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Résumé 

Ces travaux de thèse ont porté sur la zone pastorale du Niger. Ils ont 

pour objectif principal de contribuer à l’amélioration des méthodes 

d’estimation des rendements fourragers au Sahel en général et en 

particulier au Niger. Il s’agit plus spécifiquement de : valider le modèle 

BIOMASAH (BIOMAsse SAHélienne) utilisé par le Centre Régional 

AGRHYMET [AGRonomie Hydrologie et METéorologie] (CRA); 

tester le modèle du Ministère de L’Élevage et de Industries Animales 

(MEIA) ; proposer un Modèle par Régression linéaire Multiple 

(MRM) ; tester la méthode de similarité et enfin comparer ces méthodes 

d’estimation entre elles. Le travail a été réalisé d’une part avec les 

mesures de masse herbacée faites au sol de 2001 à 2012 par le MEIA, 

les observations pluviométriques des stations de la Direction 

Météorologique du Niger, les variables météorologiques issues du 

l’institution européenne appelée "European Centre for Medium-Range 

Weather Forecasts" (ECMWF) et d’autre part, avec les images 

satellitaires notamment le NDVI de SPOT VEGETATION et MODIS 

et les pluies estimées dénommées RFE provenant de l’institution 

américaine "Famine Early Warning Systems NETwork"(FEWSNET). 

La validation du modèle BIOMASAH a été faite à l’aide des tests de t 

et de Wilcoxon pour comparer les moyennes mesurées in situ à celles 

obtenues du modèle et aussi des tests de corrélation de Pearson, Kendall 

et Spearman. Quant au modèle MEIA, les performances ont été testées 

en comparant les résultats inter et intra capteurs SPOT VEGETATION 

et MODIS en utilisant les R² et le RMSE issus des calculs avec 

l’intégrale et le maximum NDVI comme variables explicatives du 

rendement fourrager. 

Le modèle de référence (MR) a été réalisé par régression linéaire 

multiple avec la méthode pas-à-pas ascendante pour la sélection de 

variables basée sur le R² ajusté et le RMSE. La validation croisée ‘leave 

one out’ (LOOCV) a été utilisée pour calculer les R² de validation et un 

diagnostic systématique des résidus pour mieux caractériser le modèle. 
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La méthode de similarité des profils saisonniers d’indice de végétation 

a été réalisée en utilisant comme critères le R², le MAD et le RMSE. 

 Le profil de la période de croissance de la végétation de chaque pixel 

a été tracé pour toutes les années. Ensuite, le profil de l’année cible a 

été comparé avec celui des autres années pour identifier l’année 

similaire. Les résultats de la similarité ont été confrontés aux données 

observées d’une part avec les tests de corrélations de Pearson, 

Spearman et Kendall et d’autre part à l’aide de tests de t et de Wilcoxon 

pour comparer les moyennes. La comparaison des quatre modèles a été 

faite sur la base des R², des R² ajustés et les RMSE.  

Le modèle BIOMASAH a donné des moyennes significativement 

différentes des moyennes observées (p <0,001). Les corrélations de 

Pearson, Kendall et Spearman sont faibles. En ce qui concerne le 

modèle MEIA, le meilleur R² à l’échelle globale est de 0,56. Il n’y a pas 

de différence significative à utiliser les NDVI de MODIS ou de SPOT 

VEGETATION. Le RMSE est de 367 kg.ha-1. Les R² et le RMSE 

varient fortement d’une année à l’autre. Le modèle de référence a donné 

un R² ajusté global de 0,69 et un RMSE de 282 kg.ha-1, la différence 

entre le RMSE calculé et celui de la validation est de 2,72 kg.ha-1. La 

comparaison des moyennes de la similarité à celles observées a montré 

qu’il n’y a pas de différence significative (p<0,001) pour le R². Par 

contre les différences sont significatives au même seuil pour le MAD et 

le RMSE. 

 La comparaison des modèles montre que le Modèle par Régression 

linéaire Multiple (MRM) est le meilleur, mais il reste perfectible. Ainsi, 

se propose-t-on de continuer ces recherches avec d’autres indices tels 

que le LAI et le FAPAR et l’EVI. Aussi, il serait intéressant de 

prospecter les voies telles que : tenir compte du feuillage des ligneux, 

ajuster les métriques à la phénologie des herbacées, et à celles des 

ligneux. Ces travaux permettront d’améliorer la qualité des 

informations utilisées pour planifier les actions de développement en 



ix 

faveur de la société nigérienne en vue de la protéger contre les crises 

pastorales. 

Mots clés : NDVI, MEIA, BIOMASAH, SPOT VEGETATION, 

eMODIS, MR, Similarité, Modèle. 

    

Abstract  

This work was carried out on the pastoral zone of Niger, the main 

objective was to contribute to the improvement of the methods of forage 

yields predicting mainly in the Sahel and especially in Niger. This is 

specifically to validate the model BIOMASAH of ARC; test the MEIA 

model; to establish a reference model by multiple linear regression; test 

the similarity method and finally compare the methods. The work was 

carried out on the one hand with the data measured on the ground by 

the MEIA from 2001 to 2012, reel rainfall of Niger observations 

network, meteorological parameters from ECMWF and also with 

satellite images as SPOT NDVI VEGETATION and MODIS, RFE2 of 

FEWS NET. Validation of BIOMASAH model was made by t and 

Wilcoxon tests to compare reel biomass and outputs of the model. 

Pearson, Kendall and Spearman correlation testing was also made. The 

MEIA model performance was tested by confronting the results 

between and within SPOT VEGETATION and MODIS sensors, by 

comparing R² and RMSE from the integral and maximum NDVI as a 

predictor of forage yield. Average comparisons by parametric and 

nonparametric tests were also made to compare the results. The 

reference model (RM) was produced by multiple linear regression with 

stepwise method. The selection of variables was based on adjusted R² 

and RMSE and the LOOCV leave one out cross validation to calculate 

R² for validation, we made also systematic diagnosis of residues for 

better characterization of the model. The similarity method was 

performed using the R², MAD and RMSE as a criterion, the profile of 

the vegetation growth period of each pixel was plotted for all years. 

Then we compare the profile of the target year with those of other years 
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to identify the similar year. One hand the results of similarity were 

compared with actual data with the Pearson correlation test, Spearman 

and Kendall and secondly using t and Wilcoxon tests to compare means. 

Comparison of models was made on the basis of R², Adjusted R² and 

RMSE. Model BIOMASAH result on significant difference between 

average (p <0.001). Pearson correlations, Kendall and Spearman are 

low. Regarding the MEIA model, globally R² (0.56) is best, there’s no 

difference to use MODIS NDVI or SPOT vegetation, the RMSE is 367 

kg.ha-1. R² and RMSE vary greatly from one year to another. On a 

global scale the multiple linear model gave a good R² adjusted (0.69) 

and RMSE (282 kg / ha) the difference between the calculated and the 

RMSE of validation is 2.72 kg. Comparing averages of the similarity to 

the real ones showed that there are no significant differences (p <0.001) 

for R² with the differences are significant against the same threshold for 

the MAD and RMSE. The Comparison of the models shows that the 

multiple linear regression one (reference model) is the best. Research 

should continue with index like LAI, FARAR and EVI.  

Key words: NDVI, MEIA, BIOMASAH, SPOT VEGETATION, 

eMODIS, RM, Similarity, Model 
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I. Introduction générale 

Le Sahel est une large entité biogéographique s’étendant du Sénégal à 

l’Éthiopie (UNESCO, 1981). Cette zone naturelle fait face à des défis 

sécuritaires qui engendrent des pertes énormes en vies humaines et 

animales au Mali (terrorisme et rébellion armée), en Libye (terrorisme 

et guerre tribale), et dans la zone du Lac Tchad (Boko Haram au 

Nigeria, au Niger, au Tchad et au Cameroun) ainsi qu’à des défis 

climatiques et démographiques avec des conséquences sur la 

dégradation des ressources naturelles et la sécurité alimentaire et 

nutritionnelle des populations. Les communautés pastorales sont 

particulièrement sensibles et affectées par ces défis (DNEP, 2013). Ces 

dernières années plusieurs initiatives ont été prises en faveur de ces 

populations à l’échelle continentale et au niveau régional :  

- le programme MESA « Monitoring of Environment for Security in 

Africa » financé par l’Union Européenne (UE), contribue à la mise 

en œuvre du cadre stratégique de l’Union Africaine (UA) pour le 

pastoralisme en Afrique. Ce cadre vise à assurer, protéger et 

améliorer la vie, la subsistance et les droits des éleveurs pastoraux 

africains (UA, 2013) ;  

- le Projet Régional d’Appui au Pastoralisme au Sahel (PRAPS), 

financé par la Banque Mondiale, qui est une concrétisation de la 

déclaration de Nouakchott du 29 octobre 2013 ratifiée par les chefs 

d’États et de gouvernements des six pays sahéliens (Burkina Faso, 

Niger, Sénégal, Mauritanie et Tchad). Cette déclaration est un 

engagement qui vise à sécuriser le mode d’existence des pasteurs et 

à accroitre le produit brut des activités des éleveurs de 30% (DNP, 

2013). 

Le régime pluviométrique du Sahel est essentiellement lié à la 

dynamique de mousson ouest africaine (AMMA, 2002). La faune et la 

flore de cet espace naturel ont dû s’adapter au cours du Quaternaire à 

des fluctuations climatiques entre des climats tropicaux humides et 

arides, voire hyperarides. La distribution des précipitations au cours de 
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la saison des pluies modulée par leur redistribution par ruissellement à 

la surface du sol constitue des facteurs déterminants de la diversité et 

de la production du couvert végétal (Hiernaux et Le Houérou, 2006). 

L’accroissement de la variabilité climatique dont les conséquences 

commencent à être perceptibles dans les années 1970 suite à la baisse 

des normales pluviométriques 1941-1960/1961-1990 (Hulme, 1992) 

1971-2000/1981-2010 (Lona, 2014) a probablement joué un rôle dans 

les changements observés de la couverture végétale actuelle. Suivant 

les gradients Nord-Sud et Est-Ouest, une forte variabilité interannuelle 

de la production fourragère, associée à de grandes fluctuations 

temporelles de la disponibilité fourragère en quantité et en qualité est 

observée. 

Il est alors nécessaire de mettre en place une méthode d’estimation de 

ces productions fourragères en fin de saison des pluies, en vue d’établir 

un Système d’Alerte Précoce Pastorale (SAPP) efficace et efficient pour 

les neuf mois de la saison sèche qui suit. Ce SAPP doit être capable de 

fournir à temps des informations sur la disponibilité du fourrage à 

l’échelle spatiale (locale, zonale, nationale et régionale) aux acteurs du 

secteur (éleveurs, décideurs politiques, ONG, techniciens, etc.). 

L’espace pastoral du Niger, vaste et diversifié avec plus de 62 millions 

hectares d’espace pâturable (Rhissa, 2010) constitue une des forces 

majeures au développement du secteur de l’élevage. La diversité du 

couvert végétal permet à des espèces animales différentes de se côtoyer 

et de prospérer sur le même territoire. En effet, le pays dispose non 

seulement d’un atout important pour le développement socio-

économique, mais aussi d’un avantage comparatif naturel indéniable à 

produire des bovins et des petits ruminants exportables vers les pays 

côtiers et l’Afrique Centrale. Le cheptel est composé pour l’essentiel de 

bovins, ovins, caprins, camelins, équins et asins. L’effectif est estimé 

selon les résultats du Recensement Général de l’Agriculture et du 

Cheptel 2005/2007 à 31 039 041 têtes de bétail toutes espèces 

confondues soit : 11 238 268 têtes de caprins (36.2%), 9 192 017 têtes  
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d’ovins (29,6%), 7 336 088 têtes de bovins (2 3,6%), 1 477 073 têtes 

d’asins (4,7%), 1 565 420 têtes de camelin (5%) et 230 174 d’équins 

(0,7%) (RGAC, 2008). Pour une valeur totale de près de 2 000 milliards 

de Fcfa, le Niger possède, avec son élevage, un atout important pour 

son développement socio-économique (Rhissa, 2010). Les activités 

d’élevage participent pleinement à la sécurité alimentaire et à la lutte 

contre la pauvreté de la majorité des ménages. Selon les statistiques 

disponibles, les productions animales contribuent pour près de 11,8 % 

à la constitution du Produit Intérieur Brut (PIB) et à 35 % du PIB 

agricole. Il représente une source importante de devises pour l’État et 

les collectivités territoriales, mais contribue également, de manière 

significative, au budget des ménages. L’enquête budgets-

consommation des ménages indique que le secteur élevage contribue à 

plus de 15 % au budget des ménages. Quant à sa contribution à la 

satisfaction des besoins alimentaires, elle se situerait à hauteur de 25 % 

(OMD1, 2011). Aujourd’hui, le pastoralisme fait face à plusieurs 

contraintes au nombre desquelles on peut citer : 

- la réduction de l’espace pastoral due à l’extension du front pionnier 

d’exploitation des terres (cultures, aménagements des aires 

protégées...). Cette extension du front pionnier est due à 

l’augmentation de la population (urbanisation et des besoins du 

marché des produits agricoles et élevage),  

- des obstacles directs (conflits et difficultés de passages aux 

frontières) et indirects (incertitudes sur l’existence et les conditions 

d’accès à la ressource),  

- le foncier car les politiques foncières pèsent largement sur les 

ressources fourragères et leur gestion,  

- l’accès aux marchés,  

- problèmes de santé, de sécurité, de changement climatique et la 

récurrence des épisodes de sécheresse viennent s’ajouter à cette liste 

de contraintes (Touré et al., 2011).  

Il paraît urgent de disposer d’une méthode appropriée d’estimation des 
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ressources fourragères pour contribuer à la gestion des pâturages, à la 

prise de décision pour anticiper et gérer les crises pastorales ; autrement 

dit, de disposer d’un outil d’évaluation de pâturage, capable de procéder 

à une appréciation de la production fourragère et de leur réaction aux 

facteurs comme le broutage, le piétinement, etc. 

Au Sahel, Les premiers travaux d’estimation de la biomasse fourragère 

à l’aide d’images satellitaires ont été réalisés au Sénégal, avec le capteur 

NOAA-AVHRR (Tucker et al.1983, Tucker et al. 1985) où les auteurs 

ont mis en évidence une corrélation significative entre les valeurs issues 

des mesures au sol de biomasse et le NDVI "Normalized Difference 

Vegetation Index". Depuis, des corrélations similaires ont été obtenues 

dans d’autres régions sahéliennes, notamment au Niger (Maïdagi et al, 

1987 ; Justice et Hiernaux,1986 ; Wylie et al., 1991), au Mali (Hiernaux 

et Justice, 1986), au Burkina Faso (Groten et al., 1993 ; Maselli et al., 

1992) et dans d’autres zones du monde (Tucker et Sellers, 1986 ; etc.). 

L’analyse des résultats de ces travaux de recherche indique qu’il y a 

encore des améliorations à apporter au niveau de la performance des 

modèles.  

Le Centre Régional AGRHYMET(CRA), le Ministère de l’Élevage et 

des Industries Animales (MEIA) du Niger et le Centre de Suivi 

Écologique (CSE) du Sénégal réalisent depuis 40 ans des estimations 

de masse herbacée, dans le cadre de l’alerte précoce afin d’aider les 

autorités publiques à prendre des décisions pertinentes pour assurer une 

meilleure sécurité alimentaire tout en garantissant une meilleure gestion 

des ressources. Le MEIA et le CSE s’appuient sur les données mesurées 

in situ et l’indice de végétation à différence normalisée (NDVI) dont les 

premiers travaux datent des années 1970 (Rouse et al., 1973). Le NDVI 

a été exploité par plusieurs auteurs (Lobell et Asner, 2004; Huete et al., 

2002; Justice et al., 1985) qui ont montré ses performances, mais aussi 

ses limites dans le suivi et la caractérisation de la végétation à l’échelle 

globale. En outre, dans le cadre du projet Alerte précoce et Prévision 

des Productions agricoles (AP3A), le CRA a développé le modèle 
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BIOMASAH d’estimation de la biomasse fourragère au Sahel basé sur 

le bilan hydrique. Ce modèle s’appuie sur la carte des sols (texture) et 

le cumul de pluies estimées par satellite. Toutefois, les résultats issus 

de ce modèle n’ont jamais été validés à l’aide d’une série d’observations 

sur 12 ans. Aussi, parait-il impératif d’évaluer ces modèles en vue d’en 

proposer un plus performant.  

 

Objectifs de la thèse  

Ces travaux de recherche qui s’inscrivent dans le cadre des activités du 

Projet AGRICAB "Agriculture Capacity Building", financé par l’Union 

Européenne (UE) coordonné par VITO "Vlaamse Instelling voor 

Technologisch Onderzoek" ont pour objectif général de contribuer à 

l’amélioration des méthodes d’estimation des rendements fourragers 

(herbacée) annuels à l’échelle nationale, tenant compte de la variabilité 

spatio-temporelle au Sahel. Ainsi, avant de proposer toute amélioration, 

il apparait nécessaire d’une part, de tester puis valider le modèle 

BIOMASAH développé par AGRHYMET, d’autre part, d’analyser la 

performance du modèle d’estimation de la biomasse élaboré par le 

Ministère de l’Élevage et des Industries Animales (MEIA) du Niger. 

Au regard, des améliorations importantes enregistrées dans le domaine 

de la prévision des rendements agricoles à l’aide des méthodes 

statistiques combinant les rendements observés, les images satellitaires 

(métriques phénologiques) et des paramètres agrométéorologiques 

dérivés de certains modèles, il est utile de réaliser comme pour les 

rendements agricoles, un Modèle de Régression linéaire Multiple 

(MRM) d’estimation du rendement fourrager à partir de variables 

explicatives agrométéorologiques et d’indices de végétation provenant 

de la télédétection. Aussi, compte tenu de la profondeur historique des 

données disponibles, à l’instar de la méthode des analogues développée 

par les météorologistes, n’est-il pas nécessaire de tester la méthode de 

similarité pour estimer le rendement fourrager ? Et enfin, pour avoir un 

modèle de référence, il est primordial de comparer les trois modèles 
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notamment celui du MEIA, la Régression linéaire Multiple (MRM) et 

celui obtenu par l’analyse de similarité. Deux résultats majeurs sont 

attendus de ce travail de recherche. Il s’agit, d’une part de la mise en 

évidence des forces et les limites de chacun des modèles d’estimation 

des rendements fourragers (herbacée) et d’autre part, la mise à 

disposition d’un modèle amélioré qui pourra être considéré comme une 

nouvelle référence pour l’estimation des productions fourragères. 

 

Structure de la thèse 

La thèse est articulée autour de six parties : la première (I) est relative 

à l’introduction générale; la deuxième (II) traite de la validation du 

modèle d’AGRHYMET appelé BIOMASAH ; ensuite la troisième (III) 

est consacrée à l’analyse la performance du modèle d’estimation de la 

biomasse élaboré par le Ministère de l’Élevage et des Industries 

Animales (MEIA) du Niger ; la quatrième partie (IV) propose une 

amélioration de la modélisation de la biomasse fourragère en zone 

sahélienne à travers la méthode de régression linéaire multiple; la 

cinquième (V) traite de la performance de l’analyse de similarité dans 

l’estimation des rendements fourragers au Niger ; et enfin la sixième 

(VI) procède à une comparaison des modèles.  

 

1.1. Présentation de la zone d’étude 

1.1.1. Situation géographique 

La zone d’étude correspond à la zone pastorale du Niger définie sur les 

cartes de de l’Atlas  «Élevage et potentialités pastorales sahéliennes » 

(IEMVT, 1987). Elle s’étend entre le 13° et le 16° de latitude Nord et 

entre 2° et 12°de longitude Est (Figure 1.1). Le choix de cette zone du 

Sahel pour la validation des différents modèles de biomasse fourragère 

est essentiellement lié à la disponibilité des données in situ. À l’instar 

des autres régions sahéliennes, cette zone est caractérisée par la 

dynamique de la mousson ouest africaine (AMMA, 2002) avec une 

forte variabilité spatiotemporelle des précipitations (Sivakumar et al., 
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1993). Le climat est du type aride avec une pluviométrie normale 

variant entre 150 et 300 mm (Touré et al., 2012). La durée de la saison 

des pluies varie en moyenne de 60 à 120 jours pour le sahel central et 

occidental. Elle est en moyenne de 40 jours dans le Sahel septentrional 

et oriental (AGRHYMET, 2002). 

 

 

Figure 1.1 : Présentation de la zone d’étude 

1.1.2. Régime pluviométrique 

Le Niger est un vaste pays sahélien situé dans le domaine climatique de 

transition compris entre les zones sahariennes au Nord et Soudanienne 

au Sud. Le Sahel qui signifie rivage en arabe est une entité 

biogéographique enregistrant une pluviosité moyenne annuelle 

comprise 150 et 600 mm. Il est subdivisé conventionnellement en trois 

sous-zones : nord sahélienne (150-300 mm), sahélienne typique (300-

450 mm) et sud sahélienne (450-600 mm) (Justice et Hiernaux, 1986). 

Au cours des quatre dernières décennies, le Sahel a connu plusieurs 

déficits pluviométriques à l’origine de crises de sécheresse majeure 

(1968-1974, 1983-1984, 2002-2003, 2005, 2009) qui ont lourdement 

affecté les populations et leur bétail (Touré et al., 2012). La répartition 
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spatiotemporelle des précipitations et leur redistribution à la surface du 

sol par le ruissellement sont les facteurs déterminants de la diversité du 

couvert végétal et de sa production interannuelle (Hiernaux et Le 

Houérou, 2006). L’examen de la moyenne pluviométrique 1971-2000 

superposée à celle de 2001 à 2010 montre un retour des précipitations 

dans les zones Nord. Elle est matérialisée par une remontée des 

isohyètes 150, 300 et 450 mm. Cette évolution est plus marquée dans 

les régions septentrionales du Niger (Figure 1.2). 

 

 

Figure 1.2 : Superposition de la moyenne 1971- 2000 et celle 2001 - 2010 

1.1.3. Subdivision bioclimatique du Niger 

De 1933 à nos jours, plusieurs auteurs ont subdivisé la zone sahélienne 

sur la base des moyennes pluviométriques en considérant la forte 

relation qui existe entre les hauteurs pluviométriques et la structure de 

la végétation ( Aubréville, 1949 ; Boudet, 1977 ; Le Houérou, 1980 ; 

Nicholson, 1981). Une subdivision a été réalisée  sur la base de la 

moyenne 1981-2010 et en se basant sur la subdivision de (Justice et al., 

1986), soit par les isohyètes 150, 300, 450, 600 mm (Figure 1.3). 
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Figure1.3 : Zones bioclimatiques du Niger 

1.1.4. Évolution de la pluviosité sahélienne de 1900 à 2010 

En se référant aux travaux du "Joint Institute for the Study of the 

Atmosphere and Ocean" JISAO (2012), les variations annuelles des 

précipitations (cm/mois) de la zone sahélienne toute entière entre 1900 

et 2010 oscillent en dents de scie montrant des périodes humides et 

sèches. La période allant de 1900 à 1950 est marquée par une alternance 

de 3 à 4 années humides suivies d’une année sèche. De 1951 à 1969, on 

observe une persistance d’années humides, de 1970 à 1993 une 

succession d’années sèches. Par contre, la période allant de 1994 à 2011 

est caractérisée par une alternance d’une année humide suivie de 3 à 4 

années sèches (Figure 1.4). 

 
Source : http://jisao.washington.edu/data_sets/sahel/ 

Figure 1.4 : Évolution historique de la pluviosité au Sahel : variation annuelle 

en cm par mois de 1900 à 2011. 

http://jisao.washington.edu/
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1.1.5. Productivité des pâturages  

1.1.5.1. Productivité fourragère des zones bioclimatiques    

En se référant aux travaux de (Hiernaux et Justice, 1986; Boudet, 1977;  

OZER et al.,2010; Lona I., 2014), la zone saharienne qui totalise en 

moyenne des précipitations annuelles inférieures à 150 mm ne permet 

que le développement des plantes à cycle court (éphémérophytes) mais 

aussi un peuplement ouvert d’herbacées pérennes en particulier les 

graminées Panicum turgidum et Aristida sieberiana, et aussi des 

dicotylédones pérennes Cornulaca monacantha, des ligneux épars mais 

notable avec la concentration des eaux de ruissellement comme dans les 

vallées de l’Aïr, le long des Oued de l’Azaouak. Malgré le caractère 

marginal et très irrégulier de la production fourragère, les éleveurs 

nomades l’exploitent en se déplaçant avec leurs troupeaux de camelins, 

caprins, ovins, asins, et bovins au gré de la disponibilité des pâturages 

et des points d’eau. La sous zone nord-sahélienne comprise entre 150 

et 300 mm dispose d’un couvert ligneux ne dépassant guère 2 % et une 

masse herbacée pouvant atteindre 400 kg de MS.ha-1 (Boudet, 1977). 

Il est important de noter que localement la concentration des eaux 

amène des peuplements plus denses le long des écoulements, autours 

des mares, des dépressions inter dunaires, et des fourrés de brousse 

tigrée. Dans ces cas la masse herbacée peut être beaucoup plus élevée 

que 400 kg MS. ha-1 sur sols sableux et peut atteindre 1 000 voire 2 

000 kg MS.ha-1 avec 200 mm de pluie. Cette zone est actuellement 

convoitée à la fois par les éleveurs nomades et transhumants. La sous-

zone sahélienne typique (300-450 mm) est caractérisée par une 

végétation très différenciée suivant les principales unités 

géomorphologiques. Par exemple, sur le terrain sablonneux, le couvert 

ligneux ne dépasse guère en moyenne 5 %. Il est à noter que ce 

recouvrement dépend aussi des sols et du ruissellement. La productivité 

augmente du Nord vers le Sud, elle va de 500 à 2 000 kg MS. ha-1. Vers 

l’isohyète 300 mm la capacité de charge annuelle est estimée à 17 

UBT.Jours. ha-1 et 57 UBT.Jours.ha-1 vers l’isohyète 400 mm. La 
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sous-zone sud-sahélienne est plus arrosée (450-600 mm) avec un taux 

de recouvrement ligneux moyen variant du nord vers le sud de 5 à 30 % 

même si cela dépend aussi de la texture du sol, du ruissellement, et de 

l’occupation des sols. La masse herbacée varie de 1000-1500 kg 

MS.ha-1 correspondant à une capacité de charge de 50 à 70 

UBT.jours.ha-1(Boudet, 1977). 

 

1.1.5.2. Calcul de la production de la phytomasse aérienne basé 

sur le Dry Matter Productivity (DMP) 

La disponibilité fourragère en quantité et en qualité constitue un des 

facteurs importants pour comprendre la pratique du pastoralisme au 

Sahel. L’intensité et la répartition spatiale des pluies déterminent la 

croissance végétative en saison des pluies et donc le stock de fourrage 

disponible pour les 9 mois de la saison sèche qui la suit. En fonction de 

la situation, les éleveurs anticipent ou retardent la principale 

transhumance pour optimiser leur système de production. Les zones 

d’accueil doivent faire face à un risque de concentration des animaux 

avec pour corollaire, les risques d’épizootie, les conflits entre 

agriculteurs et éleveurs, la prolifération des espèces non appétées 

concourant à une dégradation de l’environnement. Dès lors, au niveau 

régional, Il est indispensable, de renforcer le dispositif d’évaluation de 

la production fourragère, d’informer et de situer les déficits fourragers 

dans les zones pastorales sahéliennes. La productivité de matière sèche 

(DMP: Dry Matter Productivity) (Swinnen et al., 2015) offre la 

possibilité d’estimer la production de phytomasse aérienne de l’année 

en cours et de la comparer à une moyenne de référence sur une série 

temporelle de 1998 à 2012. La quantité de matière sèche (ou production 

de phytomasse aérienne, PPA) de la saison de pluie est calculée à partir 

du cumul des décades de la saison pluvieuse (juin à octobre): 𝑃𝑃𝐴 =

0.01 × ∑ 𝐷𝑀𝑃𝑑é𝑐𝑎𝑑𝑒𝑑é𝑐𝑎𝑑𝑒𝑓
𝑑é𝑐𝑎𝑑𝑒 𝑖  où PPA (kg MS.ha-1) = production de 

phytomasse aérienne ; 0.01 = valeur de conversion en kg ; décade i = 
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première décade du mois de juin ; décade f = troisième décade du mois 

d’octobre. Le résultat ainsi obtenu est une estimation de la production 

aérienne totale sur l’année considérée, exprimée en kg MS.ha-1. (Figure 

1.5) 

 

Figure 1.5 : Estimation de la production moyenne de la phytomasse aérienne 

(1998-2012) dérivée du DMP. 

 

1.2. Évaluation de la phytomasse fourragère au sol (herbacée et 

ligneuse) 

1.2.1. Généralités sur l’évaluation des pâturages au sol 

La méthode d’évaluation de la phytomasse annuelle utilisée par le 

Ministère de l’élevage et des industries animales (MEIA) tire son 

origine des travaux menés au Niger et au Sénégal (Wylie et al., 1991; 

Diallo et al., 1991). Elle s’articule autour de trois étapes : La mesure de 

la masse aérienne totale in situ (sites en zone pastorale) qui se fait par 

la technique du double échantillonnage c’est-à-dire par coupe et par 

estimation visuelle ; le traitement des données d’observation de la terre 

qui consiste à calculer l’intégrale de la courbe de NDVI extraite de  la 

série d’images provenant soit de NOAA AVHRR, de SPOT 

file:///G:/These_IssaGARBA/Users/CRA/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/Users/CRA/AppData/Roaming/Microsoft/Users/CRA/AppData/Roaming/Mauritanie/AppData/Roaming/Users/Mauritanie/Downloads/Technique%20du%20double%20échantillonnage.doc
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VEGETATION ou de MODIS au cours de la période de croissance 

végétative;  l’analyse statistique à travers la création d’un modèle de 

régression utilisant la méthode des moindres carrées linéaires.  Les 

données de biomasse mesurées in situ constituent la variable 

dépendante (y), l’intégrale de la courbe de NDVI de la saison de 

croissance est considérée comme variable indépendante (x). Une 

équation de premier ordre du type 𝑦 = 𝑎𝑥 + 𝑏  obtenue est utilisée pour 

estimer la production.  

Au Niger, la mesure de la phytomasse herbacée est réalisée en zone 

pastorale à l’aide de la méthode appelée de double échantillonnage qui 

peut être aussi qualifiée de double mesure : une mesure par fauchage 

(destructive) et deuxièmement (non destructive) par estimation visuelle. 

La caractérisation des sites est la première étape et est réalisée pour 

chaque site dans une aire de 3 km de côté. Cette superficie correspond 

à 9 pixels de résolution spatiale de 1 km². Sur cette surface de 9 km², 

les éléments clés de la physionomie du paysage sont observés et notés. 

Ces éléments clés sont le type de sol, la topographie, la végétation, la 

flore, les aménagements et mode d’exploitation par l’homme. 

L'ensemble de ces informations permet de définir les unités paysagères 

qui seront la base de la stratification du site en unités paysagères. Un 

échantillonnage stratifié permet statistiquement d'obtenir une variance 

plus faible comparativement à celle d'un échantillonnage aléatoire 

simple (FAO, 1981). Le rendement moyen fourrager par site est estimé 

par la moyenne des rendements moyens fourrager des unités paysagères 

composant le site.  𝑝𝑚 =
(𝑝1+𝑝2+𝑝3…….+𝑝𝑛)

𝑁
  

Où : pm représente le rendement moyen de chaque unité paysagère 

pondérée par leur surface ; p1, p2,…, pn les rendements par 

échantillon ; N le nombre d’unités paysagères. 

1.2.2. Évaluation de la biomasse fourragère sur le terrain par le 

MEIA 

La méthode de collecte des données in situ par le MEIA tire son origine 
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des études menées de 1986 à 1988 sur le suivi de la production 

fourragère par satellite et les mesures au sol de (Wylie et al., 1991). La 

présente étude est réalisée dans la partie pastorale du centre-nord du 

Niger. Afin d’intégrer l’ensemble de la diversité des zones agro-

écologiques du pays, les cadres du MEIA ont installé des sites 

complémentaires de suivi sur toute la partie pastorale définie ci-dessous 

(Figure 1.7). 

 

 

Figure 1.6 : Situation géographique des sites de relevé de végétation 

fourragère au Niger 

 
 Évaluation de la strate herbacée 

Dans la zone pastorale sur chaque site de mesure in situ, il y a 12 points 

de mesures qui sont placés à des distances précises suivant la ligne du 

Hazard. Le Hazard est le chemin suivi par l’équipe d’évaluation de la 

biomasse herbacée sur un site. Les itinéraires sont effectués en véhicule 

tout terrain, les sites d’observation et mesure sont des arrêts basés sur 

le compteur kilométrique du véhicule. Il y a 5 types de Hazards qui sont 

appliqués en fonction des caractéristiques du site (Figure 1.8 a, b, c, d, 

e).  Au niveau de chaque point (p) de mesures 5 quadrats ou placeaux 

de 0,5 m² distants de 5 pas sont placés, les trois sur la ligne du Hazard 

et les deux sur la droite imaginaire perpendiculaire à ce Hazard et 

passant par le quadrat du milieu (Figure 1.8 f). La décision de procéder 

à la coupe est prise à travers un tirage sans remise. Au total, 60 mesures 
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par ligne de Hazard sont réalisées avec une moyenne de 9 à 12 coupes 

par site. Le rendement moyen est obtenu par une simple moyenne 

arithmétique des poids observés obtenus. 

 

 

Figure 1.7 a : Schéma de Hazard 1 (source : MEIA) 

 

 

Figure 1.7 b : Schéma de Hazard 2 (source : MEIA) 
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Figure 1.7 c : Schéma de Hazard 3(source : MEIA) 

 

 

Figure 1.7 d: Schéma de Hazard 4(source :MEIA) 

 

 

Figure 1.7 e : Schéma de Hazard 5 (source : MEIA) 
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Figure 1.7 f : schémas des Hazards 1 à 5 et la disposition des placeaux 

sur les points de mesures 

 

 Évaluation de la strate ligneuse 

La strate ligneuse est prise en compte surtout dans les enclaves 

pastorales qui ne font pas partie des sites exploités. Un comptage direct 

des ligneux est réalisé dans des aires circulaires ou rectangulaires d’une 

superficie de 1/8, 1/4, 1/2 ou 1 ha (en fonction la densité du 

peuplement). Par exemple, dans le cas de l’aire circulaire, une corde de 

56,40 m est tendue (aire d’un cercle de 56.4 m de rayon = 1 ha) puis on 

tourne progressivement pour faire un cercle complet dans lequel les 

individus ligneux sont décomptés. Selon, le nombre de personnes 

disponibles, un observateur est placé à 1 m environ devant le collecteur 

de données, de façon à ce que celui-ci ait l’observateur sous son 

contrôle. Toutes les essences ligneuses rencontrées par l’observateur 

sont comptabilisées en évitant le double comptage.  Le calcul de la 

masse foliaire des ligneux est faite en utilisant la méthode de la plante 

de référence. Cette méthode consiste à choisir par espèce ligneuse un 

individu test, selon les espèces, il peut s’agit d’un arbre, un arbuste ou 

un buisson (moyen), ce ligneux de référence est caractérisé (taille, 

densité des feuilles, forme, etc.). La masse des feuilles est exprimée par 
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m² de houppier, ensuite, le nombre de ligneux équivalents à l’individu 

de référence est déterminé dans le cercle. Enfin, la récolte des feuilles 

et des branchettes consommables est réalisée sur les individus de 

référence. 

