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Abstract: The properties of the collective flow occurring in the course of nucleus-nucleus collisions are
investigated within the intranuclear cascade (INC) model. Contrary to our previous work, we here
use a version of the cascade where the Fermi motion of the spectators is frozen until they interact
for the first time. It is shown that there is an intrinsic flow within this version of the cascade, which
is essentially due to the participants. The mass dependence of the flow is studied by looking at the
Ca+Ca, Nb+ Nb and Au+ Au systems at 400 MeV/ A. The flow is shown to increase with the mass
of the system. It decreases, for a given system, when one goes to larger energies. These features
are in qualitative agreement with experiment. A quantitative comparison is attempted for the
Nb+ Nb case. We discuss the problems encountered with application to cascade events of a filter,
which fully accounts for the efficiency of the detection system. With a crude filter, we obtain for
large multiplicities a peak in the flow angle distribution. The flow angle is too small in the cascade.
The uncertainty of the comparison procedure is emphasized. We turn to the causes of the flow. I
is shown that in the cascade, the flow arises from the work done by the pressure built inside the
compressed central region on the outer layers of the system. However, it is argued on very general
grounds that the flow must be reduced by the viscosity forces. It is indicated that this effect is
probably present in the cascade, but that, very likely, other off-equilibrium effects further reduce
the flow. Off-equilibrium effects in general are found to be responsible for the qualitative features
of the mass and energy dependence of the flow.

1. Introduction

Recent measurements using the plastic ball-wall detector at Berkeley have firmly
established the existence of the so-called collective flow '), The latter can be defined
as a cooperative emission of particles around a sidewards direction in large-multi-
plicity events. This behaviour was predicted a long time ago ), on the basis of
hydrodynamical calculations and was interpreted as being due to the pressure built
into the system. For a symmetric system, in the hydrodynamical picture, the so-called
flow angle increases monotonically from 0° to 90° as the impact parameter decreases
from the maximum value to 0. For an asymmetric system, the flow pattern is more
complicated, especially at small impact parameters. Initially, people tried to look
for the influence of the collective flow on inclusive cross sections ). The search for
evidence turned out to be difficult, because several impact parameters are contribut-
ing to the inclusive measurements and because the clusterization in the final state
of the system introduces another difficulty when comparing with experiment.
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Therefore, people naturally turned to exclusive quantities, a method which was
rendered possible experimentally by 4« detectors, like the plastic ball, streamer
chambers and drift chambers, like Diogéne. Theoretically, the emphasis is now put
on the so-called global variables >”). An important result was obtained recently '),
which shows a quite different behaviour in the Ca+Ca and Nb+ Nb systems at
400 MeV/A. The former does not exhibit a peak at finite angle in the so-called
dN/d cos ¢ distributions, whereas the latter definitely shows such a behaviour. The
dN/dcos @ distributions are constructed event by event with the help of all the
momenta of the detected particles. In other words, the experimental quantities are
subject to the acceptance of the detector, which despite the 4# geometry is not
negligible '°) and seems to be hard to define exactly.

The evidence for a cooperative effect was reinforced by a comparison with an
intranuclear cascade (INC) calculation, using the Yariv-Fraenkel cascade '*'%) and
applying a filter to the calculated events to take account of the detector’s efficiency.
In the Nb+ Nb case, the cascade was not able to reproduce the observed peak of
the dN/d cos 6 distributions. At that time, it appeared natural that a cascade model
does not give rise to cooperative effects, perhaps because it is a “‘dilute” gas model
with no collectivity explicitly built therein. However, the possible rise of cooperative
effects out of a cascade dynamics had already been mentioned several years ago *7'%).
Pursuing this direction, we calculated last year the collective flow for the Ca+Ca
and Nb+ Nb systems from the cascade model developed at Ligge '°). We showed
that the cascade contains intrinsically a flow pattern. In view of the complexity of
the filtering procedure, supposed to simulate the acceptance of the apparatus, we
were not able to predict the fiow angle precisely. But within the uncertainty (about
5°), our calculation agreed with experiment (however, see the discussion in sect. 5).
We also showed that the Ca+Ca displays an intrinsic flow, whose existence is
hidden in the dN/d cos @ distribution because of the event-by-event fluctuations.

Unfortunately, we used an unfrozen version of our cascade code, where the
spectators are not confined. As observed by Stécker ') and discussed in ref. '®), this
undue motion of the spectators spuriously increases the flow. This is the reason
why we investigate here the collective flow with a frozen version of the cascade,
where the Fermi motion of the spectators is frozen until they interact for the first
time. More specifically, we address the following questions:

(1) Is there a flow inside the INC?

(ii) What is the energy and mass dependence of the flow?

(iii) Is the flow inside the INC sufficient to explain the experimental data?

(iv) What is causing the flow, inside the INC and in general?

The answer to the third guestion implies a step further compared to the other
questions, since it involves the efficiency of the apparatus and the way it can be
taken care of inside a cascade model.

In sect. 2, we briefly describe the model. In sect. 3 we comment on the differences
between the frozen and unfrozen versions. In sect. 4, we present our numerical
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results in detail. We concentrate especially on the mass and energy dependence of
the flow. We also analyze the flow due to all the nucleons and the flow due to the
participants only. We show that the flow angle for the latter is larger than for the
whole system, but that the corresponding ellipsoid is more spherical. Sect.5 is
devoted to the comparison with experiment. We stress that the experimental filter
introduced by the apparatus is not directly applicable to INC events, essentially
because of the clusterization, which is not directly predicted by the INC. We therefore
apply here a “standard” filter, which accounts for the gross features of the efficiency.
We show the arbitrariness brought in by our procedure. The conclusions of this
analysis are that, in all likelihood, the INC flow is too small compared to experiment.
In sect. 6, we tnvestigate on very general grounds the possible causes of the flow.
We show that the flow is generated by the work done by the pressure forces on the
outer fringes of the system. The friction forces and the off-equilibrium effects in
general reduce the flow. We indicate that the qualitative mass and energy dependence
observed both experimentally and within the INC, are due to these two effects.
Finally, sect. 7 contains our conclusion and a discussion on the relation between
our INC model and others, and on the comparison with hydrodynamics.

