax-and-Fix heuristic

The Fractional Relax-and-Fix (FRF) methodology can be considered as a
combination of the R&F and the I&F heuristics: it is an iterative procedure
working on a subset of the original MILP (as in the I&F), but also on the
relaxation of the integrality constraints (as in the R&F). This methodology
was introduced in Pochet and Wolsey (2006) and in Liberalino (2012). The
basic concept is identical to the I&F heuristic, that is, only a subset of the
original model is solved iteratively. Variables, and constraints inherent to
them, are added step by step along the algorithm. The difference is the
relaxation of the integrality restriction on a part of the variables.

Here is how the FRF has been adapted to our MILP. From MILP (4.1),
let F be the index set of the variables x and y. This set is partitioned into two
parts: F¬B contains the indices of the variables which are present in the whole
algorithm while FB contains those of the families which successively appear
as in the I&F methodology. The influence of the R&F appears in the FB set.
FB contains the indices of families of integer and non-integer variables. From
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the integer families, several are selected to have the integrality restriction
relaxed on a part of them. This selection of integer families is called a block
as defined in the R&F heuristic. The blocks from Table 4.1 are also considered
for this heuristic. The chosen block is divided to build the subsets Q1, ..., QR.
In mathematical notations, FB is divided into two parts:

� FbB represents several families of integer variables on which the inte-
grality restriction is relaxed at some stage of the algorithm. It contains
the indices of the variables of the families in the selected block;

� F¬bB contains families of integer or real variables. This subset is not
affected by the relaxation of the integrality constraints.

This partitioning is represented in Figure 4.4.

Fx y

FB
F¬B

FbB

Figure 4.4: Partitioning of the variables in a Fractional Relax-and-Fix algo-
rithm

As in the R&F heuristic, the only variables that are fixed during the
algorithm are those previously affected by the relaxation of the integrality
constraint. For this reason, only the variables of FbB can be fixed. The subset
FbB is divided into several parts: Q1 ∪ · · · ∪ QR and some auxiliary subsets
are introduced: U r ⊆ Qr+1 ∪ · · · ∪ QR and V r ⊆ U r for all r ∈ {1, ..., R}.
The idea is to consider integer variables with index in Qr ∪ U r and to relax
the integrality restriction on variables with index in U r\V r. This adds more
flexibility in the algorithm since the values of all the integer variables are not
kept for the next iteration. On the other hand, F¬bB is divided into subsets
W 1, ...,WR which are also inserted step by step. Thus, one has

F = FB ∪ F¬B where FB = FbB ∪ F
¬b
B and FbB = Q1 ∪ · · · ∪QR

U r ⊆ Qr+1 ∪ · · · ∪QR ∀r ∈ {1, ..., R}
V r ⊆ U r ∀r ∈ {1, ..., R}
F¬bB = W 1 ∪ · · · ∪WR.

This gives the following definition of MILPr:

min cx+ fy (MILPr)
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s.t. Ax+By ≥ b (4.4)

xi ∈ R+ ∀i ∈ F¬B
yj ∈ Z+ ∀j ∈ F¬B
xi ∈ R+ ∀i ∈W 1 ∪ · · · ∪W r

yj ∈ Z+ ∀j ∈W 1 ∪ · · · ∪W r

yj = yr−1j ∈ Z+ ∀j ∈ Q1 ∪ · · · ∪Qr−1

yj ∈ Z+ ∀j ∈ Qr ∪ V r

yj ∈ R+ ∀j ∈ U r\V r.

At step r, the idea is to consider the variables with index in W 1 ∪ · · · ∪W r

without relaxation, to fix the variables with index in Q1 ∪ · · · ∪ Qr−1 at
their optimal values from the solution of MILPr−1, to add the variables with
index in Qr ∪ U r, but to relax the integrality restriction on variables with
index in U r\V r. All the variables with index in F¬B exist and have the final
type during the whole algorithm (no integrality constraint relaxed for the y
variables). An example of the integer variables y with index in FbB during
the first three iterations of a FRF algorithm is shown in Figure 4.5.

During the application of the algorithm to our specific MILP, the set F¬B
contains the family uj because these variables are present during the entire
algorithm and do not depend on the index i. FbB contains the families of the
selected block while F¬bB holds all the remaining families.

To describe the subsets Qr, U r, V r and W r, three integers q, v and u,
with q < v < u, are needed. At the first iteration, the idea is to insert the
first u boxes of the sorted sequence, but relax some variables relative to the
last u−v boxes and then to keep the values of a selection of variables relative
to the first q boxes. Specifically, we

� introduce the variables relative to box 1 to box u from the set F¬bB and
FbB,

� relax the integrality restriction on variables from the set FbB for the box
v + 1 to u,

� keep the values of the variables from the set FbB for the box 1 to q for
the second iteration once the MILP is solved.

On the one hand, this means that the subset Q1 (resp. U1, V 1) is defined as
the index set of the variables in the families of the block relative to the first q
boxes (resp. from box q+1 to u, from q+1 to v) of the sorted sequence, then
Q2 (resp. U2, V 2) corresponds to the variables relative to the q next boxes
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Step 1:

integer real

|
Q1

|

U1

V 1

Step 2:
fixed integer real

|
Q1

|
Q2

|

U2

V 2

Step 3:
fixed integer real

|
Q1

|
Q2

|
Q3

|

U3

V 3

Figure 4.5: An example of the integer variables y with index in FbB during
the first three iterations of a Fractional Relax-and-Fix algorithm

Note. During the first step, only the variables from Q1 ∪U1 exist, Q1 ∪ V 1 are integer and

U1\V 1 are relaxed while the other y variables from FbB are ignored. During the second

step, the variables from Q1 are fixed to the values obtained in step 1, the variables from

Q2 ∪ U2 are considered, Q2 ∪ V 2 are integer and U2\V 2 are relaxed while the others are

ignored. During the third step, the variables from Q1 ∪Q2 are fixed to the values obtained

in step 2, the variables from Q3 ∪ U3 are considered, Q3 ∪ V 3 are integer and U3\V 3 are

relaxed while the others are still ignored.
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(resp. from box 2q + 1 to q + u, from box 2q + 1 to q + v) of the sequence
and so on. On the other hand, W 1 (resp. W 2) contains the indices in F¬bB
of the variables relative to the box 1 to box u (resp. u + 1 to box q + u).
More generally, the subsets Qr, V r, U r and W r can be defined as the set of
variables relative to the boxes:

Qr from box (r − 1)× q + 1 to r × q ∀r ∈ {1, ..., R}
U r from box r × q + 1 to (r − 1)× q + u ∀r ∈ {1, ..., R}
V r from box r × q + 1 to (r − 1)× q + v ∀r ∈ {1, ..., R}
W 1 from box 1 to u

W r from box u+ (r − 2)× q + 1 to (r − 1)× q + u ∀r ∈ {2, ..., R}.

As a matter of fact, parameter u denotes the number of boxes which
are considered and whose variables are to be determined, v is the number of
boxes whose variables have the integrality restriction to be satisfied and q the
number of boxes whose variables are fixed. The first two steps of Figure 4.5
can thus be represented as follows:

Step 1:

integer real

|

q

|
v

u

Step 2:
fixed integer real

|

q

|

q

|

u

v

Note that if u = n, then the FRF becomes a R&F heuristic and if v = u,
it becomes a particular case of the I&F in which only a subset of variables
relative to a box are fixed from one iteration to another.

In practice, if the block Coord defined in Table 4.1 is examined, then the
variables during the first two steps of the algorithm are presented in Table 4.4.

The algorithm should stop as soon as q× r+ v ≥ n, which means it runs
as long as r < n−v

q .
Algorithm 3 represents the FRF heuristic. Here are more details about

the new functions:

� selVar[i] represent all the variables of the families constituting the
subset FbB and
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Table 4.4: The first two steps of the Fractional Relax-and-Fix heuristic on
block Coord

Variables Types Sets

uj ∀j ∈ {1, ...,m} Integer F¬B

S
te

p
1

Xij , Yij , Zij ,∀i ∈ {1, ..., u}, ∀j ∈ {1, ...,m} Real W 1

pij , riab, x
p
ik, ypik, zpik, gi, hik, aik, mik, oik, sik,

γ1i , γ2i , η1ik, η2ik, η3ik, η4ik, βl
ik, ∀i, k ∈ {1, ..., u},

∀j ∈ {1, ...,m}

Integer

xi, yi, zi, x
′
i, y
′
i, z
′
i, ∀i ∈ {1, ..., v} Integer Q1 ∪ V 1

xi, yi, zi, x
′
i, y
′
i, z
′
i, ∀i ∈ {v + 1, ..., v + u} Real U1\V 1

S
te

p
2 xi, yi, zi, x

′
i, y
′
i, z
′
i, ∀i ∈ {1, ..., q} Fixed to

previous
value

Q1

Xij , Yij , Zij ,∀i ∈ {q + 1, ..., q + u}, ∀j ∈
{1, ...,m}

Real W 1 ∪W 2

pij , riab, x
p
ik, ypik, zpik, gi, hik, aik, mik, oik, sik,

γ1i , γ2i , η1ik, η2ik, η3ik, η4ik, βl
ik, ∀i, k ∈ {1, ..., q +

u}, ∀j ∈ {1, ...,m}

Integer

xi, yi, zi, x
′
i, y
′
i, z
′
i, ∀i ∈ {q + 1, ..., q + v} Integer Q2 ∪ V 2

xi, yi, zi, x
′
i, y
′
i, z
′
i, ∀i ∈ {q + v + 1, ..., q + u} Real U2\V 2
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� var[i] represent all the variables of the families constituting the subset
F¬bB .

Algorithm 3 Fractional Relax-and-Fix on boxes
r=0
while r < n−v

q
do

for i = 1 to q × r do
selVar[i] ← results[i]

end for
for i = q × r + 1 to min{q × r + u, n} do

add(var[i])
add(selVar[i])

end for
for i = min{q × r + v + 1, n} to min{q × r + u, n} do

selVar[i].integralityRestrictionRelaxed
end for
solveMILP
if MILPHasASolution then

for i = q × r + 1 to min{q × r + q, n} do
results[i] ← value(selVar[i])

end for
r ← r + 1

else
heuristicFailed - STOP

end if
end while

HeuristicSolutionFound

4.4 General remarks

Backtracking As in Baena et al. (2015), a backtrack process has been
developed to overcome possible failures of the algorithms. Indeed, it may
happen that a heuristic fails at one step, especially when the integrality
restriction is removed and then reinserted. This does not mean the original
problem is infeasible and this failure does not bring any information about
the suitability of this algorithm, except that some variables cannot be fixed to
those values at that step. Backtracking works as follows: if a failure occurs at
iteration r, the MILPr is solved again, but without fixing the integer variables
with index in Qr−1. If the heuristic fails again, then we backtrack once more,
solving MILPr without fixing the integer variables with index in Qr−1 and
in Qr−2. We can proceed that way r− 1 times, ending with just a relaxation
of the initial MILP, which is supposed to be feasible.
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Additional ULDs One advantage of the matheuristics in comparison to
a B&B resolution is the number of considered ULDs. When using the B&B
technique, the number of proposed ULDs is fixed and initially given. The
problem is that, on one hand, too many ULDs increase the computational
times since the number of constraints and variables grows. On the other
hand, too few ULDs can miss a potentially better loading. The heuristics
developed here do not encounter this problem. Indeed, because they are
iterative procedures, new ULDs can be added at each iteration. In detail, at
the beginning of the procedure an initial ULD set is proposed and at the end
of each iteration, if there is a (or several) new used ULD(s), then a copy of
the new used ULD(s) is created and added to the list of proposed ULDs.

4.5 Preliminary results

4.5.1 Parameter ranges

These three types of matheuristics have different parameters which would
need to be tuned in order to get the best possible solutions with respect to
the objective function. The assignment of values to each parameter is called
a configuration. This is achieved in Section 6.2 using irace parametrisation
technique.

However, some preliminary experiments have been carried out on small
samples of 30 instances containing 7, 8, 9 and 10 boxes. More details about
the data will be provided in Section 6.1. The three types of constructive
heuristics have been implemented in Java, using IBM ILOG CPLEX 12.5
library as B&B solver for the subproblems, under the default parametrisation.
Tests were carried out on a personal computer (Windows 8, Intel Core i7,
2.40 GHz, 8.00 GB of RAM) and the time limit for each heuristic run is one
hour. In this first test phase, the possibility to add ULDs during the runs is
not considered.

Relax-and-Fix heuristic

Table 4.5 contains the results of several configurations of the R&F heuristics.
As a reminder, n is the number of boxes for each instance, u is the number of
boxes with unrelaxed integer variables and q is the number of boxes for which
we keep the values of the variables for the next iterations. For each block,
each value of n and each configuration, the average computational times,
in seconds, over the 30 instances are provided. Note that it may happen
that some instances cannot be solved within one hour. Let w denote the
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Table 4.5: Average computational times, in seconds, over the 30 instances of
each size for different configurations of the Relax-and-Fix heuristics

n = 7 n = 8 n = 9 n = 7 n = 8 n = 9

pij Coord & pij

u = 2; q = 1 13.36(1) 73.83 151.18(4) 73.31 66.64 73.46(4)

u = 3; q = 1 14.19(1) 98.59(1) 140.23(3) 12.97(1) 112.19 175.38(3)

u = 3; q = 2 40.66 86.75(1) 140.86(3) 13.70(1) 133.45 170.41(3)

u = 4; q = 1 11.30(1) 55.61 283.76(3) 13.67(1) 79.36(1) 174.18(3)

u = 4; q = 2 11.15(1) 45.97 277.35(3) 13.55(1) 79.04(1) 171.86(3)

u = 4; q = 3 11.15(1) 45.99 275.27(3) 13.51(1) 173.08 191.67(3)

Coord All i

u = 2; q = 1 93.05 51.87 164.56(3) 10.85(1) 107.00 79.79(2)

u = 3; q = 1 54.66 71.63 314.06(3) 14.77(1) 56.49 161.67(2)

u = 3; q = 2 51.67 69.81 308.97(3) 12.71(1) 43.04(1) 286.04(1)

u = 4; q = 1 55.36 57.97 182.01(2) 13.15(1) 225.51 155.61(3)

u = 4; q = 2 52.99 57.26 177.95(2) 14.53(1) 45.76 166.15(4)

u = 4; q = 3 53.78 56.94 178.15(2) 9.56(1) 237.81 180.81(3)

B&B 15.67(1) 64.43 114.04(5) 15.67(1) 64.43 114.04(5)

Note. The notation ·(w) means that the heuristic with that configuration could not find a

solution to the original problem within one hour for w out of the 30 instances. The average

computational times are then calculated on the 30− w remaining instances. The last row

contains the results obtained with a direct B&B resolution.

number of unsolved instances. In that case, the average computational time
is calculated over the remaining 30− w solved instances.

As expected, the larger the value of n, the larger the computational times.
From this table, we can already see that for several instances with 9 boxes,
these heuristics may not find a feasible solution within one hour. Looking
at the computational times of both the heuristic and the B&B (last row in
Table 4.5), they are sometimes larger for the heuristics. It is useless to try
configurations with larger values of u, the subproblems would then be more
considerable and the computational times would tend to increase. Consid-
ering the long computational times, there seems little advantage in looking
deeper at this method; apparently, it does not suit this kind of problem.

Insert-and-Fix heuristic

Table 4.6 shows the average computational times of the I&F algorithm. Ob-
viously, computational time increases as the number of boxes increases or as
the value of u increases. Still, the average computational time is rather rea-
sonable and dramatically smaller than for the B&B, unlike the R&F heuris-
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Table 4.6: Average computational times, in seconds, over the 30 instances of
each size for different configurations of the Insert-and-Fix heuristics

n = 7 n = 8 n = 9 n = 10

u = 2; q = 1 0.28 0.36 0.47 0.57

u = 3; q = 1 0.32 0.43 0.53 0.68

u = 3; q = 2 0.41 0.36 0.44 0.58

u = 4; q = 1 0.42 0.52 0.65 0.90

u = 4; q = 2 0.37 0.42 0.54 0.74

u = 4; q = 3 0.34 0.41 0.53 0.61

u = 5; q = 1 1.05 0.72 0.84 1.36

u = 5; q = 2 0.90 0.64 0.68 0.96

u = 5; q = 3 0.87 0.60 0.70 0.91

u = 6; q = 1 7.52 2.45 3.46 2.95

u = 6; q = 2 4.78 2.32 3.60 4.22

u = 6; q = 3 4.74 2.29 2.86 3.24

u = 7; q = 1 10.01 16.43 13.41

u = 7; q = 2 9.98 15.67 12.58

u = 7; q = 3 9.92 15.46 11.23

u = 8; q = 1 209.92(1) 208.12

u = 8; q = 2 208.76(1) 206.51

B&B 15.67(1) 64.43 114.04(5) 519.89(13)

Note. The notation ·(w) means that the heuristic with that configuration could not find a

solution to the original problem within one hour for w out of the 30 instances. The average

computational times are then calculated on the 30− w remaining instances. The last row

contains the results obtained with a direct B&B resolution.

tics. However, some instances needed more than one hour to be solved for
u = 8. Therefore, parameter u will be tuned in the range [2, 7]. Intuitively,
the larger u, the closer to the original problem, and a small value of q al-
lows more flexibility from one step to another potentially leading to better
solutions. Moreover, a large value of q means that a lot of variables in each
subproblem are fixed and it could increase the time to find a feasible solution.
For these reasons, parameter q is considered in the range [1, 3].

Fractional Relax-and-Fix heuristic

The FRF heuristics have three parameters for each configuration, compared
with only two for the previous heuristics.

We can observe that the four FRF heuristics have reasonable computa-
tional times in comparison to times obtained with the B&B.

Almost the same conclusions may be drawn for the two blocks Coord
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and Coord & pij when the preliminary results in Table 4.7 and Table 4.8
are observed. One can see that some configurations have difficulties finding
solutions within one hour even for 7 boxes. There is no configuration with u =
8 that works for the instances with 9 or 10 boxes. Therefore, the parameter
u will be tuned in the range [3, 7]. The parameters v and q have to be such
that q < v < u and thus v will be in the range [2, 6]. As explained in the I&F
parameters selection, the parameter q is considered in the range [1, 3]. About
the blocks pij and All i, Table 4.7 and Table 4.8 show that they are not able
to give a solution to the original problem within one hour of computational
time even for a small number of boxes. Considering the long computational
times, there is little advantage in looking deeper at these two methods, as for
the R&F.

4.5.2 Influence of suboptimal resolution

As can be seen in Section 4.5.1, the computational times can become very
large even for instances with a small number of boxes to pack. These impor-
tant computational times are often due to the search of the optimal solution
of each subproblem. A feasible solution can sometimes be quickly obtained,
but its improvement or even just the proof of its optimality can be very time
consuming. A method to speed up the process could be to accept suboptimal
solutions for the subproblems.

For each instance, the whole algorithm has a maximum computational
time of one hour. In this variant, every subproblem also has a maximum time
limit, timeLimitPerStep, for its resolution, possibly leading to a suboptimal
solution. For each subproblem resolution, one has:

� before the limit timeLimitPerStep is reached, the resolution may stop
because:

– an optimal solution has been found → kept and next step,

– the subproblem is infeasible:

* if there is still available time for computation, then the algo-
rithm backtracks,

* if there is no more available time, then the heuristic has failed;

� after timeLimitPerStep, the resolution is stopped:

– if there is a feasible solution → kept and next step,

– if there is no solution found,
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Table 4.7: Average computational times, in seconds, over the 30 instances of
each size for different configurations of the Fractional Relax-and-Fix heuris-
tics with the blocks pij and Coord

FRF pij FRF Coord

n = 7 n = 8 n = 9 n = 10 n = 7 n = 8 n = 9 n = 10

u = 3

v = 2; q = 1 0.45 0.67 0.44 0.52

u = 4

v = 2; q = 1 0.84 0.90 0.61 0.70

v = 3; q = 1 0.91 0.88 0.60 0.61

v = 3; q = 2 9.71 0.64 0.46 0.48

u = 5

v = 2; q = 1 2.58 3.81 1.73 1.07

v = 3; q = 1 2.51 1.59 1.63 1.28

v = 3; q = 2 1.09 1.34 1.08 1.01

v = 4; q = 1 5.33 2.94 1.52 1.01

v = 4; q = 2 1.00 1.64 1.25 0.78

v = 4; q = 3 0.86 0.96 0.97 0.78

u = 6

v = 3; q = 1 4.44(1) 54.47 11.52(1) 117.82 17.70 3.78 3.95 4.88

v = 3; q = 2 4.28 5.62 13.45 41.03(1) 4.33 2.86 3.16 3.29

v = 4; q = 1 3.47(1) 6.47 13.94 9.06(1) 8.39 4.18 5.66 9.10

v = 4; q = 2 6.03 5.72 40.43 6.86 5.24 2.97 3.62 5.53

v = 4; q = 3 5.96 4.01 3.10 11.67(1) 5.08 2.90 3.25 3.77

v = 5; q = 1 3.10(1) 6.07 4.41(1) 5.03 8.79 3.29 10.48 4.59

v = 5; q = 2 5.35 3.69 2.72(1) 4.04 4.24 2.85 3.66 2.88

v = 5; q = 3 5.24 3.12 2.68 3.30 4.31 2.63 9.88 2.76

u = 7

v = 4; q = 1 22.05 57.73(1) 39.56(3) 10.34 102.68 18.26

v = 4; q = 2 13.81 14.74(1) 60.89 9.82 11.50(1) 44.69

v = 4; q = 3 13.64 13.45 75.26(2) 9.84 11.83 16.64

v = 5; q = 1 24.44 29.62(1) 23.64 8.95 30.09(1) 25.03

v = 5; q = 2 11.77 32.51(1) 16.34 8.31 133.61 31.80

v = 5; q = 3 15.26 35.42 20.60(1) 8.21 19.77 13.68

v = 6; q = 1 19.47 12.28(2) 74.65(1) 20.11 67.32 19.17

v = 6; q = 2 13.06 8.42(2) 70.55 19.36 39.89 14.67

v = 6; q = 3 10.40 9.37(1) 15.06(1) 18.98 11.15 12.10

u = 8

v = 4; q = 1 94.14(1) 151.61(4) 100.76(2) 91.46(3)

v = 4; q = 2 91.41(1) 315.58(4) 162.17(1) 304.32(1)

v = 4; q = 3 96.90 137.37(3) 117.33(1) 299.22(1)

v = 5; q = 1 163.92(1) 327.76(1) 161.73(1) 194.21(1)

v = 5; q = 2 112.69(1) 196.12(2) 158.93(1) 185.37(1)

v = 5; q = 3 149.59 256.67(1) 157.27(1) 185.15

v = 6; q = 1 184.79(1) 416.88(2) 96.92(2) 327.45

v = 6; q = 2 78.99(1) 245.51(2) 60.58(2) 302.45

v = 6; q = 3 70.98(1) 262.57(1) 59.72(2) 302.63

B&B 15.67(1) 64.43 114.04(5) 519.89(13) 15.67(1) 64.43 114.04(5) 519.89(13)