 

 Les conditions de mesure de la biomasse herbacée épigée par le 

MEIA 

Les sites de relevés de phytomasse fourragère épigée du Niger ne sont 

pas mis en défens car ils font l’objet d’une exploitation naturelle par les 

animaux au même titre que les autres espaces pâturés du pays. Aussi, le 

prélèvement réalisé par les animaux n’est pas pris en compte lors du 

calcul de rendement moyen, ce qui peut constituer un biais qu’il paraît 

important de souligner. En effet, dans une étude réalisée dans le sahel 

malien, Hiernaux et Justice (1986) indiquaient que l’impact de la pâture 

par les animaux peut en partie expliquer les valeurs élevées de biomasse 

potentielle observées comparées à la biomasse mesurée. Par 

conséquent, nous pensons que c’est la biomasse herbacée résiduelle qui 

est mesurée. Un second biais proviendrait de la gestion des missions 

d’évaluation réalisées par les services techniques : celles-ci sont en 

réalité effectuées selon la disponibilité des ressources financières. Par 

ailleurs, il ressort de l’examen du Tableau 1.1 que les mesures sont 

réalisées in situ entre la deuxième décade du mois de septembre et la 

fin du mois d’octobre, or celles-ci ne correspondent pas toujours à la 

période idéale de mesure. En effet, suite à une étude menée au Niger, 

Justice et Hiernaux (1986), ont clairement montré que la date du 

maximum de croissance de la végétation se situe entre deuxième décade 

du mois d’août et la deuxième décade du mois de septembre (Annexe 

1.1). Par conséquent, le fait que les dates de mesures réalisées par le 

MEIA ne coïncident pas toujours avec la période du maximum de 

végétation, peut donc constituer un autre biais.  
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Tableau 1.1 : synthèse des décades de début et de fin des mesures in situ de la 

biomasse herbacée épigée au Niger de 2000 à 2012 

 

Années Début des mesures Fin des mesures 

2000 1ere d sep 3e d sep 

2001 1ere d sep 3e d oct 

2002 2e d sep 3e d oct 

2003 3e d sep 3e d oct 

2004 1ere d sep 3e d oct 

2005 1ered sep 3e d oct 

2006 3e d sep 3e d oct 

2007 2e d sep 3e d oct 

2008 2e d aou 3e d sep 

2009 2e d sep 3e d oct 

2010 3e d sep 2e d oct 

2011 3e d sep 2e d oct 

2012 3e d sep. 2e d oct 

d : décade ; aou ; Août ; sep : Septembre ; oct :Octobre. 

 

 Filtrage des données aberrantes 

En statistique ou dans toute étude scientifique, la fiabilité des résultats 

dépend de la qualité des données utilisées pour faire les analyses. Aussi, 

avant toute analyse statistique, il est essentiel de s’assurer de la qualité 

des données. Grâce à un examen minutieux de la série de données ou 

de l’échantillon, afin de rechercher d’éventuelles données aberrantes, 

de manière à les éliminer systématiquement. Les données aberrantes ne 

doivent pas être toujours éliminées. Elles peuvent représenter des 

exceptions, dont il est bon d’en tenir compte. 

Il paraît cependant fondamental de s’accorder sur la définition d’une 

donnée aberrante, puis de s’assurer qu’elle l’est réellement avant de 

procéder à son élimination. 

Selon Anderson et al (2011), une donnée est dite aberrante, quand elle 



20  

diffère singulièrement des autres de la série considérée comme normale, 

soit parce qu’elle est exagérément grande (donnée aberrante majeure) 

ou petite (donnée aberrante mineure). Généralement, dans un tableau 

ou sur une courbe, elle attire l’attention du chercheur, car elle s’éloigne 

des autres données. Le plus souvent, elle est liée à des erreurs de 

mesure, de saisie, de calcul, etc. 

De nombreuses techniques statistiques existent pour identifier les 

données aberrantes. La plus connue est celle qui est basée sur la 

détermination des limites supérieure et inférieure de la série de données 

statistiques en s’appuyant sur les écarts inter quartiles. Les données sont 

aberrantes quand elles sont inférieures à Q1-1,5xIQR ou supérieures à 

1,5x IQR+Q3 où Q1 représente le quartile 25% ; Q3 le Quartile 75% et 

IQR, l’Écart Inter Quartile (Sullivan, 2013 ; Brase et Brase, 2009). 

Toutes les valeurs qui vont au-delà de ces limites sont considérées 

comme aberrantes. 

Des tests existent aussi pour l’identification des données aberrantes : 

- Le test de Cochran qui permet de détecter les valeurs aberrantes en 

termes de dispersion, il s’applique sur l’écart type des mesures 

(Burke, 2001); 

- Le test de Grubbs qui détecte les valeurs aberrantes en termes de 

dispersion de moyenne, le principe de ce test est de comparer la 

valeur absolue des écarts réduits (Grubbs, 1969). 

En plus de ces évaluations quantitatives, il est indiqué d’effectuer des 

évaluations qualitatives de la donnée. Celles-ci nécessitent de connaitre 

les conditions dans lesquelles elles ont été réalisées. 

La première opération a permis d’examiner qualitativement les données 

du MEIA, année par année, avec le concours de la personne responsable 

de la collecte de ces données depuis une trentaine d’années. Ainsi, les 

dates de mesures de ces données ont été examinées, année par année et 

site par site. 

Pour le filtrage des données, il a été retenu d’effectuer un seuillage sur 

base du maximum du NDVI. Ce choix s’explique par les études 
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réalisées par Wylie et al. (1991) qui ont montré la forte corrélation 

(r²=0,86) entre la masse fourragère mesurée in situ et le maximum du 

NDVI de la saison de croissance de la végétation de la même année. En 

plus, le NDVI est indicateur d’état de la végétation, donc il exprime 

directement son état. Par ailleurs, les données pluviométriques sont 

souvent utilisées pour l’évaluation de la végétation (Ndiaye et al., 

2015). Le paramètre pluie est certes un facteur limitant de la production 

végétale dans toute la zone sahélienne, mais reste et est un indicateur 

de cause. 

Pour éliminer objectivement les données qui s’écartent des données 

normales, nous avons donc utilisé le maximum de NDVI de la saison 

de croissance de la végétation de chacun des sites et suivant les années. 

Une représentation graphique sous forme de nuage de points des 

rendements fourragers en fonction du maximum NDVI (compte 

numérique, CN) a été réalisée par la suite. De manière empirique, 

l’équipe identifie les points particuliers du graphique, les discute avant 

de décider de l’éliminer ou pas. Exemple des Figure1.9 a et b illustrent 

les cas de l’année 2012. Sur les 584 mesures de masse fourragère 

enregistrées par le MEIA, sur la période allant de 2000 à 2012, la 

première opération de filtrage a éliminé 26% des données. 

 

 
Y=0,005x + 125,3 ; R²=0,15 

 
Y=0,0092x +119,70 ; R²=0,56 

A: Avant le premier filtrage 

 

B: Après le premier filtrage 

Figure1.8: Exemple de l’année 2012 première étape du filtrage des données 
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La deuxième opération de filtrage est basée sur l’analyse du graphique 

des résidus en fonction des valeurs prédites (Figures 1.10). Il est 

procédé à l’élimination année par année des observations (points 

représentés par une étoile, *, dans la Figure 1.10 a, dont les résidus 

sortent des limites inférieure et supérieure à l’équivalant de l’écart type 

des valeurs mesurées sur le terrain. La Figure 1.10 b indique l’exemple 

de l’année 2006 après le filtrage. 

 

 
 

A : Avant filtrage 

 

B : Après filtrage 

Figure 1.9 : Exemple de l’année 2006 sur la deuxième étape 

du filtrage des données 

 

Ce qui a permis d’éliminer 29% des 452 enregistrements restants. En 

résumé, 49 % des enregistrements de la série de départ ont été éliminés. 

Le filtrage des données aberrantes a ainsi permis d’obtenir une base de 

données contenant 319 observations. 

 

 Relation entre les cumuls pluviométriques annuels et la 

phytomasse aérienne herbacée mesurée 

Le coefficient de détermination (R²) de la relation entre la phytomasse 

aérienne herbacée mesurée et le cumul de pluies estimées par satellite 

(RFE2) est de 0,16. Ce qui signifie qu’avec ces données, le cumul 

pluviométrique n’explique que 16 % de la variation du rendement 

fourrager dans la zone pastorale du Niger. Selon Breman et de Ridder 

(1991), l’eau, le phosphore et l’azote constituent les principaux facteurs 



23 

limitants à la production de phytomasse au Sahel. Le cadre théorique de 

la relation entre le cumul de pluies et la phytomasse aérienne établi par 

Breman H. (1982), comparé à la relation entre le cumul de pluies 

estimées par satellite et la phytomasse mesurée (Figure 1.11) indique 

que les données observées sont en général sous-estimées de 33% et 40% 

respectivement au niveau des isohyètes 250 mm et 400 mm. Cependant, 

les observations qui présentent des valeurs supérieures au cadre 

théorique sont au nombre de 30 soit environ 8 % du total. Le non-

respect de la période optimale de mesure (maximum de la végétation) et 

l’impact de la pâture éventuelle des animaux avant les mesures peuvent 

expliquer cette tendance à la sous-estimation du rendement. Par ailleurs, 

les pluies utilisées sont estimées par satellite, donc elles présentent 

quand même des limites par rapport à la réalité du terrain. 

 

 

Figure 1.10 : Relation entre la phytomasse aérienne herbacée mesurée et le 

cumul des pluies estimées par satellite superposée à la relation théorique 

entre le cumul pluviométrique et la phytomasse 

1.2.3. Distribution spatiale des sites de mesures de phytomasse 

aérienne herbacée du MEIA 

Pour apprécier la représentativité des sites de mesure de la biomasse 

fourragère du Niger, il est nécessaire d’analyser la variation inter 
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saisonnière de la productivité. Les critères sur lesquels le ministère se 

base pour choisir les sites au Niger sont mal connus pour le moment. 

Dans les différents tableaux de synthèse, nous avons les proportions par 

zone agro écologique (Tableau 1.2) montrant que 80 % des sites sont 

situés dans l’Azaouak et le Manga (Figure1.12). Suivant les types de 

sol (Tableau 1.3), on remarque que 48 % des sites sont situés sur les 

Arenosols cambics (Qc7-1a) et les Arenosols luvics (Ql1-1a) sur les 16 

types présents. Selon les zones bioclimatiques (tableau 1.4) la zone nord 

sahélienne et la zone sahélienne typique contiennent 90 % des sites. Il 

ressort de l’analyse de ces tableaux que nous avons 68 sites dont un a 

été éliminé à cause d’une erreur de positionnement géographique. 

 

 

Figure 1.11 : Les écorégions du Niger 
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Tableau 1.2 : La répartition des sites de mesure de phytomasse herbacée aérienne selon les écorégions 

(rendement fourrager de 2001 à 2012) 

 
Écorégion Nombre 

de Site 

Pourcentage 

de sites 

Min 

(kg.ha-1) 

Max 

(kg.ha-1) 

Moyenne (kg.ha-

1) 
ET 

ADM1 1 1 % 358 358 358 0 

Air 2 3 % 423 960 692 380 

AZ 27 39 % 153 2644 1474 722 

BD 2 3 % 662 1532 1097 615 

GR 3 4 % 205 657 361 256 

LAC 1 1 % 519 519 519 0 

LIP 3 4 % 730 2197 1230 838 

MA1 14 20 % 205 1298 758 329 

MA2 14 20 % 170 1334 757 382 

TEN 1 1 % 647 647 647 0 

VD 1 1 % 1366 1366 1366 0 

ADM1 :Ader Doutchi Magia1 ; AZ :Azaouak ; BD : Bassin du Dallol ;GR : Gourma ;LP : Liptako ;MA1 : Manga1 MA2 : Manga2 ;TEN : Ténéré ; 

Vallée du Dallol ; ET : Écart Type ;  Min :minimum masses herbacées ; max : Maximum Masses herbacées ;

2
5
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Tableau 1.3 : La répartition des sites de mesures de phytomasse herbacée aérienne par type de sol 

 
Sol FAO  

Nombre Sites 
Pourcentage 

de sites 

Min 

(kg.ha-1) 

Max 

(kg.ha-1) 

Moyenne 

(kg.ha-1) 
ET 

Be28-1a 2 3 % 657 2197 1427 1089 

Bv7-a 1 1 % 1366 1366 1366 0 

Ge5-1a 4 6 % 1500 2260 1854 385 

Je33-1/3a 1 1 % 1334 1334 1334 0 

Qc1 7 10 % 170 1306 809 403 

Qc1-1a 1 1 % 898 898 898 0 

Qc7-1a 15 22 % 205 1245 654 285 

Ql1-1a 18 26 % 153 2644 1445 752 

Ql10 1 1 % 221 221 221 0 

Ql10-1a 2 3 % 358 741 550 271 

Ql11-1a 2 3 % 662 1532 1097 615 

Ql6 2 3 % 730 762 746 23 

Ql6-1a 1 1 % 205 205 205 0 

Re35-a 8 12 % 647 2606 1190 647 

Vc15 1 1 % 237 237 237 0 

Water 1 1 % 519 519 519 0 

Y4-1a 2 3 % 423 960 692 380 

Définition des codes sol FAO : www.fao.org/docrep/019/as357e.pdf;  ET : Écart Type 

B = Cambisols ; G= Gleysols ; J = Fluvisols ; Q =Arenosols ; R =Regosols ; V= Vertisols; Y = Yermosols ; L =Luvic

2
6
 

http://www.fao.org/docrep/019/as357e.pdf
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Tableau 1.4 : la répartition des sites de mesure de phytomasse herbacée aérienne par zone bioclimatique 

 
Zone Nombre de 

sites 

Pourcentage 

de sites 

Min 

(kg.ha-1) 

Max 

(kg.ha-1) 

Moyenne (kg.ha-

1) 

E T 

(kg.ha-1) 

Saharienne 12 17,39 % 205 1245 720 319 

Nord sahélien 50 72,46 % 153 2644 1110 705 

Sahélienne typique 6 8,70 % 662 2197 1091 598 

Sud-sahélienne 1 1,45 % 1532 1532 1532 - 

ET : Écart Type

2
7
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1.2.4 Distribution temporelle des mesures de phytomasse herbacée 

aérienne. 

Les opérations de filtrages des mesures de phytomasse herbacée 

aérienne, ont permis d’obtenir une base de données de 319 mesures 

(tableau 1.5). L’analyse de la distribution temporelle des 

enregistrements de cette base de données indique qu’aucun site ne 

présente en continu, de mesures propres sur les 12 ans, soit parce qu’il 

n’y a pas eu du tout de relevé sur le site ou parce que la donnée mesurée 

est aberrante. Les sites A30 et A44 sont les plus fréquents dans la base 

de données, ils présentent chacun 9 mesures.  Le tableau 1.5 indique 

aussi une variation du nombre de mesures suivant les années. Les 

années 2008, 2010 et 2011 présentent plus de mesures avec 

respectivement 36, 35 et 40. L’année 2003 ne dispose que de 12 

mesures ce qui pose le problème du nombre minimum de sites 

nécessaires pour établir un modèle représentatif de l’année dans un 

territoire pastoral aussi vaste que celui du Niger. 

Les codes des sites ont été attribués par le MEIA pour faciliter le 

traitement des données. Les coordonnées et les localités 

correspondantes qui sont associées à ces codes sont consignées dans le 

tableau de l’annexe 1.2, permettent de localiser facilement les sites. 
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Tableau 1.5 : Disponibilité des mesures de phytomasse herbacée aérienne par site suivant les années 

Code 

Sites 

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Total 

A105 
 

1 
  

1 1 
 

1 
  

1 
 

5 

A106 1 
   

1 
   

1 
 

1 
 

4 

A11 1 1 
   

1 1 
   

1 
 

5 

A110 
  

1 
 

1 1 
    

1 1 5 

A111 
   

1 1 
 

1 1 
    

4 

A112 
    

1 
  

1 
    

2 

A113 
  

1 
    

1 
  

1 
 

3 

A114 
    

1 1 
 

1 
    

3 

A115 
  

1 
  

1 1 
     

3 

A117 
  

1 
 

1 1 
 

1 
 

1 
 

1 6 

A118 
      

1 
   

1 
 

2 

A121 
         

1 1 
 

2 

A122 
       

1 
 

1 
  

2 

A13 1 1 
 

1 
 

1 
 

1 
 

1 1 1 8 

A15 1 1 
 

1 
 

1 
 

1 
  

1 1 7 

A16 1 
  

1 1 1 
 

1 1 
 

1 1 8 

A17 
      

1 1 1 1 1 1 6 

A19 
       

1 
 

1 1 
 

3 

A20 
   

1 1 1 
 

1 
 

1 1 
 

6 

2
9
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Code 

Sites 

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Total 

A22 1 
  

1 
 

1 
    

1 1 5 

A23 
 

1 
   

1 1 
   

1 
 

4 

A24 1 
  

1 1 1 1 1 1 
  

1 8 

A26 1 1 
 

1 
   

1 
 

1 
  

5 

A3 1 1 
  

1 
  

1 1 1 1 1 8 

A30 
  

1 1 1 1 1 1 
 

1 1 1 9 

A32 
   

1 
  

1 1 
  

1 1 5 

A33 1 1 
  

1 1 1 
  

1 1 1 8 

A40 
 

1 
 

1 
  

1 
  

1 1 
 

5 

A41 
  

1 
 

1 
 

1 1 
    

4 

A42 
 

1 1 
  

1 1 
     

4 

A43 
 

1 
  

1 1 1 
  

1 
  

5 

A44 1 
  

1 
  

1 
 

1 1 1 1 7 

A45 1 1 
  

1 1 
 

1 1 1 1 1 9 

A46 
 

1 
  

1 1 
 

1 1 1 1 
 

7 

A47 1 
    

1 1 
  

1 1 
 

5 

A48 
    

1 
 

1 
 

1 
 

1 1 5 

A49 1 1 
 

1 1 
    

1 
 

1 6 

A5 1 
     

1 1 1 1 1 
 

6 

A50 
 

1 
 

1 
   

1 
 

1 
 

1 5 
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3
1
 

Code 

Sites 

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Total 

A51 
   

1 1 
   

1 
 

1 1 5 

A52 1 
  

1 1 
 

1 
 

1 1 
 

1 7 

A61 
    

1 
 

1 
  

1 1 
 

4 

A62 
   

1 1 
  

1 
  

1 
 

4 

A64 1 1 
   

1 
 

1 
  

1 
 

5 

A65 
   

1 
 

1 
 

1 
 

1 1 
 

5 

A66 
 

1 
    

1 1 1 1 1 1 7 

A67 
 

1 
 

1 
     

1 
  

3 

A68 1 1 
 

1 1 
  

1 1 1 
  

7 

A69 
 

1 
  

1 
  

1 
 

1 
  

4 

A7 
    

1 1 
  

1 1 1 
 

5 

A70 
 

1 
 

1 
  

1 1 1 
 

1 1 7 

A72 1 
           

1 

A73 1 
   

1 
  

1 1 1 
 

1 6 

A77 1 1 
 

1 1 1 
 

1 
   

1 7 

A80 
         

1 
 

1 2 

N82 
      

1 
     

1 

N85 
 

1 1 
      

1 
  

3 

n87 
 

1 1 
       

1 
 

3 

n88 
 

1 1 1 
   

1 
 

1 1 
 

6 
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3
2
 

Code 

Sites 

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Total 

N93 
  

1 
         

1 

n95 
  

1 
 

1 
  

1 
 

1 1 1 6 

n96 
 

1 
 

1 
     

1 1 
 

4 

n97 
   

1 1 
  

1 
    

3 

n98 
 

1 
 

1 1 
  

1 
 

1 1 
 

6 

P08 1 1 
        

1 
 

3 

Total  22 28 12 26 31 24 23 36 17 35 40 25 319 
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II. Validation du modèle d’évaluation de la biomasse 

herbacée des parcours du Sahel (BIOMASAH) au Niger 

 

2.1. Introduction 

En Afrique Subsaharienne, l’estimation de la production des pâturages 

a été réalisée par plusieurs programmes, plus particulièrement dans les 

systèmes d’alerte précoce (AGRHYMET, 1992). Les approches mises 

au point comprennent les méthodes de mesure au sol combinées ou non 

à l’imagerie satellitaire. Ces techniques ont permis l’évaluation à 

grande échelle de la production des parcours (Justice et al., 1989). La 

disponibilité croissante des données d’observation de la terre de 

résolutions moyenne et basse, depuis les satellites de type NOAA, 

SPOT VEGETATION, MODIS et METOP associée à la disponibilité 

des données de masse herbacée mesurées in situ devrait faciliter la 

modélisation de cette estimation sur la base de modèles simples. 

L’absence de données de terrain ou la difficulté d’obtenir des données 

sur des régions entières et sur plusieurs années a conduit à l’élaboration 

au Sahel d’un modèle d’estimation spatialisée des productions 

herbacées (BIOMASAH) par le Centre Régional AGRHYMET (CRA). 

Ce modèle qui s’appuie sur les approches développées dans le cadre du 

programme « Productivité des Pâturages Sahéliens » au Mali (PPS) n’a 

jamais fait l’objet d’une validation par manque de données mesurées 

sur le terrain. Néanmoins, les produits dérivés de ce modèle ont été 

utilisés dans l’évaluation des campagnes agricoles et l’étude des zones 

à risques (Andrea et al., 2002). Cette approche a été rendue possible 

grâce à l’intégration des informations fournies par le modèle de 

simulation de la production BIOMASAH dans un système 

d’information géographique (SIG). Le modèle de production est, à 

l’origine, basé sur des relations empiriques entre le bilan hydrique, le 

bilan azoté et la production de matières sèches des herbacées dans les 

pâturages. Les intrants du SIG se composent des cartes numériques de 

l’Atlas pastoral de l’Institut d’Élevage et de Médecine Vétérinaire des 
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pays Tropicaux (IEMVT, 1987) qui ont été numérisées et des données 

de pluviométrie annuelle spatialisées disponibles dans la base de 

données du Centre Régional AGRHYMET CRA. Les données de 

phytomasse aérienne herbacée sont collectées par les services du 

Ministère de l’Élevage et des industries Animales du Niger (MEIA) 

depuis 1989. Les résultats du modèle sont finalement validés grâce à 

ces données historiques du terrain. L’objectif de ce chapitre est 

d’utiliser les observations au sol du MEIA pour valider les sorties du 

modèle biomasse BIOMASAH sur la période 2001 à 2011 à travers des 

tests de comparaison de moyennes et des calculs de coefficients de 

corrélation paramétrique et non paramétrique. 

 

2.2. Matériel et méthodes  

2.2.1. Matériel  

L’étude a été réalisée en utilisant comme données d’entrée, les pluies 

estimées par satellite (RainFall Estimates version 2 RFE2) décadaires 

de 3 km de résolution et la table de texture des sols. Les sorties sont 

comparées aux mesures de biomasse collectées par le Ministère de 

l’Élevage et des Industries Animales (MEIA). La comparaison de 

moyennes se fait à l’aide de tests paramétriques et non paramétriques. 

2.2.2. Description du Modèle BIOMASAH 

L’approche utilisée s’appuie sur les résultats du projet  Productivité des 

Pâturages Sahéliens (Penning et Djitèye, 1982) . Les auteurs de cette 

étude ont proposé trois échelles de travail pour l’évaluation de la 

production herbacée : 

1. La méthode d’évaluation globale de la production fourragère basée 

sur une quantité limitée d’informations et sans travail préalable sur 

le terrain. Elle est basée sur l’exploitation des informations : 

 Climatiques : pluviosité, rayonnement solaire, température et 

humidité atmosphérique ; 



35 

 Informations biologiques des plantes : annuelles/pérennes ; 

C3/C4 ; 

2. L’évaluation semi-détaillée qui s’effectue sur la base 

d’observations de terrain, ainsi que sur l’estimation théorique de la 

production moyenne par unité de paysage et sur son taux d’azote. 

Les observations permettent d’ajuster et compléter l’estimation 

théorique ; 

3. L’évaluation détaillée similaire à la semi-détaillée, mais différant 

sur l’échelle portant sur une région plus petite (Terroir) avec des 

données de terrain qui ont les mêmes contributions que dans le cas 

précèdent mais beaucoup plus fines.  

L’application développée dans le cadre du modèle BIOMASAH est 

intermédiaire. Elle utilise à la fois des éléments de deux méthodes 

(globale et semi-détaillée). L’unité de base de calcul de la biomasse 

herbacée est définie par le croisement des entités de potentialités 

pastorales de la carte des potentialités pastorales de l’Institut d’Élevage 

et de Médecine Vétérinaire de pays Tropicaux (IEMVT) et les pixels de 

l’image de la pluviosité annuelle estimée (5 km de résolution). Le calcul 

du bilan hydrique est réalisé dans chaque unité pastorale préalablement 

classée en unités géomorphologiques correspondant à des ensembles 

relativement homogènes : détritique, sablonneux, fluviatile et lacustre 

(Breman et De Ridder, 1991), codifiée sur leur texture définie dans 

l’étude des sols des pays du CILSS (AGRHYMET, 2001). Un 

coefficient de ruissellement est ensuite attribué à chaque unité 

composée des unités pastorales et des unités géomorphologiques. 

L’infiltration dans chaque unité est calculée suivant la formule : 𝐼 =

𝑃(1 − 𝐶𝑅), où I représente la quantité d’eau infiltrée (mm/an), P la 

pluviosité annuelle (mm/an), et CR le coefficient de ruissellement. Les 

coefficients de ruissellement utilisés sont des valeurs annuelles 

moyennes par type de sol.  

Dans la méthode, le facteur limitant pour la croissance des végétaux est 
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l’eau quand l’infiltration est inférieure à 250 mm (Penning et al., 1982). 

En revanche, l’azote et le phosphore sont déterminants quand 

l’infiltration est supérieure à ce seuil de 250 mm.  

Intégrée dans un SIG, l’application calcule la biomasse herbacée dans 

chaque unité sur la base des relations ci-dessous fournies en clair et/ou 

sous forme de graphique dans le manuel sur les pâturages tropicaux de 

Breman et de Ridder (1991): Pour les zones où le facteur limitant est 

l’eau, on utilise l’équation1 ou 2 en fonction du coefficient de 

ruissellement : 

 

Éq.1 (CR=0) :   B1= 5.11 * Pluviométrie totale annuelle – 48.28  (B1) 

Éq.2 (CR=0.5) : B2= 2.37 * Pluviométrie totale annuelle – 216  (B2) 

 

Où B1 : biomasse en condition de ruissellement (CR= 0) et B2 : 

biomasse en condition de ruissellement (CR= 0.5). Pour toutes les 

autres valeurs de coefficient de ruissellement, la production de 

biomasse (B) (Kg MS. ha-1) est déduite par interpolation : 

 

𝐵 = 𝐵1 

𝐶𝑅 ∗ (𝐵1−𝐵2)

0,5
 

 

Pour les zones où le facteur limitant est l’azote, les pertes annuelles du 

système sont évaluées en fonction de la pluviosité moyenne (Penning 

et al., 1982). De même, les quantités moyennes d’azote (Nb en kg) dans 

la biomasse herbacée aérienne sont évaluées suivant des normes 

établies. On estime qu’au Sahel, 1 mm de pluie apporte 8,3 g.ha-1 

d’azote aux pâturages. Pour la fixation biologique, elle est de 0,02 kg 

N. ha-1 par pourcent de légumineuses présentes. Les bactéries associées 

aux graminées et les bactéries libres apportent respectivement 0,013 kg 

et 0,025 kg d’azote par kg de matière sèche de biomasse. Avec toutes 

ces contributions et dans l’hypothèse que les légumineuses contribuent 

au moins pour 5 %, l’équation pour Nb est : Nb = 0, 0083 *I/ (f-0.13), 

f représentant les pertes annuelles (l’annexe 2.1) et I l’infiltration. Le 
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taux d’azote est déterminé par interpolation des situations d’équilibre et 

de ruissellement données par les équations suivantes où P représente la 

pluviosité annuelle considérée :  

  

𝐴1(𝐶𝑅 = 0)

= 4,119 +
15,48

1 − 0,01546 ∗ 𝑃
 

; 

𝐴2(𝐶𝑅 = 0,5)

= 9,913 +
217

1 − 0,00473 ∗ 𝑃
 

 

Le taux d’azote A 

 

𝐴 = 𝐴1 +
𝐶𝑅∗(𝐴2−𝐴1)

0,5
  

 

où 𝐴1: taux d’azote dans la  biomasse en condition de ruissellement nul 

CR = 0 ; 𝐴2: taux d’azote dans la biomasse en condition de 

ruissellement CR = 0,5 

La connaissance de la quantité moyenne d’azote dans la biomasse 

aérienne et du taux d’azote de la strate herbacée à la fin de la saison de 

croissance permet une estimation de la biomasse produite en kg.MS-

1.ha-1 selon l’équation : B=1000 Nb/A.   

2.2.3. Méthode de validation 

2.2.3.1. Données issues du modèle 

L’application du calcul de la biomasse a été développée sous le 

programme Avenue dans le logiciel ArcView GIS 3.2. Un script est 

aussi disponible sous le logiciel visualcarte1. Ce programme, écrit sous 

forme d’extension a été conçu de manière à ce que les données de pluies 

estimées soient les seules qui changent chaque année, les autres 

paramètres d’entrée sont fixés (sols et unités pastorales). Nous avons 

utilisé les pluies estimées (RFE2) RainFall Estimate version2 

                                                        
1 A.A.V.V. — Pj AP3A (2001) — VisualCarte — Système de Gestion de la Cartographie 

Thématique Version Beta (CD_ROM. ISBN : 88-900502-8-4. 
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développées par l’institution Climate Prediction Center (NOAA-CPC), 

(Novella et Thiaw, 2012). Ces données présentent l’avantage d’être 

générées avec le même algorithme sur la période concernée par la 

validation (2001-2011) et elles sont gratuitement téléchargeables à 

partir du site internet de FEWS NET2. Les images décadaires RFE2 

sont caractérisées par une résolution spatiale de 3 km x 3km. Le 

prétraitement a été fait à l’aide du logiciel libre Quantum GIS (QGIS), 

cette opération consiste à faire les cumuls annuels des images 

décadaires correspondant à la saison des pluies (mai à octobre). Ensuite, 

ramener à la taille du pixel (5 km) compatible avec le programme et 

enfin sauvegarder le fichier en format GIS (ERDAS imagine). Les 

images de 2001 à 2011 du cumul annuel de pluies estimées sont 

utilisées dans le modèle (Figure 2.1). 

 

 

Figure 2.1 : Exemple de résultat issu du modèle BIOMASAH 

 

2.2.3.2. Extraction des données simulées par utilisation de la 

couche vectorielle des sites du MEIA 

Les sites du MEIA sont géo-référencés, la table attributaire de la couche 

vectorielle de ces sites contient : les noms des sites, les années de 

                                                        
2 http://earlywarning.usgs.gov/fews/africa/  

http://earlywarning.usgs.gov/fews/africa/
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mesures, les rendements fourragers, les types de sol, les écorégions et 

les zones bioclimatiques. 

Pour extraire les données issues du modèle BIOMASAH devant servir 

à la validation, une zone tampon 3 km de côté a été réalisée à l’aide de 

cette couche vectorielle, sur chacun des sites (Figure 2.2. L’outil de 

statistique zonale (zonal statistic) du logiciel QGIS est utilisé pour 

extraire les moyennes de la biomasse aérienne herbacée correspondant 

à chacun des sites et suivant les années.  Ainsi, on obtient dans la table 

des attributs de la couche vectorielle initiale, et en plus des champs 

initiaux, un nouveau champ contenant les mesures de phytomasse 

simulée suivant les années (2001 à 2011). 

  

 

Figure 2.2 : Zoom sur les sites A65 et A 23 montrant les surfaces d’extraction 

des valeurs moyennes de phytomasse herbacée simulée par le modèle 

2.2.4. Analyse statistique  

La comparaison des deux séries a été réalisée à l’aide de tests 

paramétriques et non paramétriques. Il s’agit notamment : du test de t 

apparié qui nécessite des conditions de validité (des observations 

appariées, l’indépendance des observations, l’échantillonnage aléatoire, 
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la distribution normale pour les différences, l’homogénéité des 

variances) ; du test de Wilcoxon et le test des signes qui ne nécessitent 

pas d’hypothèse préalable sur les formes de distribution (Dagnelie, 

2013, Johnson et Bhattacharyya, 2010). 

 Test de t 

Le test de t a été choisi, car les deux séries de biomasses végétales à 

comparer sont celles des sites. Pour chaque site, il y a la variable issue 

du modèle et celle issue des mesures terrain. La statistique t dans le cas 

apparié est calculée suivant la formule suivante :𝑡 =
𝑀𝑑

𝑆𝐸𝑑
  où Md est la 

différence entre les deux moyennes, SEd l’erreur standard de la 

différence des deux moyennes. Avant ces analyses, les distributions des 

variables ont été étudiées, de même que l’égalité des variances qui est 

une des conditions d’applicabilité des tests de comparaison de 

moyennes. 

 Test des signes 

C’est un test qui s’applique dans le cas d’échantillons appariés. Le test 

des signes consiste à remplacer les observations plus grandes que Mo 

par un signe + et celles qui lui sont inférieures par un signe -. Si 

l’hypothèse nulle (H0) est vraie alors le nombre de signes +, soit n+, 

doit être ‘proche’ du nombre de signes -, le nombre de signes +, qui va 

constituer la statistique de test, possédant une distribution binomiale de 

paramètres n et ½ (ceci est également vrai pour n -, le nombre de signes 

-). Si l’alternative est unidirectionnelle de la forme H1 : la médiane est 

supérieure à M0 (Gilbert, 2004) 

   

𝐻0: Pr(𝑥 ≥ 0) =
1

2
  contre  𝐻1: Pr(𝑥 ≥ 0) ≠

1

2
   

 Test de Wilcoxon 

Selon cette méthode, on classe les observations par paires. Ce qui 

permet d’obtenir un compte du signe des différences par paires (comme 

dans le test des Signes) et les rangs de ces différences. Y (+) désigne la 

somme des rangs des différences positives ; Y (-) désigne la somme des 

rangs des différences négatives. Le principe est : Y (+) + Y (-) = n (n+1) 
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/2 où n est le nombre de paires. En moyenne, si les deux échantillons 

proviennent d’une même population, Y (+) et Y (-) valent tous deux la 

moitié de cette valeur soit : n (n+1)/4 (Rousson, 2013; Good et al., 

2012; Weiers et Heinz, 2011; Lejeune, 2010) 

 Les corrélations  

Les relations entre les données du modèle et celles du terrain ont été 

analysées avec différents types de coefficient de corrélation : r de 

Pearson, ρ de Spearman, τ de Kendal, D de Hoeffding  (Brase et Brase, 

2012; Weiers et al., 2011; Rakotomalala, 2010). L’évolution 

interannuelle des coefficients de corrélation a été étudiée. La corrélation 

de Pearson est donnée par le coefficient de corrélation r de Pearson. Elle 

exprime la liaison qui existe entre les variables  𝑟𝑝 =
𝜎𝑥𝑦

𝜎𝑥𝜎𝑦
 où 𝜎𝑥𝑦 

  

désigne la covariance entre les variables x et y, et 𝜎𝑥  𝜎𝑦 leur écart type. 

La Corrélation de Spearman calcule un coefficient de corrélation entre 

les rangs des valeurs des deux variables. Cette corrélation est utilisée 

lorsque les distributions des variables sont asymétriques (skewness en 

anglais). L’interprétation est identique à celle de la corrélation de 

Pearson. Le coefficient de corrélation de Spearman est défini par : 

 

𝜌 = 1 − 
6 ∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛(𝑛2− 1)
 d’où di = RXi− RYi R étant le rang 

 

Pour ce qui est de la corrélation de Kendall, le coefficient de corrélation 

des rangs de Kendall (Kendall τ) est une mesure de corrélation non 

paramétrique. Il sert à déterminer la relation qui existe entre deux séries 

de données. Il se calcule par la formule : 

𝜏 = 1 −  
4Q 

𝑛(𝑛2− 1)
 où 

 

Q est le nombre d’inversions nécessaires parmi les valeurs de Y pour 

obtenir le même ordre (croissant) que celui des valeurs de X ; n est le 

nombre de paires d’observations. 

La corrélation D de Hoeffding représente la mesure de la relation de 

http://fr.wikipedia.org/wiki/Covariance
http://fr.wikipedia.org/wiki/%C3%89cart_type
http://fr.wikipedia.org/wiki/Karl_Pearson
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dépendance entre deux variables utilisant une formule basée sur les 

rangs (Wilding et Mudholkar, 2008). 

