Validation of a simplified method for the crashworthiness of offshore wind turbine jackets using finite elements simulations

Timothée Pire (ULg/ANAST, FRIA fellowship)
Hervé le Sourne (ICAM/GeM)
Sara Echeverry (ULg/ANAST)
Loïc Buldgen (HELMo Gramme)
Philippe Rigo (ULg/ANAST)
Context

- Wind farms
 - More, larger and closer to traffic lanes
- Ships
 - Commercial, passenger and maintenance vessels

Probability of collision ↗

[offshorewindindustry.com] [ship-technology.com] [maritimejobs.org]
Context

• Several types of wind turbine supporting structures
 • Monopile
 • Tripod
 • Jacket
 • Floating

• Finite elements: accurate but time demanding

• Need a faster method for pre-design stage
 • Analytical developments → Continuous Elements Method
Deformation modes

Overall motion

Local crushing

Punching

Base of jacket
Analytical developments

• Use of the virtual work principle, in combination with the upper-bound theorem (Jones, 2003)
 \[F \times \delta = \dot{E}_{int} \]

• Example for local crushing

General algorithm

• Combine all deformation modes

Numerical modelling

- Parameters
 - Dynamics of tower and nacelle
 - Effect of gravity
 - Soil structure interaction
 - Wind, waves, current

 Neglected

- Ship stiffness influence
 - Consider here rigid colliding ships

- Large energy impact
 - Direction of tower collapse

08-05-17 MARSTRUCT 2017 7
Finite elements models

Mesh: 10cm
Mesh size

No significant variation for a mesh size < 10cm
Results
Rupture

• Lehmann & Peschmann (2002)
 \[\varepsilon_f = \varepsilon_g + \varepsilon_e \frac{t}{l_e} \]

• Applicable on zones in tension

• No rupture for \(E_k < 75 \text{ MJ} \)
Validation

![Diagram of a structure with graphs showing the relationship between crushing force and energy vs. displacement.]
Validation

![Diagram of a structure with graphs showing crushing force and energy over displacement. The graphs compare numerical and analytical results.](image-url)
Validation

<table>
<thead>
<tr>
<th>Case</th>
<th>Simul.</th>
<th>Max ship disp. (anal)</th>
<th>Max ship disp. (num)</th>
<th>Disc (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td></td>
<td>3m78</td>
<td>3m59</td>
<td>5</td>
</tr>
<tr>
<td>A30</td>
<td></td>
<td>3m55</td>
<td>3m32</td>
<td>7</td>
</tr>
<tr>
<td>A45</td>
<td></td>
<td>3m53</td>
<td>3m33</td>
<td>6</td>
</tr>
<tr>
<td>B0</td>
<td></td>
<td>3m52</td>
<td>3m36</td>
<td>5</td>
</tr>
<tr>
<td>B30</td>
<td></td>
<td>2m72</td>
<td>2m98</td>
<td>9</td>
</tr>
<tr>
<td>B45</td>
<td></td>
<td>2m65</td>
<td>2m90</td>
<td>9</td>
</tr>
</tbody>
</table>
Conclusions & Perspectives

• Analytical and numerical simulations are described
• Validations show a discrepancy < 10%

Future work
• More investigations for rupture
• Several contact points
• Deformability of the striking ship
• Ship colliding sideways

Contact: Timothée Pire
tpire@ulg.ac.be