Note. The notation ·(w) means that the heuristic with that configuration could not find a

solution to the original problem within one hour for w out of the 30 instances. The average

computational times are then calculated on the 30− w remaining instances. The last row

contains the results obtained with a direct B&B resolution.
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Table 4.8: Average computational times, in seconds, over the 30 instances of
each size for different configurations of the Fractional Relax-and-Fix heuris-
tics with the blocks Coord & pij and All i

FRF Coord & pij FRF All i

n = 7 n = 8 n = 9 n = 10 n = 7 n = 8 n = 9 n = 10

u = 3

v = 2; q = 1 0.40 0.45 1.42 1.02

u = 4

v = 2; q = 1 0.67 0.99 11.46 48.43

v = 3; q = 1 0.56 0.57 2.04 1.49

v = 3; q = 2 0.40 0.45 1.10 2.33

u = 5

v = 2; q = 1 3.01 1.69 7.18 62.38

v = 3; q = 1 1.34 1.06 8.20 21.86

v = 3; q = 2 1.83 0.87 4.58 11.93

v = 4; q = 1 1.44 0.96 4.52 10.25

v = 4; q = 2 1.15 0.83 3.76 89.98

v = 4; q = 3 0.97 0.98 5.44 14.01

u = 6

v = 3; q = 1 48.24 3.31 4.67 5.35 17.87 21.41(1) 109.66(2) 93.31(2)

v = 3; q = 2 7.21 3.30 10.72 4.69 8.55 159.95 32.53(3) 81.01(3)

v = 4; q = 1 10.90 4.56 4.26 4.78(1) 33.47 12.68 23.84(3) 21.06(2)

v = 4; q = 2 4.46 5.83 3.79 54.64 9.70 16.20 58.41(2) 91.92(1)

v = 4; q = 3 4.41 4.02 3.83 36.96(1) 7.50 19.15 82.69(2) 23.68(1)

v = 5; q = 1 5.62 3.40 14.24 3.66 9.08 111.03(1) 15.71 9.35

v = 5; q = 2 3.37 3.14 2.78 3.28 5.29 16.82 7.54 19.40

v = 5; q = 3 3.39 3.03 18.26 3.69 4.84 15.04 6.05(1) 129.79(1)

u = 7

v = 4; q = 1 10.56 55.49 25.38 269.92 338.49(1) 74.88(2)

v = 4; q = 2 9.90 88.44 33.01 120.00 342.93(2) 44.53(4)

v = 4; q = 3 9.84 14.20 31.32(1) 126.32 165.53(1) 137.26(6)

v = 5; q = 1 10.21 37.12 15.77 36.64 32.67(3) 54.78(3)

v = 5; q = 2 9.49 8.48(1) 13.37 37.60 68.15(2) 74.67(4)

v = 5; q = 3 9.41 10.70 13.20 121.82 160.41(1) 40.33(6)

v = 6; q = 1 9.76 18.59(1) 12.88 18.59 125.91(2) 141.93

v = 6; q = 2 9.15 110.81 11.58 14.33 130.87(2) 138.93

v = 6; q = 3 9.14 13.42 11.64 13.46 59.61(1) 25.97(1)

u = 8

v = 4; q = 1 65.81(1) 240.27(1) 112.70(5) 242.88(4)

v = 4; q = 2 89.75 202.99(2) 278.30(3) 159.11(2)

v = 4; q = 3 89.01 185.43(2) 157.58(2) 82.78(5)

v = 5; q = 1 106.39(2) 180.47 57.06(4) 101.18(3)

v = 5; q = 2 104.27(2) 174.98 179.11(2) 424.19(5)

v = 5; q = 3 103.81(2) 175.48 140.94(2) 156.84(5)

v = 6; q = 1 107.66(1) 194.75(1) 200.80(2) 100.59(2)

v = 6; q = 2 155.49 192.55(1) 119.04(3) 127.41(2)

v = 6; q = 3 130.19 192.32(1) 130.34(2) 280.14(3)

B&B 15.67(1) 64.43 114.04(5) 519.89(13) 15.67(1) 64.43 114.04(5) 519.89(13)

Note. The notation ·(w) means that the heuristic with that configuration could not find a

solution to the original problem within one hour for w out of the 30 instances. The average

computational times are then calculated on the 30− w remaining instances. The last row

contains the results obtained with a direct B&B resolution.
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* if there is still available time for computation, then the res-
olution continues until a feasible solution has been found or
the time has elapsed,

* if there is no more available time, then the heuristic has failed.

The time limit per step is based on the parameters of the matheuristics.
For the R&F and the I&F heuristics, the total number of steps in the algo-
rithm is dn−uq e. The available time, 60 minutes, is uniformly divided over the
steps: each step has a maximum time limit equal to

timeLimitPerStep =
60

dn−uq e
minutes. (4.5)

This choice is reasonable because if parameter u is large, then the subprob-
lems to solve are larger and the computational times can be more important.
Conversely, if parameter u is small, there are a large number of small sub-
problems to be solved and a small amount of time can be sufficient to find a
solution.

This extension has been applied to the R&F with the block pij and to the
I&F and experiments have been carried out using IBM ILOG CPLEX 12.6
library as B&B solver with default parametrisation.

R&F with the block pij In Table 4.5, one can see that even the instances
with 9 boxes can be unsolved within one hour of computational times regard-
less of the parameter values. The extension of the R&F with the block pij
with a limited duration for the possibly suboptimal resolution of the subprob-
lems is tested on the 30 instances with 9 boxes with the parameters u = 5
and q = 1. With this configuration, the original MILP is decomposed into 5
subproblems to be solved. With the equation (4.5), each subproblem has a
maximum time limit equal to 720 seconds to be solved with the suboptimal
R&F with the block pij . Table 4.9 shows the objective function values and
the computational times (in seconds) for the original R&F and the subopti-
mal R&F with the block pij . The last column indicates the steps for which
the subproblems have been suboptimally solved because of the time limit.
One can see that the six instances unsolved with the original R&F have a
solution with the suboptimal R&F. Out of the 24 remaining instances, for
19 instances, the resolutions are identical for both methods (each iteration
naturally lasts less than 720 seconds) and for 5 instances, the resolution with
the suboptimal R&F with the block pij is clearly faster but the same objec-
tive function values are obtained. One can also observe that the iteration
that takes a lot of time is often the first iteration. The last row shows the
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average computational times over the 30 instances. The suboptimal R&F is
faster than the original R&F and is then able to find a solution for all the
instances.

I&F As can be seen in Table 4.6, the I&F can already have some difficul-
ties to find solutions for sets of 9 boxes within one hour of computational
times when u = 8. For smaller parameter values, the heuristic is fast and
the improvement brought by this extension can be missed. For this reason,
experiments are carried out with the configuration u = 8 and q = 1 on a set
of 30 instances, each instance having 30 boxes to be packed. In this case, the
algorithm splits the problem into 23 subproblems, i.e., 23 iterations. Con-
sidering the equation (4.5), each subproblem has 156 seconds to be solved
with the suboptimal I&F heuristic. Table 4.10 shows the objective function
values and the computational times (in seconds) for the original I&F and the
suboptimal I&F. The last column indicates the steps for which the subprob-
lems have been suboptimally solved because of the time limit. One can see
that the three instances unsolved with the original I&F have a solution with
the suboptimal I&F. Moreover, six instances have the same objective function
values with both heuristics but faster with the suboptimal I&F than with the
original I&F. Finally, only one instance has a larger objective function value
with the suboptimal I&F than with the original I&F. The last row shows the
average computational times over the 30 instances. The suboptimal I&F is
clearly faster than the original I&F as expected.

Based on these results, the parameters for the suboptimal I&F may pos-
sibly take other values than those selected in Section 4.5.1. More computa-
tional experiments should be carried out to validate this assumption and to
measure the loss of quality with such extension.

A hint to improve this alternative would be to change the parameters of
CPLEX to emphasise the search of feasible solutions early in the B&B (MIP
emphasis switch).

4.6 Areas for improvement

Box sorting In each heuristic, boxes are sorted by non-increasing volume.
Other sorting operators could be applied to the list of boxes.
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Table 4.9: Comparison of the original R&F and the suboptimal R&F with
the block pij

Inst. Original R&F Suboptimal R&F

Obj. fct. Duration Obj. fct. Duration Suboptimal

[s.] [s.] steps

1 5 79.92 5 74.91

2 9.1 33.30 9.1 30.86

3 - 3600.33 12.4 721.47 step 0

4 12.4 2460.87 12.4 722.32 step 0

5 31.1 19.84 31.1 17.80

6 7.4 46.21 7.4 42.32

7 - 3600.32 12.4 938.36 step 0

8 16.5 1352.80 16.5 740.32 step 0

9 12.4 425.55 12.4 400.76

10 31.1 28.99 31.1 26.68

11 - 3600.36 12.4 721.49 step 0

12 12.4 3038.51 12.4 743.40 step 0

13 9.1 110.76 9.1 101.60

14 - 3600.34 16.5 1425.74 step 0

15 5 62.76 5 54.93

16 - 3600.12 16.5 1249.29 step 0

17 7.4 26.55 7.4 25.12

18 19.1 1927.65 19.1 1097.71 step 0

19 16.5 249.67 16.5 235.66

20 7.4 31.57 7.4 29.17

21 7.4 20.79 7.4 18.89

22 31.1 16.12 31.1 14.76

23 31.1 3.24 31.1 2.73

24 31.1 29.57 31.1 26.32

25 12.4 262.30 12.4 251.39

26 7.4 2902.12 7.4 734.60 step 0

27 - 3600.29 7.4 720.80 step 0

28 7.4 100.61 7.4 91.08

29 31.1 157.63 31.1 148.93

30 12.4 45.50 12.4 41.84

Avg. 1167.82 381.71
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Table 4.10: Comparison of the original I&F and the suboptimal I&F

Inst. Original I&F Suboptimal I&F

Obj. fct. Duration Obj. fct. Duration Suboptimal

[s.] [s.] steps

1 31.1 14.74 31.1 14.24

2 38.5 47.02 38.5 45.58

3 31.1 21.91 31.1 20.70

4 50 48.23 50 46.90

5 23.9 624.04 23.9 423.73 steps 3, 5

6 26.3 235.55 26.3 233.58

7 31.3 339.03 31.3 330.24 step 5

8 28.9 377.91 28.9 230.21 step 4

9 28 22.92 28 21.80

10 - 3599.55 23.9 1228.62 steps 1-3, 5-8

11 18.9 35.99 18.9 33.35

12 23.9 2268.50 26.3 395.15 steps 4, 5

13 28 26.82 28 24.76

14 18.9 33.42 18.9 32.35

15 62.2 77.49 62.2 76.00

16 - 3596.99 41.1 1041.79 steps 6-11

17 45.4 1878.14 45.4 521.69 steps 2, 4

18 43.5 91.33 43.5 85.74

19 - 3597.00 36.1 374.01 steps 7, 8

20 62.2 22.06 62.2 19.75

21 26.3 409.04 26.3 246.96 step 5

22 37.8 895.15 37.8 617.49 steps 2-4

23 50 27.90 50 25.76

24 18.9 48.04 18.9 44.88

25 18.9 72.53 18.9 69.73

26 23.9 71.97 23.9 68.36

27 31.1 36.13 31.1 33.93

28 27.4 146.44 27.4 138.70

29 18.9 35.41 18.9 33.45

30 23.9 58.72 23.9 55.30

Avg. 625.33 217.82
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Chapter 5

A tailored two-phase
constructive heuristic

T he matheuristics developed in the previous chapter provide solutions in
shorter computational times than those obtained with the B&B resolu-

tion of the linear formulation from Chapter 3. However, these matheuristics
are still limited for instances with a large number of boxes as will be shown
in Chapter 6. Therefore, this fifth chapter proposes a fast algorithm to build
an initial solution for the specific three-dimensional MBSBPP described in
Chapter 2. This algorithm is composed of two main phases. First, a packing
algorithm, described in Section 5.1, provides a loading pattern for a given set
of boxes and a given ULD type. This packing process is based on the Extreme
Points introduced in Crainic et al. (2008). The different types of proposed
ULDs and their selection represent the second phase of the algorithm, using
the packing algorithm as a subroutine (Section 5.2). Finally, among the fea-
sible loading patterns created during the second phase, the pattern with the
minimum used volume is selected and if necessary is enhanced in terms of
weight distribution as explained in Section 5.3. Section 5.4 provides several
areas for improvement for this method.

The methodology presented in this fifth chapter has been submitted for
publication in March 2017 as Paquay, C., S. Limbourg and M. Schyns (2017).
A tailored two-phase constructive heuristic for the three-dimensional Multiple
Bin Size Bin Packing Problem with transportation constraints.

The current position in the thesis outline is shown in bold in Figure 5.1.
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Figure 5.1: Current position in the thesis outline

5.1 Packing algorithm: Phase 1

In this section, an algorithm is developed to provide a loading pattern for
a given set of boxes and a given ULD type. The ULD is available in an
unlimited quantity and the aim is to use its volume in the most efficient
manner.

Among the possible constructive heuristics, two algorithms represent
a promising perspective as they showed interesting results in terms of
worst-case performance ratio for the one-dimensional Bin Packing Problem
(Martello and Toth (1990)). The First Fit Decreasing (FFD) algorithm first
sorts the list of items by non-increasing size and then considers each item one
after another. It assigns each item to the lowest indexed bin into which it
fits. If there is no such bin, then a new bin is created. The Best Fit Decreas-
ing (BFD) algorithm assigns an item to the feasible bin (if any) having the
smallest residual capacity. If there is no such bin, then a new bin is created.

However, the adaptation of these algorithms for the three-dimensional
case is far from simple: several rules for sorting the items and the bins exist
and placing a box in a bin can also be achieved in different ways. This
challenge was taken up by Crainic et al. (2008) who considered the three-
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dimensional Single Bin Size Bin Packing Problem in which items cannot
be rotated or overlap. They raised another important point: the choice of
placement points is a major challenge in multi-dimensional C&P problems.
Indeed, the space utilisation and the solution quality are highly influenced
by the item-positioning rule. This issue is particularly crucial and difficult to
manage for three-dimensional situations. For this reason, Crainic et al. (2008)
developed an Extreme Point (EP)-based rule for packing items inside a three-
dimensional container. The EPs represent the relevant possible positions to
accommodate items and are an extension of the Corner Points introduced
in Martello et al. (2000). This new EP rule has been created to be efficient
with regard to computational effort and volume utilisation. After extensive
experiments, the authors selected a BFD algorithm with a specific sorting
rule for the items as well as an EP selection rule.

The packing algorithm proposed in this chapter is based on the EP defined
in Crainic et al. (2008). However, several extensions are provided to consider
all the constraints of the specific MBSBPP studied in this thesis. Namely,
the rotations, the possible fragility and the stability of the boxes as well as
the particular shape of some ULDs are taken into account.

As explained in Chapter 3, each box i has a length li, a width wi, a
height hi, and a weight mi, all these dimensions being integers. The position
of the box i in the loading pattern is described by its front left bottom vertex
(xi, yi, zi) and its top right rear vertex (x′i, y

′
i, z
′
i) in a system as described in

Figure 5.2. In this section, identical ULDs are available to pack the set of
boxes.

li

hi

w i

L

H

W• •
(xi, yi, zi)(0, 0, 0)

z y

x

Figure 5.2: The coordinate system associated to a bin and the coordinates
of a box i

The possible fragility of the boxes needs special care in this algorithm. As
a reminder, no other box can be packed on top of a fragile box. Therefore,
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if the top face of a fragile box is low in the ULD, then a consequent volume
above this becomes unusable for packing other boxes. For this reason, two
lists of boxes are used and the packing algorithm is divided into two major
parts as represented in Figure 5.3. L1 is the main list containing all the
boxes with their best orientation. The best orientation of a non-fragile box
is selected with the Clustered Area-Height rule from Crainic et al. (2008). If
the box is fragile, the best orientation is the orientation with the minimum
top face area in order to minimise the unusable space. This criterion leads
to two possible orientations. If the considered ULD type has a length larger
(resp. smaller) than the width, then the box orientation with the largest
length (resp. width) is selected. First, the boxes from L1 are handled one
after another. During this first part, a fragile box cannot be packed too low
in a ULD because it would lead to a waste of volume above its top face. This
is called the Not Too Low constraints in the following. If a fragile box cannot
be packed, then it is added to L2 (Part I). Second, once all the boxes from L1

have been packed or assigned to L2, all the fragile boxes from L2 are loaded
at any possible height (Part II).

To select the location of a box, possible interesting positions are described
by the EPs. Thus, at any time of the procedure, a global list contains all
the EPs existing in all the ULDs. At each iteration, a box (from L1 or L2)
is examined and tried to be packed. To select the position for packing the
box, each EP of the global list is tested to check whether the box with this
orientation can be placed with its left front bottom vertex on that EP while
satisfying several constraints. If it is possible, the EP is suitable for that
box. From the list of suitable EPs, the best EP according to a merit func-
tion defined in Section 5.1.2 is selected to accommodate the considered box.
However, if the list of suitable EPs is empty, which means that the current
box cannot be packed anywhere, then a new bin is created unless the box is
fragile, this box would then be added to L2. Indeed, opening a new ULD
and packing a fragile box as the first box would lead to a important waste of
volume. Therefore, these unpacked fragile boxes are differently handled. Ev-
ery time a box is packed, new EPs are generated since new positions become
conceivable. These new EPs can be suitable for the fragile boxes already
assigned to L2. For this reason, these EPs are analysed for the current boxes
of L2 and used to accommodate any of these if possible. This process is
called L2 testing as mentioned in Figure 5.3 and is explained in more detail
in Figure 5.7.

Each part of the algorithm is now detailed.
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Figure 5.3: Packing algorithm
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5.1.1 Creating L1

Building the list The first step of the packing algorithm consists in build-
ing the list of boxes to take into account the possibility of orthogonal rotations
and the possible fragile boxes. In more detail, a box initially has six different
orientations, but it may happen that it is not authorised to be packed in some
orientations due to its contents as explained in Chapter 2. Some orientations
may not be feasible because the box would not fit in the proposed ULD type.

To check if a box with a given orientation is feasible for a ULD type,
this oriented box is tried to be packed on the first EP of an empty ULD.
The first EP of a ULD is located on the front left bottom vertex, that is
(0, 0, 0) if the ULD has no type 1 cut, ( b1a1 , 0, 0) otherwise1. Each of the
authorised orientations is analysed and checked for whether the box with
this orientation can be packed on the first EP. A list with all the authorised
and feasible orientations, i.e., the possible oriented boxes, is created. This
list thus contains between zero and six elements. If the list is empty, it means
that no orientation is acceptable and it is thus impossible to pack the box
even in an empty ULD. This box (with all its orientations) is kept for a
different ULD type. If there is only one oriented box in the list, then this
oriented box is added to L1. If the list has more than one oriented box, then
the best orientation, which depends on the fragility of the box, is selected
and the corresponding oriented box is added to L1. If the box is fragile, the
best orientation is the orientation with the minimum top face area. This
criterion leads to two possible orientations. If the considered ULD type has
a length larger (resp. smaller) than the width, then the orientation with the
largest length (resp. width) is selected as previously explained. If the box is
not fragile, the best orientation is obtained with the Clustered Area-Height
sorting rule from Crainic et al. (2008).

The Clustered Area-Height rule works as follows: the set of boxes to pack
is partitioned into clusters, each box being assigned to a cluster according
to the size of its base area. Each cluster Aj,δ corresponds to a proportion δ,
with δ ∈ [0.01, 1], of the bin base area L×W :

Aj,δ = {boxes i | li × wi ∈ ](j − 1)× L×W × δ, j × L×W × δ]}.

The value of δ represents the proportion of the base area. The number of
clusters is thus equal to

⌈
1
δ

⌉
.

For example, if δ = 0.3, then the set of boxes is partitioned into four
different clusters:

1As described in Section 3.4.2, a type 1 cut can be written as zi + a1xi = b1.
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� A1,30 = {boxes i | li × wi ∈]0, 0.3L×W ]},

� A2,30 = {boxes i | li × wi ∈]0.3L×W, 0.6L×W ]},

� A3,30 = {boxes i | li × wi ∈]0.6L×W, 0.9L×W ]} and

� A4,30 = {boxes i | li × wi ∈]0.9L×W,L×W ]}.

If a box has a base whose area represents less than 30% of the base area of
the ULD, then this box is assigned to A1,30. Note that a box with a base area
larger than L×W cannot fit in this type of ULD. Thus, the cluster A4,30 has
an upper limit equal to L×W .

Inside each cluster, items are then sorted by non-increasing value of their
height hi. If two boxes have the same base area and the same height, then, if
the considered ULD type has a length larger (resp. smaller) than the width,
the box with the largest length (resp. width) is considered first. Finally, the
clusters are sorted by decreasing value of j, which implies that the cluster
with the boxes with the largest bases is considered first.

In Crainic et al. (2008), the value of δ has been tuned. However, since
a lot of other constraints are added, the value of δ has to be calibrated to
optimise the objective function of this specific algorithm in the experiments,
which is addressed in Section 6.2.3.

The best feasible orientation is thus selected and added to the list L1.

Sorting the list Once L1 is created, the sequence according to which the
boxes are considered has still to be decided. Several rules to sort list L1 may
be applied. For instance, boxes can be sorted by non-increasing volume or by
non-increasing values of their base area. Crainic et al. (2008) state that the
Clustered Area-Height is the sorting rule leading to the minimum number of
selected bins. This rule is thus applied to sort L1.