 

2.3. Résultats et discussion  

2.3.1. Résultats  

Il y a globalement et dans les classes supérieure et inférieure au seuil 

pluviométrique (250 mm), une différence très significative au seuil de 

1 pour 10 000 (P<. 0001) entre la productivité observée exprimée en Kg 

de MS.ha-1 et la productivité potentielle issues du modèle biomasse 

(Tableaux 2.1, 2.2 et 2.3). Les comparaisons année par année font 

ressortir que l’hypothèse nulle de différences entre les valeurs mesurées 

et prédites ne peut être rejetée avec une probabilité de 0,05 pour les 

années 2007 et 2010 (Tableau 2.4). Ceci permet d’affirmer que le 

modèle surestime globalement la production de biomasse. L’étude des 

corrélations paramétrique et non paramétrique de l’ensemble des 

données montre également des relations hautement significatives 

(Tableau 2.5). On note, suivant les années, des résultats intéressants car, 

même si, les coefficients de corrélation r ne dépassent guère 0,19, la 

relation reste significative (p<, 0001). Ce qui permet de rejeter 

l’hypothèse nulle qui consistait à dire qu’il n’y a pas de relation entre 

les données mesurées et les données du modèle (Tableau 2.5). Les 

corrélations annuelles montrent que les relations varient suivant les 

années pour toutes les méthodes (Figure 2.2). 
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Tableau 2.1 : Comparaison des moyennes globales suivant les tests de t, Wilcoxon et des signes  

  

Nombre 

d’observations 
Moyenne 

Écart-

type 
Test de T 

Test de 

Wilcoxon 
Test des signes 

Production simulée 319 983,17 348,36 t=12,38 s=16394,5 M=96 

Masse mesurée 319 591,17 521,19 NDDL=305 
  

  
   

p<, 0001 p <, 0001 p<, 0001 
 

 

Tableau 2.2 : Comparaison par seuil pluviométrique (> 250 mm) des moyennes globales suivant les 3 tests 

  

Nombre 

d’observations 
Moyenne Écart type Test de T 

Test de 

Wilcoxon 
Test des signes 

Production simulée 261 1042,93 332.53 t=10,93 s=11435,5 M=76.5 

Masse mesurée 261 641,81 541,46 NDDL=260 
  

  
   

p<, 0001 p <, 0001 p<, 0001 

 

Tableau 2.3 : Comparaison par seuil pluviométrique (<250 mm) des moyennes globales suivant les 3 tests 

 
Nombre 

observations 
Moyenne Écart type Test de T 

Test de 

Wilcoxon 
Test des signes 

Production simulée 55 666,63 227,16 t=9,66 s=510,5 M=19,5 

Masse mesurée 55 297,48 216,95 NDDL=44 
  

  
   

p<, 0001 p <, 0001 p<, 0001 

4
3
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Tableau 2.4 : Comparaison des moyennes par an et suivant les quatre types de test 

Année Nb d’obs 

Biomasse modèle Biomasse observée P 

Moy ET Moy ET Test de T Test de Wilcoxon 
Test des 

signes 

2001 24 1136,38 63,00 576,50 578,55 0,0003 0,0001 0,0001 

2002 24 1097,08 448,15 446,89 298,29 <, 0001 <, 0001 <, 0001 

2003 10 1327,65 383,09 833,89 443,53 <, 0433 <, 0273 0,10 

2004 25 808,48 258,82 304,61 211,08 <, 0003 <, 0003 <, 0029 

2005 34 1051,31 279,29 643,58 490,98 0,0003 0,0003 0,0029 

2006 32 932,17 289,62 684,92 598,89 0,0355 0,0243 0,0037 

2007 32 1035,86 319,15 664,22 526,92 0,0708 0,1417 0,3449 

2008 40 867,66 302,25 412,97 429,03 0,0001 0,0001 0,0001 

2009 20 792,18 366,31 382,09 274,70 <, 0001 <, 0001 <, 0001 

2010 35 1013,76 297,52 921,136 779,56 0,80 0,58 0,17 

2011 40 963,62 293,97 481,44 578,55 <, 0001 <, 0001 <, 0001 

Nb : nombre ; obs : observation ; moy : moyenne ; ET : Écart-Type 

  

4
4
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Tableau 2.5 : Corrélations paramétrique et non paramétrique sur l’ensemble des données 

 
Corrélation  Coefficient Probabilité 

r de Pearson 0,19 <,0001* 

ρ de Spearman 0,22 <, 0001* 

τ de Kendal 0,13 <, 0001* 

D de Hoeffding 0,01 <, 0001* 

*
significatif  au seuil de1 pour 10000 

 

 

Figure 2.2 : Variation annuelle des coefficients de corrélation suivant les différents tests

-0,2

0

0,2

0,4

0,6

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

R ρ de Spearman τ de Kendall D de Hoeffding

4
5
 



46  

2.3.2. Discussion partielle 

Le modèle BIOMASAH considère que l’eau est le principal facteur 

limitant dans les zones en dessous de l’isohyète 250 mm. Quatre-vingt 

pourcents  des sites d’observations sont localisés dans cette zone. La 

comparaison des moyennes indique une différence d’un facteur 2 entre 

les valeurs du modèle et celles mesurées. Dans la zone au-dessus de 

l’isohyète 250 mm, le modèle considère que l’azote et le phosphore 

constituent les facteurs limitants à la production de biomasse. À ce 

niveau aussi, la comparaison des moyennes donne une différence très 

significative avec les mêmes tendances que dans l’isohyète inférieure.  

Les différences observées entre les observations du modèle 

BIOMASAH et les observations du terrain s’expliquent par plusieurs 

raisons. En effet, le Niger dispose d’un effectif de cheptel dépassant les 

31 039 041 millions de têtes (RGAC,2008), localisé essentiellement 

dans la zone pastorale (Rhissa, 2010). Selon l’IPCC, à l’échelle globale, 

plus de 20 % des pâturages sont dégradés par les troupeaux, par le 

surpâturage (un excès de pression sur le pâturage par les animaux c’est-

à-dire une surexploitation de la ressource destinée à leur alimentation 

entrainant sa dégradation quantitative et qualitative), le compactage, et 

l’érosion. Ce pourcentage serait plus élevé dans les zones arides (Nori 

et Davies, 2007). Malheureusement les affirmations ne sont basées sur 

aucune analyse scientifique. Cette pression peut contribuer à baisser 

significativement la productivité observée, car le prélèvement du bétail 

sur ces sites (ouverts toute l’année), n’est malheureusement pas pris en 

compte dans le modèle. Le Tableau 1.1 indique que les mesures de la 

phytomasse sur le terrain interviennent, le plus souvent, à plus d’un 

mois après la date du maximum de végétation considérée comme 

période optimale de mesure. Ces mesures tardives de la phytomasse 

herbacée est un facteur qui peut contribuer à minorer la production. La 

distribution intra saisonnière des séquences sèches peut aussi expliquer 

en partie cette différence. En effet, ces dernières années, on assiste de 

plus en plus à une forte variabilité temporelle des pluies, notamment 
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une fréquence élevée des phénomènes extrêmes notamment les 

sécheresses et inondations pouvant avoir des conséquences sur la 

productivité (Steinfeld et al., 2009). Par exemple, on peut enregistrer un 

cumul de pluie élevé avec un nombre de jours de pluie très limité, ces 

précipitations ne seront pas très favorables pour la bonne croissance de 

la végétation, car le ruissellement sera fort (avec comme conséquences 

des pertes énormes en terre en quantité et en qualité). Les sècheresses 

provoquent un ralentissement de la croissance des plantes ou même leur 

perte réduisant la capacité des pâturages d’exprimer au mieux leur 

potentiel. Une séquence sèche qui survient pendant un stade critique de 

la croissance peut avoir des effets catastrophiques sur le rendement, 

même si les précipitations sont globalement abondantes (Aguiar, 2009). 

Il est important de rappeler que, le modèle n’a pas été conçu pour gérer 

les séquences sèches. Le modèle peut être limité par le fait que le 

Coefficient de Ruissellement (CR) peut être négatif lorsque l’unité 

paysagère bénéficie du ruissellement. En plus, le ruissellement est 

largement fonction du volume et de l’intensité des évènements 

pluvieux. Un coefficient annuel suppose donc une distribution des 

pluies par volume et intensité. Il est noté aussi l’inexistence d’un bilan 

hydrique entre les unités paysagères associées dans un bassin versant.  

Les forts cumuls de pluies auront tendance à surestimer la production 

potentielle même si les ruissellements seront aussi sous-estimés lorsque 

calculé par an. Au vu des résultats de cette validation qui montrent des 

différences importantes entre les données du terrain et les données du 

modèle, il est impérieux de mener de recherches pour trouver un moyen 

plus intéressant d’estimation de la production fourragère. Car la 

disponibilité des données du terrain et des séries d’images satellitaires 

constitue une belle opportunité pour proposer un modèle combinant les 

données du terrain et les images satellitaires. 
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2.4. Conclusion partielle 

La comparaison des moyennes réalisée entre les phytomasses aériennes 

herbacées mesurées in situ et celles simulées sur la période s’étalant de 

2001 à 2011, met en évidence une différence significative entre ces 

deux types approches. Le modèle BIOMASAH surestime la masse 

herbacée, comme le montre les tests paramétriques (test de t) et non 

paramétriques (de Wilcoxon et des signes). Les résultats de ce modèle 

correspondent en moyenne au double des données mesurées, avec un 

R² ne dépassant guère 0,15. En conclusion, ces résultats indiquent que 

les sorties du modèle BIOMASAH ne permettent pas d’expliquer la 

variabilité contenue dans les données du terrain. N’est-il pas possible 

d’améliorer le modèle BIOMASAH, en prenant en compte la 

distribution journalière ou décadaire des pluies pour le bilan hydrique 

du sol ? La disponibilité de séries assez longues de données mesurées 

in situ, d’images d’indice de végétation et d’autres données 

agrométéorologiques ouvre toutefois de nouvelles perspectives pour 

produire un modèle plus fiable. 
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III. Analyse de la performance du modèle d’estimation de la 

biomasse élaboré par le Ministère de l’Élevage et des 

Industries Animales (MEIA) du Niger 

Chapitre tiré de l’article : 

GARBA I., B. Djaby, I. Salifou, A. Boureima, I. Touré, B. Tychon 

(2015). Évaluation des ressources pastorale au sahel Nigérien à l’aide 

des données NDVI issues de SPOT-VEGETATION et MODIS. Photo 

interprétation European Journal of Applied Remote Sensing, N°2015/1, 

13-26. 

 

3.1. Introduction 

L’élevage joue un rôle économique très important au Niger, il est 

pratiqué par 80 % des ménages et constitue la 2e recette d’exportation 

avec  31 039 041  millions de têtes  toutes espèces  comprises bovins, 

ovins, caprins, camelin, azins (MEIA, 2012). Le pastoralisme est 

pratiqué de façon traditionnelle et est basé essentiellement sur 

l’exploitation des fourrages naturels soumis à de fortes variabilités inter 

et intra saisonnières. Ceci nécessite pour les acteurs (Éleveurs, 

Techniciens, Décideurs politique, ONG…) de disposer d’outils 

appropriés de suivi et de gestion de pâturage permettant de : (i) anticiper 

les crises pastorales ; (i) favoriser une exploitation judicieuse du 

disponible fourrager ; (ii) orienter les politiques nationales et 

communautaires (Politiques foncières, commerciales des produits de 

l’élevage et des intrants, politiques douanières, banquières ; la politique 

de développement des collectivités locales : infrastructures sociales  

adaptées pour la santé, l’éducation, l’eau et l’électricité…).  

L’utilisation de l’imagerie satellitaire combinée aux mesures in situ 

constitue un moyen important d’évaluation quantitative et qualitative 

des pâturages (Swets et al., 1999; Wylie et al., 1991; Diallo et al., 1991). 

Au Sahel, le Centre Régional AGRHYMET(CRA), le Ministère de 
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l’Élevage et des Industries Animales (MEIA) du Niger et le Centre de 

Suivi Écologique (CSE) du Sénégal réalisent annuellement des 

estimations de biomasse pour aider les pouvoirs publics à prendre des 

décisions sur la sécurité alimentaire et la gestion des ressources 

naturelles.  Le modèle du MEIA s’appuie sur l’utilisation de données 

mesurées au sol combinées à l’intégrale des images d’indice de 

végétation à différence normalisée (NDVI pour son acronyme en 

anglais) dont, plusieurs auteurs (Huete et al., 2002, Justice et al., 1986, 

Hiernaux et Justice, 1986) ont montré les performances mais aussi les 

limites dans le suivi et la caractérisation de la végétation à l’échelle 

globale.  

Le NDVI fait partie des nombreux indices dérivés des mesures de 

réflectances spectrales dans différentes bandes du spectre 

électromagnétique. Grâce au pigment chlorophyllien des feuilles vertes 

la végétation absorbe fortement dans le rouge (0,6 à 0,7 µm) pour la 

photosynthèse et réfléchit dans le proche infrarouge (0,7 à 1,1 µm) 

grâce à de la structure des cellules foliaires. Dès le lancement des 

premiers satellites d’observation de la terre (NOAA AVHRR), avec 

l’acquisition d’images dans le visible et le proche infrarouge, une 

exploitation a été faite pour déterminer la distribution spatiale de la 

végétation. Dans le cas du satellite NOAA, les deux canaux utilisés pour 

le calcul du NDVI que sont le rouge (0,58 à 0,68 m) et le proche 

infrarouge (0,73 à 1,10 m)(Rouse et al., 1973).  𝑁𝐷𝑉𝐼 =
𝑃𝐼𝑅−𝑅

𝑃𝐼𝑅+𝑅
  où : 

PIR= Réflectance dans le proche Infra-Rouge et R = Réflectance dans 

le Rouge. Dans les capteurs VEGETATION de SPOT-4 et 5, il s’agit 

des longueurs d’onde (0,61 - 0,68 µm) rouge et (0,78 - 0,89) µm pour 

le proche infrarouge. Pour ce qui est de MODIS, la bande du canal 

rouge se trouvent entre 0,62 et 0,67 µm et celle du proche infrarouge 

entre 0,841 -0,876 µm.  

Les acquisitions journalières de NDVI sont en général traitées à travers 

l’algorithme du « maximum values compositing » pour réduire l’impact 

des interférences atmosphériques, et d’angle de visée et produire des 
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images décadaires (Holben et Fraser, 1984). Le NDVI est devenu très 

vite un outil précieux de suivi de la végétation. En effet, à l’aide des 

indices de végétation mesurés par satellite, on peut surveiller, pendant 

la saison de croissance, les ressources végétales importantes comme les 

cultures, les pâturages et les forêts à une échelle spatiale appropriée. 

Dans le cadre du suivi et de la quantification de la phytomasse, plusieurs 

études ont été réalisées dans le monde pour le suivi et la quantification 

des productions primaires. Les séries d’images d’indice de végétation 

dérivées de MODIS, SPOT VEGETATION, NOAA etc. ont été 

largement utilisées à travers le monde pour le suivi de la phénologie des 

cultures (Hmimina et al., 2013, Soudani et al., 2012, Butt et al., 2011, 

Beck et al., 2007, Wittemyer et al., 2007, Wagenseil et Samimi, 2006, 

Lüdeke et al., 1996) et l’estimation des rendements agricoles qui a été 

faite principalement en combinant les valeurs de NDVI aux rendements 

mesurés in situ (Mkhabela et al., 2011, Fontana et al., 2007, Kastens et 

al., 2005, Bozzini et Maselli, 2002, Potdar et al., 1999, Rasmussen, 

1998). Des estimations de rendements des cultures ont été également 

réalisées avec succès au Niger et au Burkina Faso à l’aide de séries de 

NDVI (NOAA AVHRR) croisées aux rendements mesurés in situ 

(Maselli et al., 1993, Groten, 1993). Les indices de végétation 

provenant de multiples capteurs ont été aussi utilisés pour la prévision 

des  rendements agricoles  (Mkhabela et al., 2011; Kastens et al., 2005; 

Bozzini et al., 2002). Au Sahel,  pour le suivi et l’estimation de la 

production primaire à l’aides des images satellitaires, des études ont été 

réalisées dès les années 1980 (Gaston et al., 1987; Tucker et al., 1986; 

Tucker et al., 1985; Tucker et al., 1981). Les études qui ont  été à la 

base du modèle du MEIA sont celles réalisées avec succès au Niger et 

au Sénégal ayant établi une corrélation significative entre l’intégrale de 

la série des images décadaires de NDVI de la saison des pluies et la 

phytomasse mesurée au sol (Wylie et al., 1991; Diallo et al., 1991). 

Ce large spectre d’utilisation des images NDVI permet d’affirmer que 

cet indice est incontestablement le plus utilisé pour estimer les 
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productions des cultures et des pâturages. 

Au regard de l’importance de l’estimation de la biomasse fourragère 

pour la planification des interventions d’un pays à vocation pastorale 

comme le Niger, de la quantité importante de données mesurées 

disponibles dans la base de données du MEIA, de la disponibilité des 

séries d’images NDVI issues de SPOT VEGTATION et de MODIS, 

une analyse critique de la méthode du MEIA s’avère nécessaire pour en 

déterminer les forces et les faiblesses en vue de proposer des pistes 

d’amélioration. 

Ainsi, l’objectif général de cette étude est de contribuer à l’amélioration 

de la qualité des informations utilisées pour la planification des actions 

dans le domaine de l’élevage. Il s’agit plus spécifiquement de :  

- contribuer à l’amélioration de la méthode d’estimation de la 

production fourragère au Niger ;  

- comparer d’une part les performances de l’intégrale et du maximum 

NDVI, d’autre part celles de données SPOT VEGETATION et 

eMODIS pour l’estimation de production fourragère au Niger.  

Trois hypothèses sont formulées :  

- il est possible d’utiliser le NDVI de eMODIS à la place du NDVI de 

SPOT VEGETATION ; 

- l’intégrale du NDVI et le Maximum du NDVI peuvent avoir des 

performances différentes suivant les années ;  

- les  différences entre zones bioclimatiques ne sont pas prises en 

compte  en réalisant un modèle unique pour tout le pays. 

 

3.2. Matériel et méthodes  

Les données mesurées au sol par le MEIA dont la méthode de collecte 

a été décrite au paragraphe 1.6.1 sont associées aux images NDVI de 

SPOT VEGETATION et de MODIS pour extraire les métriques 

(intégrale et maximum NDVI) par site. On a ensuite procédé à des 

ajustements pour établir des équations linéaires du type 𝑦 = 𝑎𝑥 + 𝑏 où 

y représente les données observées ,  x l’intégrale ou le maximum NDVI 
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de la saison de croissance de la végétation et des tests non 

paramétriques pour évaluer les niveaux de signification de la différence 

entre les paramètres des modèles (Figure 3.1). 

 

 

 

Figure 3.1 : Modèle schématique d’extraction des métriques du NDVI 
et du traitement statistique 

 

3.2.1. Les données de biomasse fourragère du MEIA 

Rappelons que les données de biomasse observée utilisées proviennent 

de la division pastorale du MEIA. Elles sont mesurées  chaque année 

pour établir le bilan fourrager sur lequel se fonde la planification des 

interventions dans le domaine pastoral au Niger. Ces données sont 

collectées sur le terrain à travers un dispositif de collecte et de 

traitement de la production fourragère herbacée conformément à la 

méthode décrite plus haut. Une base de données est créée et comprend 

les numéros des sites, les informations attributaires telles que la 

production annuelle, la position géographique. Pour apprécier la 

représentativité des sites de mesure de la biomasse fourragère du Niger, 

nous avons examiné la production et l’évolution temporelle du nombre 

et de sites de 2001 à 2012. 
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3.2.2. Les images satellitaires utilisées  

Le travail a été réalisé à partir de deux sources satellitaires d’images 

d’indice de végétation : les images NDVI SPOT VEGETATION 

provenant du VITO et celles d’eMODIS mises à la disposition des 

utilisateurs par FEWSNET. 

 

3.2.2.1. Images NDVI du satellite SPOT VEGETATION 

Les images NDVI utilisées dans le cadre de cette étude proviennent des 

capteurs SPOT VEGETATION (SPOT4 lancé en 1998 et SPOT5 mis 

en orbite en 2002). Elles ont été traitées et mises à la disposition des 

utilisateurs des pays en développement sur le web grâce au projet 

DevCoCast. L’amélioration de la qualité des images NDVI décadaires 

a été faite suivant la méthode Maximum Value Composite (MVC). 

Cette technique consiste à faire une synthèse décadaire S10 des images 

journalières en attribuant à chaque pixel la valeur d’indice maximale 

enregistrée par le pixel au cours de cette décade. Cette technique permet 

de minimiser les contaminations atmosphériques et les effets off-

nadir(Holben et al., 1986). Les images SPOT VEGETATION sont 

téléchargées du site en code numérique, c’est-à-dire, codées entre 0 et 

255 Digital Number (DN). Pour convertir le DN en Valeur NDVI de 

type décimal, on applique la formule suivante : NDVI = 0,004 *DN -

0.1. 

 

3.2.2.2. Les images Expedited MODIS (eMODIS) 

Les images EMODIS proviennent du satellite Américain (TERRA, 

lancé en 1999) Moderate Resolution Imaging Spectroradiometer 

(MODIS). Elles sont développées par l’United States Geological 

Survey (USGS) et le centre Earth Resources Observation and Science 

(EROS) pour le suivi de la végétation verte en temps quasi réel. La série 

d’images eMODIS est disponible depuis 2001. Ce sont des synthèses 

de 5 et 10 jours corrigées des contaminations atmosphériques. Pour 
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améliorer la qualité, la série d’images NDVI subit un lissage temporel 

par la méthode développée par Swets et al. (1999). Les images 

EMODIS sont téléchargées du site : (http://earlywarning.usgs.gov/ 

fews/africa) en code numérique, c’est-à-dire, codées entre 0 et 255 

Digital Number (DN). Pour convertir le DN en vraies valeurs NDVI, 

on applique la formule suivante : NDVI= 0,01* DN -1. 

 

3.2.3. Extraction de l’intégrale et du maximum NDVI par site 

Les données de production de biomasse mesurée in situ (68 sites) ont 

été récupérées auprès du Ministère de Élevage et des Industrie 

Animales (MEIA) en format Excel, elles contiennent essentiellement 

quatre colonnes :  le Numéro du Site, la Latitude, la Longitude et la 

Production en kg.ha-1. Une couche géographique ponctuelle de type 

shapefile a été créée avec les coordonnées des 68 sites. Puis on a généré 

une grille de polygones de 1 km de coté qui se superpose parfaitement 

aux pixels des images NDVI de SPOT VEGETATION à l’aide de 

l’outil fishnet du logiciel ArcGIS ; et superposé la couche des sites sur 

celle des grilles pour extraire les neufs polygones contigus de 1km² 

correspondant à la surface de chaque site ; on a procédé à la fusion des 

9 carrés de 1km de coté de chaque site pour en faire un seul de 3 km de 

côté ; la jointure spatiale est réalisée pour affecter les attributs de 

chaque site au polygone correspondant. La couche de ces polygones 

contenant les informations sur les mesures in situ c’est-à-dire les 

productivités observées des années 1998 et 2011 est ensuite superposée 

sur les images NDVI (prétraitées) de mai à octobre des années 

respectives pour en extraire les intégrales et les maximums des pixels 

correspondant à chaque site (Figure 3.2). La table issue de cette 

opération est ensuite utilisée pour faire les analyses statistiques entre la 

masse aérienne des herbacées mesurée in situ et le maximum ou 

l’intégrale de NDVI pour chaque année. La fonction overlay a été 

utilisée pour relever les types de sol, les zones agro-écologiques et les 

zones bioclimatiques correspondant à chaque site. 
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Figure 3.2 : Exemple du site A23 

matérialisé par la position géographique du centre 

 
3.2.4. Analyse statistique des données 

Les analyses réalisées ont consisté à étudier l’évolution interannuelle 

des coefficients de régression et leur évolution spatiale. Les coefficients 

issus des régressions sont le R², le RMSE.  Les images NDVI de SPOT 

VEGETATION et EMODIS ont été traitées avec les logiciels SPIRITS 

(Software for the Processing and Interpretation of Remotely Sensed 

Image Time Series) (http://spirits.jrc.ec.europa.eu ) et ArcGIS pour le 

Système d’information géographique (SIG). Les régressions et les tests 

non paramétriques de corrélation (tests de wilcoxon et des signes) ont 

été faits avec le logiciel SAS-JMP10. 

  

http://spirits.jrc.ec.europa.eu/
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3.4. Résultats et discussion 

3.4.1. Résultats  

3.4.1.1 Caractérisation de la productivité  

La moyenne nationale du rendement fourrager varie du simple au 

double voire même le triple suivant les années (Tableau 3.1). Cette 

moyenne suit le gradient pluviométrique en s’accroissant du Nord vers 

le Sud (Tableau 3.2). 

 

Tableau 3.1 : rendement fourrager moyen suivant les années 

 
Année Nombre de sites Moyenne kg.ha-1 Écart Type 

2001 21 604,31 349,14 

2002 27 382,52 260,47 

2003 12 809,18 389,09 

2004 26 287,99 191,53 

2005 31 713,42 432,80 

2006 24 825,99 561,40 

2007 23 1119,17 337,16 

2008 36 457,30 425,71 

2009 16 522,01 235,80 

2010 35 1080,86 663,06 

2011 40 470,74 272,06 

2012 25 1299,49 606,20 

 

Tableau 3.2 : rendement fourrager moyen suivant les zones bioclimatiques 

 

  

Zone 

bioclimatique 

Nombre 

d'observations 

Moyenne 

kg.ha-1 
Écart Type 

saharienne 48 364,11 288,56 

Nord sahélienne 243 717,80 514,84 

sahélienne 23 1203,47 547,04 
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3.4.1.2. Analyse à l’échelle globale 

Il ressort des résultats de la régression linéaire simple (Figure 3.3 et 3. 

4) entre la biomasse mesurée au sol (2001 à 2012) et le NDVI (Intégrale 

et Maximum) de SPOT VEGETATION et eMODIS que : la relation est 

hautement significative (P < 0,0001), les coefficients de détermination 

R² des maximums sont supérieurs à ceux des intégrales. La variance la 

masse herbacée en kg.MS.ha-1 dans la zone pastorale du Niger est alors 

expliquée à un peu plus de 50 % par le NDVI (maximum ou intégrale) 

de SPOT VEGETATION et d’EMODIS. La valeur moyenne du RMSE 

est de 365 kg.MS.ha-1 soit une erreur de 52 % par rapport à la moyenne 

(tableau 3. 3). 

 

 
 

Biomasse herbacée observée = -

875,22 + 593,33*intégrale NDVI 

SPOT VEGETATION 

Biomasse herbacée observée = -

636,34 + 4749,78*maximum NDVI 

SPOT VEGETATION 

 
Figure 3.3 : Ajustement de la 

biomasse herbacée observée avec 

l’intégrale NDVI SPOT 
VEGETATION à l’échelle globale 

 

Figure 3.4 : Ajustement de la 
biomasse herbacée observée avec le 

maximum NDVI SPOT 

VEGETATION à l’échelle globale 
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Biomasse herbacée observée = -

900,36 + 604,28*intégrale NDVI 

eMODIS 

 

Biomasse herbacée observée  = -

651,57 + 4796,79*maximum 

NDVI_eMODIS 

Figure 3.5 : Ajustement la biomasse 

herbacée observée avec l’intégrale 

NDVI eMODIS à l’échelle globale 

Figure 3.6: Ajustement de biomasse 

herbacée observée avec le 

maximum NDVI eMODIS à 

l’échelle globale 
 

Tableau 3.3 : Comparaison des R² des résultats avec SPOT VEGETATION 

et eMODIS à l’échelle globale  

 
NDVI R² RMSE 

eMODIS intégrale 0,51 374 

eMODIS maximum 0,53 368 

SPOT VEGETATION intégrale 0,53 367 

SPOT VEGETATION maximum  0,57 354 

 

3.4.1.3. Analyse par zone bioclimatique  

L’examen des résultats de la régression linéaire simple entre la 

biomasse mesurée au sol (2001 à 2012) et le NDVI (Intégrale et 

Maximum) de SPOT VEGETATION et EMODIS suivant les zones 

bioclimatiques (Figure3.5 à 3.10) montre que : 

- La relation est hautement significative (P < 0, 0001), 

- Les coefficients de détermination R2 proches de 0,5 pour les zones 

Nord sahélienne et saharienne, et par contre le R² est inférieur à 0,2 

pour la partie sahélienne ; 
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- La variance de la production de biomasse dans la zone pastorale du 

Niger est donc expliquée à un peu plus de 50 % par le NDVI 

(maximum ou intégrale) qu’il soit de SPOT VEGETATION ou 

d’eMODIS dans les zones Nord sahélienne et saharienne. En 

revanche elle est faiblement expliquée en zone sahélienne.  

- Les valeurs des RMSE sont en moyenne de de 360 kg MS.ha-1 en 

zone nord sahélienne, 207 kg.MS.ha-1 en zone saharienne et 583 kg 

MS.ha-1 en zone sahélienne, soit des erreurs moyennes respectives 

de 48 à 60% (tableaux 3.4 ; 3.5 ; 3.6). 

 

  

Figure 3.7 : Ajustement avec 

l’intégrale NDVI SPOT 

VEGETATION en zone nord-
sahélienne 

 

Figure 3.8 : Ajustement avec le 

maximum NDVI SPOT 

VEGETATION en zone nord-
sahélienne 

  

Figure 3.9 : Ajustement avec 

l’intégrale NDVI SPOT 

VEGETATION en zone sahélienne 

Figure 3.10 : Ajustement avec le 

maximum NDVI SPOT 

VEGETATION en zone sahélienne 
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Figure 3.11 : Ajustement avec 

l’intégrale NDVI SPOT 

VEGETATION en zone saharienne 

Figure 3.12 : Ajustement avec le 

maximum NDVI SPOT 

VEGETATION en zone saharienne 

 

Tableau 3.4 : Variation du coefficient de détermination (R²) suivant les zones 

bioclimatiques 

Zone  Nord 

Sahélienne 

Sahélienne Saharienne 

eMODIS intégrale  0,47 0,18 0,45 

eMODIS maximum  0,51 0,11 0,43 

SPOTVGT intégrale  0,51 0,13 0,53 

SPOTVGT maximum  0,56 0,17 0,56 

Tableau 3.5 : Variation du RMSE suivant les zones bioclimatiques 

Zone  Nord 

Sahélienne 

Sahélienne Saharienne 

eMODIS intégrale 375 573 217 

eMODIS maximum  361 594 220 

SPOTVGT intégrale  362 591 200 

SPOTVGT maximum  344 576 193 

Tableau 3.6 : Variation relative du RMSE suivant les zones bioclimatiques 

Zone  Nord Sahélienne Sahélienne Saharienne 

eMODIS intégrale 52% 48% 60% 

eMODIS maximum  50% 49% 60% 

SPOTVGT intégrale  50% 49% 55% 

SPOTVGT maximum  48% 48% 53% 



62  

3.4.1.4. Analyse suivant les années 

Les résultats de la régression linéaire simple entre la biomasse herbacée 

mesurée au sol au cours de la période allant de 2001 à 2012 et soit 

l’intégrale, soit le maximum du NDVI de SPOT VEGETATION et 

d’eMODIS sont illustrés par les tableaux 3.7 à 3.8. La régression 

montre partout que la relation est hautement significative et pour toutes 

les années (P <0,0001). Les coefficients de détermination R² varient 

entre 38% et 72 %. Les variations observées sont identiques quel que 

soit le capteur. La production de biomasse herbacée dans la zone 

pastorale du Niger est donc expliquée pour certaines années à un peu 

plus de 70 % par le NDVI (maximum ou intégrale) qu’il soit de SPOT 

VEGETATION ou d’eMODIS (Tableau 3.9). Les valeurs des RMSE 

varient de 120 à 455 kg MS. ha-1(tableau3.10). Les résultats des tests 

(Wilcoxon et Signes) montrent qu’il n’y a pas de différence 

significative entre les RMSE (Tableau 3.11 et 3.14). L’annexe 3 indique 

les droites d’ajustement des mesures de phytomasse herbacée aérienne 

en fonction du maximum et de l’intégrale NDVI issus de SPOT-

VEGETATION et de MODIS. 
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Tableau 3.7 : Relation entre l’intégrale de NDVI de SPOT VEGETATION et 

la biomasse herbacée suivant les années. 

Année Modèle Nr 

site 

R² RMSE 

(kg MS/ha) 

2001 BReel = -1253,92 + 758,15*int 21 0,56 384 

2002 BReel = -502,31 + 387,64*int 27 0,74 137 

2003 BReel = -772,57 + 583,17*int 12 0,62 253 

2004 BReel = -571,24 + 435,89259*int 26 0,58 126 

2005 BReel = -762,03 + 561,78013*int 31 0,72 233 

2006 BReel = -1106,66 + 710,18*int 24 0,63 351 

2007 BReel = -343,09 + 446,17*int 23 0,54 233 

2008 BReel = -954,22 + 528,74*int 36 0,52 299 

2009 BReel = -566,36 + 439,49*int 16 0,59 162 

2010 BReel = -1375,12 + 859,19*int 35 0,54 455 

2011 BReel = -413,05 + 316,12*int 40 0,65 164 

2012 BReel = -1000,97 + 786,70*int 25 0,56 410 

BReel: Biomasse totale; int : intégrale NDVI 

Tableau 3.8: relation entre le maximum de NDVI de SPOT VEGETATION 
et la biomasse herbacée suivant les années 

Année Modèle Nr 

site 

R² RMSE 

(kg MS/ha) 

2001 BReel = -651,95 + 4835,0476*max 21 0,38 455 

2002 BReel = -213,69 + 2405,52*max 27 0,65 160 

2003 BReel = -1187,53 + 7636,05*max 12 0,76 198 

2004 BReel = -224,94 + 2357,85*max 26 0,6 124 

2005 BReel = -502,56 + 4412,1453*max 31 0,63 269 

2006 BReel = -663,31 + 4871,8838*max 24 0,59 368 

2007 BReel = 16,04+ 2961,89*max 23 0,57 225 

2008 BReel = -660,53 + 4278,37*max 36 0,54 288 

2009 BReel = -335,25 + 3275,65*max 16 0,52 176 

2010 BReel = -968,49 + 6703,91*max 35 0,59 433 

2011 BReel = -262,61 + 2676,15*max 40 0,63 168 

2012 BReel = -766,32 + 6197,71*max 25 0,6 391 

BReel: Biomasse totale; max : maximum NDVI 
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Tableau3.9 : Relation entre l’intégrale de NDVI d’eMODIS et la biomasse herbacée suivant les années. 

