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ABSTRACT 

 

The platinum group metal (PGM) industry is currently reliant on the crush-mill-

float-smelt-refine route to process PGM ores. However, there are many instances where 

this route would not be feasible. An alternative process route has been developed which 

involves heap bioleaching to extract base metals followed by heap reclamation and a water 

wash step, leading into heap cyanide leaching to extract precious metals. This process was 

evaluated through test work on samples of Platreef ore using laboratory scale columns. 

After 304 days 75% Ni and 93% Cu were extracted in the bioleach experiment at 65°C, 

and after 60 days 58% Pt, 99% Pd and 90% Au in the follow-up cyanide leach experiment 

at 50°C. A preliminary process flow sheet has been developed around this. Analysis via a 

mineral liberation analyser showed that the remaining Pt was in the form of the mineral 

sperrylite, which appeared to be slow leaching in cyanide in comparison to the other 

mineral types. Analysis of cyanide effluent solution showed high levels of thiocyanate, 

which present an environmental risk for disposal and high consumption of cyanide. Further 

studies to develop the process for commercial application in the South African PGM 

industry are outlined.  
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INTRODUCTION 
 

As much as 88% of all the world’s primary platinum group metal (PGM) reserves 

can be found in the Republic of South Africa, mostly in the area known as the Bushveld 

Igneous Complex which consists of three unique ore bodies namely the Merensky Reef, 

the Upper Group 2 (UG2) and the Platreef (Schouwstra & Kinloch, 2000). Aside from the 

vast reserves of PGMs, these ore bodies house significant quantities of base metals (BMs), 

namely copper, nickel and cobalt, mostly in the form of sulphide minerals. The industry 

currently relies heavily on the conventional crush-mill-float-concentrate-smelt-refine route 

to obtain PGMs (Seymour & O'Farrelly, 2001). This in turn relies on the mineralogy of the 

ore being suitable for this process. The PGMs must deport to the copper and nickel 

sulphide minerals which are liberated by crushing and milling and recovered via flotation. 

The high grade concentrate can then be treated by a smelter for further concentration and 

the resulting matte refined by a series of pressure leach and purification stages to produce 

the BMs and PGMs. However there are many instances where this process may not be 

feasible. 

 

The authors are currently developing and have patented a new two-stage heap leach 

process (WO 2012/114165 A1, 30 August 2012) that may serve as an alternative to the 

conventional process route. The process also boasts many features which can contribute to 

sustainable development in the PGM industry. Firstly, the choice of reactor is the heap 

which has lower capital and operating costs than the standard route. This allows for more 

flexibility in what is currently a capital intensive industry to operate in. Heap leaching also 

allows for effective water management and use of leaching reagents. The solid to liquid 

ratio is around 3:1, which is the opposite for tank leaching where it is 1:3 and the pregnant 

leach solution and spent liquors after recovery processes such as electrowinning and 

adsorption to carbon, can be recycled back to the heap several times over. It can be argued 

that because of this closed loop, heap leaching is relatively environmentally benign as 

waste effluent solution and solid waste are not constantly being discharged to the 

environment or tailings storage facility. Finally, because heap leaching requires low skilled 

labour as compared to the standard route, it creates opportunities to engage with local 

communities in rural areas where such an operation is likely to be situated. 

 

Examining the process further, the first stage is a high temperature bioleach to 

extract base metals. The leaching mechanism consists of a microbially assisted 

ferric/ferrous couple. The sources of the ferric/ferrous ions are typically the minerals pyrite 

and pyrrhotite in the ore itself, and the microorganisms are naturally occurring and often 

indigenous to the mine sites. This reduces the cost of reagents for the process. The elevated 

temperature in the process is achieved by the exothermic reaction of sulphide mineral 

oxidation, assisted by mesophilic and thermophilic microorganisms (Tempel, 2003; Ream 

and Schlitt, 1997). The heat is maintained in the heap by regulating the flow of solution 

irrigation and aeration to the heap (Neale, 2012; Pradhan et al., 2008). The leachate from 

the heap can be treated by a number of methods, e.g. solvent extraction, or using ion 

exchange technology (Libenberg et al., 2013). The ore from the heap is then reclaimed and 

washed with water, which is re-used for solution make-up in the bioleach process. Then 



the ore is stacked on a separate heap for the second stage which is a cyanide leach at 

elevated temperature, achieved by heating of cyanide solution via means of solar energy 

or other available natural sources such as geothermal heat. It is also proposed that the water 

used to wash the ore in between heap leaching stages be heated by the same energy sources. 