5.1.2 Part I

Each box of list L1 is considered and packed if possible, one after another.
Thus, during the packing algorithm, one tries to pack a given box while other
boxes have already been packed.

Extreme Point Suitability For a given box, a list with all the suitable
EPs in all ULDs that are already used is created by testing all the available
EPs. An EP is suitable for a box i with a given orientation if, once the box
i is packed with its front left bottom vertex on the EP:
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1. the box i does not overlap other boxes previously packed,

2. the box i lies within the limits of the ULD (in particular, box i respects
the possible special shape of the ULD),

3. the ULD weight capacity is still respected,

4. the box i does not lay on fragile boxes previously packed,

5. the centre of gravity of the set of loaded boxes does not exceed the
given upper limit αH (see Section 3.4.2 for a reminder) and

6. the box i and the previously packed boxes are stable.

These conditions are easily checked with the coordinates of the new and
the already packed boxes (see Chapter 3 for more details). Note that the
stability of the boxes is handled in the same way as in the previous chapters,
ensuring that the four base vertices are supported.

If the box is fragile, an additional constraint is considered during the first
part of the packing algorithm. Nothing can be packed on top of a fragile box,
meaning that the volume above is lost. For this reason, during the first part
of the packing algorithm, an EP (xEP , yEP , zEP ) is suitable if, once the box
i is packed with its front left bottom vertex on this EP, the top face of the
box has a height at least equal to a given percentage β of the ULD height:

zEP + hi ≥ βH.

This constraint is the Not Too Low constraint in Figure 5.3. The value of β
is tuned using a parametrisation technique in Section 6.2.3.

Selection of the best Extreme Point Choosing the best EP is a diffi-
cult task and many criteria can be imagined in order to optimise different
objectives. For instance, if the packing has to be as compact as possible,
then the EP leading to the minimum moment of inertia would be selected.
Another criterion could be to minimise the maximum height of the packed
boxes. This selection is achieved with a merit function as defined in Crainic
et al. (2008). Two distinct merit functions are now presented.

In Crainic et al. (2008), the authors aim to minimise the number of bins
used to pack the boxes, all the bins being identical. Their best merit function
is the function maximising the utilisation of the EP’s Residual Space. The
Residual Space (RS) of a given EP is defined as the free volume available
around an EP. It is composed of three components RSx, RSy and RSz, each
component describing the free space along each direction. When the EP
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(xEP , yEP , zEP ) is created in ULD j, the RS of this new EP is equal to the
distance from the EP to the side of the bin along each axis:

RSx = Lj − xEP ; RSy = Wj − yEP ; RSz = Hj − zEP .

Then, every time a box is assigned to ULD j, the RS components of the EPs
in this ULD are updated. However, the EP generation implemented in this
algorithm is extended as explained further in this section and thus the initial
RS may be different. In the present work, in order to compute the RSx of a
new EP (xEP , yEP , zEP ), one focuses on boxes i packed in ULD j with their
front left bottom vertex on (xi, yi, zi) such that xEP ≤ xi, yi ≤ yEP ≤ yi+wi
and zi ≤ zEP ≤ zi + hi as shown in Figure 5.4. If only one box i exists, then
RSx = xi − xEP . If several boxes i exist, then RSx = mini(xi − xEP ). If
none exist, then RSx = Lj −xEP . The same reasoning is applied for the two
other directions. Moreover, if the ULD j has some cuts, Lj or Hj have to be
adapted.

x

z

•
RSx

xEP

zEP

Figure 5.4: Computation of RSx. Plane cut in y = yEP

For a box i to be packed, the merit function from Crainic et al. (2008)
selects the EP that minimises the difference between its RS and the box
dimensions:

MF1 = (RSx − li) + (RSy − wi) + (RSz − hi).

This selection is close to the selection achieved in the common Best Fit
algorithm.

Since the ULD weight distribution is taken into account in this work,
another specific merit function is also introduced. Indeed, one particular
constraint is that the weight of the boxes packed inside each ULD should be
rather uniformly distributed on the XY plane. As a reminder, the position
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of the CG of the boxes packed in ULD j is calculated as follows:

CGj =


∑
i in j

mi
2xi+li

2∑
i in j

mi
,

∑
i in j

mi
2yi+wi

2∑
i in j

mi
,

∑
i in j

mi
2zi+hi

2∑
i in j

mi

 .

As explained in Chapter 3, in order to measure this uniformity, the CG of
the packed boxes (xCG, yCG, zCG) is compared to the geometrical centre of
the ULD base (xM , yM , zM ). For this reason, an additional merit function
that computes the deviation between the two elements is defined:

MF2 =
√

(xCG − xM )2 + (yCG − yM )2,

This merit function is a first step towards a uniform weight distribution.
Note that the constraint relative to the height of the CG is included in the
definition of suitable EPs. Among these two merit functions, the best function
with respect to the objective function minimisation is determined with a
parametrisation technique in Section 6.2.3.

The suitable EPs which have the smallest merit function value are se-
lected. However, since the CG of the packed boxes cannot lie above a deter-
mined height, the selection is refined to take this into account. The suitable
EPs are sorted by increasing value of the merit function and then among the
best EPs (the precise number, called bestHeight, is tuned in Section 6.2.3),
the EP that, if chosen, would lead to the lowest CG of the packed boxes is
kept. When selecting the best EPs, the EPs leading to a CG lying in the
authorised area are favoured. In practice, the CG has a maximum allowed
deviation which should be respected. If there is no feasible EP with respect
to weight distribution, then other EPs can be chosen.

Placing the box on the selected EP and L2 testing Once the box
is placed with its front left bottom vertex on the best EP, new EPs are
generated and one tries to pack some fragile boxes from L2 on these new
points.

Placement

The considered box is assigned to the ULD containing the selected EP
with the position described by the EP. The selected EP is removed from the
EP list. It may happen that placing a box prevents other existing EPs from
accommodating a box. Therefore, each EP lying in the same ULD is checked
and deleted if unusable.

EP Generation
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When a box i is placed with its front left bottom vertex on the point
(xi, yi, zi) with its opposite vertex on (x′i, y

′
i, z
′
i), then new EPs are generated.

This generation process is based on the procedure developed by Crainic et al.
(2008). The three initial points (x′i, yi, zi) , (xi, y

′
i, zi) and (xi, yi, z

′
i) represent

the EP sources (and also new EPs themselves) and each point is projected
along two directions until reaching a previously packed box or a container
side to create new EPs as shown in Figure 5.5.

•

•

•

∗�

?
�

?
∗

x′i
xi

y′i

yi

z′i

zi

Figure 5.5: Projection of the source points of box i: the symbol ? (resp. �,
∗) represents the projection on the Y Z plane (resp. XZ plane, XY plane)

The EP generation process is extended in this work as follows. Consider
three types of boxes: one very long, another very wide and a third very high.
Each of these three boxes is packed on a source point and is then pushed as far
as possible along the projection direction, until it reaches either a previously
packed box or the side of the ULD. The position of the front left bottom
vertex of this virtual box defines a new EP. However, since the four vertices
of each box have to be supported, the projection of the point (xi, yi, z

′
i) does

not lead to usable EPs. For this reason, this point is not projected unless
there is a type 1 cut which can also support the box as shown in Figure 5.6.

The detailed generation process is provided in appendix A.1.
L2 testing
A list of new EPs has been generated and cleared to avoid duplicates

and unusable EPs. Before adding this list to the global list of EPs, these new
proposed positions are tested to accommodate fragile boxes from L2. In more
detail, for each box from L2, the new EPs are tested looking for suitable EPs
(with the Not Too Low constraint). If there is one (or more) suitable EP,
then

� the fragile box is packed on the (best, if several, as defined previously)
EP,
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Figure 5.6: Projection of (xi, yi, z
′
i) along the x-axis in a ULD with a cut 1

� the selected new EP is removed from the list of available EPs and

� new EPs are generated with the same method and added to the list of
new EPs.

Every time a box from L2 is packed, this box is removed from L2 and the
beginning of L2 is started again since new EPs are available. If a box from
L2 cannot be packed on any of the new EPs, then the next box from L2 is
considered. This process stops when boxes from L2 can no longer be packed
on these new EPs. The final list of new EPs is then merged with the global
EP list. This step of the algorithm is depicted in Figure 5.7. Note that boxes
from L2 are also naturally sorted with the Clustered Area-Height rule since
every time a box from L1 cannot be packed, it is added at the end of L2.

L2 end reached?
Consider first
box from L2

Is there new
suitable EPs?

Consider next
box from L2

Is there a next
box in L2?

Place the box
on the best EP

Generate new EPs
and add them to

the list of new EPs

END
Remaining EPs merged
with the global EP list

Yes

No

No

Yes

No

Yes

Figure 5.7: L2 testing
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5.1.3 Part II

At this point of the algorithm, every box from L1 has been either packed in
a ULD, or, if it was fragile and not possible to pack without opening a new
ULD (maybe due to the Not Too Low constraint), assigned to the list L2. In
Part II, the Not Too Low constraint is dropped and all the fragile boxes from
L2 have to be loaded. The process is now identical to that of Part I: for every
box, the global list of EPs is considered and the suitable ones are kept. The
best suitable EP, if several, is selected with the same criterion as previously.
If there is no suitable EP, then a new ULD is created to accommodate the
current fragile box.

5.2 Multiple ULDs: Phase 2

In the packing algorithm, a given set of boxes is loaded in a given ULD type
available in an unlimited amount. In practice, several types of ULDs exist
and can be selected, each type available in a determined quantity. Therefore,
the algorithm has to be extended in order to take this possibility into account.

In Kang and Park (2003), the existence of several types of bins is con-
sidered for the one-dimensional BPP. The authors assume that the items are
sorted by non-increasing size and so are the bins. They extend the First-Fit
Decreasing algorithm in the following way: they first build a feasible solution
by packing all the items in the largest bin type using a traditional First-Fit
algorithm. In order to obtain a different feasible solution, they repack the
items of the last bin of the previous solution in the next largest bin type, still
with the same First-Fit algorithm. They repeat this process until it is no
longer possible to repack. An example is given in Figure 5.8. Out of all the
obtained feasible solutions, the authors select the best solution with respect
to the objective function value as the final solution.

It is not straightforward to apply the method from Kang and Park (2003)
to the studied problem because of the difficulty of sorting items/boxes and
bins/ULDs in three dimensions. In this work, boxes are sorted with the
Clustered Area-Height rule as explained in Section 5.1.1 while ULD types
are sorted by non-increasing volume. There are few ULD types and they all
have a different volume. In the current case, an easy adaptation is to first
pack (with the packing algorithm from Section 5.1) all the boxes into the
largest ULD type (called type 1 ULDs). A list of type 1 ULDs that contain
all the boxes is thus obtained. Then, the used ULDs of the same type are
sorted by non-increasing occupied volume. Indeed, since the last ULD is the
ULD whose boxes will be repacked, the less volume there is to repack the
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Type 1 #1 #2 #3

Step 1

Type 1 #1 #2

Type 2 #3 #4

Step 2

Type 1 #1 #2

Type 2 #3

Type 3 #4 #5

Step 3

Figure 5.8: Example of three steps of the algorithm from Kang and Park
(2003)

more likely that it is possible to repack into a smaller ULD type. Then, the
boxes that are assigned to the last ULD of the list, which is the least loaded
ULD, are repacked in the next ULD type. A list of type 2 ULDs is obtained,
sorted and the boxes accommodated in the last element are repacked in type 3
ULDs. The process is repeated until all ULD types have been tested. Finally,
the solution with the minimum used volume is selected.

This adaptation of the method is not likely to achieve good quality so-
lutions since only the last ULD of each type is removed to be repacked. If
at the first step the obtained solution has three ULDs of the first type, a
solution with less than two type 1 ULDs cannot be reached. For this reason,
the method is extended: instead of removing only the last ULD, all the ULDs
of a given type are repacked into another smaller ULD type if it is possible.
During the first (resp. second, third, etc.) iteration, boxes are packed in
type 1 (resp. type 2, type 3, etc.) ULDs. Each iteration is decomposed
into several steps, each step leading to a distinct loading pattern. From one
iteration to another, all the patterns of the previous iteration are considered
and the boxes placed in ULDs of the last type are repacked into a new ULD
type. Moreover, it would seem natural to sort the ULDs by non-increasing
occupied volume to increase the chance to repack into a smaller ULD type.
However, some preliminary experiments show that the least loaded ULDs
often have boxes with special dimensions (for instance, a very long box) and
these boxes may be hard or even impossible to repack into smaller ULD. For
this reason, sorting by non-increasing or non-decreasing occupied volume is
a choice made using irace parametrisation technique in Section 6.2.3.

In more detail, the first iteration consists in packing all the boxes in the
first ULD type, type 1, which creates the first loading pattern. These ULDs
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are sorted by non-increasing/non-decreasing occupied volume depending on
the decision taken in Section 6.2.3. In the second iteration, the first step
repacks the boxes from the last type 1 ULD into type 2 ULDs, the second step
repacks the boxes from the last two type 1 ULDs into type 2 ULDs. During
the third iteration, among the patterns obtained in the second iteration, the
boxes in type 2 ULDs are repacked into type 3 ULDs, etc. An example is
shown in Figure 5.9.

This procedure can lead to a large number of potential patterns but not
all these patterns are feasible because some boxes may not fit in certain ULD
types. In other words, some patterns may have unpacked boxes. When all the
patterns have been created, the feasible pattern with the minimum volume is
retained. The incomplete patterns are then analysed. For every incomplete
pattern with an occupied volume less than the current minimum volume, the
unpacked boxes may be loaded in two different ways. A first method is to pack
the unpacked boxes in the largest ULD type, that is, type 1 ULD. If some of
the unpacked boxes do not fit in this ULD type, then the second largest ULD
type is considered. This process is repeated until every initially unpacked box
is loaded. A feasible pattern is obtained with this method since each box is
assumed to fit in at least one ULD. Once the pattern has been completed, its
objective function value is compared to the value of the current best solution
to determine the new best pattern. A second completion method could be
to consider all the EPs still available in all the ULDs and to try to load the
unpacked boxes, regardless of the chosen orientation, no matter the EP. Some
preliminary experiments have been carried out on 7 samples of 30 instances
containing from 10 to 100 boxes with given parameters2. More details about
the data and deeper experiments will be provided in Section 6.1. Results for
the second completion method are shown in Table 5.1. In this table, the first
row shows the number of incomplete patterns for all 30 instances that have an
objective function value smaller than the current best pattern. The second
completion method is applied to these patterns and the second row indicates
the number of patterns that have been successfully completed. The last row
shows the number of instances, out of the 30, that have not been solved.
This means that for those instances, all the patterns were incomplete and
the second completion method was not able to complete any of them. The
second completion method is very time consuming because of the number of
patterns and of available EPs, especially for instances with a large number
of boxes as shown on the boxplots in Figure 5.10. Moreover, the objective
function values obtained are not always better than those obtained with

2without parametrisation: δ = 0.01, β = 80%,MF2, bestHeight=5, uldOccupation-
Sort=2 (see Section 6.2.3 for more details about the parameters)
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Iteration 1

Step 1:
Type 1 #1 #2 #3

Iteration 2

Step 1:
Type 1 #1 #2

Type 2 #3 #4

Step 2:
Type 1 #1

Type 2 #2 #3 #4

Step 3:
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Iteration 3

Step 1:
Type 1 #1 #2
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Type 3 #4 ...

Step 2:
Type 1 #1 #2

Type 2

Type 3 #3 ...

Step 3:
Type 1 #1

Type 2 #2 #3

Type 3 #4 ...

Step 4:
Type 1 #1

Type 2 #2

Type 3 #3 ...

Step 5:
Type 1 #1

Type 2

Type 3 #2 ...

Step 6:
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Step 7:
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Step 8:
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Type 3 #2 ...

Step 9:
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Type 2

Type 3 #1 ...

Figure 5.9: Creation of loading patterns by considering different ULD types

Note. In the first iteration, boxes are packed in type 1 ULDs. During the second iteration,

the first step repacks the boxes from the last ULD of type 1 in two ULDs of type 2, the

second step repacks the boxes from type 1 ULDs #2 and #3 and the third step repacks

all the boxes in type 2 ULDs only. In the third iteration, steps 1 and 2 are based on the

pattern obtained in the first step of iteration 2, steps 3, 4 and 5 are based on the pattern

obtained in the second step of iteration 2 and steps 6, 7, 8 and 9 are based on the third

pattern obtained in the third step of iteration 2.
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Table 5.1: Analysis of the second completion method using the available EPs
to complete patterns (each sample size holds 30 instances of n boxes)

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 100

# completion at-
tempts

69 175 594 925 2134 2958 24627

# successful com-
pletion

7 5 1 3 5 9 8

# unsolved in-
stances

0 3 3 4 3 4 12

0 5 10 15 20

Add.

EP

2.19

0.59
5.06

19.92
11.35

(a) Comparison of the computational
times, in seconds, for the 30 instances
of 60 boxes for the adding ULDs strat-
egy in full lines and the use of available
EPs in dashed lines

0 200 400 600 800 1,0001,2001,400

Add.

EP

16.49

7.34
274.97

1,417.87
610.05

(b) Comparison of the computational
times, in seconds, for the 30 instances
of 100 boxes for the adding ULDs strat-
egy in full lines and the use of available
EPs in dashed lines

Figure 5.10: Comparison between adding ULDs or using available remaining
EPs for unpacked boxes of each pattern

the first method, as shown in Table 5.2. Table 5.2 shows the comparisons
between the objective function values of the patterns obtained with the two
completion methods for every instance. For example, for the 30 instances of
50 boxes, 3 instances have not been solved with the second completion method
(based on the available EPs), 21 instances have a final pattern with the same
objective function value for the two methods, 4 instances have a pattern with
a larger objective function value with the first method than with the second
method and inversely for the remaining 2 instances (3+21+4+2=30). The
first completion method is thus preferable for the present heuristic.

The methodology described in this section can be relevant in the case of an
actual application. In practice, if only one aircraft/flight is available to pack
the whole set of boxes, a limited number of ULDs of each type are provided.
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Table 5.2: Comparison of the objective function values of the two completion
methods (each sample has 30 instances of n boxes)

Sample size # unsolved instances Adding=EP Adding >EP Adding <EP

with EP method

n = 50 3 21 4 2

n = 60 4 21 2 3

n = 100 12 9 3 6

Note. Adding represents the completion method based on the addition of new ULDs while

EP represents the completion method based on the use of available EPs in all the ULDs of

the pattern.

This method can be extended by considering only the given number of each
ULD and keeping the unpacked boxes for the following type of ULD. There
should be enough ULDs to pack all the boxes, otherwise the nature of the
problem would be different (it would become a Knapsack instead of a Bin
Packing Problem).

5.3 Post process: balance improvement

After the first two phases of the algorithm, a packing with possibly distinct
ULDs has been obtained. In this packing, all the constraints of the specific
MBSBPP are ensured except the uniform weight distribution in the XY
plane. As explained in the merit function definition in Section 5.1.2, a first
step can be achieved when selecting the best EP for each box, but this does
not ensure that the CG is in the allowed region around the geometric centre of
the ULD base. For instance, preliminary results show that, over 300 instances
with a number of boxes ranging from 10 to 100, 878 ULDs are used and 502
(i.e., 57.18%) of them have a CG out of the allowable region in at least
one direction of the XY plane. Considering the choice of the first EP and
the EP generation during the packing algorithm, the CG is likely to lie too
far to the left or too far to the front of the geometrical centre of the ULD
base area, which is confirmed by some preliminary experiments: over the
502 unbalanced ULDs, 70.12% (resp. 0.60%, 86.45%, 0.40%) has a CG
located too far to the left (resp. right, front, rear). Post processing has to
be conducted to improve the weight distribution in the unbalanced ULDs.
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Table 5.3: Comparison between exact approach and the J&S operators for
the weight distribution improvement (each sample size has 30 instances, n is
the number of boxes in each instance)

Before impr. After exact approach After J&S operators

Sample
size

# unbal./
#ULDs

# unbal./
#ULDs

Avg. dur. [s.] # unbal./
#ULDs

Avg. dur. [s.]
(max.)

n = 10 35/47 0/47 1.58 2/47 0.008 (0.113)

n = 20 30/55 4/55 489.33(4) 2/55 0.004 (0.044)

n = 30 53/86 3/86 136.52(2) 5/86 0.007 (0.284)

n = 40 55/92 6/92 329.58(5) 5/92 0.030 (1.381)

n = 50 50/101 2/101 144.90(2) 5/101 0.002 (0.014)

n = 60 54/113 3/113 202.75(2) 7/113 0.007 (0.317)

Note. The ULDs already balanced are not considered in the average duration calculation.

The notation ·(w) means that the B&B could not find a solution within one hour for w

out of the 30 instances. For the J&S operators, the maximum durations are provided in

brackets.

5.3.1 Exact method

A first method is to adapt the mathematical formulation developed in Chap-
ter 3. In the present situation, the aim is no longer the selection of ULDs
but the achievement of a uniform weight distribution in a specific ULD with
a given set of boxes to be packed. The chosen objective is to minimise the
height of the CG of the set of boxes. The detailed linear formulation can
be found in Appendix A.2. Solving optimally this model is sometimes time
consuming and since a feasible but not necessarily optimal solution is suffi-
cient, the algorithm can stop as soon as the height of the CG is less than or
equal to the maximum authorised value αH . As preliminary experiments, this
formulation has been implemented in Java, using IBM ILOG CPLEX 12.6
library as B&B solver under the default parametrisation with a maximum of
one hour computational time. If no solution is found within one hour, the
studied loading pattern remains unchanged. As shown in Table 5.3, the ex-
act approach is very time consuming, especially compared to the approaches
developed in the next sections, making this exact method inappropriate in
practice. In this table, the notation ·(w) means that the B&B could not find
a solution within one hour for w out of the 30 instances. All the unbalanced
ULDs that B&B was not able to solve hold at least 18 boxes. The average
durations are calculated over the unbalanced ULDs:

total time spent for balance improvement

#unbalanced ULDs
.
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5.3.2 Shifts

The second method proposes two shift operators to improve the balance along
the x and y-axes. For the ULDs presenting a CG located too far to the left,
the boxes are pushed as much as possible to the right until the CG reaches the
threshold of the allowed region. The maximum possible global shift is first
applied to all the boxes, i.e., the maximum possible overall shift is computed
and applied to all the boxes at once. A global shift means that if the shift is
increased by one more unit, then the ULD limit constraint becomes violated.
If the threshold is still not achieved, then each box is considered separately
and an adapted shift is set up until a constraint is violated or the threshold is
reached. An adapted shift means that the shift does not have a general value
but is specific to each box. Note that special attention is required to manage
the right (resp. left) shift in ULDs with cuts of type 2 or 3 (resp. 1 or 4). In
order to increase the chance of possible adapted shift, the boxes i of the ULD
are considered by non-increasing x′i (resp. y′i) values in the case of a right
(resp. back) shift and by non-decreasing xi (resp. yi) values in the case of
a left (resp. front) shift. Ties are broken sorting by non-increasing value of
their front left bottom vertex height (zi) and finally by non-increasing value
of their density. An example of the application of shift operators to two
unbalanced ULDs is represented in Figure 5.11.