Année Modèle Nombre de site R² RMSE 

2001 BReel = -2274,409 + 563,05093*int  21 0,62 357 

2002 BReel = -958,7376 + 271,08641*int  27 0,71 144 

2003 BReel = -1274,074 + 392,15374*int  12 0,63 247 

2004 BReel = -887,96 + 262,05976*int 26 0,54 131 

2005 BReel = -1360,005 + 398,9208*int  31 0,73 229 

2006 BReel = -1853,817 + 743,39651*int 24 0,62 354 

2007 BReel = -685,6192 + 444,54888*int  23 0,56 229 

2008 BReel = -1565,205 + 574,01701*int  36 0,53 296 

2009 BReel = -1035,214 + 476,31009*int 16 0,57 164 

2010 BReel = -2133,852 + 924,50059*int  35 0,52 464 

2011 BReel = -769,8143 + 336,08794*int 40 0,64 163 

2012 BReel = -1920,488 + 584,59571*int 25 0,59 394 

BReel: Biomasse totale; int : intégrale NDVI 

  

6
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Tableau 3.10: relation entre le maximum de NDVI de eMODIS et la biomasse herbacée suivant les années  

Année Modèle Nombre de site R² RMSE 

2001 BReel = -937,3483 + 5745,7317*max  21 0,45 429 

2002 BReel = -292,647 + 2666,006*max  27 0,71 145 

2003 BReel = -770,2853 + 5720,8998*max 12 0,68 231 

2004 BReel = -309,6009 + 2548,3944*max 26 0,62 120 

2005 BReel = -478,6606 + 4132,3514*max  31 0,62 270 

2006 BReel = -872,668 + 5573,4358*max  24 0,62 353 

2007 BReel = 17,718957 + 3001,7481*max  23 0,65 204 

2008 BReel = -663,4033 + 4337,4184*max  36 0,56 284 

2009 BReel = -314,2879 + 3358,0384*max 16 0,49 178 

2010 BReel = -1033,525 + 7201,3384*max 35 0,58 433 

2011 BReel = -290,5028 + 2687,9264*max 40 0,62 169 

2012 BReel = -971,6338 + 7380,0853*max 25 0,68 350 

BReel: Biomasse totale; int : intégrale NDVI 

 
  

6
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Tableau 3.11 : Variation annuelle des R² issus de la régression entre la biomasse herbacée et l’intégrale ou le maximum NDVI de 

SPOT VEGETATION et eMODIS 

eMO int : eMODIS Intégrale ; eMO max : eMODIS maximum ; SPOT int : SPOT VEGETATION intégrale ; SPOT max : SPOT VEGETATION 

maximum 

 

Tableau 3.12 : Variation annuelle des RMSE issues de la régression entre la biomasse herbacée en l’intégrale et maximum NDVI de 

SPOT VEGETATION et eMODIS 

eMO int : EMODIS Intégrale ; eMO max : eMODIS maximum ; SPOT int : SPOT VEGETATION intégrale ; SPOT max : SPOT VEGETATION 

maximum 

  

Année 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

eMO int 0,62 0,71 0,63 0,54 0,73 0,62 0,56 0,53 0,57 0,52 0,64 0,59 

eMO max 0,45 0,71 0,68 0,62 0,62 0,62 0,65 0,56 0,49 0,58 0,62 0,68 

SPOT int 0,56 0,74 0,62 0,58 0,72 0,63 0,54 0,52 0,59 0,54 0,65 0,56 

SPOTmax 0,38 0,65 0,76 0,60 0,63 0,59 0,57 0,54 0,52 0,59 0,63 0,60 

Année 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

eMO int  357 144 247 131 229 354 229 296 164 464 163 394 

eMO max  429 145 231 120 270 353 204 284 178 433 169 350 

SPOT int  384 137 253 126 233 351 233 299 162 455 164 410 

SPOT max  455 160 198 124 269 368 225 288 176 433 168 391 

6
6
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Tableau 3.13 : Test de Wilcoxon sur les RMSE issues de la régression entre la biomasse herbacée en l’intégrale et maximum NDVI de 

SPOT VEGETATION et eMODIS (basé sur les rangs)  

  Spot int-spot 

max 

Emo max-spot 

max 

Emo max-spot 

int 

Emo int-spot 

max 

Emo int-spot 

int 

Emo int-emo 

max 

Statistique de test S -5,000 -17,000 -5,000 -7,000 -7,500 6,500 

Prob >|S| 0,7334 0,1426 0,7178 0,6221 0,5830 0,6353 

Prob>S 0,6333 0,9287 0,6411 0,6890 0,7085 0,3176 

Prob < 0,3667 0,0713 0,3589 0,3110 0,2915 0,6824 

eMO int : eMODIS Intégrale ; eMO max : eMODIS maximum ; SPOT int : SPOT VEGETATION intégrale ; SPOT max : SPOT VEGETATION 

maximum 

 

Tableau 3.14 : Test des signes sur les RMSE issues de la régression entre la biomasse herbacée en l’intégrale et maximum NDVI de 

SPOT VEGETATION et eMODIS 

  Spot int-spot 

max 

Emo max-spot 

max 

Emo max-spot 

int 

Emo int-spot 

max 

Emo int-spot 

int 

Emo int-emo 

max 

Statistique de test M 0,000 -1,500 0,000 0,000 -1,000 1,000 

Prob ≥ |M| 1,0000 0,5488 1,0000 1,0000 0,7744 0,7744 

Prob ≥ M 0,5002 0,8867 0,5002 0,5002 0,8062 0,3872 

Prob ≤ M 0,5000 0,2744 0,5000 0,5000 0,3872 0,8062 

emoint : eMODIS Intégrale ; Emo max : eMODIS maximum ; spotint : SPOT VEGETATION intégrale ; spotmax : SPOT VEGETATION maximum 

6
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3.4.2. Discussion partielle  

La production de la carte annuelle du disponible fourrager herbacé est 

réalisée chaque année à partir d’une équation de régression linéaire 

obtenue par la méthode des moindres carrés entre l’intégrale du NDVI 

ou le maximum NDVI et les données de biomasse in situ. Cette 

approche a fait l’objet de plusieurs travaux (Tucker et al., 2005; Maselli 

et al., 2000; Wylie et al., 1991; Diallo et al., 1991) . En revanche, c’est 

la première fois que l’analyse couvre une longue période (12 ans) 

offrant la possibilité d’examiner le comportement du modèle dans le 

temps et l’espace. La zone pastorale du Niger couvre une superficie de 

252 207.5 km². Les échantillons utilisés pour les relevés au sol dans le 

cadre des campagnes d’évaluation de la biomasse varient de 150 à 450 

km² suivant les années. Les échantillons des premières études faites sur 

le terrain par Wylie et al. (1991) ont varié entre 25 et 100 km² mais ne 

concernaient que l’Est et le Centre du pays. Elles ne prenaient pas en 

compte toute la diversité spatiale des écosystèmes pâturés. On note 

globalement dans cette étude que les coefficients de détermination 

obtenus pour les années 1986, 1987 et 1988 sont élevés (respectivement 

0,68, 0,91 et 0,73) mais varient d’une année à l’autre tout comme ceux 

trouvés pour les années concernées par notre étude avec une erreur 

standard de + ou - 200 kg/ha (Wylie et al., 1991). Au Sénégal, une étude 

similaire menée avec des données NOAA -AVHRR pour les années 

1987 et 1988 donnait des coefficients de détermination similaires à ceux 

du Niger (Diallo et al., 1991). Les coefficients de détermination varient 

suivant les années dans toutes les études, ils varient aussi suivant les 

zones. On observe que nos résultats sont légèrement inférieurs à ceux 

trouvés au niveau des deux études citées précédemment. Cette 

différence peut s’expliquer en partie par le fait que Wylie et al. (1991) 

et Diallo et al. (1991) ont utilisé les images NDVI provenant de NOAA 

AVHRR alors que nous avons utilisé des images issues des capteurs 

VEGETATION du satellite SPOT et celles de MODIS TERRA lissées 

en eMODIS.  D’autre part, cette différence pourrait s’expliquer par les 
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conditions de relevé de la végétation notamment la difficulté de 

respecter rigoureusement les exigences de la méthode et surtout la date 

des observations qui peut avoir un impact important sur les masses 

mesurées. Le RMSE moyen est d’environ 360,5 kg/ha, si on rapporte 

cette erreur à la superficie totale de la zone pastorale (252207.5 km²) on 

trouve une erreur moyenne annuelle de 9092080 tonnes soit environ 

l’alimentation de 5387899 UBT pour 9 mois (saison sèche). Peut-on 

raisonnablement fonder la planification des interventions d’un pays 

avec ce niveau d’erreur ? Si non, il est alors nécessaire d’explorer 

d’autres pistes d’amélioration du modèle actuel. L’utilisation de 

l’intégrale ou du maximum NDVI de la période de la croissance de la 

végétation herbacée NDVI seul pour estimer la phytomasse, nous parait 

limitatif, car des études menées ont montré qu’on peut assurer le suivi 

de la phénologie de la végétation à travers plusieurs paramètres. On 

peut par exemple explorer l’utilisation des métriques dérivées des séries 

d’images (Jönsson et Eklundh, 2004). On peut aussi envisager de 

combiner les indices de satisfaction des besoins en eau pendant les 

différents stades phénologique de la végétation. Les résultats de la 

comparaison inter-senseurs de l’étude ont montré que, pour l’estimation 

de la biomasse, il n’y a pas de différence significative à utiliser les 

NDVI de SPOT VEGETATION ou d’eMODIS. Ceci est une bonne 

nouvelle pour les utilisateurs (services techniciens) qui sont dans des 

pays où l’accès aux données est souvent difficile. L’intégrale ou le 

maximum NDVI ne présente pas de différence significative en termes 

de performance pour estimer les productions fourragères dans la zone 

d’étude, ce qui signifie que l’opérateur peut utiliser l’un ou l’autre 

source de données sans que cela n’entraine de grande différence dans 

les résultats. Ceci va dans le même sens que l’étude de comparaison 

entre NOAA AVHRR, MODIS et SPOT VEGETATION  qui montrait 

qu’il y a une similarité entre les trois  capteurs pour la dynamique de la 

végétation (Tucker et al., 2005). 
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3.5. Conclusion partielle  

Les résultats ont montré qu’en dépit de corrélations significatives, les 

performances du modèle fluctuent d’une année à l’autre comme 

l’atteste les R² qui varient suivant les années entre 0,52 et 0,73 mais les 

corrélations restent très significatives (P<.0001). Aussi, il ressort que le 

coefficient de détermination est plus élevé dans les zones saharienne et 

nord sahélienne que dans la zone sahélienne typique. Les erreurs 

quadratiques moyennes (RMSE) sont quand même élevées, elles 

varient selon les années entre 120 et 460 kg MS/ha.  Les tests non 

paramétriques de comparaison de moyenne (Test de Wilcoxon et des 

signes) ont montré qu’il n’y a pas de différence significative d’utiliser 

SPOT VEGETATION ou eMODIS (intégrale ou maximum). Cette 

possibilité d’intercomparabilité permet aux utilisateurs d’assurer la 

production de produits sans interruption avec une possibilité d’analyse 

convergente. Néanmoins, le modèle nécessite des améliorations 

importantes car l’erreur quadratique moyenne est de 52 %. 
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IV. Amélioration de la modélisation de la biomasse 

fourragère en zone sahélienne à travers la méthode de 

régression linéaire multiple 

 
4.1. Introduction  

Le lien entre la biomasse herbacée mesurée au sol et les indices de 

végétation établi par régression linéaire en région sahélienne a été 

largement traité (Tucker et al.1983, Tucker et al. 1985 ; Justice et 

Hiernaux, 1986 ; Maïdagi et al, 1987 ; Hiernaux et Justice, 1986 ;   

Wylie et al., 1991 ; Diollo et al., 1991 ; Maselli et al., 1992 ; Groten et 

al., 1993). Cependant, d’autres études ont montré que la relation n’est 

pas toujours une fonction linéaire (Santin-Janin et al., 2009 ; Bégué et 

al., 2011). Selon, Diouf et al., 2014, les fonctions exponentielle et 

puissance sont plus performantes que les fonctions linéaires. Ailleurs, 

la méthode de régression linéaire multiple a montré des performances 

satisfaisantes pour l’estimation des rendements agricoles (Balaghi et 

al.,2008 ; Kouadio, 2012 ; Kouadio et al.,2014). En plus, des 

améliorations très importantes ont été obtenues au Sénégal avec la 

méthode par régression linéaire multiple combinant des métriques 

dérivées de FAPAR et de GeoWRSI. (Diouf A.et al., en 2015 ; Diouf 

A. et al., 2016).  

Dans les précédentes parties de la thèse, nous avons mis en 

évidence d’une part, que le modèle BIOMASAH du CRA donne des 

moyennes simulées différentes des moyennes observées ; d’autres part 

que des modèles comme celui du MEIA présentent des R² disparates 

qui varient fortement d’une année à l’autre. En outre, les RMSE sont 

souvent très élevées ce qui illustrait l’instabilité de ce modèle limité à 

une seule variable. Au regard de l’importance de l’estimation de la 

biomasse fourragère herbacée au Sahel en général et en particulier au 

Niger, il est nécessaire de trouver un modèle plus fiable permettant aux 

utilisateurs chargés du suivi et de l’estimation des ressources 

fourragères, de disposer d’une méthode plus fiable pour estimer la 
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production fourragère en vue d’aider les décideurs à anticiper les crises 

pastorales et à satisfaire les besoins du marché. 

L’étude s’est dès lors fixée pour objectif global de contribuer à 

l’amélioration des méthodes d’estimation de la masse aérienne des 

herbacées. De manière plus spécifique, il s’agira d’utiliser des variables 

biophysiques et agrométéorologiques pour réaliser un modèle de 

régression linéaire multiple capable de prédire au mieux le rendement 

fourrager au Niger. 

L’hypothèse de cette étude est de considérer qu’il est possible d’utiliser 

les métriques dérivées des séries temporelles d’images NDVI 

décadaires de la période de croissance de la végétation grâce au logiciel 

VAST (Vegetation Analysis in Space and Time) et de les associer aux 

sorties du logiciel agrométéorologique AgrometShell pour dériver un 

ensemble de variables explicatives qui vont servir dans un modèle de 

prévision des rendements fourragers des herbacées. Le modèle issu de 

la méthode de régression linéaire multiple sera appelé modèle de 

référence, car il provient de plusieurs étapes de sélections objectives, 

dont la sélection des variables explicatives et celle du modèle pertinent 

et parcimonieux. 

 

4.2. Matériel et Méthodes 

Les données biophysiques du modèle proviennent du NDVI de SPOT-

VEGETATION ; Les données agrométéorologiques d’entrée sont les 

pluies mesurées au niveau des toutes les stations du pays et celles 

estimées par satellite RFE2 de FEWSNET, l’ETP (évapotranspiration 

potentielle) issues du centre européen appelé "European Centre for 

Medium-Range Weather Forecasts" (ECMWF). Le programme 

informatique VAST et le logiciel Agrometshell (AMS) ont été utilisés 

pour générer les variables explicatives. La variable expliquée est le 

rendement fourrager mesuré sur les sites de contrôle au sol par le 

MEIA ; les analyses statistiques ont été réalisées avec le logiciel de 

traitement statistique SAS JMP. Les étapes du traitement statistique 
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sont subdivisées en sept points : i) l’élimination des variables inutiles ; 

ii) la sélection des variables les plus pertinentes ; iii) la recherche 

exhaustive des modèles (2k modèles possibles) ; iv) la sélection des 

meilleurs modèles (RMSE min et parcimonie de paramètres) ; v) la 

validation croisée, vi) l’analyse des résidus et vii) la présentation des 

modèles de références suivant les années, écorégions, faciès et à 

l’échelle globale (Figure 4.1). 

 

 

Figure 4.1 : Schéma général de la méthode de régression linéaire multiple 

conduisant à la prévision des rendements fourragers 
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4.2.1. Matériel 

Le matériel est l’ensemble des données, logiciels et programmes ayant 

servi à la réalisation de l’étude. Les données principales utilisées sont : 

 les données biophysiques (série d’images SPOT VEGETATION) 

ayant permis de dériver une partie des variables exogènes 

(explicatives, indépendantes) du modèle à l’aide de VAST ;  

 les données météorologiques et agronomiques au nombre desquelles 

on peut citer la pluviosité mesurée dans les stations 

météorologiques, l’évapotranspiration potentielle, la phénologie de 

la végétation Elles sont utilisées comme variables d’entrée pour le 

calcul des sorties du logiciel AMS ; 

 le cumul annuel des pluies RFE-FEWSNET ; 

 le maximum et l’intégrale du NDVI tels que calculés par le MEIA ;  

 enfin, la masse aérienne des herbacées mesurée in situ (source 

MEIA) constituant la variable dépendante. 

En ce qui concerne les logiciels et programmes informatiques, on peut 

citer : 

1. les logiciels de traitement, d’analyse et d’affichage d’images 

satellitaires (VGTExtract, WINDISP, VAST) ; 

2. les logiciels de calcul de variables agrométéorologiques 

(AGROMETSHELL1.157)  

3. les logiciels d’analyse statistique (SAS-JMP et SPSS). 
 

4.2.1.1. Données agrométéorologiques 

Pluies  

Les variables pluviométriques proviennent de la base de données du 

Centre régional AGRHYMET (CRA). Elles ont été structurées sous un 

format compatible avec le logiciel AMS (calculs de séries décadaires et 

de la moyenne 1971-2000 par station), ensuite importées dans ledit 

logiciel. Au total, 199 stations pluviométriques ont été renseignées et 

utilisées dans la Base de données AgroMetShell (BD AMS) pour le 

Niger.  
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Évapotranspiration potentielle 

Les données ECMWF utilisées couvrent la période de 1978 à 2012. 

Elles ont permis de calculer à un pas de temps décadaire. Les données 

ECMWF ERA INTERIM sont présentées en grille de points espacés de 

0,25 degré de latitude et longitude. Pour extraire les ETP (Evapo 

Transpiration Potentielle) suivant les stations contenant les pluies 

mesurées, les étapes suivantes ont été suivies : i) construction d’une 

grille régulière de polygones de 0,25 degré de côté. Dans cette grille 

chaque polygone est centré autour d’un point ECMWF ; ii) une jointure 

spatiale pour affecter les attributs des points ECMWF à chaque grille 

correspondante ; iii) utilisation de la couche polygone issue de l’étape 

(i) pour réaliser une deuxième jointure spatiale, afin de porter les 

données ETP sur les stations du Niger. 

4.2.2.2. Outils 

VGTExtract 

VGTExtract est un logiciel gratuit, convivial, utilisable en mode batch. 

Il est développé par VITO pour la décompression, l’extraction suivant 

une fenêtre spatiale choisie des images SPOT VEGETATION et leur 

sauvegarde sous un format approprié (ILWIS, ENVI, RST, GeoTiff, 

RAW, WINDISP).  

VAST 

L’acronyme VAST de l’application signifie Vegetation Analysis in 

Space and Time. Ce programme informatique a été utilisé dans notre 

travail comme outil pour extraire les paramètres biophysiques dérivés 

des séries annuelles de NDVI (1998 à 2012). VAST a été développé 

dans les années 1990 par Felix Lee à l’époque assistant technique de 

FewsNet au Tchad, pour analyser systématiquement les séries d’images 

NDVI. Le programme analyse la série annuelle d’images NDVI pour 

en dériver les paramètres phénologiques suivants (Figure 4.2) :  

 PEAK : la décade à laquelle le NDVI atteint son maximum ; 
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 SDAT : la décade de début de la saison de végétation ; 

 HORZ = PEAK – SDAT ; 

 SVAL : la valeur du NDVI à SDAT ;  

 PVAL : la valeur du NDVI à PEAK ; 

 VERT = PVAL – SVAL ; 

 EVAL : le NDVI au temps PEAK + 4 (soit environ la fin de saison) ; 

 DROP = PVAL – EVAL ; 

 SLOP : la pente de la droite qui rejoint (SDAT, SVAL) à (PEAK, 

PVAL) ; 

 CUMM : la somme des valeurs de NDVI de SDAT à PEAK ; 

 SKEW : le rapport entre la somme des 3 valeurs de NDVI suivant 

PEAK (de PEAK + 1 à PEAK + 3) et la somme des 7 valeurs de 

PEAK — 3 à PEAK + 3. 

Pour des raisons pratiques, les paramètres phénologiques dérivés de 

VAST seront repris par leurs trois premières lettres (annexe 4.1).   

Les images NDVI sont d’abord enregistrées selon une nomenclature 

particulière : le nom doit comprendre respectivement 2 lettres suivies 

de 2 chiffres correspondant à l’année, suivis de 2 chiffres pour le mois 

et d’un chiffre pour la décade terminée par l’extension. Exemple : 

DV12021.NEG.  

 

 

Figure 4.2 : Schéma de métriques calculées sur VAST 

Source : manuel d’utilisation de VAST 
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WINDISP 

C’est un logiciel libre développé par la FAO pour le Global Information 

and Early Warning System. Il dispose de modules permettant entre 

autres : l’affichage, l’analyse d’images, des couches vectorielles et des 

bases de données associées ; de produire des graphes représentant 

l’évolution d’une série temporelle d’images (NDVI, pluviométrie…) 

relatifs à une zone d’intérêt ; de superposer des images et des cartes 

d’unités administratives afin d’en extraire des statistiques ; de calculer 

aussi des statistiques pour chaque pixel d’une série d’images. Il est 

principalement reconnu pour les fonctions de visualisation et de 

traitement des images satellites de NDVI, de pluies estimées par 

satellite (RFE) et autres comme les sorties de VAST.  

AGROMETSHELL 1.57 (AMS) 

Le AgroMetShell est un outil développé par la FAO en 2007 pour le 

suivi des cultures et la prévision des rendements agricoles. Il permet de 

simuler le bilan hydrique et les risques de déficit de production. Nous 

avons utilisé AMS dans le cadre de ce travail pour calculer les 

paramètres agrométéorologiques qui constitueront les variables 

d’entrée de notre modèle de prévision des rendements fourragers 

(kg.MS.ha-1). AMS contient une base de données facile à mettre à jour 

régulièrement afin d’assurer une production régulière des variables. Les 

modules contenus dans le logiciel, basés sur le calcul du bilan hydrique 

permettent d’analyser l’impact des facteurs climatiques sur les 

différentes cultures. En réalité, c’est un programme informatique fondé 

sur l’hypothèse que les rendements peuvent être expliqués par le 

contexte agrométéorologique de la zone considérée. Cet outil sert à 

l’alerte précoce et à la sécurité alimentaire car il permet de procéder à 

l’évaluation des effets du climat sur les cultures et de prédire les 

rendements agricoles à travers la modélisation statistique. En résumé, 

AMS se base sur le modèle CSSWB (Crop Specific Soil Water Balance) 

qui est un modèle de bilan hydrique permettant d’estimer l’impact des 

conditions climatiques sur les cultures (Allen et al. 1988). CSSWB 
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calcule le bilan hydrique pour un pas de temps décadaire suivant 

l’équation : 

 

Wt = Wt-1 + R – ETc – (r + i) 

 

Avec : 

 Wt, la quantité d’eau stockée dans le sol au moment t 

 Wt-1, la quantité d’eau stockée dans le sol à la fin de la période 

précédente t-1 

 R, la quantité de pluie cumulée sur la période de temps t (souvent 

une décade) 

 ETc, l’évapotranspiration potentielle de la culture sur la période t 

 r, la perte d’eau due à l’écoulement sur la période t 

 i, la perte d’eau liée à la percolation profonde sur la période t 

 

La simulation du bilan hydrique dans AMS fournit plusieurs variables 

dont les plus importantes sont : 

 la quantité d’eau requise pour le cycle complet de la culture (TWR) ; 

 l’indice de satisfaction en eau en fin de cycle (Indx, IndxNor, 

IndxLatest) ; 

 le contenu initial en eau dans le sol (SWi) 

 l’excès en eau à différents stades phénologiques du cycle de 

croissance : phase initiale, phase végétative, floraison, maturité et 

durant tout le cycle (donnée par la somme des autres valeurs) : 

WEXi, WEXv, WEXf, WEXr, WEXt ; 

 le déficit en eau à différents stades phénologiques et déficit en eau 

total en fin de cycle (WDEFi, WDEFv, WDEFf, WDEFr, WDEFt) ; 

 l’évapotranspiration réelle à différents stades phénologiques et sa 

valeur totale en fin de cycle (ETAi, ETAv, ETAf, ETAr, ETAt) ; 

 crossing data Cr1a à Cr4a (calculés avec les données 

pluviométriques réelles) et Cr1n à Cr4n (Calculés avec les données 

pluviométriques moyenne sur trente ans) indiquent les décades 
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auxquelles le rangeland index (RI) croise la ligne de 0.4 *PET. Ces 

décades peuvent être associées aux décades de semis des cultures. 

Le rangeland index (RI) correspond à l’indice de satisfaction en eau 

développé par la FAO calculé sur une période de 5 décades avec 

l’évapotranspiration normale prise à son niveau potentiel. 

En plus des données dérivées de VAST et d’AgroMetShell, nous avons 

utilisé le cumul des pluies compté à partir du début de la saison des 

pluies (première décade de mai à la troisième décade d’octobre) et 

estimé par satellite (RAI) dérivé de RFE2, le maximum (MAX) et 

l’intégrale (INT) du NDVI utilisés par le MEIA pour réaliser la 

régression linéaire simple. 

4.2.2. Méthode 

 

4.2.2.1. Présence minimum de végétation  

La connaissance de la valeur qui représente la présence minimum de 

végétation est nécessaire pour le calcul de la date de démarrage de la 

saison de croissance végétative. Pour déterminer ce seuil de présence 

minimale de la végétation, nous nous sommes basés sur la bibliographie 

et l’examen des profils NDVI de chaque site. Selon les auteurs, la valeur 

réelle de NDVI représentant le seuil minimal de présence de la 

végétation ligneuse et herbacée est 0,1 (Hiernaux, 1984). La formule du 

calcul de la valeur numérique étant : NDVI SPOT VEGETATION = 

(DN* 0,004) - 0,1, cette valeur numérique ou Digital Number (DN) est 

égale à 0,2/0,004 = 50. Les séries d’images NDVI SPOT 

VEGETATION des années allant de 2000 à 2012 ont été utilisées pour 

extraire les paramètres phénologiques de la végétation au niveau des 

sites de mesure de biomasse in situ. Le mois de juin a été retenu comme 

date minimale du début de la saison de végétation, et celui d’octobre 

comme date de fin maximum de la saison de végétation, la valeur DN50 

comme valeur minimale de présence végétative, 05 comme variation 

minimale de DN entre deux décades.  
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La même opération a été faite pour les images eMODIS. eMODIS 

NDVI = (DN* 0,01) -1, Si la valeur réelle du NDVI représentant le seuil 

minimal de présence de la végétation est 0,1, alors la valeur numérique 

ou Digital Number (DN) de ce seuil est égal à 1,1/0,01 = 110. Les 

variables fixes de détermination des paramètres phénologiques dérivés 

de chaque série décadaire de NDVI des années allant de 2000 à 2012. 

La valeur 6 est mise pour le mois de juin comme date du début 

minimum de la saison de végétation, mois d’octobre (10) comme la fin 

maximum de la saison de végétation, DN110 comme valeur minimale 

de présence végétative, 05 comme variation minimale de DN entre deux 

décades. 

4.2.2.2. Décades d’installation (planting dekads). 

Pour déterminer les décades d’installation de la végétation herbacée 

annuelle, deux possibilités sont disponibles dans le logiciel AMS : la 

première se base sur un seuil (à fixer) de pluie efficace, suivi d’autres 

précipitations pendant les deux décades suivantes ; la seconde est basée 

sur un seuil de pourcentage du besoin total en eau de la végétation. La 

deuxième option a été utilisée en fixant le seuil à 10%.  

4.2.2.3. Longueur de la végétation  

Il y a très peu d’écrits sur le suivi de la phénologie des espèces 

fourragères naturelles. Le suivi du cycle phénologique de certaines 

graminées et légumineuses montre que la longueur varie selon les 

espèces et le régime hydrique du milieu. Les valeurs de cette longueur 

végétative varient entre 5 et 8 décades selon les espèces (Penning et al., 

1982). Une moyenne de 7 décades a été retenue comme durée de la 

longueur de la végétation fourragère. 

4.2.2.4. Analyse statistique 

Avant toute analyse approfondie, il est important de vérifier la 

sensibilité de notre échantillon en calculant les biais sur les paramètres 

de l’échantillon de base en procédant à un re-échantillonnage avec 
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remise. Si notre échantillon initial suit une loi normale, alors il n’y aura 

pas de grande différence entre ses paramètres et ceux issus du re-

échantillonnage. Les biais ainsi calculés correspondent aux erreurs sur 

les paramètre de l’échantillon.  C’est la technique appelée Bootstrap. 

Elle a été initiée vers la fin des années 1970 comme un autre regard sur 

la méthode JackkNife (Efron,1979 et Kouadio, 2012). Dans le cadre de 

cette étude, nous avons créé 2000 sous échantillons pour calculer les 

biais sur la moyenne, la variance et l’écart type. La régression est une 

technique d’analyse statistique qui permet de décider, contrôler, et 

prévoir. Elle permet de formuler une relation mathématique entre la 

variable expliquée (endogène, prédite, dépendante) avec une ou 

plusieurs variables explicatives (exogènes, prédicateurs, indépendants). 

Les variables indépendantes dans cette étude ont été dérivées des séries 

d’images NDVI traitées avec le programme VAST, les données 

agrométéorologiques dérivées d’AMS, les pluies cumulées, Max NDVI 

et Int NDVI. Les rendements fourragers mesurés in situ représentent la 

variable dépendante. Les objectifs spécifiques de notre analyse 

statistique sont : d’ajuster le meilleur modèle pour expliquer le 

rendement fourrager en fonction des variables pertinentes dérivées de 

AMS et VAST, RFE, MAX et INT du MEIA ; de prédire les valeurs du 

rendement fourrager pour des nouvelles valeurs des variables 

explicatives. La sélection des variables pertinentes a été réalisée avec la 

méthode pas-à-pas descendante : 

Étape 1 : Vérification des données 

La vérification des données a été réalisée par l’examen des variances 

des variables indépendantes en vue de faire un premier choix de celles 

qui sont les plus fiables. Cette opération a permis d’éliminer toutes les 

variables explicatives ayant une variance nulle. Ce type de variable 

représente une constante et n’apporte pas d’information utile dans un 

modèle de régression.  
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Étape 2 : Sélection des variables 

Il existe plusieurs types de procédure de sélection des variables telle 

que la méthode pas-à-pas ascendante ou descendante. Les procédures 

de type pas à pas s’initialisent avec plusieurs variables explicatives. Les 

différentes variables sont éliminées ou sélectionnées selon des critères 

de variance. La méthode descendante a été privilégiée tout en nous 

réservant la possibilité de tester la méthode mixte. Cette approche 

permet de prendre en compte toutes les variables possibles sans en 

négliger certaines. Un panel de 34 variables a été utilisé. La sélection 

des variables explicatives représente une étape importante dans la 

régression multiple. La procédure de type pas-à-pas disponible sur le 

logiciel SAS/JMP pour sélectionner les variables a été utilisée.  

Étape : 3 et 4 : Sélection des modèles 

La sélection des modèles est une problématique très connue en 

statistique, elle a été largement développée par plusieurs auteurs (Good 

et Hardin, 2012, Meier et al., 2011, Weiers et al., 2011, Johnson et al., 

2010). Plusieurs critères existent pour la sélection du meilleur modèle : 

le Root Mean Square Error (RMSE); le coefficient de Détermination 

(R² qui augmente avec le nombre de variables);  le Coefficient de 

Détermination ajusté (R²aj qui corrige certains défauts de R² en tenant 

compte du nombre de paramètres du modèle); Bayesian Information 

Criterium (BIC); l’Akaïke Information Criterium (AIC) ; l’Akaïke 

Information Criterium Corrigé (AICC); coefficient de Mallows (CP) si 

le modèle est bon le Cp est très proche de P (p étant le nombre de 

variables) ;  etc. En général ces critères ne se contredisent pas, mais 

peuvent être plus pertinents les uns par rapport aux autres suivant les 

cas et permettent d’identifier les meilleurs modèles. Un modèle 

parcimonieux combine un petit nombre de variables explicatives et 

donne le R² ajusté le plus élevé. 

Le choix du meilleur modèle s’est appuyé sur le R² ajusté le plus élevé, 

le RMSE minimum et un nombre de variables explicatives faible (pas 
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plus de 4 variables). La méthode de recherche exhaustive est très 

efficace pour la sélection des modèles surtout quand on a un nombre 

limité de variables explicatives. Si nous avons k variables explicatives, 

le nombre de modèles possibles est de 2k. L’étape de sélection des 

variables a permis de sélectionner un nombre limité de variables 

explicatives. La démarche retenue réalisée avec SAS/JMP consiste à 

réaliser les 2k combinaisons possibles et les classer par ordre 

décroissant selon le R²ajusté et selon le nombre de variables 

explicatives. Cette démarche permet de sélectionner le meilleur modèle 

pour chaque nombre de variables explicatives du modèle. 

Étape 5 : Validation croisée 

La technique du Leave-one-out cross validation (LOOCV) a été utilisée 

pour valider les modèles choisis en vue d’identifier le meilleur. Le 

LOOCV est une technique qui est utilisée quand la taille de 

l’échantillon utilisée est faible et ne permet pas de créer un groupe de 

données distinct pour la calibration et pour la validation de taille 

suffisante. Il permet de choisir le modèle optimal en testant la précision 

prédictive et/ou l’erreur de généralisation. La démarche consiste à 

subdiviser l’échantillon de n observations en k sous-ensembles égaux, 

faire la calibration avec k-1 sous-ensembles et valider avec le kieme sous-

ensemble, répéter la même opération pour tous les k sous ensemble 

(Emmert-Streib et Dehmer, 2009). Le LOOCV est un cas particulier de 

la technique k-fold où k= n, c’est une technique très puissante 

permettant de choisir le modèle le plus intéressant (Cornillon et 

Matzner-Løber, 2007). Dans le cadre de cette étude, la technique du 

LOOCV a été utilisée pour la détermination du modèle ayant la 

meilleure RMSE (minimisée) avec un nombre de variables inférieur ou 

égal à 4.  

Étape 6 : Analyse de résidus  

Dans l’approche de régression, un modèle n’est considéré comme bon 

que si les résidus obéissent aux hypothèses  de normalité qui peuvent 
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être examinées à travers la droite de Henri ; l’égalité des variances des 

erreurs (homoscédasticité) qui signifie que toutes les distributions de Y 

doivent avoir le même écart-type : la variance résiduelle est alors 

constante sur le domaine étudié ; enfin, quand il n’y a pas de multi 

colinéarité (Johnson et al., 2010). Dans le cadre de ce travail, les 

hypothèses sur les résidus ont été vérifiées avec le logiciel SAS/JMP. Il 

s’agit là de vérifier que les résidus suivent une loi normale ; en pratique, 

on représente graphiquement les résidus par rapport à la variable 

réponse prévue pour s’assurer que le graphique ne présente aucune 

structure particulière et enfin on applique le test de Watson-Durbin qui 

est très approprié pour analyser l’autocorrélation surtout quand il y a 

une constante dans la régression (Badi, 2011 ; Weiers et al.,2011).   

Étape 7 : Prévision  

Le modèle retenu à la fin du processus peut être utilisé pour prédire de 

nouvelles valeurs réponses à l’aide des nouvelles valeurs de variables 

explicatives. La relation mathématique entre les variables explicatives 

(métriques issues de AMS et VAST) et la variable expliquée ou 

dépendante (masse fourragère herbacée) est utilisée pour estimer le 

rendement fourrager sous forme de produits cartographiques. 

 

4.3. Résultats et discussion 

4.3.1. Résultats  

4.3.1.1. Analyse exploratoire des mesures de masse herbacée de 

2001 à 2012 

L’analyse exploratoire des mesures de masse herbacée de 2001 à 2012 

sur 319 observations montre que la moyenne est d’environ 700 kg 

MS.ha-1 avec un écart type de 531 kg MS.ha-1. Les résultats de l’analyse 

bootstrap basée sur 2000 sous échantillons, montrent que cette moyenne 

varie de 642 kg à 762 kg dans un intervalle de confiance de 95 %, les 

biais sur la moyenne et l’écart type sont respectivement de 0,96 kg 

MS.ha-1  et de -0,85 kg MS.ha-1  (Tableau 4.1). Il y a au total 34 
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variables indépendantes provenant des sorties de AMS, de VAST, du 

cumul saisonnier de pluie RFE de FEWSNET et les deux variables 

utilisées par le MEIA (INT et MAX).
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Tableau 4.1 : Analyse exploratoire des mesures de masse herbacée de 2001 à 2012 par bootstrap (kg MS.ha-1) 

  

 

Termes 

 

 

Statistique 

 

Erreur 

standard 

Bootstrap 

Biais Erreur 

standard 

Intervalle de confiance à 95 % 

Inférieur Supérieur 

 

Masse 

herbacée 

Moyenne 699,11 30,12 0,96 30,20 642,94 762,26 

Variance 282 097,66 
 

-165,40 28 872,303 228 150,66 343 005,93 

Écart-type 531,13 
 

-0,85 27,18 477,65 585,67 

Unité : kg MS.ha-1 

 

8
6
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4.3.1.2. Ajustement global de la productivité fourragère sur 

l’ensemble de la zone étudiée 

Il ressort de la mise en œuvre de la procédure de sélection de variables 

du type pas-à-pas descendante, que les variables retenues sont les 

suivantes : MAX, DRO, EVA, HOR, PEA, PVA, SLO (annexe 4.1). La 

méthode de recherche exhaustive a été appliquée à ces 7 variables 

indépendantes pour établir tous les modèles possibles. Les modèles au 

nombre de 27 (128) sont automatiquement classés par ordre décroissant 

des RMSE et selon le nombre de variables. Les résultats (Tableau 4.2) 

donnent les quatre meilleurs premiers modèles. Ils sont listés suivant le 

nombre de variables explicatives selon le critère du RMSE minimum.  
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Tableau 4.2 : Quatre meilleurs modèles globaux en fonction du nombre de variables 

cal : calculé ; aj : ajusté ; Dif : différence ; val : validation  

 

  

Modèles n° R² cal R² aj cal R² val 
RMSE cal. 

KG MS.ha-1 

RMSE val. 

KG MS.ha-1 

Dif 

RMSE 

Y= -603,13+4590,81 max 1 0, 57 0,57 0,57 354,47 353,42 1,05 

Y= -1193,01 + 2822,30 max + 15,51 DRO 2 0,62 0,62 0, 61 308.44 310,65 2,21 

Y=-388,01+3133,09 max -15,41DRO +17, 

62 VER 
3 0,66 0,66 0,65 294,16 297,26 3,10 

Y= -2190,82+3344,13 MAX -20,46 

DRO  +20,78 VER+ 74,06 PEA 
4 0,69 0,68 0,67 285,22 288,94 3,72 

8
8
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Le meilleur modèle, selon le critère du RMSE est le n° 4. En effet, il 

donne un RMSE relatif de 40 %. Les quatre variables sélectionnées 

pour cette équation sont : MAX, DRO, PEA, VER. L’examen des 

probabilités des coefficients estimés de ce modèle donne des résultats 

hautement significatifs au seuil de 1 pour 10 000 (Tableau 4.3). Le 

graphique des valeurs observées en fonction des valeurs prédites pour 

l’ajustement global est donné par la Figure 4.3. 