This will aid in conserving some of the heat from the bioleach process and thus the ore 

will not have to be re-heated for the cyanide leach stage. The cyanidation process operates 

under alkaline conditions, making it relatively selective to the valuable elements and 

having low solubility for gangue minerals which form the bulk of the ore. This allows a 

typical heap leach to operate with low cyanide solution concentrations in the range of 100-

600 ppm. Separate studies within this project have shown that the precious metals can be 

efficiently recovered from cyanide leach solutions using adsorption to carbon and 

subsequent elution (Synders et al., 2013; Mpinga et al, 2013). While cementation is 

adequate for gold recovery it does not effectively recover PGMs (Mpinga et a., 2014). 

Despite common perceptions, cyanide is the most effective and environmentally friendly 

reagent from a short list of reagents (sodium bisulphide, thiosulphate, thiourea, 

hypochlorite, chloride and bromine/bromide solutions) that can be used for this application 

(Kappes 2002). Cyanide residues on tailings will naturally degrade in the presence of air 

and sunlight, and there are several technologies to treat waste solutions and recover value 

from them such as the SART®, ASTER™, EMS®, INCO and Caro processes. 

 

This paper presents some of the experimental data from test work conducted to 

develop the process using a flotation concentrate as well as assess the feasibility of the 

process from testing a whole ore sample, which had not been done previously. It discusses 

the strengths of the process and the challenges that still need to be met before the process 

can be commercialized and the implications it can have for the South African PGM 

industry.  

 

EXPERIMENTAL 
 

The authors conducted test work on both flotation concentrate and crushed ore 

originating from a Platreef ore body (Mwase et al., 2012a, 2014). 

 

Flotation Concentrate  

 

We took four 600 g samples of flotation concentrate and made them into slurry in 

a water to liquid ratio of approximately 3:5 and coated them onto granite pebbles 

(approximately 6 mm in size) in a concentrate to support media ratio of 1:7 by mass. We 

then packed the coated pebbles into cylindrical PVC columns with an internal diameter of 

90 mm and height 0.6 m. This was done to simulate heap leaching. The columns were left 

overnight to paritially dry and prevent wash out of concentrate once irrigation with feed 

solution commenced. Tables 1 and 2 show the average grade and general mineralogy of 

the concentrate. The concentrate was 83% passing 38 µm. We operated the columns at 

temperatures of 65, 70, 75 and 80°C and aerated the columns at a rate of 130 mL/min. We 

irrigated the columns with a solution containing 10 g/L of H2SO4, 2 g/L Fe and a pure 

culture of Metallosphaera hakonensis. We calculated the extractions of the BMs by 



analysing the effluent solution through atomic absorption spectroscopy (AAS). 

Additionally, we set aside a sub-sample of residual concentrate from one of the columns 

for analysis via a mineral liberation analyser (MLA). 

 

After the experiment we recovered the samples by washing the concentrate off the 

support  with water, filtering and drying. We took two of the four samples and prepared 

and leached them in identical columns, in an identical manner as the bioleach experiment, 

except in this case we irrigated the columns with a 5 g/L solution of sodium cyanide. We 

operated the columns at a temperature of 50°C and aerated them at a rate of 150 mL/min. 

After the experiment we recovered the samples in the same manner as before and set aside 

a sub-sample of residual concentrate from one of the columns for analysis by MLA. We 

calculated the extractions of the PGMs by analysing the effluent solution through 

inductively coupled plasma mass spectrometry (ICP-MS).  

