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Abstract The main obstacle for the cure of glioblastoma
(GBM) is systematic tumor recurrence after treat-
ment. More than 90 % of GBM tumors are indeed re-
current within 5 years after diagnosis and treatment. We
urgently need new therapies to specifically address these
deadly relapses. A major advance in the understanding
of GBM recurrence is the identification of GBM-
Initiating Cells (GIC), characterized by their abilities
for self-renewal, multilineage differentiation, and prolif-
eration. It appears that these features of GIC could be
modulated by the mitotic kinase Aurora A (AurA).
Indeed, besides its role in mitosis, AurA has recently
been identified to regulate alternative functions like cell po-
larity, asymmetric cell division, and epithelial to mesen-
chymal transition. All these properties may help explain
GBM therapeutic resistance and recurrence. In this
review, we make the hypothesis that AurA could

significantly contribute to GBM recurrences and we fo-
cus on the possible roles of AurA in GIC.

Key Points

The therapeutic targeting of glioblastoma (GMB)-initiating 
cells (GIC) may help to reduce GBM tumor recurrences

Aurora A kinase, AurA, plays key roles in cell polarity, 
asymmetric cell division and epithelial to mesenchymal 
transition, which may be crucial for GIC therapeutic 
resistance and GBM relapses

AurA targeting represent a promising tool to prevent 
GBM recurrence

1 The Therapeutic Challenge of GBM

1.1 Current Treatments

Although the incidence rate of central nervous system (CNS)
primary tumors is moderate (27.86 per 100,000 people in the
United States), almost the half of the malignant CNS tumors
are glioblastomas (GBM), which are usually fatal within the
year [1, 2]. Standard treatment of GBM starts with maximal
safe surgical resection of the tumor. Despite great improve-
ments in neuroimaging techniques, the invasive pattern of
GBM sets limitations for surgery. Most of the time, complete
tumor resection is impossible without damaging healthy
brain tissues [3]. Cancer cells left behind after surgery are
likely to initiate tumor recurrence, which is why surgery is
systematically followed by radiotherapy and chemotherapy.
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Radiotherapy enhances survival from 3–4 months to 7–
12 months compared to surgery alone. An additional chemo-
therapeutic treatment with the alkylating agent temozolomide
(TMZ) increases the median survival rate to 15–21 months in
45 % of the patients [4–7].

1.2 GIC-Targeted Therapies

GBM tumors are composed of heterogeneous cell populations
which exhibit distinct tumorigenic potentials. A few GBM
cells have stood out for their high potential for self-renewal,
multilineage differentiation (multipotency), and proliferation
[8]. These cells were identified as GBM-initiating cells (GIC)
given their abilities for initiate and maintain tumor
growth; just like normal stem cells in healthy tissues. The
identity and the roles of GIC have been recently reviewed
[9]. Briefly, GIC may be a mechanism of GBM relapses given
that they are the only cells able to establish whole tumors in
mice that mimic the histocytology of human GBM. Cerebral
injection of 100 primary GIC induces GBM tumors whereas
engraftment of 105 non-GIC cells fails to form tumors [10, 11].
In vitro, GIC divide continuously to form undifferentiated
and multipotent spheres in suspension cultures. GIC
neurospheres reflect the behavior of stem cells (quiescent
cells) or of progenitor cells (characterized by a faster division
rate) [12, 13]. Moreover, it is now clear that distinct GIC
populations coexist within one tumor and display different
tumorigenicity and independent genomic evolution [14], a
situation that explains the absence of a bona fide GIC marker.
These observations led to the development of new therapies
specifically targetingGIC in order to reduceGBM recurrences
(reviewed in [15]). Clinical trials are currently testing inhibi-
tors designed to disrupt the self-renewal, differentiation, and
proliferation of GIC, such as inhibitors of the Hedgehog (HH),
Notch, Wnt, TGF-β, BMP, VEGF, BMP, and PARP signaling
[16–23].