 

Tableau 4.3 : Estimation des coefficients du modèle global à quatre variables  

Variables  Estimation Erreur standard Rapport t Prob.>|t| 

Constante -2190,82 407,51 -5,38 <, 0001* 

max 3344,13 513,06 6,52 <, 0001* 

DRO -20,46 2,17 -9,44 <, 0001* 

 PEA 74,06 16,51 4,49 <, 0001* 

VER 20,78 2,80 7,44 <, 0001* 

*significatif au seuil de 1 pour 10000 
 

 

Figure 4.3 : Les valeurs observées en fonction des valeurs prédites à l’échelle 

globale 
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Analyse des résidus de l’ajustement global 

L’analyse exploratoire indique un écart type de 283,33 kg. Les résultats 

de l’analyse bootstrap basée sur 2 000 sous échantillons montrent que 

la moyenne globale varie de 642 et 762 Kg dans un intervalle de 

confiance à 95 %, les biais sur la moyenne et l’écart type sont 

respectivement de 0,89 et -0,35 relèvement faibles (tableau 4.4). 
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Tableau 4.4 : Analyse exploratoire bootstrap des résidus 

 

 

 Paramètres 

 

 

Statistiques 

Bootstrap 

 

Biais 

 

Erreur 

standard 

Intervalle de confiance à 95 % 

Inférieur Supérieur 

Nombre d’observations 319   319 319 

Moyenne 0,00 0,89 16,02 -32,49 33,16 

Écart-type 283,33 -0,35 14,86 255,30 313,02 

Variance 80 273,71 24,69 8440,26 65 176,17 97 979,15 

Unité : kg.MS.ha-1 

9
1
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Le diagnostic du modèle global montre une répartition régulière des 

résidus suivant les lignes (Figures 4.3 a), la distribution suit une loi 

normale (Figure 4.3 b) attestée par un indice Durbin-Watson DW de 

1,83 et un pourcentage d’autocorrélation de 8. 

 

  

Figure 4.4 a : Graphique des résidus 

par ligne 

Figure 4.4 b : Distribution des 

résidus 

 

4.3.1.3. Analyse suivant les écorégions 

Le calcul de la répartition spatiale du nombre de sites suivant les 

écorégions montre que seuls Azaouak, le maga1 et le manga2 ont 

suffisamment d’observations pour permettre de réaliser des ajustements 

de la productivité fourragère herbacée en fonction des variables 

explicatives  

 

Les modèles de l’écorégion Azaouak 

L’Azaouak compte 150 observations. La moyenne des observations de 

ces sites est de 684,69 kg MS.ha-1. La mise en œuvre de la procédure 

de sélection de variables de type pas à pas descendante au niveau de 

cette région écologique a permis d’obtenir les variables pertinentes 

suivantes : VER, PEA, DRO, MAX (tableau 4.5) 
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Tableau 4.5 : Les quatre meilleurs modèles de l’Azaouak en fonction du nombre de variables 

Modèles 

 
R² cal R² aj cal R² val 

RMSE cal 

kg.MS.ha-1 

RMSE val 

.kg.MS.ha-1 

Dif 

RMSE 

Y= -242,92 +22,84 VER 0,65 0,65 0,64 300,94 304,03 3,17 

Y= -1122,41 -18,11 PEA +13,80 VER 0,72 0,72 0,71 270,71 274,96 3,91 

20 PEA +3070,61MAX +43 VER-1192,03 0,74 0,74 0,73 223 226 3 

Y = -2800,78 + 2979,32max -23,84 DRO + 98,49 PEA 

+27,14 VER 
0,77 0,76 0,75 250,5 255,25 5,21 

cal : calculé ; aj : ajusté ; Dif : différence ; val : validation  

 

9
3
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Le meilleur modèle sur l’Azaouak 

Le meilleur ajustement sur l’Azaouak du point de vue du minimum 

RMSE comporte quatre variables que sont le MAX, le DRO, le PEA et 

le VER. L’estimation des paramètres du modèle montre des probabilités 

hautement significatives (Tableau 4.6). La représentation des valeurs 

observées en fonction des valeurs prévues montre un R² de 0,76 et un 

RMSE de 250 kg  (Figure 4.4). Il est caractérisé par un RMSE relatif 

de 36 %. 

Tableau 4.6 : Estimation des coefficients du modèle de l’Azawak 

Terme Estimation Erreur 

standard 

Rapport t Prob.>|t| 

Constante -2800,78 555,67 -5,04 <, 0001* 

max 2979,32 714,62 4,17 <, 0001* 

DRO -23,84 2,9078 -8,20 <, 0001* 

 PEA 98,49 22,56 4,36 <, 0001* 

VER 27,14 3,59 7,56 <, 0001* 

*significatif au seuil 1 pour 10000 

 

 

Figure 4.5 : Les valeurs observées en fonction des valeurs prédites pour le 

modèle de l’Azaouak 
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Analyse des résidus  

L’analyse des résidus de l’Azaouak indique un écart type de 247 kg 

(Tableau 4.7). Le diagnostic du modèle de cette région écologique 

montre une répartition régulière (Figure 4.5 a) et une distribution des 

résidus qui suit une loi normale (Figure 4.5 b) comme l’atteste l’un 

indice DW de 1,59. 
 

Tableau 4.7 : Estimations des coefficients 

Type Coefficient Estimation Inférieur 

à 95 % 

Supérieur 

à 95 % 

Position μ 0 -39,87 39,87 

Dispersion σ 247 221,96 278,76 

 

 
 

Figure 4.6 a : Graphique des résidus 
par ligne 

Figure 4.6 b : Distribution 
normale des résidus 

 

Le modèle de Manga2 

Le Tableau 4.8 montre que le Manga2 compte 48 observations, la 

moyenne des ces observations est 865,26 kg MS.ha-1. La mise en œuvre 

de la procédure de sélection de variables du type pas à pas descendante 

au niveau de cette région écologique a permis d’obtenir l’équation 

suivante qui comporte trois variables pertinentes que sont IndxNor, 

VER et RAI :  Y= 13,66 + 22,70 VER + 1,76 RAI-1286,37 IndxNor 

La représentation des valeurs observées en fonction des valeurs prévues 

montre un R² de 0,73 et un RMSE  calculé de 240 kg.ha-1 (Figure 4.6). 

Le modèle est caractérisé par un RMSE relatif de 27 % (Tableau 4.8). 

L’estimation des paramètres du modèle montre des probabilités 

hautement significatives (Tableau 4.9). 
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Tableau 4.8 : Résumé de l’ajustement 

 

Tableau 4.9 : Estimations des coefficients 

Terme Estimation Erreur 

standard 

Rapport 

t 

Prob. > |t| 

Constante -1286,37 272,35 -4,72 <,0001* 

IndxNor 13,66 5,76 2,37 0,0228* 

VER 22,70 2,76 8,22 <,0001* 

 RAI 1,7 0,50 3,51 0,0011* 

*significatif au seuil de 10 pour 1000 ; ***significatif au seuil de 1 pour 10000 

 

 

Figure 4.7 : Les valeurs observées en fonction des valeurs prévues pour le 

modèle du Manga2 

 

  

Paramètres Valeurs 

R² 0,72 

R²ajusté 0,70 

R²validation 0,66 

RMSE calibration 240 

RMSE validation 254 

Moyenne de la réponse 865 

Observations  43 
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Analyse des résidus du modèle de Manga2 

L’analyse des résidus indique un écart type de 275 kg. Le diagnostic du 

modèle de Manga2 indique une répartition régulière (Figure 4.7 a) et 

une distribution normale des résidus (Figure 4.7 b), comme l’attestent 

l’un indice DW de 1,37 et le taux d’autocorrélation de 0,09. 

 

  

Figure 4.8 a : Graphique du résidu 

par ligne 

 

Figure 4.8 b : Distribution des 

résidus  



98  

 

 Tableau 4.10 : Récapitulatif des meilleurs modèles réalisés avec les observations valides enregistrées de 2001 à 2012 par écorégion  

 

Écorégion  Modèle 
R² 

cal 

R² 

aj 

R² 

val 

RMSE 

cal 

kg.ha-1 

RMSE 

val 

kg.ha-1 

Dif 

RMSE 

kg.ha-1 

DW 

Azaouak 
Y = -2800,78 + 2979,32max -23,84 DRO + 98,49 

PEA +27,14 VER 
0,77 0,76 0,75 250,5 255,25 5,21 1,59 

Managa1 3523,16 MAX -357,65 0,54 0,53 0,50 188 192 16 1,77 

Managa2 13,66* IndxNor + 22,70 VER + 1,76 RAI-1286,37 0,72 0,70 0,66 240 254 14 1,37 

Cal : calculé ; aj : ajusté ; Dif : différence ; val : validation ; DW : Indice  de Durbin-Watson 
 

 

9
8
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4.3.1.4. Analyse par Type de sol FAO 

L’analyse de la répartition spatiale du nombre d’observations valides 

sur les 12 ans de mesures, suivant les types de sol FAO (1975)  indique 

que seuls Ge5-1a (Gleysols eutriques et Arénosols luviques , grossier, 

plat à doucement ondulé), Qc1 (Arénosols cambiques), Qc7-

1a(Arénosols cambiques et Gleysols eutriques, grossier, plat à 

doucement ondulé), Ql1-1a (Arénosols luviques, grossier, plat à 

doucement ondulé ) et Re35-a (Régosols eutriques et Arénosols 

luviques, plat à doucement ondulé) ont assez d’observations pour 

permettre de réaliser des ajustements de la productivité fourragère 

herbacée en fonction des variables explicatives. La mise en œuvre de la 

procédure de sélection de variables du type pas-à-pas descendante au 

niveau de ces types de sol a permis de retenir des modèles comprenant 

de 1 à 3 variables explicatives ; les R² des modèles varient de 0,75 à 

0,86, ; les variables explicatives différent d’un type de sol à l’autre. 

Cependant la variable MAX a été pertinente au niveau de 4 types de 

sol. Les meilleurs modèles sont consignés dans le tableau 4.11. 

L’annexe 4.2 indique les résultats détaillés des analyses suivant les 

types de sol. 
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Tableau 4.11 : Récapitulatif des meilleurs modèles réalisés avec les observations valides enregistrées de 2001 à 2012 

par type de sol FAO 

 

Type de sol Modèle R² cal R² aj R² 

val 

RMSE 

cal 

RMSE 

Val 

Dif 

RMSE 

DW 

Ge5-1a -936,85+ 22,79 EVA 0,85 0,84 0,79 148 161 13 1,82 

Qc1 - 758,60 +19,73 VER +2029,28 MAX 0,86 0,85 0,81 190 205 15 2,35 

Qc7-1a -670,44 -10,07 ETAF+ 1,24 RAI +4197,70 

MAX 

0,75 0,73 0,70 201 209 8 1,83 

Ql1-1a 24EVA+101,17PEA+2374,77MAX-4096 0,76 0,76 0,73 207 214 7 1,38 

Re35-a -567 +12,94 VER +2940,82 MAX 0,77 0,76 0,74 152 157 4 1,72 

Cal : calculé ; aj : ajusté ; Dif : différence ; val : validation ; B = Cambisols ; G= Gkeysols ; J = Fluvisols ; Q =arenosols ; R =Regosols ; 

V= vertisols; Y = Yermosols ; L =Luvic ; DW : Indice  de Durbin-Watson 

 

1
0
0
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4.3.1.5. Analyse de la productivité fourragère herbacée par faciès   

L’analyse de la répartition spatiale du nombre d’observations valides 

sur les 12 ans de mesures, suivant les faciès indique que : le  MA2_Qc7-

1a Nord_sahélienne ; le  MA2_Qc1 nord-sahélienne ; le MA1_Ql1-1a 

nord-sahélienne, Le MA1_Qc7-1a nord-sahélienne, Le AZ_Re35-a 

saharienne ; le AZ_Re35-a nord-sahélienne ; le AZ Ql1-1a nord-

sahélien  et  le AZ Ge5-1a nord-sahélien ont assez d’observations pour 

permettre de réaliser une régression linéaire multiple du rendement 

fourrager (mesures du terrain) en fonction des variables explicatives 

(métriques dérivées de VAST et AMS) . La mise en œuvre de la 

procédure de sélection de variables du type pas-à-pas descendante a 

permis d’obtenir des modèles comprenant 3 à 4 variables explicatives. 

Les R² des modèles varient de 0,93 à 0,72, les variables explicatives 

différent d’un faciès à l’autre aussi (Tableau 4.12). 
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Tableau 4.12 : récapitulatif des modèles par faciès 

 

Faciès N° Modèles 
R² 

cal 

R² 

aj cal 

R² 

val 

RMSE 
cal.kg. 

MS.ha-1 

RMSE 
val.kg. 

MS.ha-1 

D-W 

MA2_Qc7-1a 

Nord_sahélienne 

1 2913+1,02 INDXLAT +11,26WDEFF -22,25 ETAF -

185,03 HOR 
0,93 0,92 0,86 100 122 2,13 

MA2_Qc1 nord-

sahélienne 

2 -2970,78-25,66 INDXHAR +43,93 

INDEXNOR +37,48 ETAI +36,45 EVA 
0,82 0,77 0,65 231 282 2 

MA1_Ql1-1a 

nord-sahélienne 

3 -4564,35+3580,39 MAX -10,06 DRO + 165,52 PEA + 

2,12 RAI 
0,86 0,81 0,74 126 141 2,23 

MA1_Qc7-1a 

nord-sahélienne 

4 5260,48 — 62,87 DRO +25,37 PVA +49,87 SLO + 

176,36 SDA 
0,78 0,7 0,42 168 224 2.33 

AZ_Re35-a 

saharienne 

5 -3433,08 3154,10 MAX +6,15 TWR -25,90 DRO + 26, 

73 VER 
0,86 0,82 0,74 121 139 2.26 

AZ_Re35-a 
nord-sahélienne 

6 
-2304,57 -28,79 DRO +65,18 VER 82,91SDA 0,80 0,77 0,72 233 253 1,83 

AZ Ql1-1a nord-

sahélien 

7 
-3218,28 -22, 13 DRO +119,34 PEA +39,06 VER 0,78 0,77 0,75 269 278 2,16 

AZ Ge5-1a 

nord-sahélien 

8 -269,31 + 3005,07 MAX – 13, 45 INDXNOR + 2,39 

WDEFR +15,83 EVA 
0,77 0,72 0,64 279 311 2,15 

Cal : calculé ; aj : ajusté ; Dif : différence ; val : validation ; B = Cambisols ; G= Gkeysols ; J = Fluvisols ; Q =arenosols ; R =Regosols ; V= vertisols; 

Y = Yermosols ; L =Luvic ; DW : Indice  de Durbin-Watson 

1
0
2
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4.3.1.6. Modèle d’estimation suivant les années 

La mise en œuvre de la procédure de sélection de variables du type pas-

à-pas descendante suivant les années donne les résultats consignés dans 

le tableau 4.13, qui indique le récapitulatif des paramètres des modèles 

suivant les années. Le R² ajusté varie 0,94 à 0,57 ; le RMSE relatif varie 

entre 11 % et 58 %.  Les variables explicatives diffèrent d’une année à 

l’autre. L’annexe 4.3 indique les résultats détaillés des analyses suivant 

les années.
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Tableau 4.13 : Récapitulatif des paramètres des Modèles suivant les années 

Année Modèles R² 

cal 

R² aj 

cal 

R² 

val 

RMSE cal 

(kg. MS.ha-1) 

RMSE val 

(kg. MS.ha-1) 

DW 

Abs  Relative Abs Relative 
 

2001 72,43 -20,58 INDXNOR + 6,40 ETAT +32,11 

EVA -30,99 SVA 

0,83 0,79 0,67 156,18 25% 178,89 29% 1,92 

2002 -201,30 + 4006,70 MAX - 6,41 DRO -0,55 RAI 0,9 0,88 0,85 83,16 21% 95 24% 1,83 

2003 -13,62 + 9475,86 MAX - 50,53 WDEFI - 342,48 

HOR 

0,96 0,94 0,89 91,73 11% 123,41 15% 1,38 

2004 -224,94+ 2357,8581 MAX 0,6 0,58 0,5 126,72 44% 130,5 45% 1,9 

2005 -2639,25+ 698,67 INT + 1,91 WDEFI + 106,11 

SDA 

0,82 0,8 0,77 192,62 27% 205,37 29% 2 

2006 -858,74 -686,75 INT + 76,18 CUM + 66,51 EVA - 

44,45 SVA 

0,87 0,85 0,8 239,53 29% 244 30% 2,41 

2007 -1495,72 + 505,03 INT +2,16TWR 0,61 0,57 0,53 223,83 20% 226,29 20% 2,4 

2008 -1125,59 + 14,50 PVA 0,59 0,57 0,53 280,26 58% 292,11 60% 1,8 

2009 -1551,76+ 3,61 ETAF +31,13 EVA 0,82 0,8 0,75 107,76 22% 119,54 24% 2 

2010 -4931,74+ 1057,45 INT +151,27 SDA 0,68 0,66 0,62 623,09 62% 361 36% 1,99 

2011 1850,33+ 2329,23 MAX -27,77 WDEFI +6,63 

ETAF -89,84 PEA 

0,76 0,73 0,65 139,82 29% 154,5 32% 1,92 

2012 

720,92 -16,19 INDXLATEST 6,95 WDEFR 19,71 

PVA 0,78 0,74 0,65 306,42 24% 347,88 27% 2,1 
cal : calculé ; aj : ajusté ; val : validation ; DW : Indice  de Durbin-Watson

1
0
4
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4.3.2. Discussion partielle  

Les progrès de la science et des techniques, surtout en statistique, en 

télédétection et en informatique, ont permis de disposer d’une part de 

machines de grande capacité de traitement, d’autre part de disposer de 

séries d’images satellitaires suffisamment longues, permettant de 

réaliser des études d’estimation des rendements fourragers par 

régression linéaire multiple avec 34 variables explicatives pour établir 

un modèle stable et parcimonieux.   

Les outils comme VAST, TIMESAT, SPIRITS…, la disponibilité de 

séries temporelles assez longues d’images d’indice de végétation 

offrent la possibilité de calculer plusieurs métriques caractérisant le 

profil de la végétation de la germination à la sénescence. L’utilisation 

du maximum ou l’intégrale du NDVI de la saison de croissance 

végétative est insuffisante pour expliquer le niveau de rendement 

fourrager. Il existe bien d’autres métriques caractéristiques du profil 

saisonnier de la végétation qui peuvent contribuer à améliorer le modèle 

d’estimation des rendements fourragers. Ces métriques du profil 

phénologique de la phase de croissance de la végétation peuvent être 

associées à d’autres variables agrométéorologiques telles que celles 

dérivées d’AMS. 

L’examen des modèles annuels obtenus par la régression linéaire 

multiple montre que les variables peuvent provenir de VAST, AMS ou 

de la méthode de MEIA ou des trois à la fois (tableau 4.47). 

Au plan statistique, le modèle global à quatre variables peut être 

considéré comme bon. En effet, ce modèle est caractérisé par un R² 

ajusté de 0,68, un R² de validation de 0,67 et 3,72 kg.ha-1  de différence 

RMSE (RMSE calculé et RMSE validation). La qualité de ce modèle 

est mise en évidence par le diagnostic des résidus (répartition régulière 

et distribution normale des résidus). Les variables pertinentes du 

modèle global : MAX (maximum de la végétation tel qu’il est calculé 

par le MEIA), DRO (petite l’amplitude), PEA (décade du pic de 

végétation), VER (grande amplitude), sont toutes des métriques 
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dérivées du NDVI, elles sont liées directement au cycle de la végétation.  

Il est important de relever que dans le modèle global à une variable, le 

MAX tel que calculé par MEIA permet d’expliquer déjà 57 % du 

rendement fourrager, donc les trois autres variables (DRO, VER et 

PEA) n’apportent en réalité que 10%, mais permettent de réduire 

l’erreur de 40 kg MS.ha-1. La variable du modèle global N°1 du tableau 

4.2 est disponible dès que la végétation atteint sa croissance maximale, 

ce qui signifie que les premiers résultats du modèle global peuvent être 

obtenus dès la troisième décade du mois d’août ou la première décade 

du mois de septembre. Après quatre décades, une mise à jour de ces 

résultats peut être réalisée en utilisant les modèles N°2, 3 et 4 du tableau 

4.2. La disponibilité de l’information sur la production fourragère avant 

la fin du cycle de la végétation permettra aux décideurs de gagner un 

peu de temps pour anticiper les crises.  La régression linéaire multiple 

réalisée suivant les types de sols de la FAO a permis d’obtenir des 

modèles caractérisés par des paramètres plus intéressants que ceux issus 

de l’analyse à l’échelle globale (les R² varient de 0,75 à 0,86 ; les RMSE 

de 148 à 207 kgMS.ha-1), la performance des modèles par type de sol 

est attestée par les R² la validation qui varient dans l’intervalle de 0,71 

à 0,81. 

À l’échelle des faciès, les résultats sont intéressants, car ils indiquent 

qu’à une échelle plus homogène, il y a une amélioration des R² ajustés 

de 0,70 à 0,90.  Aussi, ces résultats renseignent qu’un R² élevé ne 

signifie pas forcément que le modèle est bon. En effet, les faciès ont 

donné des modèles stables avec des R² de validation variant de 0,64 et 

0,86,  à l’exception du faciès constitué par les arénosols cambiques et 

Gleysols eutriques, grossier, plat à doucement ondulé de l’écorégion 

Manga 1 (MA1_Qc7-1a) nord sahélienne qui a donné un R² de 

validation de 0,46. Malgré, les bons R², il est important de souligner 

que les résultats des modèles ne peuvent être obtenus, au plus tôt qu’à 

4 décades après la date du maximum de végétation (modèles N° 4, 6 et 

7 du tableau 4.10), pour les autres modèles, il faut attendre carrément la 
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fin du cycle de la végétation. Par ailleurs, Il est observé, une variation 

des variables explicatives selon les faciès, ce qui peut être considéré 

comme source d’instabilité des modèles.   

Les modèles suivant les années ont aussi donné des R² ajustés et RMSE 

qui varient d’une année à l’autre. Cette variation est de 0,57 à 0,94 pour 

le R² ajusté, de 11 % à 44 % pour le RMSE relatif. Ce qui veut dire qu’à 

ce niveau aussi la stabilité du modèle n’est pas systématique, car les 

écarts entre les RMSE sont souvent très importants. En plus, une 

variation des variables explicatives d’une année à l’autre peut être 

considérée comme une instabilité du modèle. Une analyse des variables 

explicatives suivant le profil de la campagne peut permettre d’expliquer 

d’avantage le comportement des modèles. 

Selon le Ministère de l’élevage et des industries Animale du Niger, les 

années 2004, 2008, 2009 et 2011 ont été déficitaires (Annexes 4.4). 

L’interprétation du tableau4.11 permet d’affirmer, que même en année 

déficitaire la méthode par régression linéaire multiple peut être 

performante. En effet, le modèle de 2009 montre un bon R² ajusté (0,8) 

et un RMSE (112 kg), ce qui constitue une amélioration importante par 

rapport à la régression linéaire simple qui donne un R² (0.59) et un 

RMSE (162 kg).Pour le modèle global à quatre variables (MAX, DRO, 

PEA, VER), le R² est de 0,69 (R² ajusté=0,68) et le RMSE est égal à 

285,22 kgMS.ha-1 (RMSE validation de 288,94 kgMS.ha-1), contre les 

valeurs (R² = 0,69 et RMSE = 483 kgMS.ha-1) trouvés au Sénégal avec 

un modèle similaire (Diouf et al.2016). La comparaison de ces résultats 

montre un avantage du modèle réalisé avec les données du Niger par 

rapport à celui du Sénégal, car le RMSE trouvé au Sénégal est supérieur 

à celui du Niger d’environ 200 kg, même si pour faire une comparaison 

plus objective, il faut les RMSE relatifs. Cependant, si on rapporte cette 

erreur à la superficie totale de la zone pastorale qui est de 350 000 km², 

on trouve une erreur moyenne annuelle d’environ plus ou moins 

10 000 000 tonnes soit environ la consommation d’environ 2 millions 

d’UBT/9 mois (saison sèche). Peut-on raisonnablement fonder la 
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planification des interventions d’un pays avec ce niveau d’erreur ? Si 

non, il est alors nécessaire de continuer d’explorer d’autres pistes 

d’amélioration du modèle actuel. Les modèles réalisés par faciès et par 

écorégion donnent des meilleurs résultats, ce qui permet de dire que la 

stratification est une bonne solution pour améliorer la performance de 

cette méthode d’estimation des rendements fourragers. Les tableaux 4.5 

et 4.10 illustrent les améliorations enregistrées par rapport au modèle 

global. Ces résultats montrent certes une amélioration par rapport au 

modèle de régression linéaire simple, mais ils montrent aussi qu’il faut 

continuer les recherches en explorant d’autres indices tel que le FAPAR 

dont les fortes corrélations avec la biomasse observée ont été montrées 

à travers des études récentes de Meroni et al., (2014) ; et de Diouf et al., 

(2016). 
 

4.4. Conclusion partielle  

Les résultats ont montré que le modèle global est stable. En effet, la 

différence entre les RMSE calculés (282kg MS.ha-1) et celui de la 

validation est 2,72 kg, le R² ajusté est de 0,68 kg avec des paramètres 

très significatifs (P<, 0001). Au plan statistique, les résultats 

satisfaisants mettent en évidence une importante amélioration de la 

modélisation de la production de biomasse fourragère au Niger par 

rapport au modèle de régression simple, dont le R² est de 0,56 avec un 

RMSE de 367 kg MS. ha-1. La régression linéaire multiple a permis 

d’améliorer les paramètres du modèle à l’échelle globale. L’étude a 

montré que la stratification permet d’améliorer la performance des 

modèles.  En effet, les R² ajustés sont très élevés à l’échelle des unités 

spatiales homogènes (faciès, sols et écorégions) par rapport à l’échelle 

globale. Cependant à l’échelle des années, les modèles sont instables, 

car les coefficients de détermination ajustés fluctuent (R²aj ) de 0,57 à  

0,94.  Le faciès MA1_Qc7-1a nord-sahélienne indique un R² de 

validation de 0,42, malgré son R² ajusté élevé (0,70), ce qui signifie 

qu’un R² ajusté élevé n’est pas systématiquement synonyme d’un bon 

modèle.  
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V. Performance de l’analyse de similarité dans l’estimation 

des rendements fourrager au Niger 

5.1. Introduction  

5.1.1. Contexte  

La zone pastorale du Niger couvre une superficie 35 millions d’hectares 

(Rhissa, 2010). Le suivi pastoral de cette région est réalisé grâce à un 

dispositif de collecte de données qui existe depuis plus de vingt ans. La 

contribution de l’État du Niger à ce dispositif coûte environ 50 millions 

Fcfa par an. Cette participation ne prend pas en compte les ressources 

humaines. Ce dispositif étatique reste toujours fragile, du fait des 

interruptions de travail par le personnel, à l’insécurité résiduelle 

persistant dans les zones pastorales. En effet, la zone sahélienne 

traverse une crise sécuritaire (KAS, 2014) empêchant les techniciens et 

chercheurs de s’y rendre pour faire les observations de terrain. L’apport 

des satellites d’observations est très intéressant mais reste 

complémentaire à la composition floristique des parcours, la 

dynamique des populations végétales, les processus d’érosion éolienne 

ou hydrique, la fertilité des sols, l’intensité et les modes de pâture… 

Toutes ces variables ne relèvent pas de la télédétection.  Les 

observations systématiques et mesures au sol doivent se poursuivre, se 

développer, s’améliorer en tenant compte de leur rôle pour la validation 

des produits satellites. Ainsi paraît-il impérieux de proposer une 

alternative viable et durable de suivi et d’estimation de masses herbacée 

combinant les données d’observation de la terre et celles du 

terrain. Nous allons tester la méthode de similarité. Elle est, dans son 

principe, une forme de raisonnement basé sur le Case Based Reasoning 

ou CBR (Riesbeck et R. C. Schank, 2013; Watson, 1999; Kolodner, 

1992.; Kolodner, 1997; Maher et Garza, 1997; Leake, 1996; Aamodt et 

E. Plaza, 1994.; Allen, 1994; Watson et Marir, 1994) . Le principe est 

de considérer que deux situations similaires produisent des résultats 

similaires. Autrement dit, deux profils de végétation similaires 
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produiront des rendements fourragers similaires. Cette méthode est 

comparable à celle des analogues utilisée en météorologie pour réaliser, 

entre autres, la prévision des températures (Lorenz, 1969) ou des 

précipitations (Fernández-Ferrero et al., 2010; Hamill et Whitaker, 

2006 ; Roebber et Bosart, 1998). La méthode de similarité est 

disponible dans le logiciel SPIRITS qui permet l’identification des 

années similaires en utilisant trois catégories de mesures de similarité 

entre deux séries de données : la racine carrée de l’erreur quadratique 

moyenne (Root Mean squared error : RMSE), la déviation absolue à la 

moyenne ( Mean absolute Deviation : MAD) et le coefficient de 

détermination   R square (R²)  tout en indiquant le décalage (shift) 

tolérable en décades. L’objectif du présent chapitre est de tester la 

méthode de similarité. Il s’agit particulièrement d’utiliser les images 

NDVI de SPOT VEGETATION et les rendements fourragers du MEIA 

pour faire l’estimation ; de tester la performance des critères de mesure 

de similarité comme le RMSE, le MAD et le R² ; enfin comparer 

l’approche par similarité au modèle du MEIA et à celui de la régression 

linéaire multiple.    

L’hypothèse de base de cette approche est de considérer que deux 

années similaires produisent des rendements équivalents. Aussi, le 

travail s’articule autour des points suivants :  

 La présentation de l’état des connaissances en matière de similarité ;  

 La description du matériel et des méthodes ;  

 Les résultats et leur discussion ;  

 La conclusion ainsi que les perspectives que laisse entrevoir cette 

étude.  

5.1.2. Revue de littérature sur la similarité  

La mesure de similarité a initialement été utilisée pour mettre en 

évidence le degré ou l’importance de la ressemblance ou de la proximité 

entre deux objets. Plusieurs travaux de recherches en statistique 

s’appuient sur l’exploration ou l’analyse des données  (data mining) 
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dans des domaines d’application thématique aussi variés que la 

linguistique, la biologie, l’informatique (Lesot et al., 2009.). Depuis les 

années 1900 à aujourd’hui, on relève la publication d’un grand nombre 

de mesures de similarité qui sont appliquées à plusieurs domaines. 

Plusieurs études ont contribué à faire l’état des connaissances sur les 

mesures et les coefficients de similarité. Ainsi, concernant les études 

sur les applications aux données binaires, on note 76 mesures de 

similarité (Choi et al., 2010), et 22 coefficients de similarité (Cheetham 

et Hazel, 1969). D’autres études ont conduit à subdiviser les mesures 

de similarité en deux groupes. Les mesures de similarité que l’auteur a 

qualifiées de groupe I sont celles qui ne prennent pas en compte le 

nombre de caractéristiques possédées par aucun des deux objets 

comparés et celles du groupe II, qui au contraire les prennent en compte 

(Rifqi, 2010). Il n’y a pas de mesure de similarité universelle 

s’appliquant à tous les domaines. Mitchell (2010) a subdivisé les 

mesures de similarité, en mesures globale et locale avec la possibilité 

de passer d’une échelle à une autre. Malgré, la quantité importante 

d’indices de similarité étudiés, on constate un faible nombre d’études 

comparatives de la performance de ces mesures. En biologie cellulaire 

une étude comparative de 20 coefficients a été faite pour évaluer les 

performances des différentes conditions d’acquisition des données en 

matière de formation cellulaire(Yin et Yasuda, 2005). La méthode par 

similarité est assimilable à la méthode nearest neighbors ou méthode 

des analogues utilisée en météorologie (Berdugo et al., , 2011., 

Fernández-Ferrero et al., 2010, Bazin et al., 2010, Matulla et al., 2008, 

Zorita et H. Von Storch, 1999., Tangang et al., 1997, Livezey et al., 

1994, Barnett et Preisendorfer, 1978). Elle est surtout utilisée pour la 

prévision de précipitation en temps réel (Xavier et Goswami, 2007., 

Barnston  A. G. et R. E. Livezey, 1989) soit à très court terme (Berdugo 

et al., , 2011., Barnett et al., 1978) , soit à moyen terme (Barnston  A. 

G. et al., 1989). Cette méthode est utilisée aussi par l’ACMAD pour les 

prévisions saisonnières. La limite principale de la méthode par 
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similarité tout comme celle par analogie réside dans la profondeur 

historique de la base des données d’archive. Cette profondeur historique 

ou l’effectif des situations élargissent le champ mais la limite principale 

reste pour moi la nature des critères de similarité et leur lien fonctionnel 

avec le processus, ici celui de la production végétale.  

Les données agrométéorologiques telles qu’ETP, Water 

Requirement Satisfaction Index (WRSI), Standardized Precipitation 

Index (SPI), cumul pluviométrique, sont des indicateurs de cause, 

utilisés pour le suivi de la végétation et l’estimation des rendements. 

Ces activités de suivi et prévision des rendements sont réalisées souvent 

avec des indicateurs d’état comme les indices de végétation (NDVI, 

LAI, FAPAR, VCI, SNDVI). Pour l’analyse de similarité, entre les 

indicateurs d’état et les indicateurs des causes, nous avons préféré un 

indicateur d’état. C’est-à-dire, le NDVI, car ses relations avec la 

productivité de la végétation ont été largement étudiées.  

Il est observé dans les travaux de recherche qu’un bon nombre de 

mesures de similarité ont déjà fait leur preuve avec le NDVI. C’est le 

cas de la distance de Mahalanobis qui a été avantageusement utilisée 

pour quantifier et cartographier la biodiversité (Krishnaswamy et al., 

2009). Le carré de l’erreur moyenne (mean square error : mse) et la 

moyenne absolue de l’erreur ( mean absolute error : mae) sont 

considérés comme des mesures de similarité globale avec alignement 

spatial. 𝑚𝑠𝑒 = ∑ (𝑎𝑘 − 𝑏𝑘)2
𝑘 /𝑘 et 𝑚𝑎𝑒 = ∑ |𝑎𝑘 − 𝑏𝑘|𝑘 ∕ 𝑘 

ou  ak et bk sont respectivement les valeurs numériques du kieme pixel 

dans les images A et B. Elles ne sont utilisées que, quand les images 

proviennent du même capteur. Le coefficient de corrélation croisée est 

aussi utilisé dans les mêmes conditions    𝜌 =
∑ 𝑎𝑘𝑏𝑘𝑘

√∑ 𝑎𝑘
2

𝑘 ∑ 𝑏𝑘
2

𝑘

   

 L’écart absolu moyen (Mean Absolute Deviation : MAD) est 

considéré comme une mesure d’erreur statistique de prédiction au 

même titre que l’erreur quadratique moyenne de prédiction (Root 

Mean Square Prediction Error : RMSPE) (Chang et al., 2011). En 
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effet, il donne le biais sur l’estimation (Okin et al., 2013). En outre, 

il permet de comparer la performance prédictive entre deux 

modèles ou confronter les résultats de simulations à des mesures  

(Morland et al., 2001, Sano et al., 1998). C’est aussi une mesure de 

précision d’un modèle (Evrendilek et Gulbeyaz, 2008). 

 Le Root Mean squared Error (RMSE) appelé aussi Root Mean 

Square Déviation (RMSD). La différence individuelle entre une 

valeur prédite et une valeur réelle est appelée valeur résiduelle donc 

le RMSE n’est qu’une agrégation de ces valeurs constituant le 

pouvoir prédictif du modèle. Il est utilisé aussi pour comparer les 

résultats de plusieurs approches (Durai et R. Bhradwaj, 2014).  

 Le coefficient de détermination R² donne le niveau de liaison entre 

deux variables à travers une relation linéaire. Dans le cadre de cette 

étude, ces mesures peuvent alors être utilisées pour calculer la 

similarité entre deux années dans l’hypothèse que deux situations 

similaires produisent des résultats similaires. En d’autres termes 

l’hypothèse que deux années similaires donnent des rendements 

fourragers équivalents a été formulée. Le coefficient de 

détermination R² et le RMSE sont aussi utilisés pour la validation 

des modèles (Englhart et al., 2011). 