 

Table 1 - PGM and BM grade of concentrate 

 

Pt Pd Au Ni Cu Co S 

g/t g/t g/t % % % % 

21 27 3.8 3.4 2.3 0.1 8 

 

Table 2 - Major PGM, BM and gangue minerals grouped by relative abundance 

 

Minerals/Mineral group (Wt %) 

PGMs (sulphides, tellurides & arsenides in equal 

amounts) 

<1% 

Chalcopyrite 4.9 

Pentlandite 7.7 

Pyrite 1.9 

Pyrrhotite 5.3 

Silicates 66.5 

Others* 13.7 

Coarse Crushed Ore 

 

From a drill-core sample of Platreef ore that had been crushed with a high pressure 

grinding roll mill, we prepared two samples of ore by screening to size fractions -25 mm 

+ 1 mm and -6 mm + 1 mm. The samples were bioleached using identical columns, 

microorganism and operating parameters as used with the flotation concentrate. However, 

in this case the extractions of BMs were determined by analysis of the effluent solution 

using inductively coupled plasma optical emission spectrometry (ICP-OES). Tables 3 and 

4 show the grades and mineralogy of the ore samples respectively. In this case the PGMs 

were largely in the form of tellurides and arsenides, with a small contribution from the 

sulphides and Fe-alloys. 

 

After the experiment we recovered the two samples, washed them with water and 

packed them in identical PVC columns and leached them with cyanide in an identical 



manner to the flotation concentrate and analysed the effluent solution in the same manner. 

Further to this, we analysed the effluent using high pressure liquid chromatography to 

measure the levels of thiocyanate present and used the Cynoprobe® instrument to measure 

free cyanide to determine cyanide consumption. After the experiment we obtained a sub-

sample from one of the columns and had it analysed via MLA. 

 

Table 3 - PGM and BM grade of the coarse ore samples 

 

 Pt Pd Au Cu Ni S 

 g/t g/t g/t % % % 

-25 mm + 1 mm 1.6 2.0 0.3 0.1 0.4 0.8 

-6 mm + 1 mm 1.6 2.0 0.3 0.1 0.4 0.8 

 

Table 4 - Mineralogy of coarse ore samples 

 

Mineral Weight % 

Pyrrhotite 1.8 

Pentlandite 1.7 

Chalcopyrite 0.8 

Pyrite 0.1 

Olivine & Orthopyroxene 36.0 

Serpentine 22.7 

Chlorite 3.2 

Talc 5.7 

Clinopyroxene 13.0 

Magnetite 6.6 

Chromite 0.8 

 

RESULTS AND DISCUSSION 

 

The results for the experiments can be seen in table 5 for flotation concentrate and 

table 6 for ore.  

 

Table 5 - Results of bioleach and cyanide leach experiments on flotation 

concentrate 

 

 Bioleach  Extraction Cyanide Leach Extraction 

 Temp. Period Ni Cu Co Temp. Period Pt Pd Au 

Columns °C days % % % °C days % % % 

1 65 88 98 91 84 50 45 34 97 63 

2 70 88 97 66 86 - - - - - 

3 75 88 98 85 83 50 45 32 93 98 

4 80 88 93 57 77 - - - - - 

 

 



Table 6 - Results of bioleach and cyanide leach experiments on coarse crushed 

ore 

 

 Bioleach  Extraction Cyanide Leach Extraction 

 Temp. Period Ni Cu Temp. Period Pt Pd Au 

Samples °C days % % °C days % % % 

-25 mm 65 304 67 82 50 60 50 80 83 

-6 mm 65 304 75 93 50 60 58 99 90 

 