1.3 GIC and Therapeutic Resistance

The GIC-targeted therapies seem to improve the therapeutic
response of GBM tumors, but only to some extent, and until
now no therapeutic target stood out. This failure may be a
consequence of the therapeutic resistance of GIC. Indeed,
GIC modulate pathways of DNA repair responses (Chk1/2,
PARP1, MGMT), drug efflux (BCRP1), and anti-apoptotic
mechanisms in order to resist radiotherapy and chemotherapy
[24–27]. GIC can also escape surgery by migrating in
perivascular niches through their high migratory abilities
[28]. We and others have demonstrated that GIC can specifi-
cally invade the sub-ventricular zones (SVZ) in response to
the production of the CXCL12 chemokine [29–31]. SVZ, lo-
cated along the ependymal layer on lateral ventricle wall, are
stem cells niches, crucial for the regulation of adult

neurogenesis. Interestingly, the SVZ are particularly propi-
tious for gliomagenesis since they are abundant in growth
factors and permissive to proliferation [32]. GBM tumors in
contact with the SVZ are associated with a lower survival, a
low response to radiotherapy and higher risks of multifocal or
distant progression [33, 34]. The hypothesis is that stem cells
niches provide a suitable cellular and molecular environment
for stem cells, including GIC, helping them to survive and to
resist standard treatments [15].

Another factor to be considered in the GIC therapeutic
resistance is their Bcellular plasticity .̂ Indeed, non-GIC can
be reprogrammed into a GIC phenotype, which is why the
targeting of both GIC and non-GIC may be required to erad-
icate GBM recurrences [35]. Finally, most of the standard
treatments target rapidly dividing cells, whereas GIC are
spared since they can enter into a quiescent state. Chen et al.
showed that TMZ transiently stops tumor growth in mice, but
does not prevent the ensuing tumor recurrence. In the same
study, quiescent GIC-like cells maintain tumor growth
through the production of transient populations of highly pro-
liferative cells [36]. This finding shows the importance of
GBM tumor dormancy that depends on cancer stem cells
(CSC) division. CSC can divide through asymmetric cell di-
visions (ACD), like normal stem cells. ACD allow maintain-
ing a constant number of stem cell while generating distinct
progenitor cells, unable to self-renew, but able to divide rap-
idly. ACD is often dysregulated in CSC and accompanied by
changes in proliferation, self-renewal, cell cycle, cell polarity,
and genomic instability [37].

As the mitotic kinase Aurora A (AurA) is involved in
ACD, but also in some features suspected to play a role in
GBM relapses, we propose to discuss in this review the pos-
sible importance of AurA in GBM recurrences. As several
recent papers described the regulation of AurA in physiolog-
ical conditions, we will not review this point [38–40].

2 Roles of AurA in Normal and Cancer Cells

In mammals, cell division takes place every 24–30 h in highly
renewing tissues. Each time a cell divides, there is a risk of
chromosome instability (CIN) which could lead to malignant
transformation. This explains why approximately 90 % of
human solid tumors are aneuploid. Thus, cell division has to
be a rigorously orchestrated process, which requires efficient,
timely, and specific regulations to allow the proper chromo-
somal segregation to daughter cells [38]. Among the members
of this regulatory network, the AurA centrosomal kinase is
known to be crucial for the entry of the cell into mitosis both
at the molecular and at the structural level: AurA (i) unlocks
the G2/M restriction point by activating CDK1/CyclinB, a
complex that brings the M phase onset and (ii) prepares the
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cell to divide by promoting centrosomes maturation and mi-
totic spindle formation [39].

Considering its central role in mitosis, the dysregulation of
AurA in highly proliferative cancer cells is consistent. The
chromosomal region of the AURKA human gene (20q13.2)
is a hotspot for cancer amplification [41]. AurA overexpres-
sion is known to promote centrosome amplification, CIN and
aneuploidy that, in turn, could induce the malignant transfor-
mation of the cell [42]. AurA can also promotes tumorigenesis
through deregulated modulation of alternative pathways such
as p53, BRCA1, Myc, NFkB, Wnt/β-catenin, mTOR, and
cyclin [43–49]. In gliomas, the expression of AurA increases
with the tumor grade (I to IV) while being associated with the
Ki-67 proliferation index and with low survival [50, 51]. AurA
overexpression in GBM promotes mitotic failure and super-
numerary centrosomes [52, 53]. Moreover, AurA inhibition
potentiates the cyto-suppressive effect of both ionizing radia-
tion and TMZ on GBM cells and xenograft mice models
[50, 54, 55]. These findings emphasize the role of AurA in
GBM therapeutic resistance.