5.2. Matériel et méthodes  

Le logiciel SPIRITS décrit ci-dessous a été utilisé pour analyser la 

similarité des profils saisonniers de NDVI issues de SPOT 

VEGETATION de 2001 à 2012, ainsi que les rendements fourragers 

herbacés annuels collectés par le MEIA sur la même période. Le 

logiciel SPIRITS permet de détecter les années similaires à l’aide des 

trois critères : Le RMSE, le MAD et le R². 

Des analyses statistiques exploratoires avec bootstrap sont réalisées 

pour bien caractériser les observations issues de la simulation. Par 

ailleurs, l’analyse des corrélations paramétriques et non paramétriques 

permet d’évaluer le niveau de liaison entre les données simulées et les 
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données observées. Le test de t et le test de Wilcoxon sont ensuite 

réalisés afin de comparer les moyennes des rendements observés à ceux 

obtenus par l’analyse de similarité. Les coefficients de corrélation de la 

similarité sont enfin comparés à ceux du modèle de MEIA et du modèle 

par régression linéaire Multiple ou modèle de référence (Figure 5.1). 

  

 

 

Figure 5.1 : Schéma général de la démarche   

5.2.1. Généralités sur SPIRITS 

Le Software for the Processing and Interpretation of Remotely Sensed 

Image Time Series (SPIRITS) est un logiciel développé par VITO pour 

le compte du JRC. Dans la perspective d’analyser les séries de données 

d’Observation de la Terre (OT). La dernière version est publiée en 

février 2015 sur le site internet du Joint Research Centre  JRC3. Il 

contient un large éventail de fonctionnalités permettant d’analyser les 

séries temporelles d’images satellitaires de basse résolution comme 

SPOT-VEGETATION, NOAA-AVHRR, METOP-AVHRR, TERRA-

MODIS, ENVISAT-MERIS and MSG-SEVIRI. L’algorithme 

d’analyse de similarité est inclus dans le logiciel SPIRITS (Eerens et 

Haesen, 2015). 

                                                        
3 http://spirits.jrc.ec.europa.eu 

http://spirits.jrc.ec.europa.eu/
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5.2.2. Méthodes  

La méthode s’articule autour de cinq parties :  

 Énoncé du principe de la similarité ; 

 Préparation des données ; 

 Traitements réalisés avec le logiciel SPIRITS en vue de générer les 

rendements par similarité ; 

 Analyses statistiques exploratoires, tests de corrélation et 

comparaison des moyennes ;  

 Comparaison des trois modèles. 
 

2.2.2.1. Principe de la méthode de similarité 

Le profil de chaque pixel est réalisé pour la période active de croissance 

végétative soit dans le cas du sahel, 6 mois allant de mai à octobre (soit 

18 décades). Ensuite, une comparaison entre le profil de l’année cible 

et les profils de l’ensemble des autres années a été réalisée en 

considérant, soit le R² maximum, soit le RMSE minimum ou le MAD 

minimum, avec un glissement phénologique accepté au maximum de 

plus ou moins trois décades (Figure 5.2).   

 

 

Figure 5.2 : Principe de l’analyse de similarité appliquée à des séries 

décadaires de NDVI (en code numérique) 
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5.2.2.2. Préparation des données  

La création du masque délimitant les sites constitue une étape 

préliminaire à l’analyse des données. La seconde étape essentielle 

consiste à renommer les images NDVI en respectant une nomenclature 

qui garantit leur identification par le logiciel SPIRITS, et enfin à 

structurer la table contenant les rendements fourragers mesurés sur le 

terrain dans un fichier en format texte. Pour faire le traitement avec le 

module similarité du logiciel SPIRITS sur uniquement les sites de la 

zone d’étude, il est nécessaire d’utiliser la couche des 68 sites MEIA de 

relevé in situ de la végétation pour produire le masque. Pour extraire les 

pixels réellement concernés par les sites, nous avons procédé aussi par 

les étapes consistant à  : générer une grille de carrés de 1 km de coté qui 

se superpose parfaitement aux pixels des images NDVI de SPOT 

VEGETATION ; superposer la couche des sites sur celle des grilles 

pour extraire les neuf polygones contigus de 1 km² correspondant à la 

superficie de chaque site ; faire la fusion des 9 polygones de 1 km² pour 

en faire un seul de 9 km² correspondant à la superficie de chaque site ; 

faire la jointure spatiale pour affecter les attributs de chaque site au 

polygone correspondant ; donner un code raster à chaque site ; 

transformer les couches des polygones en raster.  

5.2.2.3. Traitement des données sur SPIRITS 

Le traitement des données pour la similarité peut être subdivisé en 

quatre étapes consécutives :  

- configuration du projet (Project setting);  

- cartographie des années similaires ;  

- calcul du rendement fourrager ;  

- extraction du tableau contenant les rendements fourragers.  

 

Le module traitement établit une fenêtre permettant de renseigner les 

différentes données d’entrée : les images multi-annuelles, les 

informations sur la temporalité que sont les périodes couvertes par les 
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données : la période de croissance végétative qui va de mai à octobre ; 

les premiers mois et décade ; les derniers mois et décade enfin, le 

décalage (shift) présentant le glissement à prendre en compte dans le 

calcul. Dans le cadre de cet exercice nous avons pris un décalage 

maximum de trois décades en considérant qu’un retard ou une avance 

de trois décades par rapport à la moyenne n’aura pas d’effet sur la 

production de la masse fourragère au décalage près. L’année similaire 

est recherchée. Cette démarche permet théoriquement d’augmenter six 

fois les chances de retrouver une année similaire ; Il faut aussi 

renseigner la partie procédure qui consiste à donner la mesure de 

similarité à prendre en considération (RMSE, MAD ou R²). Cette 

technique exige la présence d’au moins 95 % des données dans la série 

afin de pouvoir démarrer l’analyse des profils. 

5.2.2.4. Analyse statistique  

Une analyse exploratoire des observations du terrain et celles générées 

par la similarité est réalisée pour calculer les moyennes, l’écart type, 

intervalle de confiance et les biais par bootstrap. Une analyse des 

corrélations pour calculer les coefficients de Pearson, Kendall et 

Spearman avec test de signification bilatérale est réalisée pour apprécier 

le niveau de signification de la relation en les mesures du terrain et les 

estimations générées par la similarité. La comparaison des moyennes 

des mesures de terrain et des estimations générées par similarité a été 

réalisée à l’aide de tests paramétriques et non paramétriques. Il s’agit 

notamment : du test de t en respectant ses conditions de validité 

(observations appariées, l’indépendance des observations, 

l’échantillonnage aléatoire, la distribution normale pour les différences, 

l’homogénéité de leurs variances), du test de Wilcoxon (Rakotomalala, 

2012; Paulson, 2008; Dagnelie, 2013). 

Tests de comparaison des moyennes 

Concernant la comparaison des moyennes simulées et les mesures de 

masse herbacées, nous avons appliqué un test paramétrique (test de t) 

et un test non paramétrique (test de Wilcoxon). L’objectif de ces tests 
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est de voir s’il y a une différence significative entre les mesures et les 

estimations par similarité. S’il n’y a pas de différence significative cela 

voudrait dire que nous pouvons utiliser les données de la similarité 

comme proxy des données observées. On fait les deux tests 

principalement pour deux raisons : la première liée au fait le test de t est 

plus puissant quand l’échantillon suit une loi normale et que le nombre 

d’observations est important(Dagnelie, 2013) ; par contre quand la 

distribution ne suit pas une loi normale ou que le nombre d’observations 

est faible, il est préférable de privilégier les tests non paramétriques qui 

sont dans ce cas plus puissants.  

Test de t 

Le test de t a été choisi, car les deux séries de rendements fourragers à 

comparer que sont les observations réelles et celles de la similarité sont 

en nombre assez important pour appliquer ce test en considérant le 

théorème central limite. Pour chaque site, il y a la variable issue de la 

similarité et celle issue des mesures du terrain. La statistique t dans le 

cas apparié est calculée suivant la formule suivante :𝑡 =
𝑀𝑑

𝑆𝐸𝑑
  où Md est 

la différence entre les deux moyennes, 𝑆𝐸𝑑 est l’erreur standard de la 

différence des deux moyennes. Avant ces analyses, les distributions des 

variables ont été étudiées à travers les analyses des symétries, des 

aplatissements et des biais (Gilbert, 2004, Dixon et Mood, 1946). 

Test de Wilcoxon 

Selon cette méthode, on classe les observations par paires 

(Rakotomalala, 2008). Ce qui permet d’obtenir un comptage des signes 

des différences par paires (comme dans le test des Signes) et les rangs 

de ces différences. Y (+) désigne la somme des rangs des différences 

positives ; Y (-) désigne la somme des rangs des différences négatives. 

Le principe est : Y (+) + Y (-) = n (n+1) /2 où n’est le nombre de paires. 

En moyenne, si les deux échantillons proviennent d’une même 

population, Y (+) et Y (-) valent tous deux la moitié de cette valeur soit : 

n (n+1)/4(Gibbons et S. Chakraborti, 2014; Rakotomalala, 2010) 
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Les corrélations  

Les relations entre les estimations par similarité et les mesures de terrain 

sont analysées avec différents types de coefficient de corrélation (r de 

Pearson, ρ de Spearman, τ de Kendal,). La corrélation de Pearson est 

donnée par le coefficient corrélation r de Pearson. Elle résume la 

relation entre 2 variables numériques ainsi que la force de la liaison qui 

existe entre les variables. La corrélation de Spearman calcule un 

coefficient de corrélation entre les rangs des valeurs des deux variables, 

cette corrélation est utilisée lorsque les distributions des variables sont 

asymétriques (skewness en anglais). L’interprétation est identique à 

celle de la corrélation de Pearson. Pour ce qui est de la corrélation de 

Kendall, le coefficient de corrélation des rangs de Kendall (Kendall τ) 

est une mesure de corrélation non paramétrique. Il sert à déterminer la 

relation qui existe entre deux séries de données (Rakotomalala, 2012; 

Rakotomalala, 2008). 

 

  

http://fr.wikipedia.org/wiki/Karl_Pearson


120  

5.3. Résultats et discussion  

5.3.1 Résultats  

Les résultats de l’analyse de similarité sont donnés ici, suivant les 

différents critères de mesure. Ils sont aussi déclinés suivant les 

différentes échelles spatio-temporelles à savoir l’échelle globale, les 

écorégions, les zones bioclimatiques et enfin les années. Après les 

résumés statistiques pour une vue d’ensemble et une caractérisation 

complète des observations, les résultats des tests de corrélations 

paramétrique et non paramétrique sont présentés. Les Tableaux de 

comparaisons des moyennes sont déclinés avant celui de la 

comparaison des modèles. 

5.3.1.1. Analyse globale 

Statistique descriptive et corrélation de la similarité avec R² 

Sur les 319 observations introduites pour la recherche de similarité, 

nous avons obtenu 153 qui ont trouvé chacune une année similaire. Le 

Tableau 5.1 montre les résultats de l’analyse statistique descriptive 

réalisée sur les estimations par similarité avec R² et les mesures 

correspondantes. Les biais et les intervalles de confiance au seuil de 

95 % réalisés avec 25 000 sous-échantillons.
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Tableau 5.1 : Statistique descriptive de la similarité par utilisation du R²  

 
Statistiques Erreur std. 

Bootstrap 

Biais Erreur std. 

Intervalle de confiance à 95 % 

Inférieur Supérieur 

Biomasse 

Similarité 

(R²) 

N 153  0,00 0,00   

Moyenne 519,59  -0,19 20,48 478,97 559,37 

Ecart type 253,07  -0,95 9,79 234,55 269,47 

Skewness -0,06 0,20 0,00 0,12 -0,29 0,18 

Kurtosis -1, 09 0,39 0,01 0,11 -1,29 -0,81 

Biomasse 

mesurée 

N 153  0,00 0,00   

Moyenne 584,05  -0,03 36,50 514,85 657,14 

Ecart type 454,95  -3,14 39,21 380,54 522,16 

Skewness 1,47 0,20 -0,04 0,21 1,09 1,74 

Kurtosis 2,71 0,39 -0,15 0,93 1,29 4,05 

 

 

 

1
2
1
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Statistiques descriptives et corrélations des résultats de la similarité 

avec RMSE 

Sur les 319 observations introduites pour la recherche de similarité, 

nous avons obtenu 172 ayant enregistré chacune une année similaire.  

Le tableau 5.2 montre les résultats de l’analyse statistique descriptive 

réalisée sur les estimations par similarité avec le RMSE et les mesures 

correspondantes. Les biais et les intervalles de confiance au seuil de 

95 % réalisés avec 25 000 sous-échantillons 
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Tableau 5.2 : Statistiques descriptives de la similarité le RMSE  

 
Statistiques 

Erreur 

std. 

Bootstrap 

Biais 

Erreur 

std. 

Intervalle confiance à 95 % 

Inférieur Supérieur 

Biomasse 

Similarité 

(RMSE) 

N 172  0,00 0,00   

Moyenne 430,35  -0,51 18,79 393,13 465,46 

Ecart type 249,37  -0,96 10,65 228,85 267,30 

Skewness 0,36 0,19 0,00 0,11 0,15 0,58 

Kurtosis -0,76 0,37 0,01 0,17 -1,04 -0,36 

Biomasse 

mesurée 

N 172  0,00 0,00   

Moyenne 537,18  -0,04 32,02 475,12 601,12 

Ecart type 415,85  -3,19 38,14 344,35 481,46 

Skewness 1,61 0,19 -0,08 0,29 1,01 1,94 

Kurtosis 3,93 0,37 -0,34 1,33 1,79 5,35 

  

1
2
3
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Statistiques descriptives et corrélations des résultats de la similarité 

avec MAD 

Sur les 319 observations introduites pour la recherche de similarité, 

nous avons obtenu 173 ayant enregistré chacune une année similaire.  

Le tableau 5.3 montre les résultats de l’analyse statistique descriptive 

réalisée sur les estimations par similarité avec le MAD et les mesures 

correspondantes. Les biais et les intervalles de confiance au seuil de 

95 % réalisés avec 25 000 sous-échantillons.  
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Tableau 5.3 : Statistique descriptive de la similarité avec le MAD 

  Statistiques 

Erreur 

std. 

Bootstrap 

Biais 

Erreur 

std. 

Intervalle de confiance à 95 % 

Inférieur Supérieur 

Biomasse 

Similarité 

(MAD) 

N 173  0,00 0,00 173,00 173 

Moyenne 439,31  0,06 18,65 402,88 477,49 

Ecart type 248,51  -1,13 10,53 225,92 267,81 

Skewness 0,32 0,18 0,00 0,11 0,10 0,54 

Kurtosis -0,78 0,37 0,01 0,16 -1,06 -0,42 

Biomasse 

mesurée 

N 173  0,00 0,00 173,00 173,00 

Moyenne 541,09  -0,83 30,61 483,52 600,32 

Ecart type 396,31  -3,70 32,54 330,98 459,11 

Skewness 1,35 0,18 -0,07 0,27 0,68 1,76 

Kurtosis 2,76 0,37 -0,31 1,14 -0,09 4,58 

 

 

  

1
2
5
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Le tableau 5.4 consigne les résultats des corrélations de Pearson 

Kendall et Spearman entre les observations issues de la similarité et les 

observations mesurées à un seuil de signification de 1 %. 

 

Tableau 5.4 : Corrélations paramétrique et non paramétriques 

Similarité Pearson Kendall Spearman 

Biomasse Similarité (R²) 0,327** 0,262** 0,383** 

Biomasse Similarité (RMSE) 0,447** 0,379** 0,521* 

Biomasse Similarité (MAD) 0,459** 0,381** 0,540* 

*significatif au seuil de 10 pour 100 ; **significatif au seuil de 5 pour 100 ;  

 

Tests paramétrique et non paramétrique de comparaison des 

moyennes à l’échelle globale 

La comparaison des moyennes à l’échelle globale montre pour les deux 

tests qu’il n’y a pas de différence significative entre la moyenne des 

estimations par la similarité par le R² et la moyenne des mesures. Le 

nombre d’observation s est de 153 avec une différence relative des 

moyennes de -11 %. Par contre les similarités avec le RMSE et le MAD 

donnent des différences significatives. Ces deux mesures de similarité 

sont pratiquement équivalentes en nombre d’observations et en 

différence relative des moyennes presque égale au double de celle de 

R² (Tableau 5.5). 
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Tableau 5.5 : Comparaison des moyennes simulées à celles des mesures de masse herbacées à l’échelle globale suivant les tests de t et 

de Wilcoxon, selon les mesures de similarité  

Mesure 

Sim 

Moy 

mesurée 

Moy 

estimée 

Dif 

absolue 

Nb 

d’obs 

Dif 

Relative % 

Test de t 

 

Test 

wilcoxon 

RMSE 537,18 430,35 106,83 172 0,20 0,0003*** 0,0075* 

R² 584,05 519,60 64,45 153 0,11 0,0734 0,7723 

MAD 541,10 439,30 101,80 173 0,20 0,0003*** 0,0035** 

*significatif au seuil de 1 pour 100 ; **significatif au seuil de 5 pour 1000 ; ***significatif au seuil de 5 pour 10000   

Sim : similarité ; Moy : moyenne ; Dif : Différence ; Nb : nombre ; obs : observations ; 

 

1
2
7
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5.3.1.2. Tests de t et Wilcoxon selon les années 

La comparaison des moyennes par le test de t et le test de Wilcoxon 

suivant les années montrent que : chaque année, il y a au moins un test 

qui indique que la différence des moyennes entre les résultats de la 

similarité et les données observées n’est pas significative. En ce qui 

concerne le test paramétrique, l’examen du Tableau 6 montre que pour 

le R², trois années à savoir 2004, 2007, et 2012 ont donné des 

différences significatives ; pour le RMSE quatre années que sont 2006, 

2007,2008, 2010 sont significatives ; pour le MAD cinq années à savoir 

2006, 2007, 2008, 2010, et 2012. Concernant le test non paramétrique, 

Il ressort de l’examen de ce même Tableau que pour le R², trois années 

à savoir 2004, 2005 et 2012 ont donné des différences significatives ; 

pour le RMSE cinq années que sont 2006, 2007,2008, 2010, 2012 sont 

significatives ; pour le MAD quatre années à savoir 2006, 2008, 2010, 

et 2012 sont significatives. En conclusion, on retrouve chaque année au 

moins une mesure de similarité donne une différence non significative 

avec la moyenne observée soit en test de t ou de Wilcoxon. (Tableau 

5.6). 
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Tableau 5.6 : Tests paramétrique et non paramétrique suivant les années 

An Mesure 

Similarité 

Moy 

obs 

Moy 

sim 

nr 

obs 

Dif 

Absolue 

Dif 

relative 

Test 

de t 

Test 

Wilcoxon 

2001 RMSE 569,9 461,47 17 108,429 0,19 0,2242 0,2842 

R² 503,79 582 10 78,206 0,15 0,4714 0,4131 

 MAD 569,9 491,35 16 78,5467 0,13 0,3405 0,3778 

2002 RMSE 340,18 356,21 19 -16,023 -0,04 0,7200 0,5678 

R² 355,035 464,88 17 -109,85 -0,30 0,1114 0,1415 

 MAD 357,365 371,44 17  -14,079 -0,03 0,7591 0,7987 

2004 RMSE 260,896 312,86 15 -51,971 -0,19 0,1316 0,1514 

R² 220,827 382,08 11 -161,26 -0,73 0,0137* 0,0210* 

 MAD 280,168 344,5 15 -64,332 -0,22 0,0801 0,1046 

2005 RMSE 520,778 497,16 18 23,6109 0,04 0,7931 0,8650 

R² 613,271 456 17 157,271 0,25 0,1713 0,2462 

 MAD 570,373 507 19 63,3735 0,11 0,5028 0,9854 

2006 RMSE 700,063 393,71 14 306,349 0,43 0,0429* 0,0353* 

R² 712,635 576,42 13 136,207 0,19 0,3539 0,8552 

 MAD 700,063 391,78 13 308,277 0,44 0,0222* 0,0085* 

2007 RMSE 915,376 539 10 376,376 0,41 0,0136* 0,0488* 

R² 968,589 522,75 7 445,839 0,46 0,0017**  0,0156* 

MAD 934,554 557,55 8 376,999 0,40 0,0140* 0,0547 

2008 RMSE 318,963 401,64 17 -82,684 -0,25 0,0224* 0,0348* 

R² 462,123 551,57 13 -89,448 -0,19 0,3551 0,0906 

 MAD 318,963 401,88 17 -82,919 -0,25 0,0235* 0,0267* 

2009 RMSE 457,015 355,61 13 101,399 0,22 0,3038 0,3054 

R² 443,952 465,25 11 -21,298 -0,04 0,8171 1,0000  

 MAD 439,878 409,64 14 30,2352 0,06 0,7077 0,6698 

2010 RMSE 763,04 502,71 14 260,326 0,34 0,0334* 0,0040*** 

R² 867,291 605,06 15 262,229 0,30 0,1095 0,1167  

 MAD 635,492 450,78 14 184,706 0,29 0,0178* 0,0085** 

2011 RMSE 440,475 399,27 22 41,2019 0,09 0,3572 0,3021 

R² 478,425 496,18 15 -17,762 -0,03 0,8025 0,9399 

 MAD 448,602 392,52 18 56,0761 0,12 0,2301 0,2253 

2012 RMSE 1046,71  561,6 10 485,111 0,46 0,0596 0,0488* 

R² 989,65 582,72 10 406,923 0,41 0,0442* 0,0420* 

 MAD 1048,95 554,83 11 494,115 0,47 0,0214* 0,0161* 

*significatif au seuil de 5 pour 100 ; **significatif  au seuil de 1 pour 100 ; ***significatif  au seuil 

de  5 pour 1000 Sim : similarité ; Moy : moyenne ; Dif : Différence ; Nb : nombre ; obs : 

observations  
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5.3.1.3. Analyse par écorégion 

Les résultats des tests de t et de Wilcoxon, montrent que le niveau de 

signification de la différence entre les moyennes varie suivant les 

écorégions, que ça soit en test paramétrique ou non ainsi que par la 

mesure de similarité. Concernant le test paramétrique, il ressort de 

l’examen du Tableau 5.7 que pour la mesure de similarité R², l’Aïr et le 

Manga2 ont donné des différences significatives ; pour le RMSE, 

l’Azaouak et le Manga2 ont présenté des différences significatives ; 

pour le MAD, ce sont l’Azaouak et le Manga2 qui ont présenté des 

différences significatives. Concernant le test non paramétrique, 

l’examen du Tableau montre que pour le R², l’Air et Manga2 ont donné 

des différences significatives ; pour le RMSE seul le Manga2 a donné 

une différence significative ; pour le MAD les différences sont 

significatives pour l’Azaouak et le Manga2. En conclusion, pour Ader 

Doutchi Magia, l’Air, l’Azaouak, le Gourma et le Manga1, on note que 

les moyennes des résultats obtenus par similarité ne sont pas différentes 

statistiquement des moyennes observées. Cependant pour le Manga 2 

la différence est significative pour tous les tests et pour toutes les 

mesures de similarité (Tableau 5.7). 
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Tableau 5.7 : Tests paramétrique et non paramétrique selon les écorégions  

 Mesure 

de sim 

Moy 

observée 

Moy 

sim 

Nb 

obs 

Dif 

absolue 

Dif 

relative 

Test de T 

 

Test wilcoxon 

ADM RMSE 422,87 382,71 7 40,16 0,095 0,7232 0,8125 

R² 354,88 422,80 5 67,91 0,19 0,6162 0,6250 

 MAD 422,87 404,29 7 18,59 0,04 0,8842 0,8125 

AIR RMSE 400,45 408,11 9 -7,66 -0,01 0,8274 0,9102 

R² 460,7 383,62 10 77,08 0,16 0,0379* 0,0488* 

 MAD 400,45 408,22 9 -7,77 -0,01 0,8394 0,9102 

AZ RMSE 489,60 411,96 93 77,65 0,16 0,0275* 0,1602 

R² 575,51 535,13 76 -40,38 -0,07 0,4543 0,9877 

 MAD 489,22 416,42 96 72,81 0,15 0,0146* 0,0446* 

GR RMSE 391,65 318,9 10 72,75 0,18 0,5022 0,8457 

R² 287,48 300,67 6 13,18 0,04 0,8287 0,8438 

 MAD 391,65 324 10 67,65 0,17 0,5025 0,8457 

MG1 RMSE 562,55 533,91 34 28,64 0,05 0,6235 0,9667 

R² 547,33 582,58 36 35,25 0,06 0,5354 0,6111 

 MAD 563,40 537,11 35 26,29 0,05 0,6610 0,8980 

MG2 RMSE 717,99 455,85 14 262,13 0,36 0,0224* 0,0107* 

R² 681,05 439,13 15 -241,92 -0,35 0,0087** 0,0181* 

 MAD 872,57 512 12 360,57 0,41 0,0090** 0,0068** 

*significatif au seuil de 5 pour 100 ; **significatif au seuil de 1 pour 100 ; Sim : similarité ; Moy : moyenne ; Dif : Différence ; 

Nb : nombre ; obs : observations   

1
3
1
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5.3.1.4. Analyse par zone bioclimatique  

Le tableau 5.8 consigne les résultats obtenus avec les tests de t et de 

Wilcoxon selon les zones bioclimatiques. Le niveau de signification de 

la différence observée entre les moyennes est lié à ces zones et aux 

critères de mesures de la similarité. Pour le test paramétrique, Il ressort 

de l’examen de ce Tableau qu’au niveau du R², les différences 

observées dans les zones sahélienne et saharienne sont significatives. 

Par contre dans la zone nord-sahélienne elles ne le sont pas ; en ce qui 

concerne le RMSE et le MAD, les moyennes sont significativement 

différentes dans les zones nord-sahéliennes et sahéliennes alors qu’elles 

sont non significatives pour la zone saharienne. Quant au test non 

paramétrique, l’examen du Tableau montre que pour le R², les 

moyennes sont significativement différentes dans la zone saharienne ; 

par contre elles ne le sont pas pour les zones sahélienne et nord 

sahélienne. S’agissant du RMSE et du MAD, il n’y a pas de différence 

significative pour ces deux zones. Par contre la différence est 

significative pour la zone Nord sahélienne. 
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Tableau 5.8 : Tests paramétrique et non paramétrique par zone bioclimatique 

Zones 

bioclimatiques 

Mesure 

sim 

Moy 

obs 

Moy 

sim 

Nb 

obs 

Dif 

absolue 

Dif 

relative 

Test de T 

 

Test 

wilcoxon 

Nord sahélienne RMSE 553,24 456,60 133 -96,64 -0,17 0,0022** 0,0415* 

R² 593,91 521,13 116 -72,77 -0,12 0,0621 0,2302 

MAD 563,00 468,14 134 -94,86 -0,17 0,0014*** 0,0187* 

sahélienne RMSE 1440,42 326,4 5 -1114 -0,77 0,0081** 0,0625 

R² 1673,07 548,6 5 -1124,5 -0,67 0,0036*** 0,0625 

MAD 1493,22 334,25 4 -1159 -0,77 0,0298* 0,1250 

saharienne RMSE 341,53 342,94 34 1,41 0,00 0,9628 0,9800 

R² 378,13 509,46 32 131,33 0,34 0,0105* 0,0189* 

MAD 348,38 340,91 35 -7,47 -0,02 0,8060 0,7122 

*significatif au seuil de 5 pour 100 ; **significatif au seuil de 1 pour 100 ; ***significatif au seuil de 5 pour 1000  

Sim : similarité ; Moy : moyenne ; Dif : Différence ; Nb : nombre ; obs : observations  

1
3
3
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5.3.2. Discussion partielle 

L’analyse statistique descriptive avec bootstrap réalisée sur les données 

de la similarité utilisant le R² montre que l’échantillon issu de la 

similarité est normalement distribué et que l’asymétrie et 

aplatissement (skewness, kurtosis) sont situés dans l’intervalle [-1.96 ; 

+1.96] autorisant ainsi de procéder à un test paramétrique. Les biais 

observés étant faibles confortent davantage les résultats obtenus. Par 

contre, le kurtosis des données mesurées s’écarte de cet intervalle ce qui 

recommande l’utilisation d’un test non paramétrique pour procéder à 

une comparaison des moyennes. Les corrélations paramétriques et non 

paramétriques sont toutes significatives au seuil de 0.01, elles sont 

proches de celles obtenues avec le modèle BIOMASAH, mais 

inférieures à celles du modèle de MEIA et du Modèle de référence. 

Sachant qu’à part le R², il y a bien d’autres critères pertinents pour 

expliquer la performance d’un modèle par rapport à un autre. Il vaut 

mieux examiner les résultats des tests de comparaison des moyennes 

avant de se prononcer sur le cas de la présente étude. 

Par ailleurs, l’analyse descriptive avec bootstrap des résultats de la 

similarité par utilisation du RMSE montre que l’asymétrie et 

l’aplatissement de l’échantillon sont particulièrement bien situés dans 

un intervalle suggérant de procéder à un test paramétrique, les biais 

étant tolérables. Les corrélations de Pearson, de Spearman et de Kendall 

sont toutes significatives comme pour le modèle BIOMASAH. 

Quant à l’analyse descriptive sur les résultats de la similarité utilisant le 

MAD, le skewness et le kurtosis des observations issues de la similarité 

sont situés dans l’intervalle autorisant un test paramétrique, les biais 

sont tolérables. Par contre, le kurtosis des données observées est de 2.76 

donc assez élevé ce qui suggère un test non paramétrique. Les 

corrélations de Pearson, de Spearman et de Kendall sont également 

toutes significatives. 

La différence des Kurtosis pour les trois mesures de similarité signifie 

qu’il y a une différence entre les observations constituant les résultats 
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du traitement selon la mesure de similarité utilisée. L’évidence est 

donnée par la différence des nombres d’observations obtenues pour R², 

MAD et RMSE qui sont respectivement 153, 172, 173 ce qui confirme 

la thèse qui considère le MSE et MAE ont la même performance en 

analyse de similarité, ils sont sensibles aux observations aberrantes 

contrairement au coefficient de corrélation (R²) qui en est moins 

sensible(Mitchell, 2010). Ces résultats signifient qu’à l’échelle globale 

le R² est plus sélectif que le MAD et le RMSE. La comparaison des 

moyennes à l’échelle globale montre que les résultats de la similarité 

par le R² peuvent être utilisés comme proxy des données observées. 

Ceci est conforté par la différence relative de -11 % entre les moyennes. 

Par contre, les similarités par le RMSE et le MAD donnent des 

différences significatives. Ces derniers sont pratiquement équivalents 

avec une différence relative de 19 % par rapport aux observations 

mesurées. Par ailleurs la comparaison des moyennes par le test de t et 

celui de Wilcoxon suivant les années montre qu’il y a au moins chaque 

année une mesure de similarité qui autorise l’utilisation de la similarité 

comme proxy aux données observées. Dans 75 % des cas le R² permet 

l’utilisation de ses résultats comme proxy aux données observées. En 

ce qui concerne le RMSE et MAD, on note que les résultats peuvent 

être utilisés respectivement dans 66 % et 59 % des cas. Quand on 

associe les résultats issus des trois mesures de similarité, on trouve que 

chaque année, on a au moins une possibilité d’utiliser la méthode avec 

succès. Cependant, il est important de noter que la performance du R² 

est supérieure à celle du RMSE et MAD. L’examen des résultats selon 

les écorégions montre que le R² n’autorise pas l’utilisation de la 

similarité comme proxy dans l’Aïr et le Manga2. Les mêmes 

observations sont faites en test paramétrique pour le RMSE et MAD 

dans l’Azaouak et le Manga2. Concernant le test non paramétrique, il 

ressort les résultats par le RMSE ne permettent pas l’utilisation des 

données dans le Manga2 et le MAD dans l’Azaouak et le Manga2. En 

conclusion, pour l’Ader Doutchi Magia, l’Air, l’Azaouak, le Gourma et 
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le Manga1, les résultats issus de toutes ces mesures de similarité sont 

utilisables comme proxy aux données observées. Cependant la méthode 

n’est pas concluante pour le Manga2. Il faudra alors chercher d’autres 

mesures de similarité ou d’autres types d’indices pour le Manga2. Selon 

le test de t pour le R², on ne peut pas utiliser la similarité dans les zones 

sahélienne et saharienne. Par contre, elle est utilisable dans la zone 

nord-sahélienne ce qui est une bonne information, car cette zone 

contient 75 % des sites. Le RMSE et le MAD ne sont pas utilisables 

pour la zone nord-sahéliennes et sahélienne. Par contre, ils sont 

utilisables dans la zone saharienne ce qui donne une certaine 

complémentarité entre les mesures ; le test Wilcoxon montre que pour 

le R² ne peut pas être utilisé dans la zone saharienne, mais utilisable 

dans les zones Sahélienne et nord-sahélienne. Les mêmes cas sont 

observés pour le RMSE et le MAD. Au regard de ces premiers résultats, 

cette approche complexe, avec des variables imparfaitement 

indépendantes entre elles, on risque de fournir des résultats 

difficilement interprétables. Les données doivent être exploitées avec 

un peu de prudence, car le nombre d’observations en moyenne est 

d’environ 13 pour le R², de 15 pour le MAD et le RMSE ce qui n’est 

pas une quantité très importante de données pour un tel exercice surtout 

en considérant l’étendue de la zone pastorale du Niger. Il s’avère alors 

nécessaire de continuer les recherches. En explorant d’autres indices de 

végétation et données agrométéorologiques et d’autres mesures de 

similarité. On peut par exemple explorer le FAPAR, car une étude 

réalisée au sahel avec les données du Sénégal a montré des corrélations 

moyennes r de Pearson entre la biomasse mesurée au sol et le cumul 

FAPAR dans l’ensemble du sahel et sur la partie pastorale qui sont 

respectivement de 0,78  et 0.75 (Meroni et al., 2014.). Par ailleurs une 

relation évidente a été trouvée entre le NDVI — GPP et NDVI-FAPAR 

respectivement 0.72 et 0.79 (Wang et al., 2004). Nous avons également 

procédé à une comparaison des performances de l’analyse de similarité 

à celles du modèle du MEIA et de la méthode la référence en nous 
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basant sur le R² et le RMSE, car le RMSE (Chai et Draxler, 2014) et le 

R² (Cornillon et al., 2007) sont utilisés pour qualifier un modèle. 

L’examen du RMSE et le R² montrent que le modèle de référence est le 

meilleur, il est suivi par le modèle MEIA. Il est néanmoins important 

de souligner que le R² explique seulement comment le modèle ajuste 

les données observées, mais n’explique pas le pouvoir prédictif d’un 

modèle (Trendowicz et Jeffery, 2014) et que le RMSE est très sensible 

aux données aberrantes (Chai et Draxler, 2014).  

 

5.4. Conclusion partielle 

L’étude a été réalisée en utilisant les images NDVI issues de SPOT 

VEGETATION et les rendements fourragers du MEIA collectés sur 68 

sites répartis dans les zones pastorales et agropastorales du Niger. Le 

logiciel SPIRITS a été utilisé pour faire le calcul de similarité entre 

profil saisonniers du NDVI de mai à octobre en utilisant le R², le RMSE 

et MAD comme mesure de la similarité. Les résultats ont permis de 

tester la performance de ces trois mesures à travers la comparaison des 

moyennes des résultats issus de la simulation et les rendements 

fourragers mesurés sur le terrain. À l’échelle globale, les résultats 

indiquent que le R² a été plus performant que le RMSE et MAD qui ont 

quasiment les mêmes performances. Les résultats de la similarité 

calculée avec R² peuvent être utilisés comme proxy à la phytomasse 

herbacée mesurée in situ, car il n’y a pas de différence significative 

entre la moyenne simulée et la moyenne mesurée au seuil de 1 %. Par 

contre, les résultats de la similarité calculée avec le RMSE et le MAD 

ne sont pas utilisables. Les corrélations paramétriques et non 

paramétriques sont toutes significatives au seuil de 1 %. Cependant, les 

R² sont faibles, ils varient entre 0,32 et 0,45.  Donc, Il est nécessaire de 

poursuivre les recherches, car il y a beaucoup d’études qui ont montré 

des très bonnes liaisons entre certains indices comme le FAPAR, l’EVI 

et le LAI et la masse aérienne.  
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VI. Comparaison des modèles 

L’objectif de ce chapitre est de comparer les résultats des trois méthodes 

d’estimation de la biomasse herbacée pour déterminer, le modèle qui 

peut être considéré comme le plus performant. Il s’agit de comparer les 

résultats du modèle par régression linéaire simple traité dans le chapitre 

III aux résultats du modèle réalisé par régression linéaire multiple traité 

dans le chapitre IV et les résultats de la similarité relative au chapitre 

V. 

