Volume 246, number 1, 2

PHYSICS LETTERS B 23 August 1990

Strongly coupled positronium
and relativistic quantum constraint dynamics

M. Bawin ' and J. Cugnon
Institut de Physique B3, Universiié de Liége, Sart Tilman, B-4000 Liege 1, Belgium

Received 18 April 1990

We study the ground state energy of strongly coupled “positronium” as a function of the coupling constant « in the
framework of relativistic quantum constraint dynamics as formulated by Crater and Van Alstine. We use a regularized
Coulomb interaction A(r) defined by A(r)=—a/r {r>ry), Alr)=—a/r, (r<ry), where ry is an arbitrarily small cut-off
radius. We find that the center-of-mass energy W of the system remains positive for any a-value, indicating no instability
with respect to spontaneous pair creation, in sharp contrast with corresponding results from the Klein-Gordon or Dirac
equation. We do, however, find a drastic change in the scaling properties of W as @ passes through the critical value . ~%.
While for @ < a,, mrg<1, W scales with the mass m of the particle, W scales with m?r, for o > «.. The limit ry—> 0 is briefly

discussed.

Crater and Van Alstine (CV) recently derived fully
covariant relativistic equations for two spin one-half
particles in electromagnetic interaction [1]. The CV
equations are a generalization of Todorov's
quasipotential approach to the relativistic two-body
problem [2] and have a number of remarkable
properties.

(1) The CV equations correctly reduce to the Dirac
equation {with a Coulomb interaction) when one of
the particle masses becomes infinite. It follows that
they sum exactly all generalized ladder photon
exchange graphs in this limit [2].

(2) Relativistic corrections of order («)* to the
ground state energy of (physical) positronium are
correctly given by the CV equations [1]. Note that
the CV equations yield the same perturbative results
as the Breit equation, which partly include the
exchange of transverse photons so that the CV
equations, when solved in the nonperturbative
regime, include at least partly the effect of nonper-
turbative transverse photon exchanges as well. Let us
note that these properties are not shared by the ladder
approximation to the BS equation [2,3].
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(3) It has been shown [4], at least for spinless
particles, that the BS equation can be written as a set
of equations which have the same structure as the
equations derived from relativistic quantum con-
straint dynamics, thus giving the latter a field-
theoretic foundation.

The purpose of this work is to study strongly cou-
pled positronium (SCP) in the framework of the CV
equations. Specifically, we wish to study whether
SCP becomes unstable with respect to spontaneous
particle-antiparticle pair creation at some critical
coupling strength. The interest of such a problem is
(at least) twofold. On the one hand, one can hope
that strongly coupled QED (as modelled by the CV
equations) may give us some insight into short dis-
tance QCD [5]. On the other hand, recent heavy-ion
experiments at Darmstadt [6] have led to the conjec-
ture that a new phase of QED might occur in
sufficiently strong Coulomb fields [7]. It is conceiv-
able that in such a phase the electromagnetic coupling
between elementary fermions would be “‘strong”, i.e.
much greater than 1/137.

Our main result is that the total center-of-mass
energy W of SCP remains positive for any finite value
of @, so that no instability with respect to spontaneous
pair creation occurs, in sharp contrast with corre-
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sponding results from the Dirac [8] or Klein-Gordon
[9,10] equation. However, there are iwo distinet
phases in the energy spectrum according to whether
o is greater or smaller than a critical value @.=3.
For @ < a,, the energy scale is the mass m of the
particle. For @ > o, m is proportional to m’r,, where
mi, is an arbitrarily small but nonzero parameter. As
will be briefly discussed, r, may be interpreted as
associated with a nonperturbative modification of the
Coulomb interaction at short distance, although, from
4 strict mathematical viewpoint, r, is an arbitrary
scale in the energy spectrum for a>3.

In order to see this in detail, we follow the CV
formalism [1] and start from the coupled Dirac
equations describing strongly coupled positronium:

Vl'[(Pl—A1)+m]§[/:O, (M)
'Yz'[(Pz_Az)‘f’m]k[’:O‘ 2)

Inegs. (1), (2), we take [5] A, = A, = (0, A(r)), where
A(r) describes the electromagnetic interaction of the
particles of mass m. In the CM system, egs. (1), (2)
reduce to the very simple equation for the 'S, state [5]

[p?+my —(ew—A)Vle=0, (3)

where one has
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W being the CM energy of SCP.
We have studied eq. (3) with A(r) given by
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Ineq. (6), « isthe strength of the Coulomb interaction
in SCP, while r, is a (so far) arbitrary cut-off radius.
Solutions to eq. (3) can be written down immediately
as eq. (3) is formally identical with the S-wave radial
Klein-Gordon equation [9]. One gets

sin Kr,

m (r>rg), (7)

A
so(r)=7 W .(p)
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where W, .(p) is Whittaker’s function,

A

o(=Csin R (r<ro) (8)
with

p=-ah)’, ©
k=G e 6o
p=2Kr, (1)
K ={m% — %)% (12)

E:{ma—<sw+%>z]w. (13)

Bound state solutions are obtained by matching ro(r)
and its derivative at r=ry:

% o dr) W,
K cotan Kr, :Mt .
Wk,#(f)) g

Results are displayed in fig. 1.