Besides these oncogenic activities, recent studies revealed
unexpected roles of AurA that may be even more significant
for GBM tumor recurrence. AurA has notably been identified
as a key regulator of cell polarity, ACD, and epithelial to
mesenchymal transition (EMT), potentially crucial for GBM
relapse and GIC tumorigenicity.

3 The Unexpected Roles of AurA in GBM

3.1 Principles of Asymmetric Cell Division

Asymmetrical cell division (ACD) is a specific property of normal
stem cells. During an asymmetrical stem cell division, the
cellular constituents are asymmetrically segregated by estab-
lishing an unbalanced spindle orientation. This stereotyped
spindle orientation depends on the centrosome positioning
during interphase. Distribution of the cellular constituents
specifies then the fate of daughter cells toward a self-
renewing stem cell or a rapidly dividing progenitor cell. By
balancing self-renewal with differentiation, ACD maintains a
constant number of stem cell while producing distinct differ-
entiated cells appearing after a progenitor clonal expansion
[56].

Studies on Drosophila neuroblasts (NB) have revealed ba-
sic principles of polarity, spindle orientation and cell-fate de-
termination during ACD (reviewed in [57]). NB divide un-
equally in order to generate a large apical NB and a small basal
cell that will differentiate into neurons or glia. AurA has been
identified as a key regulator of asymmetric NB divisions in
Drosophila. During metaphase, AurA activates aPKC (atypi-
cal Protein Kinase C), which recruits the apical complex re-
quired for the establishment of NB polarity [58]. Before

chromosomal separation, AurA phosphorylates PinsLINKER

(Partner of Inscuteable) to allow a proper spindle orientation
[59]. At interphase, AurA controls cell fate decision via the
reactivation of aPKC to promote the basal distribution of
Numb. Numb is a cell-fate determinant, which blocks self-
renewal through Notch inhibition [60, 61]. AurA loss leads
to ACD failure, which forces NB to divide symmetrically and
to proliferate continuously. AurA is therefore regarded as a
tumor suppressor that reduces NB self-renewal and promotes
their differentiation [62]. Paradoxically, AurA overexpression
in Drosophila NB induces tumor overgrowth due to centro-
some dysfunction [63].

3.2 Asymmetric Cell Division in Cancer

Altered ACD is highlighted in several cancers including leu-
kemia, breast, and brain tumors [64–66]. Like normal stem
cells, CSC generally divide both symmetrically and asymmet-
rically in order to maintain cancer growth [67]. In leukemia,
the balance between symmetric and asymmetric divisions of
hematopoietic precursor cells can be regulated by microenvi-
ronments and genetic alterations [64]. In breast cancer, the
higher rate of breast CSC (BCSC) symmetric division is pro-
gressively counterbalanced in favor of ACD during
mammospheres growth [65]. In brain tumors, cellular hetero-
geneity is mainly engendered through symmetric divisions,
but GIC also divide asymmetrically to maintain their CSC
pool. Indeed, GIC asymmetrically segregate the CD133 stem
cell surface marker during their dividing cycles [68]. ACD
disruption in GBM cells causes anarchic self-renewal, uncon-
trolled proliferation and impaired differentiation [69]. In view
of these findings, it would be interesting to test the role of
AurA in the asymmetric GIC division and its impact on GIC
tumorigenecity.