6.1. Méthode de la comparaison de modèles 

Dans la littérature scientifique, on note plusieurs critères pour comparer 

la performance des modèles. On peut citer entre autres : le BIC 

(Bayesian Information Criterion) ; le AIC (Akaike Information 

Criterion) ; Mallow Cp ; le RMSE, le R² ; R² aj (Hurvich et C.-L. Tsai, 

1989, Bolboaca et Jäntschi, 2013, Burnham et al., 2011, Johnson et 

Omland, 2004, Burnham et Anderson, 2002, Zucchini, 2000, 

McQuarrie et Tsai, 1998, McQuarrie et al., 1997, Anderson et al., 1994, 

Bozdogan, 1987, San Martini et Spezzaferri, 1984). Nous avons utilisé 

le RMSE, le R² et le R² ajusté pour comparer les résultats obtenus par 

analyse de similarité, le modèle du MEIA et le Modèle par Régression 

linéaire Multiple (MRM). Cette comparaison n’a pas concerné le 

modèle BIOMASAH qui a montré ses limites en donnant une différence 

significative lorsque du test de comparaison des moyennes qui a été 

réalisé dans le chapitre II de la thèse (biomasse herbacée simulée avec 

BIOMASAH par rapport à la masse herbacée mesurée). Cette 

comparaison des trois modèles permettra non seulement de montrer la 

contribution de ces travaux de recherche et aussi de donner une synthèse 

dans un tableau pour permettre d’apprécier les résultats atteints au bout 

de ces années de recherches en zone sahélienne en général et au Niger 

en particulier. 

6.2. Résultats de la comparaison des modèles  

À l’échelle globale, l’examen des RMSE des trois modèles à savoir le 

modèle du MEIA, le modèle régression linéaire multiple (MRM) et 
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l’analyse de similarité montre que le Modèle de régression linéaire 

multiple (MRM) est le meilleur (RMSE en kg.ha-1) , le modèle du 

MEIA et la similarité sont équivalents (Tableau 6.1). En considérant le 

R², on constate toujours que le MRM confirme sa supériorité (R²=0.69), 

il est suivi par contre par le modèle du MEIA.  

 

Tableau 6.1 : Comparaison du R² et du RMSE des trois modèles à l’échelle 

globale   

Modèle MEIA MRM SIM 

Mesure R² RMSE 

(kg.ha-1) 

R² RMSE 

(kg.ha-1) 

R² RMSE 

(kg.ha-1) 

Valeur  0,56 367 0,69 285 0,21 353 

 

Il ressort de la comparaison des trois modèles suivant les années que les 

R² et les RMSE montrent toujours la prédominance du modèle MRM 

sur les deux autres. Selon le R², le modèle MEIA est meilleur que celui 

de la similarité. Par contre, en considérant le RMSE, ces deux modèles 

sont équivalents (Tableau 6.2). 

Au niveau de l’analyse de similarité, le R² est beaucoup plus variable et 

faible d’une année à l’autre que pour les deux autres méthodes. Ce 

constat peut s’expliquer par le fait que l’analyse de la similarité est très 

dépendante de la profondeur historique de la base de données. En effet, 

dans la base de données, sur les 12 ans d’observations, les sites 

présentent des données manquantes, ce qui réduit les chances d’avoir 

des années similaires. 

Cela peut constituer une raison suffisante pour exclure la méthode de 

similarité en attendant d’avoir une série plus longue. Cependant, 

l’analyse par similarité présente un potentiel car, elle a donné le 

meilleur résultat pour l’année 2008 (R²=0,71) contre R² =0,52 et R²= 

0,58 respectivement pour la méthode du MEIA et la MRM.  
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Tableau 6.2 : Comparaison du R² et du RMSE des trois modèles selon les 

années   

  MEIA MRM SIM 

Année R² RMSE R² R²aj RMSE R² RMSE 

2001 0,56 384 0,83 0,79 178 0,2 323 

2002 0,74 137 0,9 0,88 95 0,56 191 

2003 0,62 253 0,96 0,94 100 ### ### 

2004 0,58 126 0,59 0,57 124 0,59 118 

2005 0,72 233 0,81 0,79 194 0,07 401 

2006 0,63 351 0,87 0,84 219 0,52 415 

2007 0,54 233 0,61 0,57 100 0,12 219 

2008 0,52 299 0,58 0,57 283 0,71 136 

2009 0,59 162 0,82 0,79 112 0,02 274 

2010 0,54 455 0,82 0,79 348 0,45 412 

2011 0,65 164 0,76 0,73 138 0,34 185 

2012 0,56 410 0,77 0,74 308 0,003 552 

 

VII. Discussion générale 

Nous avons d’abord testé le modèle BIOMASAH qui a été développé 

par le CRA. C’est un outil qui continue d’être utilisé par certains pays 

par manque de modèles alternatifs fiables, leur permettant d’évaluer la 

biomasse fourragère en vue d’aider aux actions de planification en 

faveur des éleveurs. C’est un modèle basé sur le bilan hydrique qui n’a 

jamais fait l’objet d’une validation sur une période de 12 ans. La 

validation de ce modèle qui a été réalisée à travers des tests 

paramétriques et non paramétriques de comparaison de moyennes a 

montré qu’il y a des différences importantes entre la moyenne de la 

biomasse herbacée mesurée et celle de la biomasse herbacée simulée 
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avec BIOMASAH. À l’échelle globale, Les tests ont montré que la 

moyenne du modèle fait quasiment le double de la moyenne mesurée 

(983,17 contre 591,17), mais cette grande différence ne provient pas 

seulement de l’imperfection du modèle. En effet, l’examen de la Figure 

1.11 qui compare le cadre théorique établi par Breman H. (1982), et la 

réalité montrée par les données du MEIA, indique que les données 

observées sont en général sous-estimées. Au niveau des isohyètes 250 

mm et 350 mm, la sous-estimation oscille respectivement dans les 

intervalles 100-250 kg.MS.ha-1 et 350 à 600 kg MS.ha-1. Cette tendance 

à la sous-estimation du rendement fourrager peut s’expliquer par les 

retards de mesure (maximum de la végétation comme période optimale) 

et par l’impact éventuel de la pâture des animaux avant ces mesures 

étant donné que les zones utilisées comme références dans le modèle 

n’étaient pas préalablement mises en défens. À cette faiblesse du 

système de mesure des données au sol, il faut ajouter les limites du 

modèle. En effet, BIOMASAH ne prend pas en compte la distribution 

temporelle des pluies. Le sahel, à l’instar des autres régions du monde 

fait face aux effets des changements climatiques, qui se manifestent par 

une forte fréquence des évènements extrêmes tels que les fortes pluies, 

les inondations et la sécheresse. Il y a aussi, la variabilité intra 

saisonnière des pluies qui influence la croissance de la végétation. En 

effet, une étude menée par Cissé et al. (2016), au Sénégal, dans le bassin 

du Ferlo a mis en évidence les relations entre la pluie, l’humidité du sol, 

et la croissance de la végétation. Les résultats de cette étude ont mis en 

évidence la sensibilité de la croissance de la végétation aux 

précipitations suivant les types de sols. Aussi, l’étude a montré que la 

végétation met environ deux à trois semaines pour réagir aux anomalies 

de précipitation. Une séquence sèche d’au moins 7 jours peut déjà 

affecter significativement la croissance végétative. Alors, du fait de la 

mauvaise distribution temporelle des pluies, une année peut enregistrer 

un cumul de pluie excédentaire par rapport à la moyenne 

pluviométrique et donner une production de biomasse fourragère 
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inférieure à la moyenne de la masse fourragère de la période de 

référence. 

Le Niger (MEIA) et le Sénégal (CSE) sont les deux pays qui utilisent 

chaque année un modèle de régression simple combinant à travers la 

méthode des moindres carrés, les mesures masse fourragère herbacée in 

situ et le NDVI pour évaluer la biomasse fourragère en fin de saison. 

Le modèle du MEIA tire son origine dans les travaux menés au Sénégal 

et au Niger (Diallo et al., 1991, Wylie et al., 1991). Ce sont des 

méthodes anciennes d’une quarantaine d’années qui sont améliorables 

grâce aux progrès scientifiques et technologiques. Le test de la 

performance de ce modèle démontre que ce modèle n’est pas stable. En 

effet, il donne en moyenne sur la période de 2001 à 2012 et à l’échelle 

globale un R² de 0,56 avec un RMSE de l’ordre de 367 Kg.ha-1 . Mais 

la même approche prise année par année donne des résultats assez 

disparates. Ce qui montre que la relation entre le NDVI et la masse 

fourragère herbacée n’est pas toujours une fonction linéaire. En effet, 

Santin-Janin et al., 2009 et Bégué et al., 2011 ont montré que la relation 

est aussi non linéaire. Aussi, une étude récente réalisée au Sénégal par 

Diouf et al. 2014, à l’aide des données collectées par le Centre de Suivi 

Écologique (CSE), a montré que les fonctions exponentielle et 

puissance sont plus performantes que les fonctions linéaires. En réalité 

cette relation est beaucoup plus complexe car, elle peut être influencée 

par l’éclairement au moment du passage du satellite, la réflectance 

respective de chaque espèce fourragère, la réflectance spécifique du sol, 

les conditions atmosphériques (poussières, vapeur d’eau…), la durée 

réelle de la saison de végétation, etc…  

La connaissance de l’information fiable sur la disponibilité de la 

biomasse fourragère est d’une importance capitale pour la gestion des 

ressources naturelles. En effet, les communautés pastorales, aux 

niveaux local, national et régional, attendent chaque année la 

publication de cette information pour planifier leurs actions. Donc, il 

n’est pas raisonnable, de baser la prise de décision sur un modèle qui 
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fait une erreur relative de 52%. Il était alors nécessaire d’avoir une 

méthode plus fiable qui minimise considérablement ces erreurs 

d’estimation. 

La régression linéaire multiple a permis de réaliser des modèles liant 

des variables agrométéorologiques dérivées d’AMS et de variables 

biophysiques dérivées de VAST. La disponibilité d’une série de 

mesures au sol et d’images NDVI permet de tester la régression linéaire 

multiple qui a fait ses preuves ailleurs. En effet, cette méthode de 

régression multiple a montré des performances satisfaisantes pour 

l’estimation de rendements agricoles (Balaghi et al. 2008 ; Kouadio, 

2012 ; Kouadio et al., 2014). Les résultats très intéressants que nous 

avons obtenus avec les métriques dérivées de AGROMETSHELL et 

VAST confirment les conclusions des travaux de Diouf et al., en 2015 ; 

Diouf et al. 2016 qui utilisent d’une part, les mesures de biomasse in 

situ et les paramètres phénologiques dérivés de la série de FAPAR 

provenant de SPOT VEGETATION ; d’autre part, les mêmes métriques 

associées à d’autres paramètres agrométéorologiques dérivés de 

GeoWRSI. Une amélioration importante a été trouvée par rapport à la 

régression linéaire simple, aussi bien au Sénégal qu’au Niger.  

La mesure de la similarité est semblable à la méthode des analogues 

utilisée par les météorologistes pour faire la prévision du temps 

(Berdugo et al., 2011., Fernández-Ferrero et al., 2010, Bazin et al., 

2010, Matulla et al., 2008, Zorita et al., 1999., Tangang et al., 1997, 

Livezey et al., 1994, Barnett et al., 1978). Cette méthode est limitée par 

la profondeur historique de l’archive. Les tests de comparaison de 

moyennes des résultats de la similarité avec les données de terrain ne 

sont pas significatifs au seuil de 1%, c’est-à-dire que les moyennes du 

terrain ne sont pas statistiquement différentes de celles issues de la 

similarité. Les corrélations paramétriques et non paramétriques sont 

aussi significatives au même seuil (1%). La comparaison de ces 

méthodes montre que le Modèle de Régression linéaire Multiple 

(MRM) est le meilleur car il est plus stable.  En effet, sur la base des 
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RMSE et des R² le modèle par régression linéaire multiple s’est montré 

plus performant que le modèle du MEIA et l’analyse de la similarité, 

aussi bien à l’échelle globale que suivant les années (tableaux 6.1 et 

6.2). Cette conclusion montre clairement que le MRM constitue l’outil 

alternatif pour l’estimation de la production fourragère, en vue de 

l’établissement d’un bilan fourrager prévisionnel au Niger.  Nous 

pouvons ainsi affirmer que l’étude a contribué à l’amélioration des 

méthodes d’estimation des rendements fourragers au Niger. Aussi, elle 

a permis de : faire le point sur les méthodes utilisées pour évaluer la 

ressource fourragère annuelle ; comparer et confronter les résultats des 

méthodes (MEIA, MRM, et similarité) ; et enfin de proposer des pistes 

pour l’amélioration. Cependant, il est nécessaire de poursuivre la 

recherche avec d’autres indices de végétation et données 

agrométéorologiques qui ont montré leur pertinence ailleurs.  

 

Exploitation opérationnelle des résultats    

Dans un contexte de crise sécuritaire et de défis climatiques, les 

résultats de ces travaux de thèse contribueront à améliorer la qualité des 

informations produites annuellement sur la production fourragère pour 

aider à la prise de décision en vue d’anticiper les crises pastorales. Un 

Système d’Alerte Précoce Pastorale (SAPP) efficace et efficient 

nécessite de faire une évaluation fiable et à temps de la production 

fourragère. La fiabilité du bilan fourrager prévisionnel dépend entre 

autres de la qualité des résultats de l’évaluation de la production 

fourragère et de la fiabilité des chiffres sur l’effectif du cheptel.  Les 

variables explicatives du modèle global sont toutes dérivées du NDVI : 

la valeur maximale du NDVI (MAX) ; la valeur PVAL – EVAL (DRO), 

la décade au maximum de la végétation (PEA), et l’amplitude (VER). 

Ce sont des variables simples à produire avec le programme VAST, ce 

qui facilitera l’adoption du modèle par le Ministère. L’utilisation 

pratique du Modèle de régression linéaire Multiple (MRM) n’est pas 

très différente de celle de la Régression Linéaire simple. La seule 
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différence est que l’équation n’est plus linéaire à une seule variable 

explicative , mais plutôt linéaire  à plusieurs variables. La carte de la 

masse fourragère peut être réalisée avec cette équation à 4 variables 

explicatives, un mois après la PEAK (décade du maximum NDVI).  

Pour améliorer l’estimation de la production fourragère par unité 

administrative, en plus de la stratification par faciès, il est possible 

d’envisager l’utilisation de la carte d’utilisation / d’occupation des sols 

produite par l’USGS et AGRHYMET comme masque pour estimer la 

production des zones uniquement réservées à l’exploitation pastorale.  

La méthode de régression linéaire multiple appliquée aux rendements 

agricoles ayant donné des résultats intéressants ailleurs, peut être 

utilisée pour calculer les rendements en grain des principales cultures 

en vue d’en déduire les résidus de récoltes qui jouent un rôle important 

dans l’alimentation du bétail.  

Une extension « plugin » sur le logiciel libre Quantum GIS (QGIS) peut 

être envisagée. Cette extension peut aider à rendre plus opérationnelle 

l’exploitation des résultats de cette thèse et ceux des études antérieures 

obtenus ailleurs dans le domaine agricole pour réaliser la prévision des 

rendements agricoles. La carte de l’utilisation/occupation des sols 

(LU/LC) ou toute autre carte de meilleure qualité est d’une grande 

utilité pour servir de masque de calcul. Le MRM sera appliqué pour 

l’estimation des rendements fourragers dans les zones pastorales. Pour 

prendre en compte la production en résidus de récoltes, il serait 

intéressant d’envisager l’utilisation de la régression linéaire multiple 

qui a montré ailleurs sa performance dans les travaux de Balaghi et al. 

(2008), Kouadio (2012), Kouadio et al. (2014) en matière de prévision 

des rendements agricoles, en vue d’en déduire la production en résidus 

de récoltes. Le résultat sera une carte contenant la production fourragère 

des zones pastorales et celle des résidus de récoltes des zones cultivées. 
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VIII. Conclusion générale et perspectives  

En somme, cette étude contribue à l’amélioration des méthodes 

d’estimation des rendements fourragers au sahel en général et au Niger 

en particulier. En effet, la comparaison des moyennes réalisée entre les 

données de biomasse herbacées mesurées sur le terrain et les 

estimations à l’aide du modèle BIOMASAH montre une différence 

significative. Le modèle BIOMASAH surestime la masse herbacée, 

cela est attesté par les tests paramétriques (test de t) et non 

paramétriques (de Wilcoxon et des signes), même si les conditions de 

mesure des données observées présentaient de limites qui favorisent 

cette conclusion. La corrélation de Pearson donne un coefficient qui ne 

dépasse guère 0,15, mais, tout en étant hautement significative, telle 

qu’attestée par les corrélations ρ de Spearman, τ de Kendal, et D de 

Hoeffding). Néanmoins, il est nécessaire de poursuivre les recherches 

pour améliorer ce modèle notamment il faudrait pouvoir prendre en 

compte les séquences sèches, le bilan hydrique qui doit être à un pas de 

temps journalier, à la limite décadaire, les pressions de pâture et aussi 

les ligneux. La disponibilité de séries assez longues d’images d’indice 

de végétation et d’autres données agrométéorologiques ouvre de 

nouvelles perspectives de prise en compte de l’évolution décadaire de 

la végétation et de la phénologie des pâturages. 

Les résultats de l’analyse de la performance du modèle MEIA indiquent 

une fluctuation des paramètres d’une à année à l’autre. Ce qui est attesté 

par la variation du R² entre 0,52 et 0,73 suivant les années. Par contre, 

les corrélations restent très significatives (P<. 0001). Aussi, il ressort 

que le coefficient de détermination est plus élevé dans les zones 

sahariennes et nord-sahélienne que dans la zone sahélienne typique. Les 

RMSE annuelles sur l’ensemble de la zone pastorale  varient entre 120 

et 460 KgMS.ha-1. Les tests non paramétriques de comparaison de 

moyenne (Test de Wilcoxon et des signes) montrent qu’il n’y a pas de 

différence significative à utiliser SPOT VEGETATION ou eMODIS 

(intégrale ou maximum). Ce qui permet aux utilisateurs de continuer 
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avec les images eMODIS compte tenu de la fin de vie du satellite SPOT 

VEGETATION. Néanmoins, le modèle nécessite des améliorations, car 

l’erreur quadratique moyenne sur la production est énorme. 

Il est proposé un modèle de régression linéaire multiple qui utilise des 

métriques des profils saisonniers de NDVI de SPOT VEGETATION et 

les rendements fourragers herbacés collectés par le MEIA sur 68 sites 

répartis dans les zones pastorales et agropastorales du Niger. Les 

résultats montrent que le modèle global est stable, par exemple la 

variation entre les RMSE calculés (282kg.ha-1) et celui de la validation 

est 2,72 kg, le R² ajusté de 0,68 avec des paramètres très significatifs 

(P<, 0001). Ce qui constitue une amélioration importante par rapport au 

modèle de régression linéaire simple utilisé par le MEIA dont le R² est 

de 0,56 avec un RMSE de 367 kg MS.ha-1.  

Les modèles réalisés par Régression linéaire Multiple suivant les types 

de sols FAO indiquent des paramètres très intéressants comme 

l’attestent les R² : Ge5-1a (R²=0,85) ; Qc1 (R²=0,86) ; Qc7-1a 

(R²=0,75) ; Ql1-1a (0,75) ; Re35-a (R²=0,76). Les paramètres des 

Modèles par faciès sont plus intéressants, car les R² varient entre 0,77 

et 0,93. Ces résultats permettent d’affirmer que la stratification permet 

d’améliorer la modélisation des productions fourragères. La qualité des 

paramètres des modèles augmente avec le niveau d’homogénéité des 

strates sur lesquelles l’analyse est faite. Les R² ajustés sont très élevés 

dans les faciès, ce qui veut dire qu’il serait plus intéressant pour un 

projet qui travaille à ces échelles d’utiliser les modèles sur les faciès 

correspondants. Cependant, il est toujours important de bien analyser 

les modèles (validation croisée, analyse des résidus) avant de tirer toute 

conclusion sur sa qualité, car un R² ajusté élevé ne signifie pas 

forcément que le modèle est stable. En effet, le faciès MA1_Qc7-1a 

nord-sahélienne a donné un bon R² ajusté de 0,70, mais un faible R² de 

validation de 0,42. 

 Selon les années les modèles de régression linéaire multiple fluctuent 

comme l’attestent les variations des R² ajustés de 0,94 et 0,57.  Ces 
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résultats sont nettement plus intéressants que ceux de la régression 

linéaire simple, mais les modèles sont instables, car les variables 

extraites de l’analyse statistique fluctuent d’une année à l’autre.  D’où 

la nécessité de poursuivre les recherches en explorant les indices 

comme le LAI, l’EVI et le FAPAR et aussi le calage des métriques de 

NDVI sur la phénologie, la prise en compte des ligneux et celle de la 

pâture pour voir s’il est possible d’améliorer la prévision.  

En ce qui concerne l’approche par la mesure de la similarité des profils 

saisonniers de NDVI, les résultats permettent de tester les performances 

du R², du RMSE et du MAD à travers la comparaison des moyennes de 

la simulation et les rendements fourragers observés . L’analyse de 

résultats à l’échelle globale montre que le R ² a été plus performant que 

le RMSE et MAD qui ont quasiment les mêmes performances. À cette 

même échelle, il n’y a pas de différence significative entre les 

moyennes de l’estimation par similarité R² et les mesures au seuil de 

1 % ce qui permet de dire qu’il est possible d’utiliser ces résultats 

comme approximation des masses herbacées mesurées. Pour ce qui est 

des corrélations paramétriques et non paramétriques, elles sont toutes 

significatives au seuil de 1 %. L’analyse des résultats selon les années 

et les écorégions montrent que ces mesures de similarité sont 

complémentaires.  

La comparaison des résultats des trois modèles à savoir : le modèle du 

MEIA, le Modèle par Régression linéaire multiple (MRM) et la 

similarité a montré que le MRM est le meilleur, il apporte une nette 

amélioration par rapport à la méthode appliquée par le Ministère de 

l’Élevage et des Industries Animales du Niger. Le MRM peut alors être 

considéré comme le modèle de référence. Cependant, il est nécessaire 

de poursuivre les recherches sur d’autres types de données 

biophysiques et agrométéorologiques, car il y a eu beaucoup d’études 

qui ont montré des très bonnes liaisons entre certains indices comme 

FAPAR, EVI, le LAI et la biomasse observée. Aussi, il est nécessaire 

d’entreprendre des recherches pour examiner les possibilités 
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d’application du MRM dans l’ensemble du sahel. Toutefois, il est 

important de souligner que les strates représentent seulement la 

diversité dans la zone pastorale du Niger et que le manque de données 

terrain dans les autres zones sahéliennes peut constituer une contrainte 

à l’application de la méthode. 
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Annexes 

Annexes 1 

Annexe 1.1 : Exemples de profil du NDVI sur les sites de mesures de 

biomasse herbacée aérienne du MEIA  

  

  

  

  

  



ii  

  

  

  

  

 

LTA Mean :moyenne de la série ; LTA 
minimum : minimum de la série ; 

 

LTA maximum : maximum de la série; 

2013 time series: profil ndvi de la 
saison 2013
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Annexe 1.2 : localisation des sites du MEIA 

 

Sites Nom localité  Longitude  Latitude 

A64 Aborak 6,813069 15,847222 

A26 Tchintaborak 7,383594 15,765573 

A77 Rigia Malam Bio 7,606410 15,725534 

A15 Amataltalen 7,134800 16,149400 

A19 Ablama 7,803400 16,132400 

A33 Tamalolo 6,813297 16,443647 

A20 Toumbelaga 7,822515 15,827207 

A13 RN 25 Pk 55 7,539740 16,793316 

A11 Ingall 7,056415 16,613082 

A80 Tiguidan Tagait 7,593611 17,234117 

A23 Fako 6,671119 14,962770 

P08 Bermo 7,172500 15,036100 

A66 Gadabeji Nord 7,252837 15,064663 

A65 Gadabeji 6,744779 15,115499 

A22 Amoulasse 7,045334 15,101667 

A24 Abouhaya 6,527738 15,375873 

A16 Iksman 6,378361 15,593056 

A17 Ibeceten2 5,862818 15,403571 

A7 Targa 5,705034 16,491389 

A3 Tchintab 5,723350 15,725534 

A5 Tchintassalaten 5,772836 16,081608 

A30 Ibeceten 1 5,838932 15,325043 

A62 Obserata 4,554423 15,697799 

A32 Tofaminir 6,615618 16,013827 

A61 Amilal 5,154180 15,861098 

A72 Doutchi 3,747800 13,884200 

A118 Kara 2,810832 12,710832 

A40 Desert de Tall 12,731721 14,149390 

A41 Sayam 12,545295 13,793316 

A42 Bouti 11,424800 13,951300 



iv  

Sites Nom localité  Longitude  Latitude 

A43 Birnia 11,291120 13,945825 

N82 
 

13,979700 13,813300 

n83 
 

13,227800 14,616100 

n84 
 

13,160278 14,454444 

N85 
 

13,117222 14,356667 

n86 
 

13,103100 14,517800 

n87 
 

13,227800 14,616100 

n88 
 

13,160278 14,454444 

N89 
 

12,873056 14,090556 

N93 
 

13,103100 14,517800 

n95 
 

12,961667 14,608611 

n96 
 

12,736944 14,066944 

n97 
 

12,873056 14,090556 

n98 
 

12,766100 14,172800 

A110 
 

12,772200 13,953600 

A111 
 

13,107778 13,731667 

A112 
 

13,128611 13,619722 

A113 
 

11,689600 13,848900 

A114 
 

11,231200 13,944600 

A115 
 

11,035800 13,887100 

A117 
 

10,914400 13,715000 

A44 Yougoum 11,443639 14,579195 

A45 Aljannari 11,087797 14,731686 

A46 Aborak 10,443619 14,948889 

A47 Téjira 10,070847 14,861098 

A48 Bathé1 7,743333 14,894988 

A49 N Tabanot 7,776389 15,318844 

A50 Jeptoji 8,331344 15,318844 

A51 Tenhia 9,221074 15,430000 

A52 Bathé 7,938328 14,996661 

A67 Didiga 3,991913 15,542222 

A68 Ekrafane 3,671151 15,403571 

A69 banibangou 2,831667 15,166335 



v 

Sites Nom localité  Longitude  Latitude 

A70 Inékére 2,676389 15,200226 

A73 Toukounous 3,336417 14,606916 

A105 Tiguit 0,630000 14,674700 

A106 Alkongui 0,623900 14,731700 

A121 Tin béré béré 0,970200 14,826000 

A122 Boni 1,175700 14,745000 

 

 

 

  



vii 

Annexes 2 

Annexe 2.1 Estimation des valeurs de f  

 

 

  

Figure 2 : Biomasse herbacée 2000 Figure7: Biomasse herbacée 2005 
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Figure 3 : Biomasse herbacée 2001 Figure8 : Biomasse herbacée 2006 

  

Figure 4 : Biomasse herbacée 2002 Figure9 : Biomasse herbacée 2007 

  

Figure 5 : Biomasse herbacée 2003 Figure10 : Biomasse herbacée 2008 

  

Figure 6 : Biomasse herbacée 2004 Figure11 : Biomasse herbacée 2009 

  

Figure 12 : Biomasse herbacée 

2010 
Figure13 : Biomasse herbacée 2011 
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Annexe 2.1 Biomasse herbacée suivant les années 

 

Annexe 2.2 Corrélation paramétrique sur l’ensemble des données 

 

Variable variable Corrél. nbr obs 
Limite de confiance 

inférieure 95 % 

Limite de confiance 

supérieure 95 % 
P-value 

bioReel bioherb 0,19 319 329.57 591,17 0,0001* 
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Annexe 3 : ajustement de la masse herbacée aérienne en fonction 

du maximum et de l’intégrale NDVI suivant les années. 

 

  

Figure 3.11 : Ajustement avec 

l’intégrale NDVI SPOT 

VEGETATION pour l’année 2001 

Figure 3.12 : Ajustement avec le 

maximum NDVI SPOT 

VEGETATION pour l’année 2001 

  

Figure 3.13 : Ajustement avec 

l’intégrale NDVI SPOT 

VEGETATION pour l’année 2002 

Figure 3.14 : Ajustement avec le 

maximum NDVI SPOT 

VEGETATION pour l’année 2002 

  

Figure 3.15 : Ajustement avec 
l’intégrale NDVI SPOT 

VEGETATION pour l’année 2003 

Figure 3.16 : Ajustement avec le 
maximum NDVI SPOT 

VEGETATION pour l’année 2003 
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Figure 3.17 : Ajustement avec 

l’intégrale NDVI SPOT 

VEGETATION pour l’année 2004 

Figure 3.18 : Ajustement avec le 

maximum NDVI SPOT 

VEGETATION pour l’année 2004 

  

Figure 3.19 : Ajustement avec 

l’intégrale NDVI SPOT 

VEGETATION pour l’année 2005 

Figure 3.20 : Ajustement avec le 

maximum NDVI SPOT 

VEGETATION pour l’année 2005 

  

Figure 3.21 : Ajustement avec 

l’intégrale NDVI SPOT 

VEGETATION pour l’année 2006 

Figure 3.22 : Ajustement avec le 

maximum NDVI SPOT 

VEGETATION pour l’année 2006 
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Figure 3.23 : Ajustement avec 

l’intégrale NDVI SPOT 

VEGETATION pour l’année 2007 

Figure 3.24 : Ajustement avec le 

maximum NDVI SPOT 

VEGETATION pour l’année 2007 

  

Figure 3.25 : Ajustement avec 

l’intégrale NDVI SPOT 

VEGETATION pour l’année 2008 

Figure 3.26 : Ajustement avec le 

maximum NDVI SPOT 

VEGETATION pour l’année  2008 

  

Figure 3.27 : Ajustement avec 

l’intégrale NDVI SPOT 

VEGETATION pour l’année 2009 

Figure 3.28 : Ajustement avec le 

maximum NDVI SPOT 

VEGETATION pour l’année 2009 
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Figure 3.29 : Ajustement avec 

l’intégrale NDVI SPOT 
VEGETATION pour l’année 2010 

Figure 3.30 : Ajustement avec le 

maximum NDVI SPOT 
VEGETATION pour l’année  2010 

 
 

Figure 3.31 : Ajustement avec 

l’intégrale NDVI SPOT 

VEGETATION pour l’année 2011 

Figure 3.32 : Ajustement avec le 

maximum NDVI SPOT 

VEGETATION pour l’année  2011 

  

Figure 3.33 : Ajustement avec 

l’intégrale NDVI SPOT 

VEGETATION pour l’année 2012 

Figure 3.34 : Ajustement avec le 

maximum NDVI SPOT 

VEGETATION pour l’année  2012 
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Annexe 4 

Annexe 4.1 Les variables indépendantes  

Variables indépendantes   signification  

PEA   PEAK : la décade à laquelle le NDVI atteint son maximum ;  

SDA   SDAT : la décade de début de la saison de végétation ;  

HOR  HORZ = PEAK – SDAT ;  

SVA   SVAL : la valeur du NDVI à SDAT ;   

PVA  PVAL : la valeur du NDVI à PEAK ;  

VER   VERT = PVAL – SVAL ;  

EVA  EVAL : le NDVI au temps PEAK + 4 (soit environ la fin de saison) ;  

DRO   DROP = PVAL – EVAL ;  

SLO   SLOP : la pente de la droite qui rejoint (SDAT, SVAL) à (PEAK, PVAL) ;  

CUM   CUMM : la somme des valeurs de NDVI de SDAT à PEAK ;  

SKEW 

 

 SKEW : le rapport entre la somme des 3 valeurs de NDVI suivant PEAK 

 (de PEAK + 1 à PEAK + 3) et la somme des 7 valeurs de PEAK — 3 à 

PEAK + 3  

MAX  maximum NDVI calculé par le MEIA  

INT  intégrale NDVI calculé par le MEIA  

RAI  cumul annuel de pluies (RFE)  

TWR  La quantité d’eau requise pour le cycle complet de la culture (TWR) ;  

Indx, IndxNor, IndxLatest  L’indice de satisfaction en eau en fin de cycle (Indx, IndxNor, IndxLatest) ;  

SWi  Le contenu initial en eau dans le sol (SWi)  

WEXi, 

 WEXv, 

 WEXf, 

 WEXr,  

WEXt 

 L’excès en eau à différents stades phénologiques du cycle de croissance  

: phase initiale, phase végétative, floraison, maturité et durant tout 

 le cycle (donnée par la somme des autres valeurs)  

: WEXi, WEXv, WEXf, WEXr, WEXt ;  

WDEFi,  

WDEFv,  

WDEFf, 

 WDEFr,  

WDEFt 

 Le déficit en eau à différents stades 

 phénologiques et déficit en eau total en fin de cycle 

 (WDEFi, WDEFv, WDEFf, WDEFr, WDEFt) ;  

ETAi, 

 ETAv, 

 ETAf,  

ETAr,  

ETAt 

 L’évapotranspiration réelle à différents stades 

 phénologiques et sa valeur totale en fin de cycle  

(ETAi, ETAv, ETAf, ETAr, ETAt) ;  
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Annexes 4.2. Modèle de régression linéaire multiple selon les types 

de sol 

Le modèle de Ge5-1a 

Le Tableau 4.13 montre que le sol Ge5-1a comprend 17 observations, 

la moyenne des ces observations est 773 kg MS.ha-1. La mise en œuvre 

de la procédure de sélection de variables du type pas à pas descendante 

au niveau de ce type de sol a permis d’obtenir l’équation suivante : Y= 

-936,85+ 22,79 EVA,  ; l’expression de la prévision la variable 

pertinente (EVA). 

La représentation des valeurs observées en fonction des valeurs prévues 

montre un R² de 0,85 et un RMSE  calculé de 148 kg.ha-1 (Figure 4.8). 

Le modèle est caractérisé par un RMSE relatif de 22 %. L’estimation 

des paramètres du modèle montre des probabilités hautement 

significatives (Tableau 4.14). 

Tableau 4.13 : Résumé de l’ajustement 

 

Tableau 4.14 : Estimations des coefficients 

Terme Estimation Erreur 

standard 

t ratio Prob. > |t| 

Constante  -936,8512 190,27  -4,92 0,0002* 

EVA 22,793592 2,49 9,15 <,0001* 

*significatif au seuil de 10 pour 1000 ; 

Paramètres Valeurs 

R² 0,85 

R²ajusté 0,84 

R²validation 0,79 

RMSE calculé 148 

RMSE validation 161 

Moyenne de la réponse 773 

Nombre d’observations 17 
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Figure 4.8 : Les valeurs observées en fonction des valeurs prévues pour le 

modèle du Ge5-1a 

 

Analyse des résidus du modèle de Ge5-1a  

L’analyse des résidus indique un écart type de 153 kg. Le diagnostic du 

modèle de Ge5-1a   indique une répartition régulière (Figure 4.9 a) et 

une distribution normale des résidus (Figure 4.9 b), cependant l’un 

indice DW de 2,87 et le taux d’autocorrélation de -0,16. 

 

 

 

 

Figure 4.9 a : Graphique du résidu 

par ligne 

 

Figure 4.9 b : Distribution des 

résidus  

Le modèle de Qc7-1a (Arenosol  cambique)  

Le Tableau4.15 montre que le sol Qc7-1a compte 44 observations, la 

moyenne des ces observations est 773 kg MS.ha-1. La mise en œuvre de 

la procédure de sélection de variables du type pas à pas descendante au 



xviii  

niveau de cette région écologique a permis d’obtenir l’équation suivante 

Y= -670,44 -10,07 ETAF+ 1,24 RAI +4197,70 MAX 

L’expression de la prévision contient 3 variables pertinentes (ETAF, 

RAI et MAX). La représentation des valeurs observées en fonction des 

valeurs prévues montre un R² de 0,75 et un RMSE  calculé de 201 kg.ha-

1 (Figure 4.9). Le modèle est caractérisé par un RMSE relatif de 22 %. 
L’estimation des paramètres du modèle montre des probabilités 

hautement significatives (Tableau4.16). 