The CG of the set of packed boxes is tested for each direction and the
deviations are analysed in this order: CG too far to the left, front, right and
rear. Every time the answer is positive, shift operators are applied. The next
deviation is then tested and the same process is applied until the balance is
reached or if there is no more improvement.

Some preliminary experiments are presented in Table 5.4 and showed
that among the 353 ULDs having a CG too far to the left, only 19 of them
cannot be corrected with the shift operators, which represents a reduction
of 94.60%, while 394 out of the 434 ULDs no longer have a CG too far to
the front (reduction of 90.78%). Conversely, the shift operators do not seem
to work on the CG too far to the rear and on the right since the number
of deviations remains identical. However, the global number of unbalanced
ULDs has significantly decreased: 64 out of 878 ULDs (7.29%) still have a
CG outside the allowable range.

A lot of patterns have been improved enough to reach a feasible solution.
However, the remaining 7.29% of unbalanced ULDs are not easy to fix, there
are often heavy boxes that cannot be shifted further. Therefore, a third
method has been developed.
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Before right and rear shifts After right and rear shifts

Figure 5.11: Two examples of shift operators applications

Table 5.4: Reductions in the number of CG deviations among the 878 used
ULDs by applying the shift operators only, the jump operator only and the
J&S combination (percentages are computed over the 878 used ULDs)

Number of Deviations

unbal. ULDs Left Right Front Rear

Initial 502 352 3 434 2

(57.18%) (40.09%) (0.34%) (49.43%) (0.23%)

After shifts 64 19 3 40 2

(7.29%) (2.16%) (0.34%) (4.56%) (0.23%)

Reduction 87.25% 94.60% 0.00% 90.78% 0.00%

After jumps only 458 278 2 397 4

(52.16%) (31.66%) (0.23%) (45.22%) (0.46%)

Reduction 8.76% 21.02% 33.33% 8.53% -100.00%

After J&S 52 15 2 35 2

(5.92%) (1.71%) (0.23% ) (3.99%) (0.23%)

Reduction 89.64% 95.74% 33.33% 91.94% 0.00%
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5.3.3 Jumps

The idea of the jump operator is to take one or several boxes from one side of
an unbalanced ULD and to pack these boxes (make them jump) to the other
side of the ULD. For instance, if the CG of the ULD is too far to the left,
then one tries to repack boxes from the left-hand side to the right-hand side
of the ULD in order to move the CG to the right. Note that the movements
leading to a CG too far to the right are not allowed. Moreover, if the weight
was balanced in the other direction, movements leading to an unbalanced
loading along this other direction are also rejected.

In more detail, if the CG is too far to the left, then the boxes assigned to
this ULD are considered by non-decreasing value of their front left bottom
vertex abscissa (xi) because the more on the left the boxes are, the more
important is their influence on the CG. Ties are broken sorting by non-
increasing value of their front left bottom vertex height (zi) and finally by
non-increasing value of their density. The loading pattern has still to be
stable when the box to be jumped is removed from its current position and
the highest boxes are less likely to support other boxes. Finally, the denser
the boxes, the larger the impact on the CG.

To repack the boxes, the available EPs of the ULD produced during the
packing algorithm are analysed. The idea is to repack the leftmost boxes on
rightmost EPs to move the CG as much as possible. Box i can jump from
(xi, yi, zi) to a new EP (xEP , yEP , zEP ) if several conditions are met:

1. the loading pattern is still feasible, in particular still stable, if box i is
removed from its current position,

2. only the EPs with xEP > xi are helpful and thus considered since a
balance improvement is expected,

3. only the suitable (as defined in the beginning of Section 5.1.2 but with-
out the Not Too Low constraint) EPs are considered,

4. if the CG was in the allowable area along the y-axis before box i removal,
it has still to be in the allowable area after repacking box i on the new
EP and

5. after repacking, the CG is not too far to the right (on the other side of
the allowable region).

If several EPs satisfy these conditions, the rightmost one is selected to accom-
modate box i. Ties are broken selecting the EP with the smallest residual
space. Afterwards, the selected EP is removed from the list as well as the
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potentially unusable other EPs. New EPs are generated and added to the
list of available EPs. If the CG is still on the left-hand side of the allowable
region, then the next box of the sorted list is considered for a jump.

Naturally, the jump operator can be applied in the other directions: a
jump from the right-hand side to the left-hand side, from the front to the
rear and inversely. An example of jump operator applications is shown in
Figure 5.12.

Figure 5.12: An example of jump operator applications to fix a CG too far
to the right: the former positions are circled in dashed lines, while the new
positions (after jumping) are circled in full lines

As for the shift operators, the CG of the set of packed boxes is tested for
each direction and the deviations are analysed in the same order: CG too far
to the left, front, right and rear. Every time the answer is positive, the jump
operator is applied. The next deviation is then tested and the same process is
applied until the balance is reached or if there is no more improvement. The
same preliminary tests have been carried out and are presented in Table 5.4.
As can be seen, the jump operator is more efficient for the right deviation
but shows an unexpected behaviour for the rear deviations. Looking closely
at these two new rear deviations, after the second phase of the algorithm, the
loading patterns were showing a left and a front deviation. While improving
the CG position along the x-axis, the CG which was too far to the front
became too far to the rear and since the balance was obtained for the x-axis,
jumps leading to a loss of this new gained balance have been rejected and
thus the balance has been improved along the y-axis but not enough for the
CG to be in the authorised area.

5.3.4 Combination of jump and shift operators

The jump and shift (J&S) operators can be combined into the same process.
In practice, the jump operator is applied first. The jump operator is less
accurate than the shift operators because the CG does not move one unit by
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one unit. Moreover, after applying shift operators, the residual space of some
EPs may be reduced and thus these EPs would not be able to accommodate
some boxes. In practice, the CG of the set of packed boxes is tested for each
direction and the deviations are analysed in this order: CG too far to the
left, front, right and rear. Every time the answer is positive, jump is applied.
If no box is still able to jump and the CG is still not in the allowable region
for the considered direction, then the shift operators are applied. The next
deviation is then tested and the same process is applied. This means that
jump operators may be applied after shifts in another direction. It is therefore
crucial to keep the EPs and their respective residual space up-to-date during
the whole process. It may happen that deviations are not corrected at the first
application of J&S operators. However, the ULD may have another deviation
whose correction leads to other movements of the boxes. For this reason,
unless boxes are no longer moving, a loop over the different deviations is put
in place. In order to avoid infinite loops, the CGs already met are memorised
and compared to the current CG. If a same CG is obtained twice, then the
algorithm stops. Indeed, it may happen that when trying to correct two
deviations (one along the x-axis and one along the y-axis), boxes are moved
in one direction first and then in another direction, which can lead to infinite
loop. The whole process is illustrated in Algorithm 4. In this algorithm,
xCGmin represents the minimum authorised value for xCG,

Lj
2 −α

L
j (or adapted

if there is a type 1 or type 2 cut), xCGmax the maximum authorised value for

xCG,
Lj
2 +αLj (or adapted if there is a type 1 or type 2 cut) and identically for

yCGmin and yCGmax . Some preliminary experiments presented in Table 5.4
show that the improvement is considerable. Figure 5.13 shows the average
percentage of unbalanced ULDs per sample size (there are 30 instances for
each size).

In conclusion, after applying the J&S operators as explained in Algo-
rithm 4, 17 ULDs out of 878, i.e., around 1.94%, still have an unbalanced
weight along the x-axis (too far to the left or right) and 37 ULDs out of 878,
i.e., around 4.21%, still have an unbalanced weight along the y-axis (too far
to the front or rear). The 54 remaining deviations have an average value of
9.01% (9.01% on average for the x deviations and 9.01% on average for the
y deviations). The calculation of the deviation percentage along the x-axis
for a CG outside the allowed region is computed as follows:

min{|xCG − xCGmin |, |xCG − xCGmax |}
0.5(L− (xCGmax − xCGmin))

(5.1)

where (L− (xCGmax−xCGmin)) represents the size of the allowed region. Out
of the 54 remaining deviations, 43 deviations can be corrected using the exact
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Algorithm 4 Weight Distribution Improvement

doesSomethingChange ← true
while doesSomethingChange do

if (xCG < xCGmin) || (xCG > xCGmax) then
Jump operator application
if (xCG < xCGmin) || (xCG > xCGmax) then

shift operator application
end if

end if
if (yCG < yCGmin)|| (yCG > yCGmax) then

Jump operator application
if (yCG < yCGmin)|| (yCG > yCGmax) then

shift operator application
end if

end if
doesSomethingChange ← ((xCG, yCG) 6= any previous(xCG, yCG))

end while
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Figure 5.13: Average percentage of unbalanced ULDs per sample size (each
sample size has 30 instances)
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approach developed in Section 5.3.1, 11 deviations would need more than one
hour of computational time to be corrected and the last deviation cannot be
corrected in such a loading pattern.

In comparison to the exact approach developed in Section 5.3.1, the J&S
has two main advantages. First, even if the ULD is eventually unbalanced, the
J&S operators improve the CG position whereas the exact approach achieves
a balanced ULD if it is able to or leaves the loading pattern unchanged.
In particular, it seems that, in practice, this constraint is not strict and the
unbalanced ULDs could still be loaded in the airplane. The second advantage
of the J&S operators is its relative speed as shown in Table 5.3. Note that
the ratios from Table 5.3 before improvement after J&S operator application
can be found in Figure 5.13.

5.4 Areas for improvement

In this section, several hints are given for future research.

Density consideration The fragility feature of the boxes plays a key role
in the packing algorithm in Section 5.1. This algorithm does not take into
account the possible very dense boxes of the pattern. An extension of this
packing algorithm could take this density into account and attempts to take
advantage of this characteristic.

Orientation selection The orientation of each box is determined at the
beginning of the algorithm and is then fixed. An area for improvement could
be to consider the possibility of rotating the boxes along the whole algorithm.
For instance, in the packing algorithm, if there is no suitable EP for a box,
then another orientation of this box can be tried before creating a new ULD
(in the case of a non-fragile box). Another possibility would be to test differ-
ent orientations of a box when repacking during the application of the jump
operator.

Combination of exact and J&S approaches In the preliminary exper-
iments, it appears that the exact approach for weight distribution improve-
ment solved with B&B can take time if the treated ULD holds more than
18 boxes, but also has very good results. More tests could be carried out to
precise this number of boxes. Then, a method could combine the exact and
the J&S approaches depending on the number of boxes in the ULD to be
treated.
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Multiple boxes shifts When applying the shift operators, some packings
of boxes may be movable in practice but not authorised in the algorithm
because of the stability constraints. As shown in Figure 5.14, boxes can be
combined such that if one of the boxes is shifted by one unit, then the four
vertices are no longer supported, which leads to an unstable loading. Thus,
none of these boxes can be moved and the whole box combination remains
at the same location. To improve the shift operators, it could be useful to
identify these kinds of combinations and to shift them all together.

Figure 5.14: Unmovable box combinations: the first two combinations cannot
be shifted in any direction, while the last combination cannot be shifted along
the y-axis

Deterioration in jump application Another hint for improvement re-
lates to the authorised jumps. As mentioned above, a box i can jump from
(xi, yi, zi) to a new EP (xEP , yEP , zEP ) if, among other conditions, the CG
was in the allowable area along the y-axis before box i removal, it has still to
be in the allowable area after repacking box i on the new EP. This condition
can be relaxed and a slight deterioration smaller than a given percentage for
the deviation along the other axis could be accepted in the hope that it can
be corrected later.
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Chapter 6

Computational experiments

T his sixth chapter addresses the computational experiments. First, data
sets are described in Section 6.1. These sets come from a real world case

and are meant for different purposes: a group of instances is used to give some
insights about each heuristic (preliminary data sets), a second group is used
to parametrise the heuristics (training data sets) and a third group is used to
measure the quality and to compare the efficiency of the heuristics (final data
sets). Second, in Section 6.2, the parametrisation method is explained and
applied to the I&F and FRF matheuristics from Chapter 4 and to the tailored
two-phase heuristic from Chapter 5 using training instances. A sensitivity
analysis is carried out for several parameters in Section 6.3. Finally, the
trained heuristics are tested on the final data set, analysed separately in
Section 6.4 and compared on this basis in Section 6.5.

All tests were performed on a workstation with 32.0 GB RAM and an
Intel Xeon processor E5-2620 v4 running 64-bit Windows 10 Pro. Codes
were implemented in Java, and CPLEX 12.6 library was used as B&B solver.

The current position of this chapter in the thesis outline is shown in bold
in Figure 6.1.

6.1 Data sets

6.1.1 ULDs

Among the ULDs that can be loaded in a Boeing 777, which is the most
common aircraft for cargo transportation, six common types are selected:
three for the lower deck and three for the main deck. These ULDs are de-
scribed in Table 6.1. More details about these ULDs can be found in Boeing
(2008). This set of ULDs constitutes a representative sample as all shapes
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are proposed.

6.1.2 Boxes

As can be seen in Bortfeldt (2012) and Zhao et al. (2016), there are no bench-
mark instances for the three-dimensional MBSBPP. The closest instances are
those from Ivancic et al. (1989) which were designed for a Multiple Stock-Size
Cutting Stock Problem (see Figure 2.2). For this reason, new data sets were
needed in order to represent the specificity of the problem studied in this
thesis.

For the computational experiments, a box data set which stems from a
real world case is considered. It contains information about the dimensions
and weight for 562 rectangular boxes. The main features of these boxes are
given in Table 6.2. Unfortunately, the initial data set does not include the
authorised orientations and fragility characteristics. Therefore, data manip-
ulation is set up to add these missing parameters. In more detail, if a box is
too heavy (>50kg), it is assumed to be too much work to turn it, the param-
eters l+, w+ are thus assumed to be 0. The parameter h+ equals 1 for all the
boxes because the initial orientation of the boxes is supposed feasible. For
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Table 6.1: Description of the parameters of the proposed ULDs
IATA Dimensions Cap. Vol. αL;αW ;αH Equation of the cuts Shapes

Code L×W ×H [kg] [m3] [mm]

[mm]

Lower deck - containers

LD1 2337×1534×1626 1518 5 157;152;864 cut 1: z + 826
775

x = 640150
775

LD6 4064×1534×1626 2945 9.1 318;152;864 cut 1: z + 422
444

x = 187368
444

cut 2: z − 422
445

x = − 1527218
445

LD11 3175×1534×1626 2991 7.4 318;152;864 None

Main deck - pallets

PA 2235×3175×2997 5890 20 224;318;1219 cut 4: z − 747
1056

x = 2376000
1056

PG 2438×6058×2438 10840 31.1 244;302;1219 cut 3: z + 1054
660

x = 3483092
660

cut 4: z − 1054
660

x = 913440
660

PM 2438×3175×2997 6680 18.9 244;318;1219 None

the stacking constraint, a box which has a density lower than 0.05 kg/dm3 is
considered as fragile. After applying these two rules, all the parameters are
available for each box.

Table 6.2: Information about the initial data set
length width height weight volume density

[mm] [mm] [mm] [kg] [dm3] [kg/dm3]

Range [130;5250] [100;1720] [40;1900] [1;1983] [2.2;5832.96] [0.01;5.62]

Average 927.65 620.18 618.89 106.55 571.57 0.24

St. dev. 625.91 309.72 407.78 177.02 682.75 0.31

Number of distinct boxes (types): 199

Average number of identical boxes: 2.82

Description of the data sets Instances with different sizes are interesting
in order to analyse the behaviour of each technique. Therefore, a data process
is used to generate box samples of different sizes ranging from 6 to 100 boxes.
The size of the considered samples depends on the tested heuristic. For
instance, the matheuristics may be very slow if the number of boxes is large.
Small instances are thus tested in the preliminary experimentations. For
each sample size, a set of 30 instances is built by random selection from the
original data set. Instance sets are available from http://hdl.handle.net/

2268/206856.

� Preliminary data sets: 30 instances with 6, 7, 8, 9 and 10 boxes each
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(i.e., 120 instances) have been generated for preliminary elimination of
some matheuristics in Chapter 4, 30 instances with 15, 20, 25, 30, 35,
40, 50, 60 and 100 boxes each have been generated and added to the
set of 30 instances with 10 boxes (i.e., 300 instances) to analyse several
leads in Chapter 5;

� Training data sets: in order to tune the parameters of each technique
in Section 6.2, a set of representative instances has to be provided. To
this purpose, 30 instances with 10, 15, 20, 25 and 30 boxes each (i.e.,
150 instances) have been generated;

� Final data sets: for the sensitivity analysis in Section 6.3 and for testing
of all the techniques in Sections 6.4 and 6.5, 30 instances with 10, 20,
30, ..., 100 boxes each (i.e., 300 instances) have been generated.

6.2 Parametrisation with irace

The software package irace provides an automatic configuration tool for tun-
ing optimisation algorithms, that is, automatically finding the most appro-
priate settings of an algorithm given a set of instances of a problem, saving
the effort that is normally required in manual tuning (López-Ibáñez et al.
(2016)). During the tuning phase, a set of training instances representative
of a particular problem has to be provided to choose the best algorithm con-
figuration. The selected algorithm configuration can then be used to solve
new instances of the same problem.

In more detail, let be a parametrised algorithm with Nparam param-
eters which can take different values. A configuration of the algorithm
θ = {x1, ..., xNparam} is a unique assignment of values to parameters. The
set of all the configurations of the algorithm is denoted Θ. A racing method
for selection, or race, aims to find a good configuration in Θ through a se-
quence of steps. As explained in Birattari et al. (2002) and López-Ibáñez
et al. (2016), along the racing method, if sufficient evidence is gathered that
some candidate configurations perform statistically worse than at least an-
other configuration, such candidates are discarded and the procedure is iter-
ated over the remaining surviving configurations. The elimination of inferior
candidates speeds up the procedure and allows a more reliable evaluation of
the promising configurations.

To evaluate the performance, a set of training instances to be sampled is
provided, as well as a cost function. The cost function, C(θ, i) assigns a value
to each configuration θ when applied to a single problem instance i. This
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returned value can be the computational time or the value of the objective
function as it is the case in this work.

To discard a configuration, statistical test is performed on the values
provided by the cost function of several instances. In irace, the default test
is the non-parametric Friedman’s two-way analysis of variance by ranks and
its associated post-hoc analysis described in Conover (1999). However, the
paired t-test is an alternative implemented in irace. Both tests use a default
significance level of 0.05. Friedman’s test is recommended when tuning for
solution quality and is thus used in the following analysis.

The race is applied until reaching a minimum number of surviving configu-
rations, a maximum number of instances that have been used or a pre-defined
computational budget. This budget can be a computational time or a num-
ber of experiments, where an experiment is the application of a configuration
to an instance. An example of racing method from López-Ibáñez et al. (2016)
is shown in Figure 6.2.
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Figure 6.2: Racing for automatic algorithm configuration (López-Ibáñez et al.
(2016))

Note. Each node is the evaluation of one configuration on one instance. ‘×’ means that no

statistical test is performed, ‘-’ means that the test discarded at least one configuration,

‘=’ means that the test did not discard any configuration.
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In iterated racing, each configurable parameter is associated to a sampling
distribution which is independent of the sample distributions of the other
parameters. More details about these sampling distributions can be found
in López-Ibáñez et al. (2016). Iterated racing is a method for automatic
configuration which can be decomposed into three steps:

1. sampling the new configurations according to a particular distribution,

2. selecting the best configurations from the newly sampled configurations
by means of racing (as explained here-above),

3. updating the sampling distribution of each configurable parameter in
order to bias the sampling towards the best configuration. The up-
date biases the distributions to increase the probability of sampling the
parameter values in the best configurations found so far.

The three steps are repeated until a termination criterion is met.

irace needs to get a number, which is the objective function value in this
case, for every run in order to assess the quality of the configuration. Since
the matheuristics have a limited authorised duration of one hour, sometimes
a solution may not be found within this time. In that case, the matheuristic
returns a large number, n ×maxj Vj where n is the number of boxes in the
instance and Vj the volume of ULD j, to represent the poor results.

6.2.1 Insert-and-Fix

The following two parameters need calibration:

Parameters Types Range

u Integer [2,7]

q Integer [1,3]

As a reminder, parameter u denotes the number of boxes whose variables
have to be determined and q the number of boxes whose variables are fixed.
The configurations with q ≥ u are thus forbidden.

With a maximum number of 1000 experimentations, irace states that
the best configuration is u = 7 and q = 2. These values will be interpreted
and analysed through a sensitivity analysis in Section 6.3.1.

6.2.2 Fractional Relax-and-Fix

The following three parameters need calibration:
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Parameters Types Range

u Integer [3,7]

v Integer [2,6]

q Integer [1,3]

Parameter u denotes the number of boxes which are considered and whose
variables are to be determined, v is the number of boxes whose variables
have the integrality restriction to be satisfied and q the number of boxes
whose variables are fixed. The configurations with q ≥ v or v ≥ u are thus
forbidden.

� block Coord: with a maximum number of 1000 experimentations, irace
states that the best parameter combination is u = 7, v = 5 and q = 1.
These values will be interpreted and analysed through a sensitivity
analysis in Section 6.3.2;

� block Coord & pij : with a maximum number of 1000 experimentations,
irace states that the best parameter combination is u = 7, v = 6 and
q = 1.