4 Epithelial to Mesenchymal Transition

4.1 EMT in Cancer

Epithelial and mesenchymal cellular transitions result from
reorganization of cell structure, shape and junctions. An epi-
thelial cell tightly packed into the epithelial tissue can become
a free and motile mesenchymal cell, or vice versa [70]. During
early embryonic development, EMT allows the development
of the embryonic mesoderm, which evolves into various tis-
sues. In late stages of development, MET (Mesenchymal to
Epithelial Transition) enables mesoderm cells to generate ep-
ithelial tissues [71].

EMT is also exploited by tumor cells as a prerequisite for
tissue invasion. Several EMT transcription factors (e.g. Twist,
FOXC2, Smad5, Snail, Slug) enhance the mesenchymal phe-
notype of cancer cells, which improve their invasiveness and
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therapeutic resistance [72–77]. In addition to tumor invasion,
EMT can favor the acquisition of a CSC phenotype. An in-
duced EMT in mammary epithelial cancer cells provides them
a stem cell phenotype characterized by the ability to form
mammospheres and to initiate tumor in mice [78, 79]. This
observation suggests that some invasive cancer cells, consid-
ered as low proliferative cells, may be self-renewing CSC.
This type of cancer cell may be particularly tumorigenic given
that they can invade surrounding tissues and initiate recurrent
tumors.

4.2 EMT in GBM Tumors

Several factors involved in EMT are able to enhance GBM
cell migration and tumor invasion. N-cadherin expression lev-
el modulates centrosome positioning, integrin-mediated polar-
ity, speed, and direction of glial cell migration [80]. NCAM
(Neural Cell Adhesion Molecule) expression is an indicator
for the invasion zone and for poor prognosis [81, 82]. The
EMT proteins ZEB1 [83], Twist [84], E-cadherin [85], and
Snail [86] also promote GBM cells migration. It is debatable
whether molecular GBM subtypes (i.e. neural, proneural, clas-
sical, and mesenchymal) may predict the patient clinical out-
come. Nevertheless, the mesenchymal subtype tends to be
associated with poorer survival due to low therapeutic re-
sponse [87, 88]. Moreover, tumor recurrence after treatment
is often accompanied by shift into a more pronounced mesen-
chymal phenotype [89]. All these findings demonstrated that
EMT can influence the invasiveness and the therapeutic re-
sponse of GBM tumors.

Additional data suggest that EMT may be a specific prop-
erty of GIC. Primary GBM, but not secondary tumors (GBM
stemming from a lower grade glioma), express both mesen-
chymal and stem cells markers. Primary GBM cells can be
forced to differentiate into multiple mesenchymal cell lineages
[90]. The EMT transcription factor ZEB1 is overexpressed in
invasive gliomas and induces migration of human neural stem
cells [91]. We have shown that CXCL12, the chemokine
responsible for GIC-directed migration to the SVZ, is also
able to promote EMT in GIC [29]. Moreover, the mesenchy-
mal activation of GIC promotes resistance to radiotherapy
[92, 93]. In addition, circulating GIC, characterized by a
strong mesenchymal phenotype, are the only cells potentially
metastasizing outside the brain (reviewed in [94]). In summa-
ry, these findings reveal that EMT seems to be closely linked
to GBM aggressiveness and to cancer cells immaturity leading
to tumor recurrences.

4.3 Role of AurA in EMT

AurA ensures microtubules (MT) dynamics that control cell
polarity during ACD, mitosis, and migration. AurA inhibition
impairs MT shrinkage, growth rate, frequency rescue and

nucleation during interphase of mitotic HeLa cells
[95]. In post-mitotic neurons, aPKC activates the AurA-
NDEL1 (nudE neurodevelopment protein 1 like 1) pathway
to promote MT-based neurite extension of migrating
neurons [96]. The apical junction complex (AJC), which
forms the epithelial cell junctions, can only be preserved if
cells are polarized [97]. Polarity loss, frequently observed in
cancer, lead to EMT, involving cancer cells migration
(reviewed in [37, 98]).