Tables 5 and 6 show that significant extraction levels of Cu, Ni and Co were 

achievable, at laboratory scale, using the bioleach process, for both crushed whole ore and 

concentrate. It was further observed that in the temperature range of 65-80°C, 65°C was 

the optimal operating temperature. Analysis of the residual materials indicated that there 

was no change in the PGM mineralogy after the bioleach process. The tables also show 

that high levels of Pd and Au extraction are achievable from both ore and concentrate, but 

the highest extraction achieved for Pt was 58% in a similar space of time as the Pd and Au 

(45 days for concentrate and 60 days for ore). However it was noted that the Pt had not 

stopped leaching completely after the 45 and 60 day periods, but that at a certain point the 

rate decreased significantly (see Figure 1). MLA analysis on residual ore and concentrate 

showed that 79% of the remaining PGMs were in the form the mineral sperrylite (PtAs2). 

The analysis also indicated that the mineral was liberated and had sufficient contact with 

cyanide solution, proving that it was leaching slowly in cyanide, and the process was not 

reagent limited.  

 

 
  

Figure 1-Percentage extractions achieved in cyanide leaching experiments of 

concentrate and coarse ore particles 
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High levels of thiocyanate, in the ranges of 1000 to 5000 ppm, were detected in the 

cyanide effluent solution initially (first 18 days) in both ore and concentrate experiments. 

This was taken as an indication of the presence of reduced sulphur compounds in the 

concentrate and ore, which reacted with cyanide to form thiocyanate. Analysis via MLA 

on the bioleached residual solids indicated the absence of elemental sulphur and only minor 

traces of undissolved sulphide minerals, but these could not account for the quantities of 

total sulphur indicated by a LECO combustion test on the residual concentrate and ore. It 

is suggested that these sulphur species are the result of incomplete sulphur oxidation in the 

bioleach stage. The sulphur compounds formed are most likely to be polysulphides or 

polythionates which precipitated to a solid form and migrated with the residual concentrate 

and ore to the cyanide leach stage. These sulphur species are known to be very reactive 

with cyanide and form thiocyanate (Luthy and Bruce, 1979), but were not detectable by 

the MLA due to their physical structures, low concentration and possible association with 

Fe hydroxide phases. The presence of thiocyanate in cyanide effluent solution is typical of 

operations in which concentrate material has been subjected to bacterial pre-oxidation prior 

to cyanidation (Aswegen et al., 2007; Miller and Brown, 2005). This represents problems 

through both a high amount of cyanide consumption and increased environmental risk, as 

thiocyanate is one of the most stable cyanide complexes. The test work was run with a 

solution concentration of 5 g/L of sodium cyanide (NaCN) but analysis on the effluent 

indicated that only half of the available cyanide was used, indicating the process could 

occur with a concentration of 2.5 g/L. Cyanide consumption was overall very high at 28 

kg/t of ore, but this was because the test work was conducted at high cynide concentrations 

(5 g/L). This needs to be explored further to bring consumption closer to that of typical 

gold heap leach operations which consume 0.1-2.5 kg/t (Roxburgh, 2011; Marsden and 

House, 2006; Kappes, 2002;). 

 

FUTURE WORK 

 

Given that the majority of the remaining Pt rests in sperrylite, finding a route to 

increase the rate of leaching of sperrylite in cyanide is the key to make the process more 

commercially attractive. There is no literature on the chemistry of sperrylite in cyanide or 

any common leach solution, and the same can be said about most PGM minerals of 

significance. This is because PGMs are traditionally obtained hydrometallurgically from 

metallic sources, specifically alloys, after ore concentrates have undergone smelting which 

converts the PGMs from minerals to a mixed mass of metallics/alloys. To a much smaller 

but noticeable extent they are also obtained from spent catalysts, where they are also in 

metallic form. In this form they require extreme conditions of temperature, pressure and 

high concentration of aggressive reagents to be dissolved for recovery. However tables 5 

and 6 shows that in mineral form they can be potentially leached using process conditions 

more conducive to a heap leach environment. Future studies in this project will investigate 

the fundamental science behind the sperrylite leaching mechanism in cyanide. In the 

broader context, this study may serve as basis for investigating direct hydrometallurgical 

extraction of PGMs, circumventing smelting, from other ore bodies on the basis of ore 

mineralogy. 