2. The model

The basic INC model that we have used previously is described in refs. '*'%). Let
us recall that within this version the 4’s have a finite lifetime and the pions interact
with the nucleons. A point under special focus in this paper is the treatment of the
spectators. In ref. %), the spectators are given initially a velocity due to the combina-
tion of the nucleus motion and of their Fermi motion, and are subsequently left
free to move with this velocity. As noticed in refs. **°) and criticized in refs. '7'%%%),
this introduces a spurious expansion of the nucleus even in the absence of perturba-
tions. This is not a crucial problem at high energy, but at 400 MeV/ A the situation
is changed due to the larger interaction times. Therefore, we improve our model by
“freezing” the spectators until they interact, following an idea introduced in ref. *°).
This “freezing” should be considered as a convenient means of coping with the
binding energy and Fermi motion in a classical transport theory. This problem is
still unresolved and lies beyond the scope of this paper.

Specifically, we record the Fermi motion velocity of the nucleons, but the latter
are given the nucleus velocity before they interact. Once they are involved in a
collision, they are given back their original momentum. A little indeterminacy arises
in the examination of the criterion to make a collision. The latter can be written as

T < oeds) (2.1)

where ry, is the minimum relative distance between nucleons 1 and 2, and where
Ti($) is the total cross section at the squared c.m. energy s. Should s be taken as
coming from the “frozen” kinematics or from the original momenta (coming from
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the nucleus plus Fermi motion)? We have adopted here the second choice, to be
consistent with the energy-momentum content of the collision which is about to
happen. Furthermore, the freezing of the Fermi motion should be considered as a
trick to keep the nuclei confined and should not constitute a modification of the
momentum content.

At the end of the collision process, signalled by the absence of nucleon-nucleon
collisions, the spectators are given back their original Fermi motion. This is in
keeping with the observed fragmentation of the spectators part *'"*'). We want to
mention a difference between the “freezing” of ref.?®) and ours. In ref.*"), the
moment at which the collisions occur is determined with the unfrozen kinematics,
although the nucleons are proceeding along trajectories determined by the frozen
kinematics. As a result, the quantity ry, in eq. (2.1) is not the minimum distance in
this kinematics. This has no importance except for very central collisions (see sect. 3).

In this paper, we are primarily concerned with flow properties, carried by the
sphericity tensor

where p? is the ith cartesian coordinate of the momentum of the vth ejectile in the
c.m. system of the nuclei. The weight factor is chosen throughout this paper as
(2m,)”", (m, being the ejectile mass), which makes the temsor coalescence-
invariant °). The eigenvalues of the tensor are denoted by A; (A; = A, A;) and the
unit eigenvectors by e;. We also introduce the first and second aspect ratios:

g =M/As, 2= A/ A5, (2.3)

The flow angle 8 is conventionally defined as the angle between the largest axis
and the beam axis.

3. Comparison between frozen and unfrozen versions

3.1. FLOW PROPERTIES

We concentrate our attention first on the distribution of the flow angle for an
intermediate impact parameter in Nb+ Nb collisions at 400 MeV/A (fig. 1, right
side). The importance of intermediate impact parameters has been stressed in
refs. '%?7). The well-defined peak obtained with unfrozen spectators has shifted to
smaller angles and has broadened a little bit. But the presence of a peak clearly
survives. For central collisions (fig. 1, left side), the flow angle increases on the
average when going from the unfrozen to the frozen version. We want to stress,
however, the extreme sensitivity of the results, for b =0, on the way the freezing is
performed. In fig. 1, the dotted line represents the results with a freezing method
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Fig. 1. Comparison between the frozen and unfrozen versions of our cascade calculations, for two impact

parameters of the Nb-+ Nb collisions at 0.4 GeV/A. The calculated quantity is the dN/d cos 8 (see

sect. 2) distribution for all the nucleons, normalized in the same way for both versions. The dotted line

corresponds to a method of freezing close to the one used in ref. *°). The histogram is normalized on

the same maximum as the full-line histogram in the same box. See text for details. The error bars give

the typical uncertainty of the calculations. Note the different horizontal scales for the left and right parts
of the figure.

close to the one used in ref. *°)*. This sensitivity can be understood in view of the
near isotropy of the sphericity tensor for b=0 (see fig. 10) and the geometrical
aspects of the freezing (see fig. 3). For the other impact parameters shown here, the
results are not sensitive to the freezing. This is also confirmed by other calcula-
tions *°). The freezing used here being done in a more consistent way, we keep on
with this method. Furthermore, the central'collisions have little practical importance
indeed (see fig. 14).

Fig. 2 shows the comparison between the two versions for two important distribu-
tions, that we will discuss extensively later on, namely the flow angle calculated
after applying the standard filter '®) in order to simulate on a simple manner the
acceptance of the plastic ball-wall detector and the flow angle corresponding to the
participants alone. Here and throughout this paper, the participants are defined as
those nucleons which have undergone a momentum transfer of more than pg, the
Fermi momentum, taken equal to 270 MeV/c. The same observations are in order.
The peak in the dN/d cos 6 distribution shifts to smaller angles, but the peak is
nevertheless still visible.

* The difference is that for technical reasons the freezing has been disregarded in the pion-nucleon
collisions.
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Fig. 2. Same as fig. 1, but the calculated quantities here are the dN/dcos § distributions for the

participants only (lower part) and for the filtered events. See text for details. The distributions are
normalized to the same maximum.

3.2. CASCADE FEATURES

We postpone to sect. 6 the important question of what is causing the flow. We.
just try here to examine what is changed in the machinery of the INC model when
the spectators are frozen. As shown in fig. 3, the spurious expansion of the nuclei
has two consequences. When provided with their Fermi motion, nucleons like B

Fig. 3. Ilustration of the effects induced by the unfrozen version of the cascade. See text.
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and C do not align with the beam axis but have a transverse component. They thus
embrace a larger part of the target than they would do without Fermi motion. This
has a tendency to enlarge the participant zone, or at least to increase the number
of participants. On the other hand, with the target expanding, they “see” a more
dilute system. To dare a picture, they probably see a smaller opticgl depth. For
central collisions, however, the situation is somewhat reversed. Nucleons B and C
miss the partner nucleus half of the time. Therefore, it is expected that, with unfrozen
spectators, the interaction zone is populated too much for large impact parameters
and not enough for rather central collisions. At least this interpretation is consistent
with fig. 4, which shows the number of participants M,, as a function of impact
parameter for the two versions.