6.2.3 A tailored two-phase constructive heuristic

At different stages of the tailored two-phase constructive heuristic, several
options are possible and choices have to be made in order to optimise the
value of the objective function. For this reason, the following six parameters
need calibration:

Parameters Types Range

β Real [0.50,1.00]

bestHeight Integer [1,5]

merit function Integer [1,2]

uldOcptSort Integer [1,2]

boxSort Integer [1,2]

δ Integer [1,99]

Parameter β represents the ratio of the ULD height that the top face of a
fragile box has to reach during the first part of the packing algorithm with
the Not Too Low constraints (see page 94). Values tested for β are limited
to two digits. Parameter bestHeight represents the number of first Extreme
Points (EP) considered for selecting the best one with respect to the centre of
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gravity (CG) height (see page 96). Two merit functions have been proposed
(see page 95) to select the best EP: the first function, MF1, uses the residual
space (RS) around the EP and the second, MF2, uses the distance between
the CG and the geometrical centre of the ULD in the XY plane. Parameter
uldOcptSort describes the ordering of the loaded ULDs to be repacked in the
second phase of the heuristic. If uldOcptSort=1, then the ULDs are sorted
by non-increasing occupied volume, while if uldOcptSort=2, they are sorted
by non-decreasing occupied volume (see page 100). Parameter boxSort is
equal to 1 if boxes are sorted according to the Clustered Area-Height before
being packed and is equal to 2 if boxes are sorted by decreasing base area.
The parameter δ is the percentage used to define the Clustered Area-Height
sorting rule (see page 92). Therefore, if boxSort=2, then δ is not addressed
(represented by N.A. in Table 6.3).

After 5000 experimentations, irace states that the four best configura-
tions are those presented in Table 6.3 (the first configuration has the best
mean performance).

Table 6.3: Best configurations found by irace for the tailored two-phase
constructive heuristic parameters (if boxSort=2, then the value of δ is not
addressed - N.A.)

β bestHeight merit function uldOcptSort boxSort δ

#1 0.68 1 MF1 2 2 N.A.

#2 0.50 1 MF1 2 2 N.A.

#3 0.60 1 MF1 2 2 N.A.

#4 0.64 1 MF1 2 2 N.A.

These four configurations differ on the β value only. A reason could be
the small influence of parameter β. This, among others, will be analysed in
a sensitivity analysis in the next section. An interpretation of each tuned
parameter value will be provided as well.

Note that the default parameters of irace have been modified for the
tailored two-phase constructive heuristic because the first runs showed that
the scenarios were heterogeneous: the algorithm with a given configuration
had an inconsistent performance on different instances, that is some configu-
rations perform well for a subset of the instances while they perform poorly
for other subset. In other words, it seems that no configuration performs
significantly better than the others. For this reason, two irace parameters
have been modified to not prematurely discard configurations. The param-
eter that specifies how many instances are evaluated between elimination
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tests has been increased as well as the parameter that specifies how many
instances are evaluated before the first elimination test. Considering the in-
crease of experimentations required in each race, the maximum number of
experimentations has been set to 5000.

Considering the speed of the tailored two-phase heuristic and its capacity
to solve instances with a large number of boxes, irace has also run with larger
training instances (from 10 to 100 boxes) and the same best configuration is
obtained, except for β (which is equal to 0.53) but as mentioned already this
parameter does not have a significant impact on the solution quality.

6.3 Sensitivity analysis

In the previous section, all parameters of each heuristic have been reminded
and tuned with the irace package. It would be interesting to see the impact
of the variation of each parameter in terms of solution quality. It is also an
opportunity to verify the choices made by irace. In particular, irace used
instances with a number of boxes ranging from 10 to 30. This section checks
whether the decisions proposed by irace are still valid for larger instances,
especially for the tailored two-phase heuristic which is able to solve larger
instances than those of the training data set. For every heuristic, different
values for one parameter are tested on the final data sets defined above while
the other parameters are set to the values of the best configuration found
by irace. Note that for every experiment, the matheuristics have a running
time limited to one hour.

6.3.1 Insert-and-Fix

In this section, parameters u and q are set to different values to measure
their impact on the solution quality. Associated computational times are
also analysed.

Parameter u

Parameter u represents the number of boxes which have to be packed at each
step, i.e., whose variables have to be determined. In this section, parameter u
will range from 3 to 7 while parameter q is set to 2, its optimal value according
to irace. Average objective function values and average computational times
are shown in Figure 6.3. Both pieces of information are calculated over the
instances which have been successfully solved by the five configurations. More
precisely, the configuration with u = 6 failed for one instance with 20 boxes
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Figure 6.3: Comparison of different values of u for the I&F heuristic for
different sample sizes (each sample size has 30 instances)

Note. The average objective function values and computational times are calculated over

the instances which have been solved by all the five configurations. The number of such

instances is indicated below the sample sizes along the x-axis.

and for two instances with 40 boxes, while the configuration with u = 7 failed
for one instance with 30 boxes and for the same two instances with 40 boxes.

It can be seen on the left-hand side of Figure 6.3 that the solution quality
increases, i.e., the average objective function values are smaller, if parameter
u has a larger value. This behaviour can be expected: if u is small, then few
boxes are packed at each step and this can lead to numerous selections of small
ULDs, while when u is large, a broader view of the problem is considered and
fewer large ULDs may be used. The average computational times for every
configuration are represented on the right-hand side of Figure 6.3. One can
notice that the larger the value of u, the larger the computational times.
Once again, this observation can be expected: the larger u, the closer to the
original MILP. This means that on one hand, the solution quality is improved,
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but on the other hand, each subproblem takes a larger amount of time to be
solved. This represents the typical trade-off existing between computational
times and solution quality.

Parameter q

Parameter q denotes the number of boxes whose variables are fixed at each
iteration. In this section, parameter q will take values 1, 2 and 3, while pa-
rameter u is fixed to 7, its optimal value according to irace. Table 6.4 shows
three pieces of information for each value of q and for each sample size: first,
the number of unsolved instances, second the average computational times
calculated over the instances solved by the three configurations and third the
average objective function values also calculated over the instances solved by
the three configurations. In Table 6.4, one can see that the configuration
with q = 1 gives the best average objective function value in general, but
this configuration takes a large amount of time and has thus more unsolved
instances. This slowness can be expected since, if q is small, the MILP to be
solved has less fixed variables and thus more decisions have to be taken in the
subproblems. This may explain why irace discarded the configuration u = 7
and q = 1 in its experimentations. As a reminder, when a configuration was
not able to solve an instance within one hour, it returned a large number to
indicate to irace that it did not perform well. The difference between the
configurations with q = 2 and q = 3 with respect to the average objective
function values is not clear as shown in Table 6.4. The average objective
function value is slightly better for q = 2 than for q = 3 for instances with
10, 30 and 40, which may explain the decision of irace. However, this be-
haviour is not noticed for larger instances. It seems that the configuration
with q = 2 is generally faster than the configuration with q = 3, but may
encounter some problems with some instances for which it is not able to find
a feasible solution within on hour. The influence of parameter q seems minor
with respect to the solution quality.

6.3.2 Fractional Relax-and-Fix with Coord

In this section, the impact of the three parameters u, v and q is analysed.
For this purpose, each parameter will take different values while the other
parameters are fixed to the value found by irace.
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Table 6.4: Comparison of different values of q for the I&F heuristic for dif-
ferent sample sizes (each sample size has 30 instances)

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60

# unsolved instances

q = 1 0 1 3 3 2 1

q = 2 (best) 0 0 1 2 2 1

q = 3 0 1 0 2 1 0

Average computational times [s.]

q = 1 17.38 38.85 93.12 249.74 311.27 453.85

q = 2 (best) 12.73 25.25 40.58 115.22 106.32 158.82

q = 3 14.44 12.83 67.50 175.12 195.82 192.34

Average objective function values

q = 1 12.31 26.26 30.92 42.38 56.69 72.83

q = 2 (best) 12.52 26.92 32.68 44.10 57.40 77.15

q = 3 12.69 26.50 32.86 44.80 56.57 74.77

Note. The average objective function values and computational times in seconds are cal-

culated over instances which have been solved by the three configurations.

Parameter u

As for the I&F heuristic, parameter u describes the number of boxes whose
variables have to be determined. The solution quality and the computational
times are analysed when parameter u is equal to 6 and 7 (optimal according
to irace), while parameter v is set to 5 and q to 1.

Figure 6.4 shows the average objective function values (left-hand side)
as well as information about the computational times (right-hand side) for
these two configurations for different sample sizes. The average objective
function values and average computational times are computed over the in-
stances solved by the two configurations. The number of these instances is
indicated on the x-axis of the plot on the left-hand side. One can see that
the average objective function values are smaller with the configuration with
u = 7 as announced by irace. However, this configuration takes a large
amount of time on average to solve the instances as indicated on the right
plot in Figure 6.4. For this reason, the number of unsolved instances within
one hour computational time is also larger for the configuration with u = 7
than for the configuration with u = 6. As for the sensitivity of parameter
u for the I&F heuristic, this observation can be expected: the larger u, the
larger the number of variables in the subproblems. This leads to a better
solution quality, but requires a larger amount of computational time.
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Figure 6.4: Comparison of different values of u for the FRF heuristic with
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Note. The average objective function values and computational times are calculated over

the instances which have been solved by the two configurations. The number of such

instances is indicated below the sample sizes along the x-axis on the left plot.
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Parameter v

The influence of parameter v is analysed in this section. The objective func-
tion values and the computational times are observed when parameter v
ranges from 2 to 6, while parameter u = 7 and parameter q = 1. As a re-
minder, parameter v controls the number of boxes whose coordinate variables
are integer, the coordinate variables related to boxes from v + 1 to u have
the integrality restriction relaxed. As a consequence, parameter v influences
the number of steps in the algorithm since the FRF heuristic stops as soon
as q×#step + v ≥ n as explained in Section 4.3. Moreover, parameter v also
impacts on the difficulty of the subproblems since it controls the number of
integer variables. If v is small, then it leads to a large number of steps but
the subproblems to be solved are easier while if v is large, there are fewer
iterations but they are more difficult to solve.

Table 6.5 shows three pieces of information for each value of v and for
each sample size: first, the number of unsolved instances, second the av-
erage computational times calculated over the instances solved by the five
configurations and third the average objective function values also calculated
over the instances solved by all the configurations. The number of instances
solved by the five configurations is indicated in Table 6.5 below the num-
ber of unsolved instances for each configuration. Looking at the first part
of Table 6.5, one can observe that some instances which cannot be solved
differ from one configuration to another. As a consequence, only two thirds
of the instances with 40 boxes can be solved by all the configurations, which
reduces the possible comparisons. The configuration with v = 4 has a high
number of failures for 30 boxes to be packed and configurations with v = 3
and v = 5 have one sixth of the instances with 40 boxes unsolved. In terms of
solution quality, the configuration with v = 2 gives the best average objective
function value for instances with 10 and 20 boxes but not for larger instances.
Despite irace states the configuration with v = 5 is the best configuration
in terms of solution quality, the results in Table 6.5 do not clearly indicate
this tendency. Parameter v seems to have a minor influence on the solution
quality.

Parameter q

In this section, parameter q ranges from 1 to 3, while parameter u is equal
to 7 and parameter v is equal to 5. Parameter q describes the number of
boxes whose variables are kept and fixed from one iteration to the next. As a
consequence, parameter q also influences the complexity of the subproblems
since it controls the number of variables to be determined. Parameter q has
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Table 6.5: Comparison of different values of v for the FRF heuristic with the
block Coord for different sample sizes (each sample size has 30 instances)

n = 10 n = 20 n = 30 n = 40

# unsolved instances

v = 2 0 1 1 3

v = 3 0 1 0 5

v = 4 0 1 4 3

v = 5 (best) 0 2 0 4

v = 6 0 1 2 5

# solved instances 30 27 24 20

Average computational times [s.]

v = 2 24.55 26.43 153.45 398.94

v = 3 19.73 40.96 196.32 336.49

v = 4 21.91 27.88 174.83 301.31

v = 5 (best) 23.20 38.63 161.75 489.27

v = 6 30.18 71.89 93.44 290.70

Average objective function values

v = 2 12.39 23.81 31.79 40.03

v = 3 12.44 24.61 30.71 38.22

v = 4 12.44 24.30 31.65 39.17

v = 5 (best) 12.48 24.33 32.40 38.19

v = 6 12.44 24.76 32.23 39.36
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also an impact on the number of steps of each configuration for the same
reason as parameter v. As shown in Table 6.6, the average objective function
values are smaller for configuration with q = 1 as predicted by irace. This
is understandable since a small value of q gives the heuristic more flexibility
from one iteration to another. However, the average duration is longer for
this configuration which can be explained by an increase in the number of
variables to be determined.

Table 6.6: Comparison of different values of q for the FRF heuristic with the
block Coord for different sample sizes (each sample size has 30 instances)

n = 10 n = 20 n = 30 n = 40

# unsolved instances

q = 1 (best) 0 2 0 4

q = 2 0 1 1 2

q = 3 0 3 0 3

# solved instances 30 27 29 24

Average computational times [s.]

q = 1 (best) 23.20 26.45 144.59 566.78

q = 2 18.28 18.73 84.57 203.88

q = 3 20.57 32.80 76.30 260.12

Average objective function values

q = 1 (best) 12.48 24.87 31.99 39.03

q = 2 12.56 26.50 31.45 40.57

q = 3 12.69 26.96 32.11 41.50

6.3.3 Fractional Relax-and-Fix with Coord & pij

Considering the values provided by irace, only the sensitivity of parameters
v and q are analysed in this section.

Parameter v

To evaluate the sensitivity of parameter v, parameter u is set to 7 and pa-
rameter q to 1. Parameter v ranges from 2 to 6, where 6 is the value given
by irace.

As for the previous FRF heuristic, Table 6.7 shows three pieces of in-
formation for each value of v and for each sample size: first, the number of
unsolved instances, second the average computational times calculated over
the instances solved by the five configurations and third the average objective
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Table 6.7: Comparison of different values of v for the FRF heuristic with
the block Coord & pij for different sample sizes (each sample size has 30
instances)

n = 10 n = 20 n = 30 n = 40

# unsolved instances

v = 2 1 4 4 13

v = 3 0 3 3 7

v = 4 0 0 4 4

v = 5 0 0 0 4

v = 6 (best) 0 1 1 3

# solved instances 29 24 20 10

Average computational times [s.]

v = 2 30.21 138.51 224.40 629.69

v = 3 18.51 85.85 275.79 764.12

v = 4 20.99 54.60 157.50 317.50

v = 5 129.31 39.00 102.64 294.87

v = 6 (best) 13.81 21.31 56.57 161.89

Average objective function values

v = 2 12.69 28.05 35.91 46.68

v = 3 12.65 26.08 36.03 49.24

v = 4 12.68 25.93 34.33 46.74

v = 5 12.53 25.68 33.49 44.41

v = 6 (best) 12.39 25.11 32.65 44.66

function values also calculated over the instances solved by all the configura-
tions. The number of instances solved by the five configurations is indicated
in Table 6.7 below the number of unsolved instances for each configuration.

As in Table 6.5, one can observe in Table 6.7 that some instances which
cannot be solved differ from one configuration to another. As a consequence,
only one third of the instances with 40 boxes can be solved by all the con-
figurations, which reduces the possible comparisons. One can see that the
configuration with v = 6 is often the configuration that solves the largest
number of instances for every sample size. Moreover, even among the in-
stances solved by all the configurations, the configuration with v = 6 is the
fastest configuration as indicated in bold in Table 6.7. A high value of v
reduces the number of steps in the algorithm which may explain the speed
of the configuration with v = 6. With respect to the solution quality, this
configuration is also able to provide solutions with the highest average quality.
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Parameter q

In this section, parameter q ranges from 1 to 3, while parameter u is equal to
7 and parameter v is equal to 6. As shown in Table 6.8, the average objective
function values are smaller for configuration with q = 1 as predicted by
irace. As for the other FRF heuristic, this may be expected since a small
value of q gives the heuristic more flexibility from one iteration to another.
However, unlike the other FRF heuristic, the average duration is not longer
for the configuration with v = 6 and the number of unsolved instances is not
larger for this configuration.

Table 6.8: Comparison of different values of q for the FRF heuristic with
the block Coord & pij for different sample sizes (each sample size has 30
instances)

n = 10 n = 20 n = 30 n = 40

# unsolved instances

q = 1 (best) 0 1 1 3

q = 2 0 1 0 5

q = 3 0 1 1 4

# solved instances 30 29 28 25

Average computational times [s.]

q = 1 (best) 14.88 49.91 79.09 262.80

q = 2 12.26 13.48 47.22 237.80

q = 3 16.10 87.69 52.60 147.46

Average objective function values

q = 1 (best) 12.39 26.49 32.67 43.96

q = 2 12.72 26.73 33.34 44.10

q = 3 12.78 27.63 34.17 45.28

6.3.4 A tailored two-phase constructive heuristic

The tailored two-phase constructive heuristic has six parameters whose val-
ues have been determined with irace. To analyse the sensitivity of each
parameter, the values of the five other parameters are set to the values of the
best configuration found by irace and presented in the first row of Table 6.3.

Parameter β

Parameter β has been introduced for the Not Too Low constraint of the
packing algorithm and controls the minimum height that the top face of a
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fragile box has to reach during the first part of the packing algorithm. This
parameter has been introduced to avoid to waste space on top of fragile boxes
early in the algorithm. A high value means that the Not Too Low constraint
is very restrictive and thus fragile boxes are more likely assigned to list L2.
Conversely, a small value of β means that the constraint is easily satisfied.
The values of the different parameters of the tested configurations are:

β bestHeight merit function uldOcptSort boxSort δ

[0.50,0.99] 1 MF1 2 2 N.A.

The differences between the results obtained with the different configura-
tions are very small (most of the time smaller than 1%) and cannot be clearly
seen on a plot unless a considerable scale is used. For this reason, the results
are shown in Table 6.9.

Table 6.9: Average objective function values over the 30 instances for each
sample size and for different values of β

Number of boxes

β 10 20 30 40 50 60 70 80 90 100

0.50 15.46 31.71 38.55 52.30 62.37 75.37 82.79 91.92 98.44 108.31

0.55 15.46 31.71 38.55 52.30 62.37 75.20 82.83 91.92 98.44 108.31

0.60 15.46 31.71 38.55 52.30 62.37 75.20 82.83 91.92 98.44 108.31

0.65 15.46 31.71 38.55 52.30 62.37 75.20 82.83 91.93 98.44 108.31

0.70 15.46 31.54 38.55 52.30 62.41 75.20 82.83 92.14 98.41 108.31

0.75 15.46 31.54 38.55 51.90 62.46 74.63 83.20 92.01 98.41 108.55

0.80 15.46 31.54 38.55 51.90 62.46 74.63 83.20 92.01 98.41 108.55

0.85 15.46 31.54 38.72 51.90 62.49 74.80 83.36 92.01 98.41 108.72

0.90 15.46 31.54 38.72 51.73 62.49 74.80 83.36 92.01 98.57 108.72

0.95 15.46 31.54 38.72 51.73 62.49 74.80 83.36 92.01 98.57 108.55

1.00 15.46 31.71 38.89 51.90 62.49 74.80 83.44 92.01 98.67 108.71

It seems that the solution quality can be slightly deteriorated for some
sample sizes (e.g., 30, 50, 70 and 90) when β is close to 1. However, for the
remaining values, it seems that there is no value distinctly better than the
others. This parameter does not seem to have a noticeable influence on the
solution quality. This observation explains the difficulty for irace to find a
value for this parameter.

Parameter bestHeight

Parameter bestHeight controls the EP selection for accommodating a box
during the packing algorithm. The merit function first sorts the EPs and
among the first bestHeight ones, the EP leading to the lowest CG is selected.
The aim is thus to keep the CG of the packing as low as possible. irace

suggests to select the first EP regarding the merit function only. irace
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states that it is not necessary to keep and sort the first EPs with respect to
the CG height. The values of the parameters of the tested configurations are:

β bestHeight merit function uldOcptSort boxSort δ

0.68 [2,5] MF1 2 2 N.A.

As shown in Table 6.10, the average objective function values tend to
increase when the value of bestHeight increases, as predicted by irace.
This behaviour seems clear from 1 to 3 but is less obvious when ranging from
3 to 5 as shown in Figure 6.5 for instances with 90 and 100 boxes.

Table 6.10: Average objective function values over the 30 instances for each
sample size (n is the number of boxes in each sample) and for the different
possible values of parameter bestHeight

Number of boxes

bestHeight 10 20 30 40 50 60 70 80 90 100

1 (best) 15.46 31.54 38.55 52.30 62.41 75.20 82.83 91.93 98.41 108.31

2 15.82 31.65 40.29 54.29 63.37 77.78 85.87 93.69 99.94 112.75

3 15.98 32.32 40.47 53.83 63.82 76.94 86.82 95.40 100.96 114.51

4 15.98 32.36 40.68 53.52 63.12 77.21 86.76 95.80 101.16 114.65

5 16.01 32.31 40.71 53.69 63.66 76.94 86.93 95.43 100.86 115.24

•
•
• • •

98

100

102

| | | | |

1 2 3 4 5

bestHeight

A
v
e
ra

g
e
o
b
je
c
ti
v
e
fu

n
c
ti
o
n

v
a
lu

e
s

(a) Average objective function values
over the 30 instances with 90 boxes

•

•
• • •

108

110

112

114

| | | | |

1 2 3 4 5

bestHeight

A
v
e
ra

g
e
o
b
je
c
ti
v
e
fu

n
c
ti
o
n

v
a
lu

e
s

(b) Average objective function values
over the 30 instances with 100 boxes

Figure 6.5: Average objective function values when parameter bestHeight

ranges from 1 to 5

Merit function

The merit function is the function used to sort and then to select the EP
for packing a box. MF1 is based on the RS around the EP while MF2
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considers the distance between the CG and the geometrical centre of the
ULD. According to irace, MF1 gets better solution quality than MF2.

The values of the parameters of the tested configurations are:

β bestHeight merit function uldOcptSort boxSort δ

0.68 1 MF2 2 2 N.A.

