X-ray tomography: a tool for revealing local distribution of liquid in structured packed columns

Dominique TOYE
dominique.toye@ulg.ac.be
Products, Environment, and Processes (PEPs)
Department of Chemical Engineering
Université de Liège
www.chemeng.ulg.ac.be

Contents

- Introduction
- Experimental setup
- Results
 - Global hydrodynamic quantities
 - Influence of viscosity
 - Flow morphology
- Conclusions
Structured packed columns

Packed column applications
- Gas-liquid absorption ⇔ CO₂ capture
- Solvent stripping ⇔ regeneration
- Distillation

High performance structured packings
- High void fraction
 - low pressure drop ⇔ high capacity
- High specific surface area
 - high mass transfer properties

Liquid flow hydrodynamics
- Liquid holdup
- Gas – liquid interfacial surface area
- Liquid flow morphology
 (films, rivulets…)

Reliable predictive models
⇔ Characterisation of the fluid distribution
down to a very local scale

⇒ X-ray tomography
ULG X-ray tomograph

Operating modes
1. tomographic mode
2. radiographic mode

X-ray source
- Voltage: 30 - 420 kV
- Current: 2 - 8 mA
- Focal spot: 0.8 mm
- Collimator: Pb
- Fan beam geometry
- Angle: 40° - Thickness: 1 mm

Linear detector
- 1280 high energy photodiodes
- Pitch: 0.4 mm – H: 0.6 mm

Rotating table
- 360° object rotation
- (time = 45 s)
- Max diam: 0.45 m
- Max. height: 3.8 m

Packed column

Radiography of the column (transparent PVC)

- Liquid distributor
- Pall rings
 - \(H_{\text{Pall}} = 800 \text{ mm} \)
- 4 MellapakPlus 752 elements rotated by 90°
 - \(H_{\text{Mellapak}} = 800 \text{ mm} \)

\[\text{Liquid:} \quad \begin{align*}
\mu & = 1 \text{ mPa.s} \\
\mu & = 10 - 20 \text{ mPa.s} \\
\end{align*} \]

\[\text{Flowrate:} \quad \dot{u}_L = 0 - 25 \text{ m³/m².h} \]

Operating conditions

Liquid
- Water
- Glycerine solutions

Gas
- Air

Packed column dimensions
- \(D_{\text{bed}} = 100 \text{ mm} \)
- \(H_{\text{bed}} = 1600 \text{ mm} \)

Structured packing

MellapakPlus 752.Y geometrical properties
(Sulzer Chemtech)

- Packing element height: 0.2 m
- Packing element diameter: 0.10 m (0.09 m)
- Specific surface area: 510 m²/m³
- Void fraction: 97.5%
- Corrugation angle: 41°
- Corrugation base: 9.85 mm
- Corrugation height: 6.50 mm

Image of dry packing image

Mellapak 752Y

(1) Column wall
(2) Corrugated sheet
(3) Wall wiper
(4) Hole

Aferka et al., 2010, Chem. Eng. Sci., 65, 511–516
Methodology

Water
\[u_L = 23 \text{ m}^3\text{m}^{-2}\text{h}^{-1} \]
No gas flow

Grey = solid (binary image)
Blue = liquid (binary image)

Images of liquid distribution

Liquid distribution in cross sections

Mellapak 752Y
Water
\[u_L = 23 \text{ m}^3\text{h}^{-1} \]
No gas flow
Uniform liquid distribution
Film flow predominates
At contact points between sheets, rivulets and/or flooded channels

Image processing

Objective = quantitative analysis

1. Normalisation (partial volume effect)
 - convert grayscale values into liquid holdup values
 - divide each pixel value by the value of a pixel completely filled by liquid

\[
\text{liquid holdup} = \frac{\text{pixel value}}{\text{value of a pixel completely filled by liquid}}
\]

→ Distribution of liquid holdup

2. Counting of interfacial pixels (liquid – gas)
 → Distribution of gas-liquid interfacial area

Viva et al., 2011, Flow Meas Instrum, 22, 279-290

Method validation: liquid holdup

Comparison to experimental data
(global values averaged on 70 sections)

Very different methods:
- quick closing valves + weighing
- Tomo + geometrical

Viva, 2008, PhD thesis, University of Pisa
Method validation : G-L interfacial area

Comparison to experimental data

(global values averaged on 70 sections)

Very different methods:
- chemical
- geometrical

Influence of liquid viscosity

Mellapak 752Y

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>300 mm</td>
</tr>
<tr>
<td>u_L</td>
<td>17 m3m$^{-2}$h$^{-1}$</td>
</tr>
<tr>
<td>u_G</td>
<td>0</td>
</tr>
</tbody>
</table>

Water

- $\mu = 1$ mPa.s
- Uniform liquid distribution
- Thicker liquid films
- Larger number of flooded channels between sheets

Aqueous solution of glycerine

- $\mu = 10$ mPa.s

On liquid holdup

Each point = one operating condition
= averaged value over the whole packed bed (70 sections)