Nb + Nb 400 MeViA
T :
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Fig. 4. Multiplicity of the participants as a function of the impact parameter for the Nb+ Nb system at
0.4 GeV/ A, as calculated in the frozen and unfrozen versions. The error bars give the standard deviation
of the event-to-event fluctuations.

Fig. 3 and the above discussion also help us to understand the sensitivity to the
method of freezing for b=0. Using different methods may or may not fulfill (2.1).
For a nucleon like B of fig. 3a, this is not crucial, since it has plenty of chances to
interact. However, a nucleon like B of fig. 3b may escape from the interaction zone
if it misses a collision. From purely geometrical considerations (see fig. 3), one can
guess that the freezing is important for impact parameters b/2R =< pg/2p,, where
Po is the incident momentum. In the Nb+ Nb case, this gives b< 1 fm.

Fig. 5 gives a comparison between the two versions at the level of various physical
quantities. As for the density, there is a substantially larger compression in the
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Fig. 5. Comparison between frozen and unfrozen versions of the cascade. The upper part of the figure

gives the time variation of the baryon density at the location of the total centre of mass and of the

number of baryon-baryon collisions. It refers to a b=2.71fm collision between two Nb nuclei at

400 MeV/ A. The lower part gives the invariant-charge (“p”") production cross sections at two ¢.m. angles.
This quantity is calculated from all the nucleons which suffered at least one collision.

frozen version, which results from a higher density in the interaction region. Surpris-
ingly, this is accompanied by a faster decompression. The number of pions (not
shown) is not very much changing when going from one version to the other.
Another interesting feature is contained in fig. 5, which compares the number of
baryon-baryon collisions occurring in the two versions. When the nucleons are
frozen, the number of collisions is smaller at early collision times and increases
later on. This seems to be correlated with a longer compression stage. Note, however,
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that the increase of the number of collisions is counterbalanced by the fact that late
collisions are much softer than early ones *).

The lower part of fig. 5 gives the comparison between the frozen and unfrozen
versions as far as the inclusive cross sections are concerned. At 90° c.m. there is no
practical difference between the two versions, but at 30°c.m. the cross section is
larger at low energy and smaller at high energy in the unfrozen version. We think
that this is probably due to the reduction of the spectator number and the increase
of the number of collisions. This figure clearly shows the sensitivity of the inclusive
cross sections to some features of the cascade dynamics. It then becomes highly
desirable to have these experimental data available.

4. Mass and energy dependence of the flow

4.1. MASS DEPENDENCE

4.1.1. All the nucleons. To study this important question (see sect. 6}, we have
investigated three systems at 400 MeV/ A, namely Ca+Ca, Nb+ Nb and Au+ Au.
We first present the results of the calculation for the dN/d cos ¢ distribution *°) for
several impact parameters in fig. 6. For b =0 collisions, we calculated 160, 100 and
28 events for the Ca+Ca, Nb+ Nb and Au+ Au systems, respectively. For the three
next impact parameters, these numbers become 640, 400 and 112, respectively. For
larger impact parameters, the statistics is the same as for b=0. This statistic is
sufficient to guarantee accurate estimates of average values and dispersions, as
explained in appendix A. The histograms refer to what we have called the intrinsic
flow for all the nucleons °). By intrinsic, we mean the flow tensor calculated without
any filter of any sort. A systematic pattern clearly arises from this figure. The
maximum of the dN/d cos # distribution is practically at 0° for the Ca+Ca case,
and at non-zero angles for the other two systems. The angle at which it occurs
decreases for increasing impact parameter. For a given impact parameter (more
precisely, for a given b/b,,, ratio), the peak is located at a larger angle for the
Au+ Au case. A systematic although not spectacular feature is the narrower distribu-
tion for the Au+ Au compared to the Nb+ Nb system, except for b=0. It seems
that for b =0, for both the Nb+ Nb and Au-+ Au systems, we obtain a broad peak
at finite angle with this frozen version, contrary to what we obtained previously
with unfrozen spectators [see fig. 1 and ref. '®)].

More insight can be gained if one looks to the projection of the extremity of a
unit vector attached to the centre of the ellipsoid and pointing in the direction of
the largest axis (i.e. in the direction of e;) on a plane perpendicular to the beam
axis (fig. 7). Such a plot reveals the azimuthal orientation of the ellipsoid, a degree
of freedom which is integrated out in the dN/d cos 6 plot. To be precise, if we
define p =sin 6 (the distance from the centre of the square in fig. 7), the plots in
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Fig. 6. dN/dcos 6 distributions for several jmpact parameters and for three different systems at
400 MeV/ A as calculated in our INC model. The distributions are normalized on the same maximuaa.
They correspond to all the nucleons. The error bars give the typical uncertainty of the calculation.

fig. 7 represent the distribution
d*N d*N

= . 4.1
pdpde cosfd(cosé)de (4.1)
The dN/d cos 8 distribution can be obtained from the latter by
dN — j ( d&°N )
— —=J1=-5% | do| ——— 4.2
d(cos 8) Vi ¢ pdpde/’ (4.2)

i.e. by simply summing over ¢, for not too large values of p.