In GBM, nothing is known about the role of AurA in EMT.
Nevertheless, AurA has been identified as a regulator of cell
polarity, EMT and migration in various epithelial tumor cells,
including in BCSC. AurA inhibition improves the epithelial
phenotype of BCSC and prevents the development of distant
metastases in mice [99]. Another study supports these first
observations, showing that AurA overexpression induces
breast cancer metastasis by reorganizing the actin cytoskele-
ton through the cofilin-PI3K pathway [100]. In nasopharyn-
geal carcinomas, cell migration decreases in response to epi-
thelial markers expression induced after AurA inhibition
[101]. AurA overexpression in CSC from head and neck tu-
mors provokes their mesenchymal activation via stabilization
of Snail, which in turn represses E-cadherin [102, 103]. In
esophageal squamous cell carcinoma, AurA promotes cell mi-
gration through the activation of theMAPK and Akt pathways
leading to the secretion ofMMP-2 (matrix metalloproteinase-2),
which allows the degradation of extracellular matrix com-
ponents [104]. AurA is also overexpressed in colorectal CSC
(CR-CSC) and promotes CR-CSC migration [105].

5 AurA As a Therapeutic Tool to Target CSC

AurA overexpression in GBM also affects GIC behaviors and
therapeutic responses. Evidences suggest AurA activity is
more crucial for the survival and proliferation of GBM
neurospheres (a feature linked to a GIC phenotype) than dif-
ferentiated GBM cells monolayers [54]. Indeed, GBM
neurospheres treated with AurA inhibitors exhibit more spindle
defects, polyploidization, increased senescence, differentiation,
and apoptosis compared to adherent GBM cells [106, 107].
AurA also seems to mediate therapeutic resistance of
GIC: AurA inhibition improves the response of GBM
neurospheres to TMZ and radiotherapy [54, 107]. De Bacco
et al. showed that the c-MET receptor, a potential functional
marker of GIC, activates the Akt-AurA pathway to promote
DNA repair mechanisms and radioresistance [108–110].
Altogether, these data highlight the role of AurA in GIC
self-renewal and therapeutic response. In view of all these
promising anti-tumor effects, the selective P-AurA inhibitor
alisertib is currently in a phase I clinical trial in patients with
recurrent GBM developed after radiation therapy [16].
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6 AurA Inhibitors in Clinical Trials for Solid Tumors

Alisertib is the leader of the AurA inhibitors [111]. AurA
inhibitors show promising anti-tumor activities in clinical
trials, but with adverse effect such as neutropenia, sto-
matitis, and somnolence (reviewed in [112]). Among
them, non-selective AurA inhibitors (ENMD2076,
AT9283, Danusertib, MK-0457, MSC1992371A, and
PR-0381473S) show promising results but involve stron-
ger adverse effects such as febrile neutropenia, fatigue,
diarrhea, and hypertension [16, 113, 114]. A specific
AurA inhibitor, MLN8054 (Millennium Phamaceuticals,
Cambridge, MA, USA), tested in clinical trials, showed a
limited efficacy due to strong benzodiazipeine-like ad-
verse effects. A structural adaptation of MLN8054 give
rise to a new specific AurA inhibitor, MLN8237
(Millennium Pharmaceuticals), also called alisertib.
Alisertib treatment induces less adverse effects and
strong anti-tumor activity in patients with leukemia, my-
eloma, neuroblastoma, lymphoma, ovarian, breast, and
other advanced solid tumors [16, 115].

7 Conclusion

The biggest issue of GBM is the recurrence of the tumor
after treatment. GIC may play a role in tumor recur-
rences, given that those cells may resist standard treat-
ments and initiate secondary tumors in experimental ap-
proaches. In search for GIC-targeted therapies, AurA
turned out to be an effective tool to counteract GIC fea-
tures linked to Bstemness^. Besides mitosis-related onco-
genic activities, recent evidence highlighted the signifi-
cance of AurA in GIC tumorigenecity. AurA controls
cell polarity during ACD and EMT, two key factors for
cancer invasion, therapeutic resistance and tumor re-
lapses. In this way, AurA may contribute to GBM recur-
rence by regulating GIC polarity. Taken together, these
data highlight the possible involvement of AurA in GBM
recurrences, making AurA a new promising target in
GBM therapy.
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