 



With regards to the significant presence of thiocyanate, it is proposed that future 

experiments will use additional sulphur-oxidising microorganisms together with the 

current species of Metallosphaera hakonensis in the bioleach stage. This may help to 

oxidise more of the sulphur species in the ore, minimising the presence of intermediate 

sulphur compounds that would otherwise migrate to the cyanide leach stage. Current 

literature (Aswegen et al., 2007) supports this method in cyanide tank leaching of 

concentrates that have undergone biooxidation, but the effectiveness of this method has 

not been sufficiently quantified and studied in a heap leach scenario. Chemical treatments 

such as HCl, HNO3, NaOH or SO3
2- at temperatures of 50-95°C are most likely to be 

effective in completely oxidising the sulphur, but are not economically viable and not 

environmentally friendly for the scale at which a whole ore heap leach operates. Finally 

the reduction of the high cyanide consumption will also be further investigated.  An actual 

gold heap operation uses only 40-65% of the cyanide used in column test work (Roxburgh, 

2011). In addition, certain gold minerals have exhibited a higher affinity for cyanide in 

environments with high Cu and sulphur content, resulting in preferential leaching of the 

gold (Stewart and Kappes, 2011), thus eliminating the need for high concentrations of 

cyanide solution and pre-treatment. Furthermore, Pt, Pd and Au form stronger complexes 

with cyanide than most elements. This all supports the need to determine if the PGM 

minerals in the bioleached residues of Platreef ore also exhibit preferential leaching 

characteristics in low concentrations of cyanide solution (0.2-0.6 g/L). 

 

POTENTIAL APPLICATIONS FOR THE PROCESS 

 

Although only preliminary bench-scale test work has been conducted on the 

process, the results are still promising and potential applications for the process can be 

conceptualized. The process was originally developed to treat ore from the Platreef ore 

body, which is currently largely untapped despite its rich mineral reserves. The Platreef is 

distinguishable from the Merensky Reef and UG2 in mineralogy in that a significant 

quantity of PGMs deport to silicate minerals rather than sulphides (Mogosetsi, 2006), 

which makes recovery by flotation and smelting uneconomical. The application of the 

conventional process route is only feasible if Platreef concentrates are blended with higher-

grade Merensky or UG2 concentrates, or through the use of ultra-fine grinding or high 

mass pulls during flotation to achieve acceptable PGM recoveries (Newell, 2008). The 

results from the test work have shown that the process may be an alternative route to treat 

Platreef ore. 

 

The test work on Platreef ore also suggests that ore bodies such as Merensky and 

UG2, where tellurides and sulphides are more prevalent than arsenides, may produce 

higher extractions of platinum. This presents an alternative route for current platinum 

producers in the face of rising smelter costs and may allow entry into the PGM industry, 

of smaller platinum producers that do not have the capital for the standard route. Despite 

being effective on Merensky and UG2 ore, the conventional process is not 100% efficient. 

As much as 5% of the PGMs report to tailings and secondary concentrates (Mwase et al., 

2012b). The value of these metals accumulates annually, but because of the low-grade and 

high through-put of these materials the conventional process cannot be used. However 



some value may still be recovered by coating these materials onto support rock and heap 

leaching them using the alternative process.  

 

Finally, the various PGM ore bodies outcrop to surface and as a result, the ores 

become weathered and oxidised. These ores report poor PGM recoveries from flotation 

(Becker et al., 2011) as the sulphides have been converted to oxides or been passivated 

with an oxide layer. However such deposits are economically important as they eliminate 

the cost of deep shaft mining. These ores may potentially be processed by direct cyanide 

heap leaching. 