For central Ca+ Ca collisions, the vector e, points on the average in the forward
direction, which corresponds roughly to having the barycenter of all the points in
the first square of fig. 7 at the center of this square. For intermediate impact
parameters like b=2.04 fm, the vector e, points on the average at some finite ¢
along the impact parameter side (¢ =0). To obtain the dN/d cos ¢ plot, one has
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Fig. 7. Projection of the extremity of a unit vector aligned with the largest axis e, of the sphericity

ellipsoid (for all the nucleons) on a plane perpendicular to the beam axis (the so-called meridian

orthographic projection). The projection of the beam axis is the point at the center of the cross in each

of the squares. The impact parameter axis is the right part of the x-axis. A single point corresponds to

a single event. Different symbols not recognizable on the figure correspond to several events. The number

of events for a given impact parameter is given in subsection 4.1.1. Note that, for a given system, the
total number of events is the same for all the b # 0 impact parameters.
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to integrate over ¢ according to eq. (4.2). It is suggestive from fig. 7 that because
of the large dispersion of the direction of the vector ¢, this operation will give a
maximum at 6 =0 for the dN/d cos 8 distribution. For Nb+ Nb, and even more
for Au+ Au, the vector e, points at a larger angle and the dispersion is smaller.
Then, the integration over ¢ is not able to wash out the orientation of e, at finite
§. The mathematical condition for the survival of a peak is derived in appendix B
for the case of a distribution (4.1) of gaussian type. As already explained in
refs. '>19%%) the fluctuations in e, are related to the number of the nucleons participat-
ing in the sphericity tensor: the larger this number is, the smaller the fluctuations
are. This feature was first pointed out by Danielewicz and Gyulassy ). For some
limiting one-body distribution functions, the fluctuations should follow a simple
1/v/N law (where N is the number of particles). Of course, this law is only
qualitatively fulfilled here, because the one-body distribution function is not a simple
function like e.g. a boltzmannian. For more detail, see refs. 2627y,

4.1.2. The participants. The properties of the sphericity tensor described in the
previous subsection result from the superposition of two ellipsoids, one for the
participants and one for the spectators. These two ellipsoids have different properties.
The second one is rather elongated, points towards the forward direction, and has
very small fluctuations, the latter being the result of the Fermi motion only. The
ellipsoid of the participants is much less elongated, points towards larger angles
and carries the largest part of the fluctuations, as shown in fig. 8. An interesting
feature is the appearance of hydrodynamical behaviour in the case of central (b =0)
Au+ Au collisions: the participant ellipsoid points toward 90° c.m. and has an oblate
shape (for half of the time) as revealed by fig. 9. The latter shows the distribution
of the eccentricity )

A—2(h+A,
Ayt AT As

In this equation, A, is the eigenvalue linked to the axis of quasi-symmetry. It is A,
if (A, —A2)> (A= A3) or As if (A, —A5) <(A,—A3). A, is the remaining eigenvalue.
The eccentricity € is positive {0 < e < 1) for prolate shapes and negative for oblate
shapes {(—0.5 < e <0). It carries information which is somewhat equivalent to ¢, if
g, is known. Note that the distribution f(e) =d N/de of fig. 9 is not jacobian-free 20,

The tendency to hydrodynamical behaviour is already present in Nb+ Nb. Note
that this kind of behaviour is less marked with the frozen-spectators version than
it was with the unfrozen one '®). The overall pattern is also corroborated by fig. 10,
which shows the shape (actually the aspect ratio ¢, (eq. (2.3)) for the various
ellipsoids and for the various systems under consideration.

4.2. ENERGY DEPENDENCE

To show this dependence, we have calculated the flow properties for Nb+ Nb at
650 MeV/ A and for Au+ Au at 800 MeV/ A. The results are displayed in fig. 11 for
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Fig. 8. Same as fig. 7, but for the participants only.
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the smallest impact parameters and compared to the 400 MeV/ A case. For Au+Au
at 800 MeV/ A, and for every impact parameter shown, the peak has moved towards
small angles. For the Nb+ Nb case at 650 MeV/ A, the situation is less marked. For
b =0, the distribution has substantially shifted to smaller angles. For the other
impact parameters, the peak has not really moved but there is a tendency for the
ellipsoid to point towards smaller angles as well. We will come back to this point
in sect. 6, but we mention that this tendéncy is observed experimentally, on the
filtered events, of course. '
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Fig. 10. INC calculation of the aspect ratio (eq. (2.3)) for several systems, as a function of the impact

parameter. The upper part applies to all nucleons. The middle part corresponds to the participants, and

the lower part to the events after application of the standard filter (see text). The dots give the average
value and the error bars indicate the standard deviation, due to the event-by-event fluctuations.



752 J. Cugnon, D. L’ Héte | Collective flow

all nucleons

Nb+Nb
1 H
“
0
>
Us 013 .
> r
C :
o] :
= i
e i .
e :
Kol s
0
0.27 N
O
[
(@]
E —
> : 0.40
’O 1l
oG ___L00 MeViA —-ZL00 MeViA
; — 800 — 650 -
‘}L, ; i |
30 60 60
© (degrees]

Fig. 11. INC calculation of the d N/d cos 6 distributions (for all the nucleons) for two different energies
in two different systems. The distributions are normalized on the same maximum. The uncertainty of
the calculation is typically the same as in fig. 6.

5, From intrinsic flow to observed flow

5.1. COMPARISON WITH EXPERIMENT

The results presented in the previous sections are not directly comparable with
experiment, because the detector, here the plastic ball-wall of Berkeley, has some
acceptance. Grossly speaking, it cannot detect the target spectators, nor the free
neutrons and it misidentifies some particles especially at forward angles. Therefore,
one has to apply some transformation to our calculated events to take the acceptance
into account before comparing to experiment. Unfortunately, the acceptance of the
detector, which is rather well known, cannot be applied directly to the cascade
events. The main reason for this is the fact that INC is not able to predict at least
directly the clusterization. To illustrate this point, the plastic ball cannot detect a
free neutron, but it can detect a deuteron above a certain threshold and therefore
can detect the bound neutron provided the translational energy of the latter is larger
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than half the above threshold. To remedy to this situation, we have adopted the
following procedure. We determine at random the free neutrons, considering that
their number can be inferred from the observed deuteron/proton ratio and using
the simplifying hypothesis that all clusters are deuterons. In this section, we apply
to our calculated events a “‘standard filter” to simulate the acceptance. This standard
filter is defined in ref. '®), but for the sake of clarity we recall here its features: (i)
all the nucleons of the target which have suffered a momentum transfer Ap smaller
than 194 MeV/c¢ (which corresponds roughly to an energy transfer of ~20 MeV)
are rejected; (ii) all the remaining nucleons with an energy E,, <20 MeV are
rejected; (iii) all the nucieons appearing at 6,,, > 160° are excluded; (iv) a fraction
of the remaining nucleons are rejected at random to simulate the free neutrons.
This fraction is estimated by assuming the N/Z ratio of the retained nucleons to
the same as for the original nuclei and by estimating the degree of clusterization
from the observed d~/p" ratio, as indicated above. {We give the numerical values
below.)