On G-L interfacial area

Each point = one operating condition
= averaged value over the whole packed bed (70 sections)
On axial profiles

Liquid hold-up

![Graph showing liquid hold-up with different liquid viscosities (1 mPas, 10 mPas, 20 mPas) across different elevation levels (M1, M2, M3, M4).]

\[u_L = 17 \text{ m}^3/\text{m}^2\text{h} \]

70 cross-section images for each operating condition

Gas-liquid interfacial surface area

![Graph showing gas-liquid interfacial surface area with different liquid viscosities across different elevation levels (M1, M2, M3, M4).]

\[u_L = 17 \text{ m}^3/\text{m}^2\text{h} \]

Liquid flow morphology

Flow structures

- **Films**: Ideal morphology
- **Contact point flow**: Liquid mixing
- **Flooded channels**: No transfer

![Diagram illustrating liquid distribution and binary image with flow structures marked.]
Flow structure classification

= Iterative method

Step 1 = Separation and labelling of each flow structure

Step 2 = Classification based on the size and shape

SIZE

Minimum and maximum Feret diameters (F_{min} and F_{max}) computed on all flow structures

F_{min} and F_{max} = dimensions of the minimal enclosing parallelogram

Flow structure classification

Step 1 = Separation and labelling of flow structures

Limited spatial resolution of the ULG X-ray CT

Distinct flow structures may be adjacent

« seen » as a single structure

Criterion for structure splitting

$$\frac{S_{\text{Flow_struct}}}{S_{\text{Feret _rect}}} < 0.5$$

Elimination of pixels with the smallest number of neighbors
(erased pixels not lost = arbitrarily added to the main flow pattern = film flow)

Flow structure classification

Step 2 = Classification based on the size and shape

Flooding channels
Thicknes \geq distance between packing sheets

$F_{\text{min}} > 9 \text{ mm}$

Flow structure classification

Step 2 = Classification based on the size and shape

Contact point flow

« Round » shape

$\frac{F_{\text{max}}}{F_{\text{min}}} < 2$

and

$F_{\text{min}} < 9 \text{ mm}$
Flow structure classification

Step 2 = Classification based on the size and shape

Film flow

- Elongated thin shape
- \(\frac{F_{\text{max}}}{F_{\text{min}}} > 2 \)
- and
- \(F_{\text{min}} < 9 \text{ mm} \)
- + all remaining pixels (including erased pixels from structure separation)

Flow morphology: results

- Flooding channels
- Contact points
- Films

\[\mu = 1 \text{ mPa.s} \]
\[u_L = 17 \text{ m}^3/\text{m}^2\text{h} \]

\[\mu = 10 \text{ mPa.s} \]
\[u_L = 17 \text{ m}^3/\text{m}^2\text{h} \]

\[\mu = 20 \text{ mPa/s} \]
\[u_L = 17 \text{ m}^3/\text{m}^2\text{h} \]
Flow morphology

![Graph showing flow morphology](image)

Films

Contact points

Flooded channels

Influence of liquid flowrate

![Graph showing influence of liquid flowrate](image)

M1

M2

M3

M4

Floated channels

Contact points

Films

\(\mu = 1 \text{mPa.s} \)
Influence of liquid viscosity

\[u_L = 17 \text{ m/h} \]

Flooded channels Contact points Films

Hydrodynamic Analogy model

G-L interfacial surface area
\[\Leftrightarrow \text{Wetting efficiency} \]
\[\Rightarrow \text{fraction of irrigated and non-irrigated channels} \]

Liquid holdup
\[\Rightarrow \text{total amount of liquid} \]

Liquid flow morphology
\[\Rightarrow \text{Flooded channels fraction} \]
\[\Rightarrow \text{Contact point flow fraction} \]
\[(\Leftrightarrow \text{mixing length : } z_L) \]

\[z_C = \text{gas mixing length (packing geometry)} \]

Shilkin et al., 2006, AIChE J., 52, 3055-3066

\[z_L = \text{dist. between contact points} \]
\[\text{contact point flow fraction} \]
Model validation: mass transfer

- F-factor = \(u_G \rho_G^{0.5} = 0.63 \text{ Pa}^{0.5} \)
- CO\(_2\) desorption from water

\[
k_L a = \frac{u_L}{H_{pack}} \ln \left(\frac{x_{top} - x^*_{top}}{x_{bot} - x^*_{bot}} \right)
\]

Conclusions

Tomographic measurements
Quantitative assessment of the influence of **liquid load** and **liquid viscosity** on
- G-L interfacial surface area
- Liquid holdup
- Flow morphology (films, rivulets, flooded)

Global values
Spatial distributions

Mass-transfer model
- Based on an Hydrodynamic Analogy
- Validated by mass transfer experiments
Acknowledgments
Saïd Aferka, Michel Crine, Pierre Marchot,
Aurora Viva, Elisabetta Brunazzi,
Julia Steube, Anna Janzen, Evgeny Kenig.

Thank you for your attention