A comparison of the average objective function values per sample size for
these two merit functions is presented in Figure 6.6. A representation with
the standard deviations can be found in Appendix A.3, Figure A.1.
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As can be seen in Figure 6.6, the solution quality is slightly better with
MF1 as stated by irace. This behaviour can be expected since the aim
of the RS utilisation is to exploit the space in the best way, choosing the
minimum volume able to accommodate the given box. However, the goal
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of the function MF2 is to minimise the distance between the CG and the
geometric centre of the ULD. The weight distribution is improved with MF2
and the number of observed deviations is therefore reduced compared to the
use of MF1, as shown in Figure 6.7. In Figure 6.7, it can be seen that MF1
has a larger number of unbalanced ULDs than with MF2 before the J&S
operators are applied to improve weight distribution, and this is still true
after J&S operator application. Therefore, MF2 fulfils its role with respect
to the weight distribution.
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Figure 6.7: Average percentage of unbalanced ULDs per sample size (each
sample size has 30 instances)

Parameter uldOcptSort

Parameter uldOcptSort controls the sequence according to which the ULDs
are unpacked and repacked in the second phase of the tailored constructive
heuristic. ULDs are considered either by non-increasing or by non-decreasing
loaded volume. irace states that the solution quality is better if the ULDs
are sorted by non-decreasing loaded volume.

The values of the parameters of the tested configurations are:
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β bestHeight merit function uldOcptSort boxSort δ

0.68 1 MF1 1 2 N.A.

The intuition based on the preliminary tests explained on page 100 turns
out to be verified by irace. The average objective function values obtained
with the configuration with uldOcptSort=1 is also represented in Figure 6.6.
The configuration with uldOcptSort=1 seems to give larger objective func-
tion values on average. This behaviour may be explained by the fact that
some ULDs have few packed boxes but with special shapes. These boxes
can thus be hard to repack in smaller types of ULDs. The decision made by
irace seems the most appropriate even for larger sample sizes.

Parameter boxSort

irace states that it is more efficient in terms of solution quality to sort the
boxes to be packed by decreasing base area. To have an idea of the values
obtained with the Clustered Area-Height as box sorting operator, different
values of δ are tested. The values of the parameters of the tested configura-
tions are:

β bestHeight merit function uldOcptSort boxSort δ

0.68 1 MF1 2 1 [10,90]

As can be seen in Figure 6.8, the obtained results show that the larger
δ, the larger the average objective function values. This observation can
be expected: if δ is large, then there are few clusters among which some
can hold a lot of boxes. Inside the clusters, boxes are sorted by decreasing
height and this sorting is apparently less effective in terms of solution quality.
This also explains that the results with δ = 10 are close to those provided
by a decreasing base area sorting. If δ is small, there are a lot of clusters,
possibly containing few boxes. As explained on page 92, the clusters with
the largest bases are considered first and thus the sorting tends to be a
decreasing base area sorting. The objective function values obtained with
δ = 30, 40, 50, 60, 70, 80 and 90 are similar for all the size of samples as
shown in Figure 6.9 and thus all of these configurations are not represented
in Figure 6.8. Based on these observations, the choice made by irace seems
the most appropriate, even for larger instances.
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6.4 Results of the parametrised heuristics

In this section, the results of the experimentations carried out with the three
matheuristics and the tailored two-phase constructive heuristics on the final
data sets are analysed on different aspects: the computational times and
the filling rates. The latter shows how efficiently the loading space is used
inside the ULD. However, the constraint related to the height of the CG may
prevent a high filling rate from happening. The maximum height for the CG
is often around 50% of the ULD height. In practice, it is difficult to provide
an average filling rate because it depends on the cargo and may fluctuate from
one flight to another. It would seem that the average utilisation is around
55% and hardly ever above 80%. In particular, airlines will try to exploit
the volume of ULDs, but it may happen that ULDs with low filling rates are
loaded because it is unusual to keep the cargo for a next flight. In particular,
cargo sent by plane is often time-sensitive.

6.4.1 Insert-and-Fix

Two elements about the solutions obtained with the I&F are observed and
analysed in this section. First, a good indicator of the solution quality is
the filling rate of the used ULDs. Second, the computational times are ob-
served. An a priori disadvantage of the matheuristics developed in this thesis
is the computational duration which tends to increase considerably when the
number of boxes is larger. These two aspects are now analysed.
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Note that backtracking has never been activated over all the experiments
with the I&F.

Filling rate analysis

To represent the trend of the filling rates for each sample size, boxplots are
drawn in Figure 6.10. In addition to the sample sizes, the number of ULDs
used to solve each set of 30 instances is shown in brackets, next to the sample
sizes, along the y-axis. For instance, 225 ULDs are used to pack the boxes of
the 30 instances with 80 boxes. These numbers of ULDs thus represent the
number of observations represented in the boxplots.

When looking closely at Figure 6.10, the size of the interquartile ranges
does not seem to show a clear trend, but the ranges themselves slightly move
to the right when the sample size increases from 10 to 30. This means that
the middle 50% of observations has a filling rate growing with the number of
boxes to be packed. The end of the right whisker takes larger values when
the sample size increases from 10 to 30 and then remains almost constant for
larger sizes. This remark can be expected since a minimum number of boxes
or a minimum volume may be needed to achieve large filling rates. Note that
for instances with at least 40 boxes, almost half of the ULDs have a filling
rate greater than 50%. Moreover, one ULD used for an instance with 40
boxes reaches a filling rate of almost 80%. All these observations indicate
that the I&F is able to correctly exploit loading space inside the ULDs.

However, for any sample size, there exist one or several ULDs with low
filling rates as shown in Figure 6.10. The length of the right whisker seems
rather constant, but the number of outliers on the left increases with the
sample size, which is typical of a distribution with a negative skewness. This
is not surprising. It may happen that at the end of the algorithm, the last
boxes, i.e., the smallest boxes since they are sorted by decreasing volume,
cannot be packed in already used ULDs and thus lead to the opening of a
new ULD.

Computational times

Average computational times needed to solve the final instances with the I&F
are shown in Figure 6.11. The upper part of the figure shows the average
times which are computed over the instances that have been solved in less
than one hour computational time for each sample size. As a reminder,
each run of the I&F algorithm has a time limit of one hour to solve each
instance. If the computation lasts one hour, then at the end of that duration,
the algorithms stops and either returns a feasible (but suboptimal) solution
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Figure 6.10: Filling rates in percent per sample size (each sample size has 30
instances) for the I&F heuristic. The number in brackets denotes the number
of ULDs used for all 30 instances of each sample size

141



100

200

300

400

500

A
v
er

a
g
e

co
m

p
u
ta

ti
o
n
a
l

ti
m

es
[s

.]

Sample sizes

| | | | | | | | | |

10 20 30 40 50 60 70 80 90 100

1

2

#
u
n
so

lv
ed

in
st

a
n
ce

s

Figure 6.11: Average computational times in seconds and number of unsolved
instances (out of 30) for the Insert-and-Fix heuristic for different sample sizes
(the average is calculated over the solved instances)

or returns nothing if no feasible solution has been found. The number of
unsolved instances is shown in the lower part of Figure 6.11. It can be seen
that the times needed to solve the instances clearly increases when the number
of boxes to be packed, i.e., the sample size, increases as well. This trend even
becomes a problem for some instances since they cannot be solved within one
hour. For instance, two instances out of the 30 with 80 boxes have not been
solved in one hour, the average computational time is then calculated over
the 28 solved instances.

6.4.2 Fractional Relax-and-Fix with the block Coord

As for the I&F heuristic, the filling rates of the ULDs used by the FRF
heuristic with the block Coord and the computational times needed for the
instances to be solved are analysed in this section. It will be shown that this
method needs large amounts of time to solve instances with 50 boxes already.
For this reason, only a subset of the final instances has been tested. To justify
this decision, the computational times analysis is first presented hereinafter.
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The filling rates of the used ULDs are then observed for the solved instances.
Note that backtracking has never been activated over all the experiments

with the Fractional Relax-and-Fix with the block Coord.

Computational times

Figure 6.12 shows average computational times needed to solve the final data
sets with the FRF heuristic with the block Coord for each sample size. As
for the I&F, the upper part of Figure 6.12 shows the average times which
are computed over the instances that have been solved within one hour com-
putational time. The number of unsolved instances for each sample size is
shown in the lower part of Figure 6.12. It can be seen that the times required
to solve the instances and the number of unsolved instances clearly increase
when the number of boxes to be packed increases as well. This trend even
becomes an issue for some instances since they cannot be solved within one
hour as shown in the lower part of Figure 6.12. Since the FRF heuristic with
the block Coord is not able to find a feasible solution to seven instances out
of the 30 with 50 boxes, the larger sample sizes have not been tested for this
heuristic.

Filling rate analysis

The filling rate gives information about how efficiently the loading space of
the ULDs is used. Figure 6.13 shows the boxplots of the filling rates of the
ULDs. The observations are the used ULDs for all the solved instances. The
number of these observations is indicated next to the sample sizes along the
y-axis. In comparison to the I&F filling rates, only the instances with 10
to 50 boxes have been tested. There are thus less boxplots represented in
Figure 6.13. Moreover, even for those sample sizes, some instances have not
been solved, which means that the number of observations is also smaller for
each sample size than in the case of the I&F. These two elements lead to less
information about the distribution and thus to a less obvious tendency about
the behaviour of the filling rates. However, it seems that the interquartile
ranges and the right whiskers are slightly shifting to the right when the num-
ber of boxes to be packed is larger. This means that the 75% of the observed
filling rates increase with the sample sizes. One can see that reasonable fill-
ing rates can be reached. Especially, one ULD used to solve an instance with
40 boxes is able to reach a filling rate of 82.14%. The FRF heuristic with
the block Coord is thus able to use the space efficiently inside the ULDs but
unfortunately is very time consuming. Because of this slowness, almost one
fourth of the instances with 50 boxes have not been solved in one hour.
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Figure 6.12: Average computational times in seconds and number of unsolved
instances (out of 30) for the Fractional Relax-and-Fix heuristic with the block
Coord for different sample sizes (the average is calculated over the solved
instances)
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Figure 6.13: Filling rates in percent per sample size (each sample size has
30 instances) for the FRF heuristic with the block Coord. The number in
brackets denotes the number of ULDs used for all 30 instances of each sample
size

6.4.3 Fractional Relax-and-Fix with the block Coord & pij

As for the I&F and the FRF with the block Coord heuristics, both compu-
tational times and filling rates are analysed for the FRF heuristic with the
block Coord & pij . It will be seen that the computational times explode
when the number of boxes to pack increases. For this reason, the instances
with 100 boxes have not been tested with the FRF heuristic with the block
Coord & pij . To convince the reader, these computational durations are first
presented and are followed by the filling rate analysis. Finally, the number
of backtracks is provided for each sample size.

Computational times

Figure 6.14 presents the average computational times and the number of
solved instances for each sample size for the FRF heuristic with the block
Coord & pij . As can be seen, both elements are smaller than those of the
FRF heuristic with the block Coord. For this reason, instances with up to 90
boxes have been tested with the FRF heuristic with the block Coord & pij .
Despite this improved speed, computational times explode when the sample
size becomes more important. This leads to an increase in the number of
unsolved instances as shown in the lower part of Figure 6.14. Especially,
40% of the instances with 90 boxes have not been solved within one hour
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Figure 6.14: Average computational times and number of unsolved instances
(out of 30) for the Fractional Relax-and-Fix with the block Coord & pij
heuristic for the different sample sizes (the average computational times are
calculated over the solved instances)

Filling rate analysis

The filling rate is an indicator of the solution quality. The filling rates of the
used ULDs for each sample size are represented by boxplots in Figure 6.15.
The number of observations is indicated in brackets, next to the sample sizes,
along the y-axis.

Unlike the I&F and the FRF with the block Coord heuristics, the boxplots
of this heuristic do not seem to move to the right when the sample size
increases. The boxplots have almost the same median for all the sample sizes
and they almost all show a distribution with a negative skewness. This last
observation indicates that a lot of ULDs have a good filling rate.

At the first glance, there are fewer ULDs with a low filling rate in the
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Figure 6.15: Filling rates in percent per sample size (each sample size has
30 instances) for the Fractional Relax-and-Fix with the block Coord & pij
heuristic. The number in brackets denotes the number of ULDs used for all
30 instances of each sample size
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solutions of the FRF heuristic with the block Coord & pij than for the I&F
heuristic. The comparisons of the quality between the different methods is
presented in Section 6.5.

Backtracking

Backtracking has been activated for several applications of the FRF heuristic
with the block Coord & pij . More precisely, Table 6.11 shows the number of
instances, over 30, for which backtracking has been applied for each sample
size in the second column. The third column provides information about
the number of times backtracking has been applied for the corresponding
instances. For instance, 1 instance with 20 (resp. 40) boxes requires back-
tracking and it has been applied once (resp. 5 times) in the algorithm and 5
instances with 60 boxes required backtracking, it has been applied 3.8 times
for each instance on average, with a minimum of 2 times and a maximum of
5 times.

Table 6.11: Number of backtracking application for the FRF heuristic with
the block Coord & pij

Sample size # instances #backtracks

[min,max], avg

n = 10 0 -

n = 20 1 {1}
n = 30 0 -

n = 40 1 {5}
n = 50 1 {1}
n = 60 5 [2, 5], 3.8

n = 70 6 [1, 8], 2.83

n = 80 3 [2, 7], 4.67

n = 90 11 [1, 17], 5.09

6.4.4 A tailored two-phase constructive heuristic

As for the MILP-based constructive heuristics, a good indicator of the solu-
tion quality is the filling rate of the used ULDs. Another important point
for the tailored two-phase constructive heuristic is the weight distribution in-
side the loaded ULDs as explained in Section 5.3. This constructive heuristic
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has been developed to quickly find a feasible solution to the problem. The
computational times are thus also observed.

Filling rate analysis

A good indicator to measure whether the space is efficiently exploited is the
filling rates of all the loaded ULDs. To represent the global tendency of these
filling rates, boxplots are drawn with all the ULDs used for the 30 instances
of each sample size in Figure 6.16. In addition to the size of the samples, the
number of used ULDs is provided along the y-axis.

In Figure 6.16, one can see that the larger the number of boxes, the higher
the filling rates of the ULDs can be. In particular, half of the ULDs used with
the instances of 100 boxes have a filling rate of at least 50%, one ULD even
reaches a filling rate of 72.78%. This observation is noteworthy especially as
the constraints ensuring that the height of the CG is below a given limit may
prevent a too high filling rate. The tailored two-phase constructive heuristic
is thus able to achieve ULDs with important filling rates.

The observation distribution tends to become asymmetrical when the
number of boxes in the samples increases. For instance, the boxplot for the
samples with 90 boxes is more left-skewed than the boxplot for instances
with 10 boxes. The 25% of observations of the right part of the interquartile
ranges (between the median and the third quartile) have more or less the
same size, no matter the size of the samples, whereas the 25% of the left
part of the interquartile ranges become more spread out when the sample
size increases. In addition to the interquartile range itself, the left whisker
encompasses a wide spread of values when the sample size is increasing. The
observations seem to present a distribution with a negative skewness, i.e.,
with a tail on the left, when the sample has a large number of boxes. In
other words, it seems that no matter the number of boxes in the instances
to be solved, there are always ULDs with very low filling rates. This can be
due to boxes with special dimensions (a very long box for example) or simply
because some small boxes have to be packed at the end of the algorithm but
not enough space remains in the ULDs that are already loaded.

CG deviation analysis

Figure 6.7 shows the percentage of unbalanced ULDs per sample size before
and after the application of the J&S operators (in black). The percentage
of unbalanced ULDs is initially very high especially for the instances with a
small number of boxes. This is due to packing starting from the front left
bottom vertex. If few boxes are packed, then the weight distribution is not
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Figure 6.16: Filling rates in percent per sample size (each sample size has 30
instances) for the tailored two-phase constructive heuristic. The number in
brackets denotes the number of ULDs used for all 30 instances of each sample
size
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likely to be improved naturally by packing more boxes in this ULD. The im-
provements brought by the J&S operators, shown in dashed in Figure 6.7, are
considerable but maybe not as expected with preliminary experimentations in
Figure 5.13. Results represented in Figure 6.7 suggest that the combination
of MF2 and the J&S operators is the key for a low percentage of unbalanced
ULDs.

Looking closely at the deviations separately, the packing frame algorithm
starts the packing at the front left bottom vertex as explained in Section 5.3.
Because of this, the number of CGs initially too far to the left or front is
high, as shown in Figure 6.17. In this figure, the number of deviations before
and after J&S operator application can be observed, highlighting the weight
distribution improvement. The percentages of deviations for each sample size
can be found in Figures A.2 and A.3 in Appendix A.3.2.
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7.52
4.06

1.58
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Figure 6.17: Percentages of deviations between the CG and the allowable area
among the 1010 used ULDs (in black before and in gray after J&S operator
application)

Table 6.12 summarises the reductions for each CG deviation.

The remaining deviations can be further analysed as in Section 5.3.4.
Among the 130 ULDs unbalanced after the application of the J&S operators,
43.85% of these ULDs have an unbalanced weight along the x-axis, whereas
63.08% still have a CG out of the allowable region along the y-axis. The
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Table 6.12: Reductions in the number of CG deviations among the 1010 used
ULDs before and after the application of J&S operators

Number of Deviations

unbalanced ULDs Left Right Front Rear

Before J&S 761 459 21 548 76

(75.35%) (45.45%) (2.08%) (54.26%) (7.52%)

After J&S 130 41 16 63 19

(12.87%) (4.06%) (1.58%) (6.24%) (1.88%)

reduction 82.92% 91.07% 23.81% 88.50% 75.00%

former have an average x-deviation of 8.41% and the latter have an average y-
deviation of 8.42%. These numbers have been calculated with Equation (5.1).

Computational time

The main advantage of the tailored two-phase constructive heuristic is its
impressive speed. Indeed, even for the instances with 100 boxes to be packed,
the maximum computational duration does not exceed 12 seconds for any
instance.

6.5 Global comparison

In this section, a global comparison between the results obtained with the
four parametrised methods is provided. First, the quality of the solutions
for each sample size is compared, using Friedman’s test to determine if the
differences are significant. Second, the computational times and the number
of unsolved instances are analysed and limitations are highlighted. Based on
these elements, final conclusions are drawn for practical use.

Note that the complete results are provided in Appendix A.4.

6.5.1 Solution quality

Only the instances solved by all the considered methods are compared in
the tests. Because of the limitations in terms of computational times, some
methods have not found a solution to all the instances and some have not
even been tested on all the instances. The solution quality is thus compared
step by step, depending on the available results. The four methods are first
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compared on instances with a number of boxes ranging from 10 to 50 (Step
1). Then, the I&F, the FRF heuristic with the block Coord & pij and the
tailored two-phase constructive heuristics are compared on instances with a
number of boxes ranging from 60 to 80 (Step 2). The results of the FRF
heuristic with the block Coord & pij on instances with 90 boxes are not
compared to those obtained with the I&F and the tailored heuristics because
a lot of instances have not been solved and it would reduce the number of
comparisons which can be made. Finally, the I&F and the tailored heuristic
are compared on instances with a number of boxes ranging from 90 to 100
(Step 3). A summary of the comparisons made at each step is presented in
Table 6.13.

Table 6.13: Methods compared at each step based on sample sizes (n is the
number of boxes in each instance)

Sample sizes I&F FRF Coord FRF Coord & pij tailored

Step 1 n ∈ {10, ..., 50} × × × ×
Step 2 n ∈ {60, ..., 80} × × ×
Step 3 n ∈ {90, 100} × ×

In order to compare the quality of the solutions provided by each method,
Friedman’s test has been performed in R to measure if there is a significant
difference between the results. In the case of a positive answer, the post-hoc
analysis using Conover test (Conover (1999)) is performed to highlight which
pair of methods obtained significantly different solutions. In addition to
these tests, the average objective function values computed over the instances
solved by all the techniques (depending on the step) are plotted in Figure 6.18.

Step 1

This section shows the comparisons between the four methods on instances
with a number of boxes ranging from 10 to 50.

Instances with 10 boxes The 30 instances with 10 boxes have been suc-
cessfully solved by the four methods. Friedman’s test is thus performed on the
four series of 30 objective function values. A p-value equal to 6.885×10−10 is
obtained meaning that there is a highly significant difference (p-value <0.01)
among the four series of values. The post-hoc analysis for pairwise compari-
son gives the following results:
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I&F FRF Coord FRF Coord & pij

FRF Coord 9× 10−2 - -

FRF Coord & pij 3× 10−2 6.3× 10−1 -

Tailored <2× 10−16 <2× 10−16 <2× 10−16

One can observe that there is a highly significant difference between the
tailored heuristic and the three matheuristics. Looking closely at the results
in Table A.1, this difference is explained by larger values for the tailored
heuristic than for each of the three matheuristics. This relation will be de-
noted as

Tailored > I&F, Tailored > FRF with Coord, Tailored > FRF with
Coord & pij .

Another observation is the significant difference (p-value <0.05) between the
I&F and the FRF heuristic with the block Coord & pij heuristics. Table A.1
shows that the latter performs better than the I&F for some instances:

I&F > FRF Coord & pij .

There is no significant difference neither between the I&F and the FRF
heuristic with the block Coord, nor between the two FRF heuristics.

The average objective function values over the 30 instances of size 10 for
each method are represented in Figure 6.18.

Instances with 20 boxes For a sample size of 20 boxes, the FRF heuristic
with the block Coord failed for two instances and the other FRF heuristic
also failed for one of these two. These two instances are thus ignored in the
comparison. Friedman’s test is performed on the four series of 28 objective
function values. A p-value equal 8.275×10−5 is obtained meaning that there
is a highly significant difference among the four series of values. The post-hoc
analysis for pairwise comparison gives the following results:

I&F FRF Coord FRF Coord & pij

FRF Coord 6.7× 10−10 - -

FRF Coord & pij 1.6× 10−2 2× 10−5 -

Tailored 2.5× 10−8 <2× 10−16 3.9× 10−13

All the p-values show significant differences between each pair of results.
Looking closely at the results in Table A.1, these differences can be sum-
marised as:

Tailored > I&F > FRF with Coord & pij > FRF with Coord,
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which means that the FRF heuristic with the block Coord significantly out-
performs each of the other three methods.

The average objective function values over the 28 instances of size 20 for
each method are represented in Figure 6.18.