We understand that the experimental filter has some fine details not contained
in the standard fiiter, for instance the misidentification of particles and the so-called
double hits in a single AE-E detector. But we adopt the point of view that the main
physical effects are not contained in these details. Of course, doing so, we restrict
ourselves to semi-quantitative predictions only.

Another difficulty arises from the fact that the experimental data are generally
presented as dN/d cos 6 distributions for bins of observed charged-particle multi-
plicity m.. Once again, because of the degree of clusterization, the identification
between the INC output and the quantity m, is very difficult. We therefore define
a multiplicity M, from the INC output in the following way. We retain the number
of nucleons having suffered a momentum transfer larger than pg, the Fermi momen-
tum, diminished by a percentage of N/A of neutrons (bound or free, this time),
using the same procedure as above. This multiplicity is obviously different from m,
but, in view of the smooth behaviour of variables of this kind (see the participants
in fig. 4), one expects M, and m, to be smooth monotonic functions of the impact
parameter and to be roughly related to each other by an overall scale factor.

Fig. 12 shows our predictions with such a procedure, and with an arbitrary choice
of the lower edge of the largest multiplicity bin in Nb-+ Nb*. The other bins in
multiplicity have been chosen to be proportional to the binning done by the
experimentalists in ref. '). The binning for the other two systems are obtained from
the Nb+ Nb binning by a scaling according to the charge of the systems. Finally,
the percentage of nucleons removed to account for the free neutrons is 33% for all
systems. Before discussing this choice, we comment on fig. 12. Our results for Ca+Ca
and Nb-+Nb are in qualitative agreement with experiment'). The Ca+ Ca system
does not show a peak at finite angle for any multiplicity bin, whereas the Nb+ Nb

* We choose here 68 instead of 62 in our previous work. In this way, the same cross section is contained
in the largest multiplicity bin.
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Fig. 12. INC calculation of the dN/d cos 6 distributions after application of the standard filter. The

events are classified according to the multiplicity M,, which basically is the charge carried by the

participants. See text for details. The error bars indicate the uncertainty of the calculation, estimated as

the square root of the counting rates. The dotted lines represent the experimental distribution for the

largest multiplicity bin. For Ca+Ca and Nb+ Nb, this refers to charged-particle multiplicity '), and for
Au+ Au, to the charge multiplicity, i.e. the total charge seen by the plastic balt **).

system displays a peak which goes to larger and larger angles for larger and larger
multiplicities. At the quantitative level, our prediction for the peak angle at the
largest multiplicity bin is about ~17°, smaller than the experimental value (~23°).
The unfrozen version gave a peak around 24° in approximately the same conditions.
The difference is due to the spurious flow of the spectators in the unfrozen version,
in agreement with ref. '*) which extensively concentrates on this point.

The difference between Ca+ Ca and Nb+ Nb does not come from a qualitatively
different behaviour in the intrinsic flow (see fig. 7), but from the intermingling of
the quantitative aspects of the intrinsic flow and the fluctuations with the distortion
of the standard filter, as explained in refs. '®*®). Essentially, the filtering introduces
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a stronger dispersion of the dots in fig. 7 and a displacement of their barycenter
towards the right of the figure. This is mainly a result of the removal of the target
spectators. When present, the latter tends to align the sphericity tensor with the
beam. For Nb+ Nb, the points are sufficiently on the right and the dispersion is
sufficiently small to guarantee a definite peak in the dN/d cos § distribution (see
sect. 4 and appendix B for the connection between fig. 7 and the dN/d cos 8) for
the largest-multiplicity bins. The latter roughly correspond to small impact para-
meters. For Ca+ Ca, the fluctuations that are linked to the number of participants,
as we recall, are strong enough to wash out the intrinsic flow. For the Au+Au
system, the situation is more pronounced than for Nb+ Nb, as expected from fig.
7 and fig. 8.

5.2. SENSITIVITY OF THE NUMERICAL RESULTS

We now discuss the sensitivity of our results on the arbitrarinesses that we
introduced in constructing fig. 12. We first examine the sensitivity to the number of
removed neutrons. This is shown for the Nb+ Nb system at the top of fig. 13. The
largest percentage (36.9%) was used in our previous work '®), but the recently
published values of the d/p ratio **) seem to favour a somewhat lower value (33% ).
If the percentage is still lowered, the peak seems to survive, but its definition is
somewhat less clear due to the large statistical fluctuations arising in the population
of the first channels (small-6 angles).

Another interesting feature is contained in the middle and the lower parts of fig.
13, which shows 5, the average over dN/d cos 6 considered as a function of 4, i.e.

/2
J 6(dN/dcos 6)dé
=" , (5.1)
j (dN/dcos 8)dé
0

and the true average angle,

/2
j #{(dN/dcos 8)sin 8 dé
<9>: J'Oﬁ/z N (52)

{dN/dcos 8)sin 8 dé
¢}
respectively. These quantities are calculated for the largest multiplicity bin, as a
function of M, , the lower boundary of the bin. For all the percentages P, of the
removed neutrons investigated, both g and {8) increase with M, , showing that the
flow and the multiplicity are correlated. There is a sizeable sensitivity to P, for the
largest multiplicities only (=70). The sensitivity of 6 does not seem to follow a
regular pattern, whereas that of () does. This is particularly visible for P,=29.5.
Actually, this happens because 6 weights much more the small angles where the
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Fig. 13. Nb+ Nb system at 400 MeV/ A: sensitivity of the calculated results upon the main parameters

of the filter. The upper part of the filter gives the dN/d cos 8 distribution for the largest multiplicity bin

for several values of the percentage P, of removed neutrons. The lower part gives the average value of

8 as a function of P, and of the threshold value M, determining the largest multiplicity bin. The middle
part gives a mean #-value using the weighting function 1/sin 8. See text for details.

population is accidentally small for that value of P,. Let us notice that both ()
and 6 are larger than the peak position. All these quantities vary qualitatively in
the same way as P, and M, are varied. However, the peak position is more subject
to local fluctuations of the 6-distribution.