 

Unlike the copper and gold industry that have developed various percolation 

leaching technologies (heap, dump and vat leaching) to treat ores that cannot be 

concentrated or smelted, no such technologies are widely applied in the PGM industry. For 

this reason a number of opportunities for further development in the industry are left 

unexploited. Despite having the majority of the worlds’ PGM reserves, there are only 13 

PGM producers, of which only 4 have the ability to smelt ore, in South Africa (Department: 

Minerals and Energy). This is because the current methods of processing ore are capital 

intensive, restricting entry by smaller entities. The two-stage heap leach process may be a 

means to allow more participants into this industry and extend to localities of processing 

operations to remote locations without easy access to smelters. 

 

CONCLUSIONS 

 

A two-stage sequential heap leach process combining bioleaching and cyanide 

leaching, was tested at laboratory scale and has shown promising results as an alternative 

process route to concentrating and smelting PGM ores. The process may find a wide range 

of applications in the South African PGM industry amongst different size organizations, 

processing different ore types with varying grades. The process should be considered for 

pilot testing. 

 

REFERENCES 

 

Aswegen, P.C., Van Niekerk, J., Olivier, W. 2007. The BIOX™ process for treatment of 

refractory gold concentrates. In Rawlings, D.E., Johnson, D.B. (Eds.) 2007. 

Biomining, Springer-Verlag, Berlin, Heidelberg. 

 

Becker, M., Ramonotsi, M., Petersen, J. 2011. Effect of alteration on the mineralogy and 

flotation performance of PPM platinum ore. In Broekmans, M.A.T.M. (editor), 10th 

International Congress for Applied Mineralogy (ICAM), (pp 63-71), Trondheim, 

Norway. 

 

Eksteen, J.J., Mwase, J.M., Petersen, J.P. 2012. Energy efficient recovery of precious 

metals and base metals. International Publication Number WO 2012/114165 A1, 

30 August 2012. 

 



Department: Minerals and Energy, Republic of South Africa. 2003. Platinum-Group Metal 

Mines in South Africa. Directorate: Mineral Economics (Minerals Bureau). 

 

Kappes, D.W. 2002. Precious metal heap leach design and practice. In Mular, A.L., Halbe, 

D.N., Barratt, D.J. (Eds.) 2002. Minerals Processing Plant design, Practice, and 

Control-Proceedings, vol. 2, Society for Mining, Metallurgy, and Exploration, Inc. 

(SME). 

 

Liebenberg, C.J., Dorfling, C., Bradshaw, S.M., Akdogan, G.A., Eksteen, J.J., 2013. The 

recovery of copper from a pregnant sulphuric acid bioleach solution with 

developmental resin Dow XUS43605. Journal of the Southern African Institute for 

Mining and Metallurgy, 113(5), pp. 389-397 

 

Luthy, R.G., Bruce, S.G. 1979. Kinetics of reactions of cyanide and reduced sulphur 

species in aqueous solution. Environmental Science and Technology, vol. 13, no. 

12, pp 1481-1487. 

 

Marsden, J., House, I. 2006. The Chemistry of Gold Extraction. Society of Mining, 

Metallurgy and Exploration, Second Edition, Colorado, USA 

 

Miller, P., Brown, A. 2005. Bacterial oxidation of refractory gold concentrates. In Adams, 

M.D. (Ed). 2005. Advances in Gold Ore Processing: Developments in Mineral 

Processing 15, Elsevier, Mutis Liber Pty Ltd., Guildford, Western Australia. 

 

Mogosetsi, D. 2006. Comminution and flotation test work on ZF24 sample from the 

Akanani deposit. Mintek restricted report 4484. 

 

Mpinga, C.N., Bradshaw, S.M., Akdogan, G., Snyders, C.A., Eksteen, J.J., 2014. The 

extraction of Pt, Pd, and Au from an alkaline cyanide simulated leachate by 

granular activated carbon. Minerals Engineering, 55, pp. 11-17. 

 

Mpinga, C.N., Bradshaw, S.M., Akdogan, G., Snyders, C.A., Eksteen, J.J., 2013. 

Evaluation of the Merrill-Crowe process for the simultaneous removal of platinum, 

palladium and gold from cyanide leach solution. Hydrometallurgy, In-Press. 

