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Abstract - The lLandau-Vlassov equation is investigated as a gene-
ral framework to study the thermalisation in nucleus-nucleus
collisions. The relaxation time is studied numerically both at
high and intermediate energy.

Résumé -~ L'éguation de Landau-Vlassov est utilisée comme un cadre
général pour 1'étude des phénoménes de thermalisation apparais-
sant au cours des collisions noyau-noyau. Le temps de relaxation
est étudié numériquement & haute énergie ainsi qu'aux énergies
intermédiaires.

I - INTRODUCTION

A nuclear system in collision is certainly not in equilibrium. The
question is whether it can be considered as in local equilibrium. This
question is far from academic, since the implicit goal of the study of
nucleus-nucleus collisions is the determination of the equation of
state., If local egquilibrium is not satisfied, this goal would be much
more difficult to reach, since the interpretation of the collision
features woculd then go further than using thermodynamical concepts.

The question will be investigated in the frame of relativistic
nucleus-nucleus collisions, because in this case the long range
Coulomb force is much less important in regard with available energy
and also because the theoretical investigation is more advanced in
this case.

I1 - GENERAL THEORETICAL FRAME

The basic quantities describing the system (supposed to be composed
of point-like nucleons interaction through potential forces) are the
one-body function fq(¥,p,t), which, classically, gives the probability
of finding a nucleon with momentum E at position T, the two-body dis-

tribution function Q(?1,31,?2,32), ete.... We disregard here for sim-
plicity, pion production. In such a microscopic description, a local
equilibrium is characterized by (k = 1)
-
£G5B, = ot exp (- SRy (2.1)

T(T,t)

where e(g) is the single-particle energy, which of course could depend
on p and T. For a perfect gas, e(p) = p2/2m. The locel equilibrium is
characterized by some properties of f; (absence of correlations in a
perfect gas, f.i.) that we do not investigate here.

A theory, suitable to the 0.25 - 2 GeV/A collision domain, which deals



with the evolution of f1 is the Landau-Vlassov (LV) equation. It writes

(m:1,%:1)
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The last two terms in the first member are due to the displacement of
the matter and the second number is due to the collisions between the
particles. It contains a gain term and a loss term, corresponding to

population and depopulation of particles with momentum B. The factors
(W—fih where

Fi = (2n)¢ f1<?,gi,t> , (2.3)

account for the possible occupation of final states (Paulil principlgl.
The quantity Wippq ~ pop3z) is the probability of a transition from ppy
to pypz-. Usually, W is taken to come from two-body collisions. Then it
writes

W= (2m)% o(E) v (2.4)

where v is the relative velocity and £ the c.m. energy. The quantity
U(r) accounts for interactions. It is taken as a Hartree-type mean
field U(¥) = U(p(F)). Equation (2.2) can be derived from the Schrodinger
equation [1]. It embodies, except for the mean field, the same physics
as the intranuclear cascade [2].

To discuss the relation with local equilibrium, it is interesting to
look at the first moments (in B) of fy [3]
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tet} o= [ P LERE . (2.5)
i Pi P

We now take the first moments of the LV equation, successively. The oth

moment is the continuity equation

e . >y
p= V.l =0 (2.6)
Before, proceeding further, using the decomposition P =1 + &P
we write

Tij = Rij - Sij s (2.7)
with

- _rs - -3
Rij = P Uy , Sij = d’p 6p; 6pj f1(r,p,t) . (2.8)

The momentum flux tensor is thus split into a collective flow tensor

Rij and an internal flux tensor, called the stress tensor. We further
write
_ 1 o _ =~ L, <0
Sij = (3 tr S) Sij + Sij = Py 6ij : Sij . (2.9)

The tensor S0, is called the deviator. The second moment equation is
equivalent to the following equations.
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The first equation is equivalent to the first moment equation. The

quantity p is 0
R T A IR ICIR LI (2.13)
8]

In equation (2.12) the indices S and A mean the symmetric and the
antisymmetric parts of a tensor, the symbol (:) is for the contraction
of two tensors and I stands for the collision term of eqg. (2.2). In
equation (2.11), the quantity T is given by

T=2F v . (2.14)

Obviously, the dynamics will restrict to local quantities usually
encountered in thermodynamics and hydrodynamics, if Sg- ~ 0, a condi-
tion much less restrictive than (2.1). In that case, eﬂs. (2.6), (2.10)
and (2.11) are the usual hydrodynamical equations, where U, Py and §
play the role of the energy density, of the thermal pressure and of the
pressure, respectively.

IIT. RELAXATION

In practical cases, there is no need for s?. to be exactly zero.
Indeed, in most cases, the variation of Sg- is“controlled by the colli-
sion term. If we make a relaxation time hyBothesis, we have

o
" - S,

[ s ~ 1]
] [5pi 6pj -3 (8p)2 aij] I = - . (2.15)

The value of T can be roughly estimated using the initial conditions
of the collision. One has

<h p?>
s 2 A (2.16)
pov <p;> v

where o and v are the average cross-section and relative velocity en-
tering in the collision term, A is the mean free path to make a colli-
sion. Finally f represents the efficiency of the collision. The more

peaked the differential cross-section is, the smaller f is. If at some



if we average over A¢p = AF. At high energy, these averages are margi-
nally possible, since A R ® 2 -5 fm, smaller but not terribly smaller
than the size of the system. As an illustration, we give in Fig. 1,
the values of

o ~
{S.. - p ]
% :z i1t , (2.17)
i 7P
which roughly measures the importance of ng in a particular case.

Local equilibrium would require X = 0.

Au+Au 400 MeVIA b =348 fm
T T T

Fig. 1 - Distribution of the quantity (2.17) in the reaction plane of
Au + Au collision at the time of maximum compression. In the initial
state the two nuclei are running against each other along the horizon-
tal direction. Taken from Ref. [4].

At low energy, the situation is comparable. Estimates of T are
shown in Fig. 2, in comparison with the collision time. The curve label-
led CL results from a recent microscopic calculation of the nucleon
propagator using Brueckner theory. It shows that at 10 MeV the therma-
lisation is not very much more effective than for cold nuclei. Note,
however, that at low energy the relation between T and the single-
particle mean free path is not as simple as in (2.16),.

The connection between the observables and the equilibrium quanti-
ties during the collision is not cobvious. It is well-known, for ins-
tance, that the temperature extracted from the particle production
spectra should not be identified with the initial average temperature
of the compressed state [6].
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Fig. 2 - Estimates of the relaxation time T. The curve labelled B is

based on an approximate calculation of the collision term (from Ref,
[3]). The other curves are based on eq. (2.16) and on & microscopic
calculation of the nucleon propagator in nuclear matter at two ener-
gies (from Ref. [5]). The quantity =t is the estimate of the colli-
2% : . © coll

sion duration time.

IV, CONCLUSION

We have analyzed the problem of the thermalisation in heavy ion col-
lisions. We have seen that the situation is not fully favourable, but
is not bad enough for preventing the understanding of the dynamics in
terms of thermodynamical of hydrodynamical concepts as a first approach.
As an example, the analysis of the dynamics in terms of entropy has
revealed itself to be very fruitful at high enerqgy [7-8]. An extension
of analyses of the same kind should be undertaken at low energy.
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