We have also investigated the sensitivity upon the cut in momentum transfer. We
made a calculation with a cut equal to 168 MeV/c¢ and to 217 MeV/¢ instead of
194 MeV/ ¢, which roughly correspond to a transfer in energy of 15 and 24 MeV,
respectively. We did not observe significant differences as far as the peak position
is concerned. The value of (8) changes by 2° between these two values.

Finally, we would like to mention that a filter on the momentum transfer, such
as the one used here, removes more nucleons in the target fragmentation region
than a filter on the final kinetic energy for the same threshold energy. This has a
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non-negligible effect on the flow. For instance, concerning the largest multiplicity
bin in Nb+ Nb, the average (8) changes from 25.7° to 20°. We emphasize, however,
that the filter on the momentum transfer is more reasonable, since it is hardly
acceptable that a nucleon experiences individually a small momentum transfer. In
this case, very likely, it will stick rather with the remaining target nucleons.

5.3. DISCUSSION

The lower part of fig. 13, as well as fig. 12, call for some remarks concerning the
comparison with experiment. With the value of M, adopted in fig. 12 and the
standard filter, we obtain a flow angle which is already too small compared to
experiment (17° instead of 23° for Nb+ Nb). But we have introduced some arbitrari-
ness in choosing M, = 68. If the latter was chosen smaller but within reasonable
values, say between 54 and 68, the qualitative result of fig. 12 is preserved. But
quantitatively, it is clear that the peak position of the largest multiplicity bin would
be shifted to smaller angles. Furthermore, it seems that the double hits, neglected
in our analysis, are not at all infrequent *’). Since they are thrown away in the
experimental analysis, they would influence our estimate of the flow angle. They
will do it in two somewhat mutually compensating ways. If we throw away par-
ticipants, this will reduce the flow. However, double hits are more frequent in the
forward direction, and throwing these away will increase the flow. It is quite clear
to our mind that our cascade mode! lacks some flow, but due to the delicate
application of the filtering, it is hard to quantify this lack of flow. Despite this, we
present at the bottom of fig. 12 a comparison with experiment. This should be
considered as probably the most favorable comparison for our cascade model. The
lack of flow, between 5°to 10° for both Nb+ Nb and Au+ Au, is the minimum room
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Fig. 14. Impact parameter distribution (full lines) of the events contained in the largest multiplicity bin
in Nb+ Nb at 400 MeV/ A (central part of fig. 12). Comparison is made with other binnings and with
the case of no multiplicity selection (straight line).
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left for the physics associated with mean fields and the equation of state. This might
appear small but it will probably turn out to be significant.

The indeterminacy of the proper choice of M, would be removed, or at least
reduced, if the cross sections corresponding to the multiplicity bins were known
experimentally. We give our prediction for this quantity in fig. 14, as well as the
splitting according to the contributing impact parameters. It can be seen that the
most important impact parameters are around 0.2 of b, and not zero. We mention
that Kitazoe et al. **) find a similar effect, even more accentuated, since they find a
maximum around b/b_,, =0.3. The integrated cross section is about 5% of the
geometrical cross section.

6. What is causing the flow?

6.1. THEORETICAL CONSIDERATIONS

The INC model has the defect of its simplicity, and of simulations in general:
the link between physical effects and their causes is far from transparent. It is
therefore useful to look at the Landau-Viassov equation which embodies essentially
the same physics, but which has the virtue of being an equation. It can be written
{(in the non-relativistic form) as

(Li LV —(VU) - V,,)ﬁ(r, p1)
gt m

. f dBPl d3p2 d3P3

C )@y @n) )
In this equation, which governs the evolution of the one-body distribution function
file, p, 1), the r.h.s. member describes the effect of the collisions and the particles
are assumed to be moving in a field U, which can be an external or a self-consistent
field. Here, we restrict ourselves to Hartree-type fields

U=U(p(r). (6.2)

The quantity W is the probability for two particles with momenta p and p, to collide
and to have momenta p, and p; in the final state. The quantities f; are defined by

fi=@m) filn, pi 1) (6.3)
In eq. (6.1), the quantum statistics is neglected, but all the below can be extended
to an Uehling-Uhlenbeck collision term which accounts for the statistics.

The INC model does not contain a mean field (in its simplest version) but, in
some sense, it is a more general theory than the Landau-Vlassov equation, because
it can describe the evolution of the 2-body, 3-body ... distribution functions, and
does not rely on the molecular-chaos hypothesis. Furthermore, our calculation
includes pions and A’s, which may be of importance for the flow. Here, however,
we disregard these aspects for simplicity.

3 W(P,Pf‘)PZaPs)(fzﬂ“.ffx)- (6.1)
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The Landau-Vlassov equation is a complicated equation. An insight into the
underlying physics can be gained by looking at the moments (in p) of the equation,
anticipating that the first moments are the most important ones. Furthermore, it is
the usual framework in which to discuss the connection with hydrodynamics. We
closely follow here the presentation of ref. .