One can see that the energy of the 'S, state remains
positive for all a-values, indicating no instability of
the two-body system with respect to spontaneous pair
creation. This should actually be not too surprising,
as eq. (3) contains a term 2enA which becomes
infinitely repulsive as W becomes arbitrarily small,
as shown by eq. (4). We can see that the existence of
strongly attractive interactions in eq. (3) must not be
necessarily interpreted as a signal of instability with
respect to spontaneous pair creation, in contrast with
the corresponding situation for Klein-Gordon par-
ticles.

(14)
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Fig. 1. Energy (W) of the '8, state of strongly coupled
positronium as a function of a for different values of mry.
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The curves in fig. 1 do, however, show a striking
change in the energy scale as o goes from the region
o < a,, o the region o > a,,, where a,, =3 for mr,=
1077, As long as « is less than o, the mass m of the
particle provides the energy scale. For a > a,, there
is a sharp variation of W with a. However, for some
value of @ = a,> o, (but still very close to ), W
now scales with m?r, and becomes arbitrarily small
for any a > oy.

One can illustrate this behavior by means of
analytic expressions for W which approximate the
exact solution in different a-regions.

(1) For a <%, r,=0, eq. (3) can be solved exactly
with interaction (6). The ground state energy is given
by [11]

Wézzmz[i—k (15)

(roi=) |

14— .
(d+h—ay

Eq. (15) shows that Wy~ 2m for 0 <<a <j.
(2) For a slightly larger than 2 [x = (o> —})"/? real

and small], W/2Zm <1, mr,<1, one can show from

(14) that the ground state energy W, is given by

W= 2am’r, exp(i—r~2y), (16)

where v is Euler’s constant: y=0.577.... Eq. (16)
can be derived exactly in the same way as approxi-
mate formulas for the specirum of Dirac particles in
strong Coulomb fields have been obtained in the
literature [12]. We shall not repeat this derivation
here.

(3) For ax1, W/2m<1, one finds from (14),
using the formula [13]

Z i/4
W—K',M/Z(Z) ~ 2_1/2 (‘“)
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A numerical study shows (18) to be already an excel-
lent approximation for a>1. Fig. 2 shows that
W/2m?rya is a bounded function of (a) as mr,
becomes arbitrarily small. It shows that our formula
(16) provides an upper bound for W, for all a.

We have so far considered mr, to be an arbitrary
small but nonzero parameter, so that we can interpret
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Fig. 2. Values of the ratio & eq. (16), as a function of « for the
15, state of strongly coupled positronium and for several values
of mry (1077, 107%, 1075, 107%, 107> and 5% 107°, respectively
from top to bottom). The full line indicates the limiting value
of ¢ given by eq. {16).

7, as describing a nonperturbative modification of the
Coulomb interaction at small distance. Support for
this viewpoint can be found in the literature [14]. We
now wish to show that this interpretation is actually
not compulsory. Even if we used a pure point
Coulomb interaction in eq. (3) a new arbitrary scale
would arise in the energy spectrum for & >4. In order
to see this in some detail, consider eq. (3) for a >3,
W/2m<1 (g% —my =0).

Writing
x=@rt? (B an arbitrary constant), (19)
o =x"2p(x), (20)

one finds that eq. (3) reduces to the following eigen-
value problem:

d> 4’3
\ae 4) o=ne, (21)
where
Smia
2= . 22
K= g (22)

As is well known [15,16], the eigenvalue spectrum
corresponding to (21) for @>1 is given by

w?=C(a) exp<~:—:), (23)
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where C(a) is an arbitrary function of @ and n is

any integer. Using (22), (23), one then finds

Bt Cla) P\ 2x

(24)

W:8m2a 1 / mr)

Comparison with (16) shows that provided we take
n=1 (for the ground state energy), B°=1/#r, and
Cla)=exp{—2y—m/2x), (24) will coincide with
(16). Obviously x? must be finite in order for (21) to
define a self-adjoint operator, so that r, must be
nonzero. Thus the occurrence of an arbitrary scale in
the energy spectrum for a >3 can be regarded as a
mathematical consequence of the self-adjointness of
the eigenvalue problem (23). Itis, however, equivalent
to introduce a modification of the Coulomb potential
at short distance.

To conclude, we found that strongly coupled
“positronium’ as described by the CV equations is
stable with respect to the spontaneous creation of
particle-antiparticle pairs at any finite value of the
coupling constant. The new feature, however, is that
for any o >3, the ground state energy becomes
arbitrarily small (but nonzero). As already empha-
sized, these results are in sharp contrast with corre-
sponding results from the Dirac equation, even
though the CV equations reduce to the Dirac equation
when the mass of one of the particles becomes infinite.
Thus the stability properties of a two-body system
with equal masses may be quite different from the
unequal mass case, at least if one trusts the CV
equations in the nonperturbative regime.
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