 

Mwase, J.M., Petersen, J., Eksteen, J.J. 2012a. “Assessing a two-stage heap leaching 

process for Platreef flotation concentrate”, Hydrometallurgy, 129-130, pp 74-81. 

doi.org/10.1016/j.hydromet.2012.09.007 

 

Mwase, J.M., Petersen, J., Eksteen, J.J. 2012b. “A conceptual flowsheet for heap leaching 

platinum group metals (PGMs) from a low-grade ore concentrate”, 

Hydrometallurgy, 111-112, pp. 129-135. doi.org/10.1016/j.hydromet.2011.11.012 

 

http://dx.doi.org/10.1016/j.hydromet.2012.09.007
http://dx.doi.org/10.1016/j.hydromet.2011.11.012


Mwase, J.M., Petersen, J., Eksteen, J.J. 2014. “A novel sequential heap leach process for 

treating Platreef ore”, Hydrometallurgy, 141, pp 97-104. 

doi.org/10.1016/j.hydromet.2013.11.005 

 

Neale, J. 2012. The application of bioleaching to base metals in Southern Africa: Prospects 

and opportunities. Bio-mining & Acid Rock Drainage in S.A. seminar, University 

of Cape Town, Cape Town, 23 November.  

 

Newell, A.J.H. 2008. The processing of platinum group metals (PGMs)-Part 1, Pincock 

Perspectives, Consultants for mining and financial solutions, Issue no. 89-March 

2008, Retrieved 12 February 2010 From http://pincock.com/perspectives/Issue89-

PGM-Processing-Part1.pdf 

 

Pradhan, N., Nathsarma, K.C., Srinivasa Rao, K., Sukla, L.B., Mishra, B.K. 2008. Heap 

bioleaching of chalcopyrite: A review. Minerals Engineering 21, pp 355-365. 

doi.org/10.1016/j.mineng.2007.10.018 

 

Ream, B.P., Schlitt, W.J., 1997. Kennecott’s Bingham Canyon heap leach program, part 

1: the test heap and SX-EW pilot plant. In: ALTA, Copper Hydrometallurgy 

Forum, Brisbane, Australia. 

 

Roxburgh, B. 2011. Exeter reports progress on the Caspiche stand-alone oxide pre-

feasibility study. Retrieved October 2012 from 

http://www.exeterresource.com/pdf/2011_news/Exeter_news_110315.pdf 

 

Schouwstra, R., P.; Kinloch, E., D. 2000. A short geological review of the Bushveld 

Complex. Platinum Metals Review, vol. 44, Issue 1, pp33-39. 

 

Seymour, R.J., O'Farrelly, J.I. 2001. Platinum Group Metals. Kirk-Othmer Encyclopedia 

of Chemical Technology-Online. Published online: 13 July, 2001. Retrieved: 22 

September, 2007, from 

http://www.mrw.interscience.wiley.com/emrw/9780471238966/kirk/article/platse

ym.a01/current/pdf. 

 

Stewart, M., Kappes, D. 2011. SART for copper control in cyanide heap leaching. The 

Southern Africa Institute of Mining and Metallurgy, International Conference, 

Percolation leaching: The status globally and in southern Africa, Symposium 

Series S69, pp145-164, 7-9 November, Misty Hills, Muldersdrift, South Africa. 

 

Snyders, C.A., Mpinga, C.N., Bradshaw, S.M., Akdogan, G., Eksteen, J.J. 2013. “The 

application of activated carbon for the adsorption and elution of platinum group 

metals  from dilute cyanide solutions”, The Journal of the Southern African 

Institute of Mining and Metallurgy, vol. 113, no. 5, pp 381-388. 

 



Tempel, K., 2003. Commercial biooxidation challenges at Newmont’sNevada operations. 

In: 2003 SME Annual Meeting, Preprint 03-067, Soc Mining, Metallurgy and 

Exploration, Littleton, Colo. 

 