The zeroth-moment equation is simply the continuity equation

3
Liv - (pu)=0, (6.4)
ar
where
p= J d&*pfi(rp1). (6.5)
The guantity
Ly o5
u:;J Ippfilnp 1) (6.6)

can be interpreted as the collective or macroscopic velocity. The second moment
of the one-body distribution,

Ty = f &Eppipifilrp 1), (6.7)

can be related to the average (over the runs) sphericity tensor (eq. (2.1)) by the
relation

QU:MJ‘ dBFTij, (6.8)
the equality being understood as taken at late times, when the collision process has
ceased. Writing

p=mu+8p, (6.9)
the tensor 7; can be split into two parts:

R;+S§

Ty = L5 T4,

(6.10)
with
m"‘zRi, = DU (6.11)

and the stress tensor

Sa:j d’p dp, 8pifi(r p, 1) . (6.12)
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The tensor R; embodies the collective flow whereas the stress tensor S; can be
understood as the internal flow tensor density. With these notations, the first-moment
equation is

p[-(;—l;+u-Vu:}+V-H=O, (6.13)
where the tensor II;; is
II;=S;+ 8,(pU - V) (6.14)
with
Iy
V[P]:L U(p')dp". (6.15)

The second-moment equation can be split into two equations:

aRi'
—5;‘1+v'(HRU)+uiZVkaj+uijkai:O, (616)
k k

85,-‘
CULY - (uSy) = =T (SuVaty+ SuVaah) = 5,V - w
k

-§kak,ij+J d3p8p55pj1. (6.17)

In the last equation, I stands symbolically for the collision term (r.h.s. of eq. (6.1))
and the tensor ¢, ; is given by

Py = J d’p 8p; 8p; dpi fi(r, p, 1) . (6.18)

Usually, only eq. (6.17) is written down. In fact, eq. (6.16) is a direct consequence
of the first-moment equation (6.13).

Before entering into detailed considerations, we would like to make two remarks.

(i) The physics contained in egs. (6.16) and (6.17) is particularly transparent: the
evolution of the internal stress tensor is governed by itself and by the collisions. In
turn, the stress tensor acts as a driving term for the evolution of the collective flow
tensor Rj.

(ii) The mean field {more precisely, the density dependence of the mean field)
is another source for the time evolution of the collective flow tensor. But both causes
are qualitatively of equal importance: they are treated on the same footing in eq. (6.16).

6.2. SOME LIMITS

The simplest limit is the ideal fluid hydrodynamics which corresponds to local
equilibrium (the last term in (6.17) always vanishes) and to a stress tensor which
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reduces to a single number on the diagonal:
S = Pw Oy- (6.19)
In this case, egs. (6.16) and (6.17) become

dR

-—5;9+v (uR;)+uV;p+uV,p=0, (6.20)
D - 5
?+V~(up[h)——pgv- u, (6.21)
where
p=put{pU—V)=pu+Pini- (6.22)

The quantity p,, is the thermal pressure and p can be considered on the total pressure.
Indeed, if U depends upon the density only, one can write

2 )2 %in )

pru= pt Tl 2, (6.23)
ap

where 3, is the interaction energy density. Comparison of egs. (6.22) and (6.23)

leads to

Hinl p)=V(p). (6.24)

If U(p)= U,yp, this energy density reduces to the weli-known Hartree form
Hind p) =3 Upp® . (6.25)

Note that, once again, the thermal pressure and the interaction pressure have the
same status: both act as a driving force for creating the collective flow. The building
up of the thermal pressure comes from the divergence of the velocity field. If the
hydrodynamical limit is taken literally, the sphericity tensor would be given by the
tensor R, alone, because at the end of the collision process the matter is decom-
pressed and py, - 0. In this pure “bulk” limit, there is a kind of scaling invariance.
If the fields @({r, 1), where @ stands for p, p, # and Ry, are solutions of egs. (6.4),
(6.13), (6.20), the fields

D, = D(Ar, AL) (6.26)

are also a solution provided, of course, that the initial conditions (r=0) can be
obtained by the same scaling transformation. The latter is indeed realized when
going, for instance, from the Ca+ Ca to the Au+ Au case at the same initial velocity,
i.e. the same energy per nucleon, and at the same b/b,,,, ratic. The parameter A is
then simply the ratio between the Au and Ca radii. This scaling law, observed in
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another way in ref. %), is known in similarity theory **) to arise from the Strouhal
number [S]:

[5]= [ﬂ : (6.27)
where u, [ and 7 are the characteristic velocity, length and time of the system,
respectively. Of course, as indicated by eqgs. (6.26) and (6.27), the similarity holds
for a corresponding scale in time: the tensor R; for Au+ Au can be obtained by
the scaling of R; for Ca+Ca, but this correspondence implies a later time for the
former system as compared to the latter. In usual hydrodynamical calculations this
scaling law is not expected to hold completely. The reason is that the evolution is
stopped at some freeze-out time, which may not respect the scaling law. Note,
however, that if the freeze-out is determined by reaching a given density, the scaling
law should still hold. Experimentally >**), this scaling law does not seem to be valid,
but the efficiency of the apparatus may introduce some uncertainty as well.

The next possible limit, namely viscous hydrodynamics, exhibits another source
for the collective flow. The stress tensor takes the form

Sy = P 8 — n(Vu; +Vay —38,9 - u). (6.28)
We retain here only the shear viscosity. Eq. (6.16) becomes

IR
8—{’+V <(uRy) + (Y, +uV)p — nlwdu+udu,

+ 3wV, + V)V - ul=0. {6.29)

Eg. (6.17) becomes very complicated already in this limit and is not interesting for
our purpose. Here the viscosity is expected to damp the momentum flow: it opposes
itself to the work done by the pressure. With the addition of the viscosity terms,
the scaling law discussed above breaks down. The fact that the results of our INC
calculations {(and probably experiment as well) do not follow the scaling law indicates
that we are perhaps witnessing viscosity effects. A similar analysis has already been
performed by Jagaman and Mekjian >°).