Tableau 4.15 : Résumé de l’ajustement 

 

 

 

 

Tableau 4.16 : Estimations des coefficients 

Terme Estimation Erreur 

standard 

t ratio Prob. > |t| 

Constante -670,4453 137,8459 -4,86 <,0001* 

ETAF -10,07803 2,639674 -3,82 0,0005* 

RAI 1,2440066 0,389485 3,19 0,0027* 

MAX 4197,7037 557,6312 7,53 <,0001* 

*significatif au seuil de 10 pour 1000 ; 

Paramètres Valeurs 

R² 0,75 

R²ajusté 0,73 

R²validation 0,70 

RMSE calculé 201 

RMSE validation 209 

Moyenne de la réponse 643 

Nombre d’observations 44 
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Figure 4.9 : Les valeurs observées en fonction des valeurs prévues pour le 

modèle du Qc7-1a 

 

Analyse des résidus du modèle de Qc7-1a -  

L’analyse des résidus indique un écart type de 193 kg. Le diagnostic du 

modèle de Qc7-1a indique une répartition régulière (Figure 4.10 a) et 

une distribution normale des résidus (Figure 4.10 b), comme l’attestent 

l’un indice DW de 1,83 et le taux d’autocorrélation de 0,05. 

 
 

Figure 4.10 a : Graphique du 

résidu par ligne 

 

Figure 4.10 b : Distribution des 

résidus  
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Le modèle de Ql1-1a 

Le Tableau 4.17 montre que l’unité de sol Ql1-1a contient 85 

observations, la moyenne des ces observations est 650 kg MS.ha-1. La 

mise en œuvre de la procédure de sélection de variables du type pas à 

pas descendante au niveau de cette région écologique a permis d’obtenir 

l’équation suivante Y= -4205,69 +24,34 EVA+ 104,11PEA +2438,14 

MAX 

L’expression de la prévision contient 3 variables pertinentes (EVA, 

PVA et MAX). La représentation des valeurs observées en fonction des 
valeurs prévues montre un R² de 0,85 et un RMSE  calculé de 207 kg.ha-

1 (Figure 4.11). Le modèle est caractérisé par un RMSE relatif de 31 %. 

L’estimation des paramètres du modèle montre des probabilités 

hautement significatives (Tableau 4.18). 

Tableau 4.17 : Résumé de l’ajustement 

 

 

 

 

  

Paramètres Valeurs 

R² 0,76 

R²ajusté 0,76 

R²validation 0,74 

RMSE calculé 207 

RMSE validation 214 

Moyenne de la réponse 650 

Nombre d’observations 85 
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Tableau 4.18 : Estimations des coefficients 

 

Terme Estimation Erreur 

standard 

t ratio Prob. > |t| 

Constante -4096,214 641,8367 -6,38 <,0001* 

 EVA 24,00407 4,176959 5,75 <,0001* 

 PEA 101,17962 22,31335 4,53 <,0001* 

MAX 2374,7752 530,3896 4,48 <,0001* 

*significatif au seuil de 10 pour 1000 ; 
 

 

Figure 4.11 : Les valeurs observées en fonction des valeurs prévues pour le 

modèle du Ql1-1a 

 

Analyse des résidus du modèle de Ql1-1a 

L’analyse des résidus indique un écart type de 203 kg. Le diagnostic du 

modèle de Ql1-1a indique une répartition régulière (Figure 4.12 a) et 

une distribution normale des résidus (Figure 4.12 b), comme l’attestent 

l’un indice DW de 1,38 mais le taux d’autocorrélation de 0,29 est un 

peu élevé. 
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Figure 4.12 a : Graphique du 

résidu par ligne 

 

Figure 4.12 b : Distribution des 

résidus 

 

Le modèle de Re35-a 

Le Tableau 4.19 montre que le sol Re35-a compte 39 observations, la 

moyenne des ces observations est 391 kg MS.ha-1. La mise en œuvre de 

la procédure de sélection de variables du type pas à pas descendante au 

niveau de cette région écologique a permis d’obtenir l’équation 

suivante : Y= -567 +12,94 VER +2940,82 MAX, l’expression de la 

prévision comprend 2 variables pertinentes (VER et MAX) ;  

La représentation des valeurs observées en fonction des valeurs prévues 

montre un R² de 0,77 et un RMSE  calculé de 152 kg.ha-1. Le modèle 

est caractérisé par un RMSE relatif de 38 %. L’estimation des 

paramètres du modèle montre des probabilités hautement significatives 

(Tableau 4.20). 
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Tableau 4.19 : Résumé de l’ajustement 

 

Tableau 4.20 : Estimations des coefficients 

Terme Estimation Erreur standard t ratio Prob. > |t| 

Constante -567,01 108,94 -5,20 <,0001* 

VER 12,94 5,49 2,36 0,0240* 

MAX 2940,82 986,34 2,98 0,0051* 

*significatif au seuil de 10 pour 1000 ; 
 

 

 

Figure 4.13 : Les valeurs observées en fonction des valeurs prévues pour le 

modèle du Re35-a 

 

  

Paramètres Valeurs 

R² 0,77 

R²ajusté 0,76 

R²validation 0,74 

RMSE calculé 152 

RMSE validation 157 

Moyenne de la réponse 391 

Nombre d’observations 39 
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Analyse des résidus du modèle de Re35-a  

L’analyse des résidus indique un écart type de 148 kg. Le diagnostic du 

modèle de Re35-a indique une répartition régulière (Figure 4.14 a) et 

une distribution normale des résidus (Figure 4.14 b), comme l’attestent 

l’un indice DW de 1,72 et le taux d’autocorrélation de 0,11. 

 

 

 

 

Figure 4.14 a : Graphique du 
résidu par ligne 

 

Figure 4.14 b : Distribution des 
résidus  

 

Le modèle de Qc1 

Le Tableau 4.21 montre que le sol Qc1 compte 22 observations, la 

moyenne des ces observations est 728 kg MS.ha-1. La mise en œuvre de 

la procédure de sélection de variables du type pas à pas descendante au 

niveau de cette région écologique a permis d’obtenir l’équation suivante 

Y= - 758,60 +19,73 VER +2029,28 MAX, l’expression de la 

prévision comporte 2 variables pertinentes (VER et MAX).  

La représentation des valeurs observées en fonction des valeurs prévues 

montre un R² de 0,86 et un RMSE  calculé de 190 kg.ha-1 (Figure 4.15). 

Le modèle est caractérisé par un RMSE relatif de 26 %. L’estimation 

des paramètres du modèle montre des probabilités hautement 

significatives (Tableau4.22). 
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Tableau 4.21 : Résumé de l’ajustement 

 

Tableau 4.22 : Estimations des coefficients 

Terme Estimation Erreur 

standard 

t ratio Prob. > |t| 

Constante -758,60 156,65 -4,84 0,0001* 

VER 19,73 5,10 3,87 0,0010* 

MAX 2029,28 982,51 2,07 0,0528 

*significatif au seuil de 10 pour 1000 ; 

 

 

Figure 4.15 : Les valeurs observées en fonction des valeurs prévues 

pour le modèle du Qc1 

 

  

Paramètres Valeurs 

R² 0,86 

R²ajusté 0,85 

R²validation 0,81 

RMSE calculé 190 

RMSE validation 205 

Moyenne de la réponse 728 

Nombre d’observations 22 
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Analyse des résidus du modèle de Qc1  

L’analyse des résidus indique un écart type de 180 kg. Le diagnostic du 

modèle de Qc1 indique une répartition régulière (Figure 4.16 a) et une 

distribution normale des résidus (Figure 4.16 b), mais l’un indice DW 

de 2,35 et le taux d’autocorrélation un peu élevé (-0,27). 

 

 

 

 

Figure 4.16 a : Graphique du 

résidu par ligne 

 

Figure 4.16 b : Distribution des 

résidus  

 

Annexe 4.3 : Modèle de régression linéaire multiple suivant les 

années   

 

Analyse de l’année 2001 

La mise en œuvre de la procédure de sélection de variables du type pas 

à pas, selon sa variante descendante pour l’année 2001 a permis 

d’obtenir l’équation suivante ayant quatre variables pertinentes que 

sont : INDXNOR, ETAT, EVA, SVA.  

Y= 72,43 -20,58 INDXNOR+ 6,40 ETAT +32,11 EVA -30,99 SVA 

L’estimation des paramètres du modèle liés à ces variables montre des 

probabilité  significatives (Tableau 4.24). La corrélation des valeurs 

observées en fonction des valeurs prévues donne un R² de 0,83 et un 

RMSE de 158 kg.(Figure 4.17 ). Il est caractérisé par un RMSE relatif 

de 25 % (Tableau 4.25).  
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Tableau 4.24 : Estimation des coefficients d’ajustement 

Variables Estimation Erreur 

standard 

Rapport t Prob.>|t| 

Constante 72,43 592,16 0,12 0,9044 

INDXNOR -20,58 4,75 -4,33 0,0007** 

ETAT 6,40 1,19 5,34 0,0001*** 

EVA 32,11 7,64 4,20 0,0009** 

SVA -30,99 14,12 -2,19 0,0456* 

*significatif au seuil de 5 pourcent ; **significatif au seuil de 10 pour 10000 ; 
***significatif au seuil de 1 pour 10000 

 

Tableau 4.25 : Résumé de l’ajustement 

Paramètres Valeurs 

R² 0,83 

R²ajusté 0,79 

R² validation 0,67 

RMSE Calibration 25 % 

RMSE Validation 178,89 

Moyenne de la réponse 624,71 

Observations 19 

 

 

Figure 4.17 : Les valeurs observées en fonction des valeurs prévues pour le 

modèle de l’année 2001 
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Analyse des résidus  

Il ressort de l’analyse, que les résidus de l’année 2001 donnent un écart 

type de 140 kg (Tableau 4.26). Le diagnostic du modèle de cette année 

donne une répartition régulière (Figure 4.17 a), une distribution 

normale des résidus (Figure 4.17 b) comme l’atteste l’indice DW de 

1,92. 

Tableau 4.26 : Estimations des coefficients 

Type Coefficient Estimation Inférieur 

à 95 % 

Supérieur 

à 95 % 

Position μ -0 -67 67 

Dispersion σ 140 106 207 

 

  

Figure 4.18 a : Graphique du résidu 

par ligne 

Figure 4.18 b : Distribution des 

résidus 

 

Analyse de l’année 2002 

Pour l’année 2002, nous avons 27 observations avec une moyenne de 

382,51 KgMS.ha-1. La mise en œuvre de la procédure de sélection de 

variables du type pas à pas à travers sa variante descendante sur les 

données de l’année 2002 a permis d’obtenir l’équation suivante ayant 

trois seules variables pertinentes que sont MAX, DRO et RAI.  

Y= -201,3049   + 4006,7013 MAX - 6,418996 DRO -0,557239 RAI 

L’estimation des paramètres du modèle liés à cette variable et la 

constante montre des probabilités significatives (Tableau 4.27). La 

corrélation des valeurs observées en fonction des valeurs prévues 
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montre un R² de 0,90 et un RMSE de 95 kg (Figure 4.19). Il est 

caractérisé par un RMSE relatif de 21 % (Tableau 4.28). 

 

Tableau 4.27 : Estimation des coefficients du modèle 

Terme Estimation Erreur 

standard 

Rapport t Prob.>|t| 

Constante -201,30 61,83 -3,26 0,0036** 

max 4006,70 410,29 9,77 <, 0001*** 

DRO -6,41 1,97 -3,25 0,0037** 

 rai -0,55 0,24 -2,29 0,0320* 

 *significatif au seuil de 5 pourcent ; **significatif au seuil de 5 pour 1000 ; 
***significatif au seuil de 1 pour 10000 
 

Tableau 4.28 : Résumé de l’ajustement 

Paramètres Valeurs 

R² 0,90 

R²ajusté 0,88 

Racine de l’erreur quadratique moyenne  21 % 

RMSE validation 95 kg 

Moyenne de la réponse 396 kg 

Observations (ou sommes pondérées) 27 

 

 

Figure 4.19 : Les valeurs observées en fonction des valeurs prévues 

pour l’année 2002 
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Analyse des résidus  

Il ressort de l’analyse, que les résidus de l’année 2002 indiquent un 

écart type de 145 kg (Tableau 4.29). Le diagnostic du modèle de cette 

année donne une répartition régulière (Figure 4.20 a) et une distribution 

normale des résidus (Figure 4.20 b). 

 

Tableau 4.29 : Estimations des coefficients 

Type Coefficient Estimation Inférieur 

à 95 % 

Supérieur 

à 95 % 

Position μ 0 -42 42 

Dispersion σ 106 83,3 145 

 

 
 

Figure 4.20 a : Graphique du résidu 

par ligne 

Figure 4.20 b : Distribution des 

résidus 

 

Analyse de l’année 2003 

Pour cette année, nous ne disposons que de 11 observations. La mise en 

œuvre de la procédure de sélection de variables du type pas à pas, à 

travers sa variante descendante a permis d’obtenir l’équation suivante 

ayant trois variables pertinentes que sont MAX, WDEFI, HOR. Y = -

13,62 + 9475,86 MAX - 50,53 WDEFI - 342,48 HOR 

L’estimation des paramètres du modèle liés à ces variables et la 

constante montre des probabilités significatives (Tableau 4.30). La 

corrélation des valeurs observées en fonction des valeurs prévues 

montre un R² de 0,96 et un RMSE  de 100 kg (Figure 4.21). Il est 

caractérisé par un RMSE relatif de 11 % (Tableau 4.31).  
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Tableau 4.30 : Estimations des coefficients 

Variables Estimation Erreur 

standard 

Rapport t Prob.>|t| 

Constante -13,62 302,50 -0,05 0,9653 

Max 9475,86 1128,12 8,40 <, 0001** 

WDEFI -50,53 9,82 -5,15 0,0013* 

 HOR -342,48 88,89 -3,85 0,0063* 

*significatif au seuil de 5 pour 1000 ; **significatif au seuil de 1 pour 10000 

 

Tableau 4.31 : Résumé de l’ajustement 

Paramètres Valeurs 

R² 0,96 

R² ajusté 0,94 

R² de la validation 0,89 

Racine de l’erreur quadratique moyenne 11, % 

RMSE validation 123,41 kg 

Moyenne de la réponse 833,97 

Observations (ou sommes pondérées) 11 

 

 

Figure 4.21 : Les valeurs observées en fonction des valeurs prévues pour 

l’année 2003 
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Analyse des résidus  

Il ressort de l’analyse que les résidus de l’année 2003 indiquent écart 

type de 84 kg (Tableau 4.32). Le diagnostic du modèle de cette année 

donne une répartition régulière (Figure 4.22 a) et une distribution 

normale des résidus (Figure 4.22 b) attestée par un indice DW de 1,38. 

 

Tableau 4.32 : Estimations des coefficients 

Type Coefficient Estimation Inférieur 

à 95 % 

Supérieur 

à 95 % 

Position μ 0 -56 56 

Dispersion σ 84 58 147 

 

  

Figure 4.22 a : Graphique du résidu 
par ligne 

Figure 4.22 b : Distribution des 
résidus 

 

Analyse de l’année 2004 

Les observations de l’année 2004 sont au nombre de 26 avec une 

moyenne de 288 kg.MS.ha-1. La mise en œuvre de la procédure de 

sélection de variables du type pas à pas à travers sa variante descendante 

a permis d’obtenir l’équation suivante ayant une seule variable 

pertinente qu’est MAX.  Y = -224,94+ 2357,8581 MAX 

L’estimation des paramètres du modèle liés à cette variable et la 

constante montre des probabilités significatives (Tableau 4.33). La 

corrélation des valeurs observées en fonction des valeurs prévues donne 

un R² de 0,60 et un RMSE de 124 kg.(Figure 4.23). Il est caractérisé par 

une erreur (RMSE) relative de 44 % (Tableau 4.34).  
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Tableau 4.33 : Estimations des coefficients 

Variables Estimation Erreur 

standard 

Rapport t Prob.>|t| 

Constante -224,94 89,70 -2,51 <,01* 

Max 2357,85 396,82 5,94 <, 0001* 

*significatif au seuil de 1 pour cent ; * significatif au seuil de 1 pour 10000 

 

Tableau 4.34 : Résumé de l’ajustement 

Paramètres Valeurs 

R² 0,60 

R² ajusté 0,58 

R² Validation 0,50 

Racine de l’erreur quadratique moyenne  44 % 

RMSE Validation 130,50 

Moyenne de la réponse 288 

Observations (ou sommes pondérées) 26 

 

 

Figure 4.23 : Les valeurs observées en fonction des valeurs prévues pour 

l’année 2004 
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Analyse des résidus  

Il ressort de l’analyse que les résidus de l’année 2004 indiquent un écart 

type de 122 kg (Tableau 4.35). Le diagnostic du modèle de cette année 

montre une répartition régulière avec trois points excentrés (Figure 4.24 

a) et une distribution normale des résidus (Figure 4.24 b). 

 

Tableau 4.35 : Estimations des coefficients 

Type Coefficient Estimation Inférieur à 

95 % 

Supérieur à 

95 % 

Position μ -0 -49 49 

Dispersion σ 122 96 168 

 

 

 
 

Figure 4.24 a : Graphique du résidu 
par ligne 

Figure 4.24 b : Distribution des 
résidus 

 

Analyse de l’année 2005 

Les observations de l’année 2005 sont au nombre de 31 avec une 

moyenne de 713 kg MS/ha. La mise en œuvre de la méthode de 

sélection de variables du type pas-à-pas à travers la procédure 

descendante a permis d’obtenir l’équation suivante, avec trois variables 

pertinentes que sont INT, WDEFI et SAD. Y = -2639,25+ 698,67 

INT + 1,91WDEFI + 106,11 SDA. 

L’estimation des paramètres du modèle liés à ces variables et la 

constante montre des probabilités significatives (Tableau 4.36). la 

corrélation des valeurs observées en fonction des valeurs prévues donne 
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un R² de 0,82 et un RMSE de 194 kg.(Figure 4.25). Il est caractérisé par 

une erreur (RMSE) relative de 27 % (Tableau 4.37).  

 

Tableau 4.36 : Estimations des coefficients 

Variables Estimation Erreur 

standard 

Rapport t Prob.>|t| 

Constante -2639,26 968,23 -2,73 0,01** 

int 698,68 97,49 7,17 <, 0001**** 

WDEFR 1,91 0,96 1,98 0,05* 

 sda 106,12 35,99 2,95 0,006*** 

*significatif au seuil de 5 pour 100 ; **significatif au seuil de  10 pour 1000 ; 
***significatif  au seuil de  10 pour 1000 ; ***significatif  au seuil de  1 pour 10000 
 

Tableau 4.37 : Résumé de l’ajustement 

Paramètres valeurs 

R² 0,82 

R² ajusté 0,80 

R² validation 0,77 

Racine de l’erreur quadratique moyenne 27 % 

RMSE validation 205,37 

Moyenne de la réponse 713,42 

Nombre d’observations  31 

 

 

Figure 4.25 : Les valeurs observées en fonction des valeurs prévues pour 

l’année 2005 
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Analyse des résidus 

Il ressort de l’analyse que les résidus de l’année 2005 indiquent un écart 

type de 184 kg (Tableau 4.38). Le diagnostic du modèle de cette année 

montre une répartition régulière (Figure 4.26 a) et une distribution 

normale des résidus (Figure 4.26 b) comme l’attestent l’indice DW de 

2 un taux d’autocorrélation de -0,009. 

 

Tableau 4.38 : Estimations des coefficients 

Type Coefficient Estimation Inférieur à 

95 % 

Supérieur à 

95 % 

Position μ 0 -67 67 

Dispersion σ 184 147 246 

 

 
 

Figure 4.26 a : Graphique du résidu 

par ligne 

Figure 4.26 b : Distribution 

des résidus 
 

Analyse de l’année 2006 

Pour cette année, nous disposons de 24 observations ayant une moyenne 

de 826 kg.MS.ha-1. La mise en œuvre de la procédure de sélection de 

variables du type pas à pas par la méthode descendante a permis 

d’obtenir l’équation suivante ayant quatre variables pertinentes que sont 

INT, CUM, EVA, SVA.  Y = -858,74 -686,75 INT + 76,18 CUM + 

66,51 EVA - 44,45 SVA 

L’estimation des paramètres du modèle liés à ces variables et la 

constante donne des probabilités significatives (Tableau 4.39). la 

corrélation des valeurs observées en fonction des valeurs prévues 

montre un R² de 0,87 et un RMSE de 220 kg.(Figure 4.27). Il est 

caractérisé par une erreur (RMSE) relative de 29 % (Tableau 4.40). 
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Tableau 4.39 : Estimations des coefficients 

Terme Estimation Erreur 

Standard 

Rapport t Prob.>|t| 

Constante -858,75 760,78 -1,13 0,27 

INT -686,76 327,37 -2,10 0,04* 

CUM 76,19 19,14 3,98 0,0008*** 

 EVA 66,51 17,21 3,87 0,001** 

SVA -44,46 10,38 -4,28 0,0004**** 

*significatif au seuil de 5 pour 100 ; **significatif au seuil de 1 pour 1000 ; 

***significatif au seuil de 10 pour 10000 ; ****significatif au seuil de 5 pour 10000 

 

Tableau 4.40 : Résumé de l’ajustement 

Paramètres Valeurs 

R² 0,87 

R² ajusté 0,85 

R² validation 0,80 

Racine de l’erreur quadratique moyenne  29 % 

RMSE validation 244 

Moyenne de la réponse 825,98 

Observations (ou sommes pondérées) 24 

 

 

Figure 4.27 : Les valeurs observées en fonction des valeurs prévues pour 

l’année 2006 

Analyse des résidus  

Il ressort de l’analyse, que les résidus de l’année 2006 donnent un écart 

type de 200 kg (Tableau 4.41). Le diagnostic du modèle de cette année 
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montre une répartition régulière (Figure 4.28 a) et une distribution 

normale des résidus (Figure 4.28 b), un indice DW de 2,43. 

 

Tableau 4.41 : Estimations des coefficients 

Type Coefficient Estimation Inférieur à 

95 % 

Supérieur à 

95 % 

Position μ 0 -84 84,43 

Dispersion σ 200 155 280,48 

 

 
 

Figure 4.28 a : Graphique du résidu 

par ligne 

Figure 4.28 b : Distribution des 

résidus 

 

Analyse de l’année 2007 

Pour cette année, nous disposons de 23 observations ayant une moyenne 

de 1119 kg.MS.ha-1. La mise en œuvre de la procédure de sélection de 

variables du type pas à pas à travers descendante a permis d’obtenir 

l’équation suivante ayant deux variables pertinentes que sont INT, 

TWR.  Y = -1495,72 + 505,03 INT +2,16TWR 

L’estimation des paramètres du modèle liés à ces variables et la 

constante montre des probabilités significatives (Tableau 4.42). la 

corrélation des valeurs observées en fonction des valeurs prévues donne 

un R² de 0,61 et un RMSE de 100 kg.(Figure 4.29). Il est caractérisé par 

une erreur (RMSE) relative de 20 % (Tableau 4.43).  
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Tableau 4.42 : Estimations des coefficients 

Variables Estimation Erreur 

standard 

 Rapport t Prob.>|t| 

Constante -1495,72 682,19  -2,19 0,04* 

INT 505,03 90,25  5,60 <, 0001** 

TWR 2,16 1,17  1,85 0,0786 

*significatif au seuil de 5 pour 100 ; ** significatif au seuil de 1 pour 10000 

 

Tableau 4.43 : Résumé de l’ajustement 

Paramètres Valeurs 

R² 0,61 

R²ajusté 0,57 

R² validation 0,53 

Racine de l’erreur quadratique moyenne  20 % 

RMSE Validation 226,29 kg 

Moyenne de la réponse 1119,17 

Observations (ou sommes pondérées) 23 

 

 

Figure 4.29 : Les valeurs observées en fonction des valeurs prévues pour 

l’année 2007 

Analyse des résidus  

Il ressort de l’analyse, que les résidus de l’année 2007 indiquent un 

écart type de 210 kg (Tableau 4.44). Le diagnostic du modèle de cette 

année montre une répartition régulière (Figure 4.30 a) et une 

distribution normale des résidus (Figure 4.30 b), un indice DW de 2,4 
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Tableau 4.44 : Estimations des coefficients 

Type Coefficient Estimation Inférieur à 

95 % 

Supérieur à 

95 % 

Position μ 0 -91 91 

Dispersion σ 210 163 298 

  

 

 
 

Figure 4.30 a : Graphique du résidu 

par ligne 

Figure 4.30 b : Distribution des 

résidus 

 

Analyse de l’année 2008 

Pour cette année, nous disposons de 33 observations ayant une moyenne 

de 483 Kg MS.ha-1. La mise en œuvre de la procédure de sélection de 

variables du type pas à pas à travers la méthode descendante a permis 

d’obtenir l’équation suivante ayant une seule variable pertinente qu’est 

le PVA. Y = -1125,59 + 14,50 PVA 

L’estimation des paramètres du modèle liés à cette variable et la 

constante montre des probabilités significatives (Tableau 4.45). La 

corrélation des valeurs observées en fonction des valeurs prévues 

montre un R² de 0,59 et un RMSE de 283 kg.(Figure 4.31). Il est 

caractérisé par une erreur (RMSE) relative de 58 % (Tableau 4.46).  
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Tableau 4.45 : Estimations des coefficients 

Terme Estimation Erreur 

standard 

Rapport t Prob.>|t| 

Constante -1125,59 248,11 -4,54 <, 0001* 

 PVA 14,50 2,20 6,62 <, 0001* 

*significatif au seuil de 1 pour 10000 
 

Tableau 4.46 : Résumé de l’ajustement 

Paramètres Valeurs 

R² 0,58 

R² ajusté 0,57 

R² validation 0,53 

Racine de l’erreur quadratique moyenne  58 % 

RMSE Validation 292,11 

Moyenne de la réponse 483,20 

Observations (ou sommes pondérées) 33 
 

 

 

Figure 4.31 : Les valeurs observées en fonction des valeurs prévues pour 

l’année 2008 

 

Analyse des résidus  

Il ressort de l’analyse, que les résidus de l’année 2008 donnent un écart 

type de 279 kg (Tableau 4.47). Le diagnostic du modèle de cette année 

montre une répartition régulière (Figure 4.32 a) et une distribution 

normale des résidus (Figure 4.32 b). 
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Tableau 4.47 : Estimations des coefficients 

Type Coefficient Estimation Inférieur à 

95 % 

Supérieur à 

95 % 

Position μ 0 -99 99 

Dispersion σ 279 224 369 

 

 

  

Figure 4.32 a : Graphique du 

résidu par ligne 

Figure 4.32 b : Distribution des 

résidus 

 

Analyse de l’année 2009 

Pour l’année 2009, nous ne disposons que de 16 observations ayant une 

moyenne de 490 kg.MS.ha-1. La mise en œuvre de la procédure de 

sélection de variables du type pas à pas à travers la méthode 

descendante a permis d’obtenir l’équation suivante ayant deux variables 

pertinentes que sont ETAF et EVA. Y = -1551,76+ 3,61 ETAF +31,13 

EVA 

L’estimation des paramètres du modèle liés à ces variables et la 

constante montre des probabilités significatives (Tableau 4.48). la 

corrélation des valeurs observées en fonction des valeurs prévues donne 

un R² de 0,82 et un RMSE de 112 kg.(Figure 4.33). Il est caractérisé par 

une erreur (RMSE) relative de 22 % (Tableau 4.49).  
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Tableau 4.48 : Estimations des coefficients 

Variables  Estimation Erreur 

standard 

Rapport t Prob.>|t| 

Constante -1551,76 300,12 -5,17 < ,0002** 

ETAF 3,61 1,64 2,20 <,04* 

 EVA 31,13 5,04 6,18 <, 0001*** 

*significatif au seuil de 5 pour 100 ; **significatif au seuil de 5 pour 10000 ; 

***significatif au seuil de 1 pour 10000 
 

Tableau 4.49 : Résumé de l’ajustement 

Paramètres Valeurs 

R² 0,82 

R² ajusté 0,79 

R² validation 0,75 

Racine de l’erreur quadratique moyenne  22 % 

RMSE Validation 119,54 

Moyenne de la réponse 489,82 

Observations (ou sommes pondérées) 16 

 

 

Figure 4.33 : Les valeurs observées en fonction des valeurs prévues pour 

l’année 2009 
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Analyse des résidus 

Il ressort de l’analyse, que les résidus de l’année 2009 donnent un écart 

type de 104 kg (Tableau 4.50). Le diagnostic du modèle de cette année 

donne une répartition régulière (Figure 4.34 a) et une distribution 

normale de ces résidus (Figure 4.34 b) comme l’atteste l’un indice DW 

de 2. 

Tableau 4.50 : Estimations des coefficients 

Type Coefficient Estimation Inférieur 

à 95 % 

Supérieur 

à 95 % 

Position μ 0 -56 56 

Dispersion σ 104 77 162 

 

  

Figure 4.34 a : Graphique du résidu 

par ligne 

Figure 4.34 b : Distribution des 

résidus 
 

Analyse de l’année 2010 

Pour cette année 2010, nous disposons de 32 observations ayant une 

moyenne de 1005 Kg.MS.ha-1. La mise en œuvre de la procédure de 

sélection de variables du type pas à pas à travers la méthode 

descendante a permis d’obtenir l’équation suivante avec deux variables 

pertinentes que sont INT, SDA.  Y = -4931,74+ 1057,45 INT +151,27 

SDA 

L’estimation des paramètres du modèle liés à ces variables et la 

constante montre des probabilités significatives (Tableau 4.51). la 

corrélation des valeurs observées en fonction des valeurs prévues 

montre un R² de 0,68 et un RMSE de 348 kg.(Figure 4.35). Il est 

caractérisé par une erreur (RMSE) relative de 34 % (Tableau 4.52).  
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Tableau 4.51 : Estimations des coefficients 

Variables Estimation Erreur 

standard 

Rapport t Prob.>|t| 

Constante -4931,745 1719,608 -2,87 0,007** 

INT 1057,4551 152,2813 6,94 <, 0001*** 

SDA 151,27711 71,16638 2,13 0,04* 

*significatif au seuil de 5 pour 100 ; **significatif au seuil de 1 pour 100 ; 

***significatif au seuil de 1 pour 10000 
 

Tableau 4.52: Résumé de l’ajustement 

Paramètres Valeurs 

R² 0,68 

R² ajusté 0,67 

R² Validation 0,62 

Racine de l’erreur quadratique moyenne 34 % 

RMSE validation 361 

Moyenne de la réponse 1004,98 

Observations (ou sommes pondérées) 32 

 

 

Figure 4.35 : Les valeurs observées en fonction des valeurs prévues pour 

l’année 2010 
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Analyse des résidus  

Il ressort de l’analyse, que les résidus de l’année 2010 donnent un écart 

type de 337 kg (Tableau 4.53). Le diagnostic du modèle de cette année 

montre une répartition régulière (Figure 4.36 a) et une distribution 

normale des résidus (Figure 4.36 b), un indice DW de 1,99. 
 

Tableau 4.53 : Estimations des coefficients 

Type Coefficient Estimation Inférieur 

à 95 % 

Supérieur 

à 95 % 

Position μ -0 -122 122 

Dispersion σ 337 271 449 

 

 
 

Figure 4.36 a : Graphique du résidu 

par ligne 

Figure 4.36 b : Distribution des 

résidus 

 

Analyse de l’année 2011 

Pour cette année, nous disposons de 39 observations. La mise en œuvre 

de la procédure de sélection de variables du type pas à pas par la 

méthode descendante pour l’année 2011 a permis d’obtenir l’équation 

suivante avec quatre variables pertinentes que sont MAX, WDEFI, 

ETAF, PEA.  Y = 1850,33+ 2329,23 MAX -27,77 WDEFI +6,63 

ETAF -89,84 PEA 

L’estimation des paramètres du modèle liés à ces variables et la 

constante montre des probabilités significatives (Tableau 4.54). la 

corrélation des valeurs observées en fonction des valeurs prévues 

montre un R² de 0,76 et un RMSE de 138 kg.(Figure 4.37). Il est 

caractérisé par une erreur (RMSE) relative de 29 % (Tableau 4.55). 
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Tableau 4.54 : Estimations des coefficients 

Variables Estimation Erreur 

standard 

Rapport t Prob.>|t| 

Constante 1850,34 679,48 2,72 0,01** 

Max 2329,23 307,74 7,57 <, 

0001**** 

WDEFI -27,78 11,35 -2,45 0,02* 

ETAF 6,63 2,06 3,21 0,002** 

PEA -89,85 27,81 -3,23 0,002** 

*significatif au seuil de 5 pour 100 ; **significatif au seuil de 1 pour 100 ;  
***significatif au seuil de 5 pour 1000 ; ****significatif au seuil de 1 pour 10000 
 

Tableau 4.55 : Résumé de l’ajustement 

Paramètres Valeurs 

R² 0,76 

R²ajusté 0,73 

R²validation 0,65 

Racine de l’erreur quadratique moyenne 29 % 

RMSE validation 154,5 kg.ha-1 

Moyenne de la réponse 482,14 kg.ha-1 

Nombre d’observations  39 

 

 

Figure 4.37 : Les valeurs observées en fonction des valeurs prévues pour 
l’année 2011 
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Analyse des résidus  

Il ressort de l’analyse, que les résidus de l’année 2011 donnent un écart 

type de 131 kg (Tableau 4.56). Le diagnostic du modèle de cette année 

montre une répartition régulière (Figure 4.38 a) et une distribution 

normale des résidus (Figure 4.38 b), un indice DW de 1,92 

 

Tableau 4.56 : Estimations des coefficients 

Type Coefficient Estimation Inférieur 

à 95 % 

Supérieur 

à 95 % 

Position μ -0 -42 42 

Dispersion σ 131 107 169 

 

  

Figure 4.38 a : Graphique du résidu 

par ligne 

Figure 4.38 b : Distribution des 

résidus 
 

Analyse de l’année 2012 

Pour cette année 2012, nous disposons de 24 observations ayant une 

moyenne de 1277 KG.MS.ha-1. La mise en œuvre de la procédure de 

sélection de variables du type pas à pas à travers la variante descendante 

a permis d’obtenir l’équation suivante ayant trois variables pertinentes 

que sont INDXLATEST, WDEFR, PVA.  

Y = 720,92 -16,19 INDXLATEST 6,95 WDEFR 19,71 PVA 

L’estimation des paramètres du modèle liés à ces variables et la 

constante montre des probabilités significatives (Tableau 4.57). la 

corrélation des valeurs observées en fonction des valeurs prévues 

montre un R² de 0,78 et un RMSE de 308kg. (Figure 4.39). Il est 

caractérisé par une erreur (RMSE) relative de 24 % (Tableau 4.58).  
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Tableau 4.57 : Estimations des coefficients 

Variables Estimation Erreur 

standard 

Rapport t Prob.>|t| 

Constante 720,92 785,57 0,92 <,37 

INDXLATES

T 

-16,19 7,58 -2,14 <,0451* 

WDEFR 6,95 2,14 3,25 <,0040** 

PVA 19,72 2,88 6,85 <, 0001*** 

*significatif au seuil de 5 pour 100 ; **significatif au seuil de 5 pour 1000 ; 
***significatif au seuil de 1 pour 10000 
 

Tableau 4.58 : Résumé de l’ajustement 

Paramètres Valeurs 

R² 0,78 

R² ajusté 0,74 

R² validation 0,65 

Racine de l’erreur quadratique moyenne 24 % 

RMSE validation 347,88 

Moyenne de la réponse 1276,77 

Observations (ou sommes pondérées) 24 

 

 

Figure 4.39 : Les valeurs observées en fonction des valeurs prévues pour 

l’année 2012 

  



l  

Analyse des résidus 

Il ressort de l’analyse, que les résidus de l’année 2012 indiquent un 

écart type de 288 kg (Tableau 4.59). Le diagnostic du modèle de cette 

année montre une répartition régulière (Figure 4.40 a) et une 

distribution normale des résidus (Figure 4.40 b) attesté par un indice 

DW de 2,10. 

 

Tableau 4.59 : Estimations des coefficients 

Type Coefficient Estimation Inférieur 

à 95 % 

Supérieur 

à 95 % 

Position μ -0 -121 121 

Dispersion σ 288 224 404 

 

  

Figure 4.40 a : Graphique du résidu 

par ligne 

Figure 4.40 b : Distribution des 

résidus 
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Annexe 4.4: L’évolution du bilan fourrager sur la période de 2000 

à 2013 au Niger (Ces déficits sont consécutifs à des séquences de 

sécheresses). 

 

 

Figure 4.41 : L’évolution du bilan fourrager sur la période de 2000 à 2013 au 

Niger (MEIA) 