Instances with 30 boxes For a sample size of 30 boxes, the I&F failed
for one instance and the FRF heuristic with the block Coord & pij failed for
another. These two instances are thus ignored in the comparison. Friedman’s
test is performed on the four series of 28 objective function values. A p-
value equal to 2.354−8 is obtained meaning that there is a highly significant
difference among the four series of values. The post-hoc analysis for pairwise
comparison gives the following results:

I&F FRF Coord FRF Coord & pij

FRF Coord 5.69× 10−1 - -

FRF Coord & pij 1.31× 10−1 3.9× 10−2 -

Tailored <2× 10−16 <2× 10−16 <2× 10−16

Once again, the tailored two-phase constructive heuristic has larger ob-
jective function values than the three other methods. The p-value shows
significant difference between the two FRF heuristics. When looking closely
at the results in Table A.1, it appears that the one with the block Coord
outperforms the one with the block Coord & pij .

The average objective function values over the 28 instances of size 30 for
each method are represented in Figure 6.18.

Instances with 40 boxes The three matheuristics failed on one or sev-
eral instances, leading to a set of 25 instances solved by all the four methods.
Friedman’s test provides a p-value equal to 3.808× 10−7. The post-hoc anal-
ysis for pairwise comparison gives the following results:

I&F FRF Coord FRF Coord & pij

FRF Coord 2.5× 10−8 - -

FRF Coord & pij 3× 10−1 3.1× 10−10 -

Tailored <2× 10−16 <2× 10−16 9.4× 10−15

Once again, the tailored two-phase constructive heuristic has significantly
larger objective function values than the other three methods. The p-value
shows significant differences between the two FRF heuristics and between the
I&F and the FRF heuristic with the block Coord. When looking closely at
the results in Table A.1, one has
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I&F > FRF with Coord and FRF with Coord & pij > FRF with
Coord.

The average objective function values over the 25 instances of size 40 for
each method are represented in Figure 6.18.

Instances with 50 boxes The three matheuristics failed on several in-
stances each, leading to a set of 21 instances solved by the four methods.
Friedman’s test provides a p-value equal to 3.072× 10−5. The post-hoc anal-
ysis for pairwise comparison gives the following results:

I&F FRF Coord FRF Coord & pij

FRF Coord 1.7× 10−11 - -

FRF Coord & pij 2.67× 10−2 2.8× 10−15 -

Tailored 1.2× 10−3 <2× 10−16 2.606× 10−1

Unlike the previous tests, the tailored two phase constructive heuristic
has significantly larger objective function values than the I&F and the FRF
heuristic with the block Coord, but no conclusion can be drawn between the
tailored and the other FRF heuristic. The p-value shows significant differ-
ences between the two FRF heuristics and between the I&F and the FRF
heuristic with the block Coord. When looking closely at the results in Ta-
ble A.1, one has

FRF with Coord < I&F < FRF with Coord & pij .

The average objective function values over the 21 instances of size 50 for
each method are represented in Figure 6.18.

The conclusion of this first step is that the FRF heuristic with the block
Coord significantly outperforms the other methods for the considered sample
sizes. However, as explained in the next section, this heuristic is also very
slow in comparison to the other techniques. The FRF heuristic with the
block Coord is thus recommended for instances with a reasonable size (up to
40).

Step 2

This section shows the comparisons between the I&F, the FRF with the block
Coord & pij and the tailored heuristics on instances with a number of boxes
ranging from 60 to 80.
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Instances with 60 boxes The I&F failed on one instance and the FRF
heuristic with the block Coord & pij failed on five other instances. Friedman’s
test is then performed on three series of 24 observations and returns a p-value
equal to 0.6514, which does not indicate a significant difference. The average
objective function values over the 24 instances of size 60 for the three methods
are represented in Figure 6.18.

Instances with 70 boxes Both the I&F and the FRF with the block
Coord & pij heuristics failed on several instances, leading to three series of
23 observations on which Friedman’s test is performed. The test returns a
p-value equal to 1 and thus no conclusion can be drawn.

The average objective function values over the 23 instances of size 70 for
the three methods are represented in Figure 6.18.

Instances with 80 boxes Both the I&F and the FRF with the block
Coord & pij heuristics failed on several instances, leading to three series of
22 observations on which Friedman’s test is performed. The test returns a
p-value equal to 0.129 and thus no conclusion can be drawn.

The average objective function values over the 22 instances of size 80 for
the three methods are represented in Figure 6.18.

Contrary to the first step, no clear conclusion can be drawn after step 2.
More precisely, no significant difference can be observed for each of the three
sample sizes. Moreover, looking closely at Figure 6.18, none of the three
methods seems to outperform the others for the three sample sizes. However,
the solution quality provided by the tailored two-phase constructive heuristic
is now in the range of the quality provided by the two matheuristics. Con-
sidering this last observation, the tailored two-phase constructive heuristic
may be recommended for instances with a number of boxes ranging from 60
to 80 boxes. Its solution quality is reasonable and its computational times
are remarkable as shown in Section 6.5.2.

Step 3

This section shows the comparisons between the I&F and the tailored heuris-
tics on instances with a number of boxes ranging from 90 to 100.

Instances with 90 boxes I&F failed for one instance, leading to two
series of 29 observations to be compared with Friedman’s test. The test
returns a p-value equal to 0.04109, indicating a significant difference between
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the solutions found by the two methods. When looking closely at the results
in Table A.1, one can see that the tailored two-phase heuristic outperforms
the I&F. The average objective function values over the 29 instances of size
90 for the two methods are represented in Figure 6.18 and show the same
behaviour.

Instances with 100 boxes Both heuristics solved the 30 instances. Fried-
man’s test is performed on the two series of 30 observations and returns a
p-value equal to 0.4652. No significant difference can thus be concluded. Nev-
ertheless, the average objective function values over the 30 instances of size
100 for the two methods represented in Figure 6.18 show that the tailored
two-phase heuristic has better results on average.

As a conclusion to step 3, the tailored two-phase heuristic significantly
outperforms the I&F heuristic for instances with 90 boxes and tends to do
the same for instances with 100 boxes. The tailored heuristic is therefore
recommended for instances with more than 90 boxes.

Note that the larger the sample size, the more the tailored heuristic is able
to compete with matheuristics. A possible explanation of this observation is
that the matheuristics locally optimise at each iteration and thus they may
lose solution quality when the number of iterations becomes too important.

6.5.2 Computational times and unsolved instances

In this section, the average computational times and the number of un-
solved instances are presented in Table 6.14 for each sample size and for
each method. The average durations for each method are computed over the
instances solved by the considered method, ignoring whether this instance
has been solved by the other techniques.

Looking at Table 6.14, one can see that the FRF heuristic with the block
Coord is the slowest technique. The second slowest technique is the other
FRF heuristic. Then comes the I&F heuristic which has more reasonable
computational times and a smaller number of unsolved instances, even for
large sample size. Finally, the tailored two-phase constructive heuristic has
a dramatic speed, even for large sample size.

6.5.3 In practice

For a reasonable number of boxes to be packed, the FRF heuristic with the
block Coord achieves good solution quality. However, for instances with more
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Table 6.14: Average computational times and unsolved instances for the four
techniques and for different sample sizes (each sample size has 30 instances)

n = 10 n = 20 n = 30 n = 40 n = 50

# unsolved instances

I&F 0 0 1 2 2

FRF with Coord 0 2 0 4 7

FRF with Coord & pij 0 1 1 3 3

Tailored 0 0 0 0 0

Average computational times [s.]

I&F 12.73 106.88 41.48 116.14 114.70

FRF with Coord 23.20 46.63 151.97 452.76 412.33

FRF with Coord & pij 14.88 49.91 81.09 255.51 259.53

Tailored 0.02 0.06 0.16 0.37 0.72

n = 60 n = 70 n = 80 n = 90 n = 100

# unsolved instances

I&F 1 2 2 1 0

FRF with Coord

FRF with Coord & pij 5 6 6 12

Tailored 0 0 0 0 0

Average computational times [s.]

I&F 155.35 264.91 317.07 528.64 556.78

FRF with Coord

FRF with Coord & pij 441.09 780.16 826.80 1882.56

Tailored 1.06 1.60 2.25 3.36 4.74

Note. The average computational times in seconds are calculated over the instances which

have been solved, independently of the other techniques.
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than 40 boxes, the computational times become very large and the tailored
two-phase heuristic becomes more interesting. More experimentations would
be necessary to clarify the precise size limit.
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Chapter 7

Conclusion

T he problem studied in this thesis is the packing of a set of different boxes
into a set of bins of different types, known as the Multiple Bin Size Bin

Packing Problem. This work focuses on air transportation in which bins are
Unit Load Devices. Due to the meant application, several constraints met
in practice have to be taken into account as explained in Chapter 2. These
constraints make the problem very specific and not deeply studied in the
literature. Chapter 3 aims to develop a Mixed Integer Linear Program for-
mulation for the studied problem with all its constraints. However, the Bin
Packing Problem is an NP-hard problem and limited results were obtained
due to the problem complexity. Nevertheless, this formulation can be consid-
ered as a tool for developing matheuristics, which is achieved in Chapter 4. In
Chapter 4, several matheuristics initially designed for lot-sizing applications
have been adapted to suit to the problem considered in this thesis. Instances
with a larger number of boxes can be solved but, for some instances, no
solution can be found within one hour computational time. In Chapter 5,
the priority is to develop a fast greedy algorithm. The tailored two-phase
constructive heuristic is an improvement of the Extreme Points from Crainic
et al. (2008). This constructive heuristic takes into account specific con-
straints but also manages the possibility of using different unit load device
types. Chapter 6 presents the data sets, especially designed for the problem
studied in this thesis. Chapter 6 also presents the training process that has
been used for the matheuristic and the tailored constructive algorithm, as
well as the final results that have been obtained with both types of algo-
rithms. The recommended technique depends on the number of boxes to be
packed, the matheuristics provide good quality solutions but are time con-
suming. Moreover, for a large number of boxes, the solutions provided by
the tailored two-phase constructive heuristic compete with those returned by
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some matheuristics. The current position of this final chapter in the thesis
outline is shown in bold in Figure 7.1.

Introduction

Chapter 1

State of the art

Chapter 2

Mathematical
formulation

Chapter 3

MILP-based con-
structive heuristics

Chapter 4

A tailored two-
phase construc-

tive heuristic

Chapter 5

Computational
Experiments

Chapter 6

Conclusion and
Future Research

Chapter 7

Figure 7.1: Current position in the thesis outline

Areas for improvement have been proposed at the end of each chapter
of this thesis. However, more global directions for future research may be
worthy of interest and are proposed hereinafter. These leads are presented
starting from the possible improvements of precise points presented in this
thesis and are then extended to broader and more general aspects.

Several hints for enhancement can be achieved by interactions between
different chapters of this thesis. First, in Chapter 5, the exact approach for
the weight distribution improvement can take a large amount of time to be
solved with Branch-and-Bound for some instances. An extension could be to
apply the Insert-and-Fix or Fractional Relax-and-Fix from Chapter 4 to this
formulation. Second, in Chapter 6, the irace package has been presented to
tune the parameters of the matheuristics and the tailored two-phase construc-
tive heuristic. Another use of irace could be to train the Branch-and-Bound
resolution with CPLEX as expressed in López-Ibáñez et al. (2016).

Several directions for future research are related to the constraints taken
into account in this thesis.
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The stability constraints can be handled differently. In particular, in
Chapter 5, there is no linear constraint because of the formulation and an-
other approach could be used. A lead would be to use the method developed
by Ramos et al. (2016) for similar problems. This method is based on the
first and third Newton’s laws leading to forces and moments of forces. When
a box is packed on top of other already packed boxes, the stability of the new
box has to be verified as well as the stability of the other boxes. These veri-
fications create systems which are statically indeterminate and thus hard to
solve. Another point about the stability is that, in this thesis, it is assumed
that a box can lay on an inclined wall of the unit load devices. However, in
practice, the main purpose of the containers is not to support boxes but to
provide protection.

A fourth possible direction for future research is to consider other con-
straints. As explained in Chapter 2, the allocation constraints are related
to the items that should or should not travel together. For instance, some
boxes have the same destination and have thus to be gathered in the same
unit load device(s) if the flight has different stops. Conversely, some boxes
may not be allowed to be transported in the same unit load device or next to
each other because of their contents. These kinds of constraints can perhaps
be easy to add in the linear formulation but the application to the tailored
two-phase constructive heuristic may be less straightforward.

This thesis proposes several methods which are constructive heuristics. A
possible extension would be to develop improvement heuristics to ameliorate
the solutions found.

Another extension of this work may concern the sequence of boxes to be
packed. In this thesis, the list of boxes is known and the sequence is based
on sorting operators. An extension may be to consider random sequence
of boxes. Similarly, another enhancement may be related to the a priori
knowledge of the list of boxes to be packed. There exists an online version
of the Bin Packing Problem in which the boxes have to be packed without
knowing the boxes that have to be packed afterwards (Seiden (2001)).

The problem studied in this thesis is rich by its specificity. However, it can
be easily extended to other applications. One special feature of the problem
studied here is the assortment of the boxes, which is considered heterogeneous
in our case. The case studied in this thesis is typical to air cargo. However,
in practice, delivery companies such as TNT, FedEx or UPS may consider
only few types of boxes making the assortment homogeneous. This leads to
a Cutting Stock Problem as shown in Figure 2.2. The symmetries have then
to be considered to speed up the process. A second example is related to the
unit load devices. Instead of unit load devices, bins could be a fleet of trucks
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of possibly different sizes. If all the vehicles are identical, the objective would
then become to minimise the number of needed trucks and thus to minimise
the costs of the company but also on a larger scale, eventually reduce the
congestion and the pollution. The constraint about the weight distribution
has then to be adapted to satisfy the axle weight constraints met in truck
loading (Pollaris et al. (2015)).
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Appendix A

Appendix

A.1 EP generation

Here are the details of the generation process. In the following, index k denotes a
previously packed box.

� The point (x′i, yi, zi) is projected along

– Y -axis direction:

* Very long simulated box: max{y′k : y′k ≤ yi, xk ≤ x′i < x′k, zk ≤ zi <
z′k}

* Very wide simulated box: max{y′k : y′k ≤ yi, x′i < x′k, zk ≤ zi < z′k}
* Very high simulated box: max{y′k : y′k ≤ yi, xk ≤ x′i < x′k, zi < z′k}

For each simulated box, if a k exists, then the generated EP is written
as (x′i,max y′k, zi). If none of the three simulated boxes have such k (no
previously packed boxes have been met or yi = 0), the generated EP is
(x′i, 0, zi) on the front side of the ULD.

– Z-axis direction: this projection is considered only if zi 6= 0 (if zi = 0,
only the projection along the Y -axis is considered)

* Very long simulated box: max{z′k : z′k ≤ zi, xk ≤ x′i < x′k, yk ≤ yi <
y′k}

* Very wide simulated box: max{z′k : z′k ≤ zi, x′i < x′k, yk ≤ yi < y′k}
* Very high simulated box: max{z′k : z′k ≤ zi, xk ≤ x′i < x′k, yi < y′k}

For each simulated box, if a k exists, then the generated EP will be
written as (x′i, yi,max z′k). If there is no such k for the three simulated
boxes, the generated EP is (x′i, yi, 0) if there is no type 1 cut 1. If there
is a type 1 cut, then

* if x′i <
b1
a1

, the generated EP is (x′i, yi, b1 − a1x′i),

1As a reminder the type 1 cut is described by the equation z + a1x = b1
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* if x′i ≥ b1
a1

, the generated EP is also (x′i, yi, 0).

� The point (xi, y
′
i, zi) is projected along

– X-axis direction

* Very long simulated box: max{x′k : x′k ≤ xi, yk ≤ y′i < y′k, zk ≤ zi <
z′k}

* Very wide simulated box: max{x′k : x′k ≤ xi, y′i < y′k, zk ≤ zi < z′k}
* Very high simulated box: max{x′k : x′k ≤ xi, yk ≤ y′i < y′k, zi < z′k}

For each simulated box, if a k exists, then the generated EP will be
written as (maxx′k, y

′
i, zi). If there is no such k for the three simulated

boxes, the generated EP is (0, y′i, zi) if there is neither a type 1 cut nor
a type 4 cut 2. If there is a type 4 cut and/or a type 1 cut:

* if zi ≥ b4
· if xi <

H−b4
a4

, the generated EP is (xi, y
′
i, zi)

· if xi ≥ H−b4
a4

, the generated EP is ([H−b4a4
], y′i, zi)

* if b1 ≤ zi < b4,

· if b4 − zi ≥ mini hi or if there is not type 4 cut, the generated
EP is (0, y′i, zi),

· if b4 − zi < mini hi (i.e. even the box with the smallest height
would not fit), the generated EP is (xi, y

′
i, zi),

* if zi < b1, the generated EP is ([ c1−a1zi
b1

], y′i, zi)

– Z-axis direction: this projection is considered only if zi 6= 0 (if zi = 0,
only the projection along the X-axis is considered)

* Very long simulated box: max{z′k : z′k ≤ zi, yk ≤ y′i < y′k, xk ≤ xi <
x′k}

* Very wide simulated box: max{z′k : z′k ≤ zi, y′i < y′k, xk ≤ xi < x′k}
* Very high simulated box: max{z′k : z′k ≤ zi, yk ≤ y′i < y′k, xi < x′k}

For each simulated box, if a k exists, then the generated EP will be
written as (xi, y

′
i,max z′k). If there is no such k for the three simulated

boxes, the generated EP is (xi, y
′
i, 0) if there is no type 1 cut. If there is

a type 1 cut, then

* if xi <
b1
a1

, the generated EP is (xi, y
′
i, b1 − a1xi),

* if xi ≥ b1
a1

, the generated EP is also (xi, y
′
i, 0).

� The point (xi, yi, z
′
i) is projected along the X-axis direction. If there is no k

such that x′k ≤ xi, yk ≤ yi < y′k, zk ≤ z′i < z′k , if there is a type 1 cut and if

z′i < b1 as shown on figure 5.6, the generated EP is ([
b1−z′

i

a1
], yi, z

′
i).

2As a reminder the type 4 cut is described by the equation z − a4x = b4
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A.2 Mathematical formulation for balance improve-
ment

Parameters

i ∈ {1, ..., n}

n Total number of boxes to be packed,

li × wi × hi Length × width × height of box i, ∀i,
mi Weight of box i, ∀i,

L×W ×H Length × width × height of the ULD,

C Maximum gross weight of the ULD,

V Volume of the ULD,

l+i =

{
1 if the length of box i could be vertical,

0 otherwise,
∀i,

w+
i =

{
1 if the width of box i could be vertical,

0 otherwise,
∀i,

h+i =

{
1 if the height of box i could be vertical,

0 otherwise.
∀i,

fi =

{
1 if box i is fragile

0 otherwise
∀i,

αL(resp. αW ) Accepted gap between the CG and the base

geometrical centre along the x-axis (resp. y-axis),

αW Maximum allowed height for the CG.

Variables

i, k ∈ {1, ..., n}, a, b ∈ {1, 2, 3}

(xi, yi, zi) Location of the front left bottom vertex of box i, ∀i,
(x′i, y

′
i, z
′
i) Location of the rear right top vertex of box i, ∀i,

riab =

{
1 if the side b of box i is along the a-axis,

0 otherwise,
∀i,

xpik =

{
1 if box i is on the right of box k(x′k ≤ xi),
0 otherwise(xi < x′k),

∀i,
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ypik =

{
1 if box i is behind box k(y′k ≤ yi),
0 otherwise(yi < y′k),

∀i,

zpik =

{
1 if box i is above k(z′k ≤ zi),
0 otherwise(zi < z′k),

∀i,

gi =

{
1 if box i is on the ground(zi = 0),

0 otherwise,
∀i,

hik =


0 if box k has the suitable height to support

box i (zi = z′k),

1 otherwise,

∀i, k,

oik =


0 if the projections on the XY plane of the

boxes i and k have a non-empty intersection,

1 otherwise,

∀i, k,

sik =

{
1 if box k supports box i,

0 otherwise,
∀i, k,

η1ik =

{
0 if xk ≤ xi,
1 otherwise,

∀i, k,

η2ik =

{
0 if yk ≤ yi,
1 otherwise,

∀i, k,

η3ik =

{
0 if x′i ≤ x′k,

1 otherwise,
∀i, k,

η4ik =

{
0 if y′i ≤ y′k,

1 otherwise,
∀i, k,

βl
ik =

{
1 if the vertex l is supported by box k,

0 otherwise,
∀i, k, l,

γ1i =

{
1 if the box i lays on cut 1,

0 otherwise,
∀i,

γ2i =

{
1 if the box i lays on cut 2,

0 otherwise,
∀i.
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Objective function

min zCG :=

n∑
i=1

mi
zi+z

′
i

2

n∑
i=1

mi

Constraints

i, k ∈ {1, ..., n}, a, b ∈ {1, 2, 3}, l ∈ {1, ..., 4}

x′i ≤ L, ∀i,
y′i ≤W, ∀i,
z′i ≤ H, ∀i,

x′i − xi = ri11 li + ri12 wi + ri13 hi, ∀i,
y′i − yi = ri21 li + ri22 wi + ri23 hi, ∀i,
z′i − zi = ri31 li + ri32 wi + ri33 hi, ∀i,∑

a

riab = 1, ∀i, b,∑
b

riab = 1, ∀i, a,

xpik + xpki + ypik + ypki + zpik + zpki ≥ 1, ∀i, k,
x′k ≤ xi + (1− xpik) L, ∀i, k,
xi + 1 ≤ x′k + xpik L, ∀i, k,

y′k ≤ yi + (1− ypik) W, ∀i, k,
yi + 1 ≤ y′k + ypik W, ∀i, k,
z′k ≤ zi + (1− zpik) H, ∀i, k,

ri31 ≤ l+i , ∀i,
ri32 ≤ w+

i , ∀i,
ri33 ≤ h+i , ∀i,

zi + a1xi ≥ b1, ∀i,
zi − a2x′i ≥ −b2, ∀i,
z′i + a3x

′
i ≤ b3, ∀i,

z′i − a4xi ≤ b4, ∀i,
4∑
l=1

n∑
k=1

βlik + 2γ1i + 2γ2i ≥ 3(1− gi) ∀i,
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zi ≤ (1− gi) H, ∀i,
z′k − zi ≤ vik, ∀i, k,
zi − z′k ≤ vik, ∀i, k,

vik ≤ z′k − zi + 2H(1−mik), ∀i, k,
vik ≤ zi − z′k + 2Hmik, ∀i, k,

hik ≤ vik, ∀i, k,
vik ≤ hik H, ∀i, k,

oik ≤ xpik + xpki + ypik + ypki ≤ 2oik, ∀i, k,
(1− sik) ≤ hik + oik ≤ 2(1− sik), ∀i, k,

