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PACS. 21.10. - General and average properties of nuclei; properties of nuclear energy levels. 

Abstract. - We show explicitly that the ground-state density of a system of noninteracting 
fermions in a hmonic-oscillator potential well can be given in terms of the wave functions of 
the single-particle states around the Fermi level. 

In a previous publication [l], we demonstrated that the derivative of the density for a 
system of noninteracting fermions occupying the lowest levels in a three-dimensional 
harmonic-oscillator potential can .be written in terms of a few radial wave functions. 
Typically, if N major oscillator shells are occupied, the derivative implies only the last 
occupied shell and the f ist  nonoccupied one. Here, we demonstrate a similar property for 
the density itself. 

That such a relation should hold is rather obvious. Indeed the density (for a spin-3 
fermions) is given by 

where RnZ is the normalized radial wave function for the state {n, 1) .  The summation runs up 
to  the last occupied major shell denoted by F ,  such that 2n + 1s F .  There exists a 
relationship [2] linking Rn,L, R, , J+~ and Rn+l,z-l (see below). Successive use of this relation 
in eq. (1) would give the desired result. However, this direct procedure is rather involved 
and many manipulations are needed to reach the simple result that we exhibit below. 

Here, we produce a simple demonstration using our previous result. We take the 
derivative of eq. (1) (where we put the oscillator parameter a = q s e q u a l  to one), and use 
the expression for the derivative of Rnz [2,3]. We get 

dF - (21 + 1) Rn'(r) - {- R,z + (272 + 1 + 1 - ?)RnZ - 2[n(n + 1 + +)]4Rn.-l,l} (2) 
dr  i: n,l<F r 
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or 

with the help of the recurrence relation [2] 

[n(n + 1 + &)]'RR,-l.l - (2% + 1 + 5 - P)R,r + [(n +l)(n + 1 + 9)]'Rn+1,? = 0 , (4) 

eq. (3) becomes 

This can be rewritten as 

where the summation is restricted to the last two occupied major shells. Using the relation 

(7) (n + 1 + $)'R,L= rRn,r+l + (n + l)*Rn+I.l , 

the summation on the major shell F - 1 can be put in the form 

or 

Relation (7) can also be used to transform the term corresponding to  F in eq. (6). Gathering 
all the results, we obtain 

Using our previous result [l], we finally get 

+ (1 - d&- l)(n + l)4rRnzRn+l,i-l + (1 - dd(2l -  lXn + l)R:+I,/-I} . (11) 

As announced, this expression involves the wave functions of the last occupied shell and of 
the first unoccupied one only. 
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As for dpldr, expression (11) could be obtained from one of the many sum rules which 
have been popularized in nuclear physics [4-71. In this particular case, the sum rule is the 
following: 

where 

Here k labels the particles (of mass m) and the curly brackets indicate the anticommutator. 
In eq. (12), IO) denotes the ground state of the system and 1%) is any possible state. In the 
case of the harmonic-oscillator Hamiltonian, P has nonvanishing matrix element when In) is 
a one particle-one hole state with the hole in the last occupied major shell and the particle in 
the first unoccupied major shell. Therefore, the property announced in the beginning could 
be obtained this way. However, to work out the final expression (11) requires cumbersome 
calculations involving repeated use of Clebsch-Gordan algebra and of relations fulfilled by 
products of spherical harmonics. 

As discussed in ref. [ll,  expression (11) involves more than a curious property of the 
harmonic-oscillator wave functions and can be of interest in at least three cases: 

1) A system of particles interacting via harmonic-oscillator potential can be reduced, to 
some extent, to a system of independent particles in a potential well [8]. 

2) The property (11) is approximately valid for a more realistic potential like a Woods- 
Saxon potential. The property followed by dpldr demonstrated in ref. [ l]  is also 
approximately valid, as we showed explicitly. The only practical point is the determination 
of a length parameter. We observed in ref. [13 that using a0 = [h2/2m(Zl - Q I * ,  where Z1(2) is 
the average single-particle energy in the lowest unoccupied (last occupied) shell, provides 
the best choice. 

3) As observed frst by LIU and BROWN [9], a good calculation (by standard techniques, 
like RPA e . g . )  of the properties of the collective excitations of a nuclear system requires a 
good single-particle spectrum near the Fermi level. The property we derived in ref. [ l]  in 
fact relates this part of the spectrum (and the wave functions) to  the quantity dpldr, which is 
responsible of the collective excitations, corroborating in some sense the observation of ref. 
[91. Property (11) is interesting in the same respect, since some collective excitations are due 
to operators proportional to the density or more generally to a linear combination of the 
density and its derivative (see f.i. ref. [lo]). 
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