βlik ≤ sik, ∀i, k, l,
η1ik + η2ik ≤ 2(1− β1ik), ∀i, k,
η2ik + η3ik ≤ 2(1− β2ik), ∀i, k,
η3ik + η4ik ≤ 2(1− β3ik), ∀i, k,
η1ik + η4ik ≤ 2(1− β4ik), ∀i, k,

xk ≤ xi + η1ik L, ∀i, k,
yk ≤ yi + η2ik W, ∀i, k,
x′i ≤ x′k + η3ik L, ∀i, k,
y′i ≤ y′k + η4ik W, ∀i, k,

(1− γ1i )M ≥ zi + a1xi − b1, ∀i,
(1− γ2i )M ≥ zi − a2x′i + b2, ∀i,

γ1i ≤ a1 + b1 ∀i,
γ2i ≤ a2 + b2 ∀i,∑

i

sik ≤ n(1− fk) ∀k,

L+ a1 − a2
2

− αL ≤
∑n

i=1mi(
xi+x

′
i

2 )∑n
i=1mi

≤ L+ a1 − a2
2

+ αL,

W

2
− αW ≤

∑n
i=1mi(

yi+y
′
i

2 )∑n
i=1mi

≤ W

2
+ αW .
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A.3 Results for the tailored two-phase constructive
heuristic

A.3.1 Comparison of the average objective function values
with standard deviations
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Figure A.1: Comparison of the average objective function values per sample
size for different configurations for the tailored two-phase constructive heuris-
tic with the standard deviations (each sample size has 30 instances) (detailed
version of Figure 6.6)
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A.3.2 Percentages of deviations for each sample size
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Figure A.2: Percentages of deviations for each sample size in black before the
J&S operator application and in gray after J&S application (Part 1)
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Figure A.3: Percentages of deviations for each sample size in black before the
J&S operator application and in gray after J&S application (Part 2)

A.4 Global comparison of the four parametrised
techniques

Table A.1: Objective function values and computational times of the four
parametrised techniques for every instance

I&F FRF Coord FRF Coord tailored I&F FRF Coord FRF Coord tailored

& pij & pij

Objective function values Computational times in milliseconds

n = 10

1 21.5 21.5 21.5 31.1 5486 18358 10570 76

2 12.4 12.4 12.4 14.8 4443 17308 10415 45

3 14.8 16.5 14.8 18.9 4303 9751 9917 91

Continued on next page
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Table A.1: Objective function values and computational times of the four
parametrised techniques

I&F FRF Coord FRF Coord tailored I&F FRF Coord FRF Coord tailored

& pij & pij

4 12.4 12.4 12.4 14.8 16948 21370 15041 11

5 7.4 7.4 7.4 7.4 4280 11546 3768 10

6 31.1 31.1 31.1 31.1 1414 2477 1480 15

7 5 5 5 7.4 13563 13222 8983 25

8 7.4 7.4 7.4 12.4 14934 9719 5692 7

9 16.5 14.8 14.8 14.8 2788 6695 17904 56

10 18.9 18.9 19.8 18.9 5487 7241 27055 49

11 23.9 23.9 23.9 26.3 23842 22617 18110 149

12 12.4 12.4 12.4 12.4 69225 223166 34843 7

13 7.4 7.4 7.4 12.4 14015 3857 10262 8

14 7.4 7.4 7.4 12.4 10895 8639 4364 7

15 7.4 7.4 7.4 12.4 3073 7528 6833 13

16 7.4 7.4 7.4 12.4 17417 12946 6546 24

17 16.5 14.1 14.1 14.8 20786 25848 31530 8

18 12.4 12.4 12.4 14.8 16651 44501 12536 23

19 12.4 12.4 12.4 18.9 20402 8795 19097 12

20 7.4 7.4 7.4 7.4 3705 14841 9006 6

21 5 5 5 5 5940 3955 10286 6

22 14.8 16.5 14.8 18.9 4197 7195 19718 10

23 16.5 16.5 16.5 31.1 12204 18210 14550 9

24 14.8 14.1 14.1 14.8 25750 39456 46776 7

25 12.4 12.4 12.4 14.8 15584 89748 45691 7

26 18.9 18.9 18.9 18.9 1133 2133 1566 6

27 9.1 9.1 9.1 12.4 11710 14086 17262 11

28 7.4 7.4 7.4 12.4 11284 12948 13882 9

29 7.4 7.4 7.4 12.4 14487 15503 7961 14

30 7.4 7.4 7.4 7.4 5814 2411 4640 10

n = 20

1 18.9 18.9 18.9 23.9 10371 9911 11774 22

2 31.1 31.1 31.1 50 3453 6043 5028 27

3 18.9 18.9 18.9 18.9 4011 8604 5681 83

4 18.9 18.9 18.9 18.9 10857 12793 19893 72

5 35.4 26.3 33.7 37.8 10478 63833 27823 25

6 47.6 38.5 38.5 36.1 8518 15213 9894 21

7 16.5 16.5 16.5 36.1 4924 9528 22215 39

8 23.9 18.9 23.9 23.9 449769 8337 801290 144

9 7.4 7.4 7.4 7.4 12763 19560 20157 96

10 18.9 28.9 31.3 15881 3600000 39313 44

11 48.5 43.5 43.5 64.8 32432 262685 48620 28

12 28 28 31.1 38.5 5747 10313 8890 70

Continued on next page
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Table A.1: Objective function values and computational times of the four
parametrised techniques

I&F FRF Coord FRF Coord tailored I&F FRF Coord FRF Coord tailored

& pij & pij

13 50 31.1 50 36.1 5499 13282 10280 91

14 18.9 18.9 18.9 26.3 10123 13139 9197 21

15 18.9 18.9 18.9 18.9 4647 8655 6899 89

16 26.5 21.5 21.5 31.1 37576 39316 80413 107

17 16.5 16.5 16.5 18.9 4908 12920 59650 175

18 18.9 18.9 18.9 18.9 6636 10259 11773 24

19 21.5 28.9 28.9 50 7486 591551 66471 51

20 31.1 31.1 31.1 41.1 11849 26818 19734 41

21 37.1 50 2474278 3600000 3600000 47

22 18.9 18.9 18.9 18.9 3574 7312 6673 26

23 62.4 57.4 59.1 68.9 9544 29701 17270 34

24 16.5 14.8 16.5 14.8 7959 22797 63239 30

25 18.9 18.9 18.9 18.9 9672 9579 9791 95

26 18.9 18.9 18.9 31.1 4086 7965 7229 31

27 31.1 31.1 31.1 31.1 5066 6088 6147 24

28 21.5 18.9 19.8 26.3 7503 23548 22971 20

29 18.9 18.9 18.9 18.9 8447 12132 14038 117

30 57.4 50 50 38.5 18369 43839 14955 20

n = 30

1 36.1 38.5 36.1 50 13657 43930 95969 226

2 18.9 18.9 18.9 18.9 13943 52313 16349 112

3 18.9 18.9 28.9 33.7 17343 46693 40029 127

4 57.4 50 57.4 60 18790 74782 62874 81

5 36.3 37.8 36.3 41.1 79132 133182 136986 68

6 36.1 40.2 36.1 50 28907 101652 29567 81

7 43.5 38.5 50 3600000 226542 220306 64

8 23.9 23.9 23.9 31.1 81563 326420 59524 594

9 26.3 18.9 18.9 31.3 58882 140101 28661 102

10 26.3 31.3 31.3 31.3 64506 197150 225012 121

11 31.1 31.1 31.1 31.1 11199 14680 13464 130

12 18.9 18.9 18.9 22.2 12996 58459 32795 116

13 26.3 33.7 26.3 37.8 44276 430941 86741 234

14 18.9 18.9 23.9 26.3 25784 156415 48518 679

15 28.9 26.3 26.3 33.7 31072 113111 176735 144

16 18.9 18.9 28.9 31.3 19153 21526 157148 135

17 36.1 38.5 36.1 50 14421 118162 29224 65

18 55 50 50 38.5 24458 37329 23816 68

19 50.2 37.8 42.8 33.7 26434 680629 93138 211

20 57.4 57.4 64.8 67.2 29719 71208 141404 65

21 31.3 31.3 31.3 37.8 32513 121181 65990 215

Continued on next page
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Table A.1: Objective function values and computational times of the four
parametrised techniques

I&F FRF Coord FRF Coord tailored I&F FRF Coord FRF Coord tailored

& pij & pij

22 38.5 38.5 36.1 50 20507 75788 68407 248

23 18.9 18.9 18.9 26.3 15387 49643 26719 237

24 31.1 31.1 31.1 38.5 8911 15793 14543 85

25 26.3 23.9 28.9 31.3 75696 366115 78832 68

26 40.4 35.4 38 45.9 85497 170271 166351 280

27 40.4 42.8 50 80395 515941 3600000 58

28 26.3 26.3 31.3 37.8 244309 130246 103877 59

29 18.9 18.9 28.9 33.7 13768 53300 93480 173

30 31.1 31.1 31.1 36.1 9782 15689 15157 72

n = 40

1 64.8 57.4 66.5 50 41830 874137 290111 123

2 31.3 33 31.3 37.8 204967 1044964 109807 164

3 43.5 43.5 53.5 62.2 40903 159417 1354943 201

4 32.4 31.3 31.3 37.8 39107 120344 101972 203

5 62.2 36.1 40.2 38.5 92549 174236 168341 187

6 31.3 26.3 26.3 38.7 155887 325230 134889 297

7 46.1 37.8 56.7 384926 256039 3600000 156

8 31.3 33.7 38.7 33.7 74009 494130 282090 219

9 51.1 41.1 48.5 56.7 83420 242540 128798 94

10 58.5 45.2 58.6 62.4 132157 392160 632179 125

11 37.8 3600000 3600000 3600000 844

12 74.6 38.5 77 67.2 140905 102882 160351 814

13 42.8 35.4 38.7 50 40602 81289 158953 210

14 23.9 23.9 23.9 34.8 647785 321646 180415 203

15 50.9 50 50.9 68.9 30408 170981 56230 166

16 38.5 40.2 48.5 67.2 34355 152464 90813 598

17 62.2 38.5 62.2 50 102230 79092 83719 191

18 36.1 38.5 36.1 55 68136 591594 75959 301

19 38.7 37.8 38.7 45.2 90032 443280 230466 185

20 62.2 3600000 3600000 3600000 261

21 46.1 45.4 45.2 148017 3600000 305640 165

22 33.7 33.7 33.7 50 51062 178338 130549 161

23 58.3 53.3 55.9 69.6 90680 498624 159471 212

24 31.3 31.3 26.3 33.7 101949 2093354 325727 538

25 45.9 43.5 45.9 55 48685 1400959 448682 867

26 55.9 50.9 64.8 73.9 115803 211585 110353 160

27 45.9 50 45.9 56.7 44667 133457 187879 252

28 26.3 26.3 26.3 33.7 70199 1090084 446895 334

29 58.3 52.6 76.3 132644 3600000 258341 264

30 43.5 36.1 48.5 62.2 44051 138960 285121 2747
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Table A.1: Objective function values and computational times of the four
parametrised techniques

I&F FRF Coord FRF Coord tailored I&F FRF Coord FRF Coord tailored

& pij & pij

n = 50

1 60.9 45.2 63.5 56.7 90117 360568 426596 356

2 57.4 50 50 62.2 97110 192157 251608 1068

3 69.8 64.8 66.5 81.1 53893 282368 154952 483

4 45.2 38.7 46.3 3600000 526972 215186 334

5 68.1 64.8 73.1 81.1 87424 272088 338822 636

6 65.7 64.8 62.4 100 48367 950022 286598 701

7 38.7 37.8 55.2 42.8 69883 181386 299323 583

8 82.2 76.5 64.8 98021 3600000 234351 257

9 46.1 43.5 48.5 62.4 95338 322331 267772 3813

10 60 50 62.4 50 37292 84008 85567 2449

11 58.3 57.4 60 73.9 49683 544389 185901 316

12 58.3 53.3 60.9 68.9 53199 1545241 263636 496

13 38.7 35.4 43 50 43846 261234 465915 461

14 60 60 69.6 56760 3600000 265938 389

15 45.2 33.7 46.9 37.8 84860 261335 244483 651

16 62.2 62.2 67.2 68.9 45558 89686 73135 363

17 55.2 54.3 55.2 68.9 146142 874312 336198 269

18 88.7 78 78 77 103404 201583 379129 888

19 45.2 45.2 340889 3600000 3600000 349

20 77 71.3 77 68.9 60050 442105 104690 436

21 36.1 3600000 3600000 3600000 653

22 50.9 45.2 47.6 62.2 76722 310991 179775 603

23 65.7 65.7 81.1 78999 3600000 264666 814

24 53.3 43.5 45.9 57.8 77247 342259 136586 528

25 43.5 45.2 67.2 90852 139750 3600000 471

26 53.3 60.9 93.5 936665 3600000 301989 700

27 41.1 38.7 49.5 37.8 60335 639106 350755 1028

28 43.5 45.9 45.9 52.6 68170 406161 232430 555

29 63.3 60.7 69.6 104173 3600000 464913 491

30 42.8 37.8 45.2 37.8 56470 253558 196490 598

n = 60

1 95.9 88.5 100 263330 118296 810

2 89.4 96.8 81.1 256980 397927 529

3 98.7 81.3 81.1 137590 310585 1095

4 72.2 83.9 75.6 117550 352052 494

5 81.3 69.8 69.6 144515 243827 1963

6 74.1 73.4 68.9 103727 420114 547

7 106.8 100 114987 3600000 715

8 91.8 98.5 100 127701 294048 706
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Table A.1: Objective function values and computational times of the four
parametrised techniques

I&F FRF Coord FRF Coord tailored I&F FRF Coord FRF Coord tailored

& pij & pij

9 64.8 50 53.3 126360 98363 2831

10 91.8 89.4 81.1 304282 400761 512

11 115.7 93.5 83.7 206738 263030 392

12 78.9 75.6 69.6 116228 386513 630

13 67.6 65 74.6 178683 481466 880

14 75.5 99.2 80.6 110850 220810 620

15 38.7 38.7 37.8 196243 340804 2510

16 77.2 81.1 208790 3600000 860

17 78.1 79.8 93.5 95783 536591 987

18 63.3 63.3 67.2 123450 509431 2614

19 77.4 93.5 3600000 2177525 1798

20 55.9 67.2 107059 3600000 1468

21 72.2 74.8 86.1 116351 247141 1050

22 50 55.9 57.4 58050 471619 977

23 43.5 43.5 67.2 73278 691124 1369

24 60 64.1 85488 3600000 491

25 69.6 50.9 50 110928 215534 2113

26 70.7 70.7 68.9 104723 168346 500

27 48.5 50.2 50.2 158692 744235 839

28 91.8 108.3 87.8 144565 591070 427

29 89.4 87.8 327318 3600000 530

30 96.8 100.9 77 284771 345959 630

n = 70

1 83.7 96.3 3600000 1743330 931

2 58.5 55.2 56.7 1160879 1308138 2018

3 60.7 74.1 85 122419 502804 1081

4 75.7 75.6 289424 3600000 2217

5 100.9 105.9 100 411380 617417 916

6 65 65 71.5 1169553 433326 1681

7 111.6 108.5 106.7 180583 540414 1141

8 58.3 58.3 77 132604 319936 2076

9 71.5 83 423004 3600000 840

10 85.5 84.8 87.8 158406 759984 961

11 108.3 105.9 98.3 199940 1158406 1393

12 68.9 74.8 87.8 287578 855068 1204

13 89.6 96.1 81.1 131131 1100843 1126

14 101.1 88.9 83.7 131796 690663 878

15 58.3 70 68.9 144004 383706 1190

16 85.5 88.1 100 135477 404703 1466

17 60.2 56.9 81.1 146133 969334 7141
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Table A.1: Objective function values and computational times of the four
parametrised techniques

I&F FRF Coord FRF Coord tailored I&F FRF Coord FRF Coord tailored

& pij & pij

18 100.5 96.3 221312 3600000 781

19 84.4 84.4 83.7 140680 437714 1177

20 100.9 86.1 87.8 131462 237800 989

21 75.7 77.4 75.6 299184 1315911 951

22 55.9 64.1 182216 3600000 934

23 85.5 85.5 83.7 177645 713061 1097

24 75.5 79.8 93.3 253960 1355698 1724

25 46.1 47.8 50.2 158560 686412 5337

26 58.3 76.3 109481 3600000 1694

27 106.1 103.5 100.2 160513 677298 686

28 60.7 65.7 70 221510 1032950 2237

29 95.9 3600000 3600000 797

30 76.5 71.5 67.2 136635 478996 1227

n = 80

1 65.7 70.7 74.6 232091 1065197 5910

2 94.4 108.5 105 238187 1152719 2316

3 79.6 79.6 81.1 223943 424319 7743

4 108.3 120.7 95.9 238448 717511 2827

5 106.8 96.1 88.5 314114 958162 1897

6 104.6 114.8 3600000 1218944 1085

7 85.7 75.6 453989 3600000 1469

8 105.9 100 3600000 953297 2420

9 75.7 68.9 354879 3600000 1170

10 80.5 80.5 98.3 292587 886882 1384

11 74.1 104.8 891720 3600000 1769

12 103.3 123.1 106.7 244988 1224007 1358

13 86.1 95.2 87.8 273383 507794 1308

14 73.3 56.7 311623 3600000 2294

15 84.6 86.3 81.1 256017 549954 2229

16 79.6 92.2 100.7 211181 550319 1347

17 119.8 122.4 87.8 182714 524370 1624

18 110.9 110.9 87.8 864549 886649 1942

19 94.4 103.7 81.1 203084 739932 1365

20 114.2 115.2 81.3 371487 1148528 1182

21 98.5 97.8 81.1 256763 924338 1756

22 103.5 111.1 118.9 219580 1083230 1787

23 114.2 111.7 334602 3600000 3089

24 119 116.6 100 314192 888750 1268

25 73.9 83 87.8 231608 825831 1696

26 89.6 93.7 77 315064 612969 2234
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Table A.1: Objective function values and computational times of the four
parametrised techniques

I&F FRF Coord FRF Coord tailored I&F FRF Coord FRF Coord tailored

& pij & pij

27 68.1 68.1 81.1 266356 464929 3250

28 102 84.6 102.6 241510 715984 1945

29 96.1 93.5 227646 3600000 3613

30 100.3 107 125.6 311775 818666 2198

n = 90

1 96.3 91.3 98.3 421786 837132 4699

2 82.9 82.2 100 329215 1354399 1936

3 118.4 111.3 3573586 3600000 2421

4 92 94.6 281166 3600000 2178

5 129 125.7 125.6 341812 2468876 3397

6 106.6 98.5 95.2 238540 2346069 1925

7 129.6 142.2 118.9 503368 3642109 2728

8 70.7 76.3 557243 3600000 3311

9 86.3 94.6 81.1 382637 1945501 2066

10 114 120.7 102.6 402698 1859322 4516

11 128.1 137.8 359484 3600000 11396

12 80.5 87.2 93.3 276855 2486053 3249

13 87 81.1 289443 3600000 15784

14 89.6 81.1 448377 3600000 3279

15 123.3 124.1 118.9 384415 2577854 3076

16 79.8 98.9 75.6 656716 1189905 1958

17 97.2 86.3 75.6 287800 2154917 2382

18 85.7 75.6 402373 3600000 2240

19 75.6 3600000 3600000 3477

20 106.8 105.7 364230 3600000 1751

21 102 98.7 106.7 283314 1603455 2156

22 115.9 98.5 124.8 407397 1529694 2922

23 82.2 96.3 78.9 565707 1858829 2237

24 94.4 88.5 301200 3600000 1956

25 124.8 148.9 106.7 778578 1971733 1923

26 108.3 81.1 446129 3600000 2635

27 110.9 100.9 106.7 275305 1309747 1878

28 126.4 92 100 614625 1551650 2115

29 88.9 122.6 512472 3600000 2604

30 125.7 106.8 112.2 644020 1241925 2607

n = 100

1 71.5 77 357386 12591

2 111.8 100 575752 2546

3 118.1 121.5 447500 3781

4 122.4 117.2 599841 6477
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Table A.1: Objective function values and computational times of the four
parametrised techniques

I&F FRF Coord FRF Coord tailored I&F FRF Coord FRF Coord tailored

& pij & pij

5 99.4 112.2 1121816 5875

6 104.2 100 343906 4503

7 152.5 139.2 867656 3059

8 88.7 93.9 474238 3624

9 98.5 111.7 415899 2902

10 110.1 118.9 429409 4587

11 104.6 91.1 595499 3729

12 128.9 115.2 451418 2957

13 147.9 144.1 699924 3286

14 96.1 92.8 396523 3207

15 140.3 100 404272 4142

16 120.7 108.5 574143 5743

17 110.3 111.7 513851 2660

18 116.8 87.8 677997 5024

19 89.6 92.8 356536 5398

20 92.2 102.4 383852 10287

21 102 100.7 537759 4343

22 120.7 131.1 1338171 6642

23 145.5 116.7 546330 2296

24 104.4 75.6 473979 4879

25 105.1 112.2 595769 4465

26 118.5 116.7 441146 3259

27 130.5 115.9 465232 9241

28 95.5 111.7 580033 3847

29 104.4 100 549996 4003

30 115.9 130.6 487489 2856
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Brunetta, L. and P. Grégoire (2005). A general purpose algorithm for three-
dimensional packing. INFORMS Journal on Computing 17 (3), 328–338.

Ceschia, S. and A. Schaerf (2013). Local search for a multi-drop multi-
container loading problem. Journal of Heuristics 19 (2), 275–294.

Chan, F. T. S., R. Bhagwat, N. Kumar, M. Tiwari, and P. Lam (2006).
Development of a decision support system for air-cargo pallets loading
problem : A case study. Expert Systems with Applications 31, 472–485.

Chen, C., S. Lee, and Q. Shen (1995). An analytical model for the container
loading problem. European Journal of Operational Research 80, 68–76.

Conover, W. (1999). Pratical nonparametric statistics (thid ed.). New York:
John Wiley & Sons.

Costa, M. d. G. and M. E. Captivo (2016). Weight distribution in con-
tainer loading: a case study. International Transactions in Operational
Research 23 (1-2), 239–263.

186
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