Viscous (and non-viscous) hydrodynamical equations are strictly valid for a system
of point-like particles if they are intended to describe evolution of disturbances
whose characteristic lengths (and times) are larger than the thermalisation mean
free path (and lifetime). In a very extended system it is generally possible to define
a scale which is small compared to the dimension of the system and large compared
to the mean free path. In other words, it is generally possible to divide the space
into cells with dimension larger than the mean free path and much smaller than the
system size. The various physical quantities vary gently from cell to cell and can be
handled by the hydrodynamic equations. In the heavy-ion case, the situation is
much less favourable. The thermalisation mean free path is not small compared to
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the radius of the nuclei we investigate in this paper. Therefore it is expected that
the stress tensor will not be of the form (6.19) or (6.28).
In all generality, one can write

Sy=3(tr §)8,+ 8§,

ijs

(6.30)

where S is called the deviator. We still call p=13tr fI. One may then write

R, i )
8_4‘U+V Ry + (V¥ )p+ Y (uiViSy + uViSie) =0, (6.31a)
k
ap o e s N \
5, TV (ap)==3pV - u—3 ) Sy Viuts | dp(op)T, (6.31b)
ik
5S, . .
(a—zyw H(uSy) = =38,V - “*f d*p[8p: 8p;—3(8p)°1L, (6.31¢)

where we have neglected the (8p)’ term, because it is really too complicated to
handle. If one is not too far from local equilibrium, the last term in (6.31a) is
expected to behave like the usual viscosity term. We focus now on the deviator. If
departure of local equilibrium is sufficient, the leading term in (6.31¢) will be the
collision term and the deviator will never go to zero. This should happen in the
heavy-ion case, since some nucleons make one or two collisions. We make a
relaxation time approximation to clarify the physical meaning of eq. (6.31¢):

9 . o
(7{+u V) Sijx_sij/Trel' (632)

d
The solution of this equation can be written as
Sy =8;(1=0) exp (—t/ 7.0, {(6.33)

where the evolution should be understood to occur along a velocity field line.
§,»j(i =0) can be considered as the deviator when the nuclei start to interpenetrate
each other. It is thus a strongly elongated tensor along the beam direction. The
deviator influences the flow, because it enters into eq. (6.31a), but also because, in
the microscopic view, it is not necessarily vanishing at the end of the collision
process and therefore should be added to R, to calculate the average sphericity
tensor. Eq. (6.33) explicitly shows that the final flow can be influenced by the
parameter vy = 7/ 7,,. The latter is roughly proportional to the inverse of

y=A/R. (6.34)

Here, 7 is the same as in eqg. (6.27), A is the thermalization mean free path, and R
is the radius of the system. These qualitative considerations show that, if the collective
flow is influenced by off-equilibrium effects, it should be governed to some extent
by the parameter y. If y increases, S is more important and the flow is reduced.
Note finally that, grossly speaking, y increases with energy (in the 400 MeV/A—
1 GeV/ A range) and decreases with the size of the system.
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6.2. FLOW INSIDE THE INC MODEL

Can the flow inside the intranuclear cascade be understood in terms of the
preceding discussion? To try to answer this question, we make the following
observation. In fig. 15, we have plotted in the upper part the density at the ¢.m. of
the Au+ Au system and in the lower part the flow angle, i.e. the angle between the
largest axis of the sphericity tensor and the beam axis. It is clear that the final flow
angle is reached at the end of the compression stage. In this perspective, it is quite
instructive to look at fig. 16. The flow grows in the time span during which the
“spectator caps” (i.e. those parts of the target (projectile) which in their original
motion do not intercept the target (projectile)) are passing close by the central
participants region. Therefore, it is quite natural to consider that the flow originates
from the work done by the pressure built by the compression into the participant
system on the “‘caps”, in a very similar way as in hydrodynamics. There is an
important difference, however. Inside the cascade, the pressure force does not act
coherently on the spectators, but rather through two-body collisions. An obvious
consequence of this is that there are true spectators inside the cascade. Some nucleons
have escaped from interacting with nucleons of the central zone and propagate
undisturbed in the beam direction. This is particularly visible in fig. 16.

If the pressure was the sole cause of the flow (i.e. if eq. (6.20) was the only
relevant equation), the flow would be the same for each of the Ca+Ca, Nb+Nb
and Au+Au systems as we have already noticed. Neither the reality nor our
calculation indicate such a thing. The next possible (simple) cause would be the

Au ?AU : 400 ?;49V/A b=348 fm
T T T
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o
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Fig. 15. Time evolution of the c.m. density (in units of py, the normal nuclear matter density) and of
the angle in the c.m. system between the largest axis of the sphericity tensor (eq. (2.2)) and the beam
axis. The continuous line corresponds to the tensor calculated by summing over all the events. The dots
give the average of the angle calculated event by event. The error bars give the event-by-event fluctuations.
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Fig. 16. Time evolution of the baryon density in the reaction plane for the Au+ Au system at 400 MeV/A.
The full curves are isodensity curves in the c.m. system and correspond to the numerical values given
in the insert of the upper-right corner, starting from outside the system. The incident nuclei are originally

running towards each other along the horizontal direction.
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viscosity forces (eq. (6.29)). Is there any feature in the cascade that can be understood
as coming from this cause? Fig. 17 would suggest a positive answer. It displays the
mass current at about the maximum density in the Nb+ Nb system. Clearly, matter
is deviated in the perpendicular direction. But, and this seems to emerge also from
a careful analysis of fig. 15, the different layers do not have the same perpendicular
velocity. Therefore, it is expected that the viscosity plays a role. Most likely, the
viscosity forces tend to oppose to the rise of the flow, since they will slow down
the elements of matter which have the largest velocity at the time indicated in fig. 16.

It is not easy to determine clearly how the viscosity forces influence the mass and
energy dependence of the flow. It is argued in ref. *®) that the viscosity forces reduce
the flow [see also ref. *}] and that the resulting flow decreases with decreasing size
of the system and with increasing incident energy. The latter statement can be
roughly understood as being due to the general increase of the viscosity coefficient
7 (eq. (6.29)) with the temperature. The variation with the mass of the system can
be understood by a dimensional analysis of the viscosity term in eq. (6.29). The
velocity field being roughly scaled (exactly in the limit n - 0 as we have seen), this
term behaves like R™2, where R is the radius of the nucleus (Ca, Nb or Au). Now,
this term expresses the density of power dissipated by the friction forces. In other

mass  flux density

at maximum compression
i i T
Nb+Nb funf}
400 MeViA
b=271 fm
8k s

[fm)

X

z {fm)

Fig. 17. Distribution of the mass flux density ( pu in eq. (6.4)) as viewed in the c.m. system at about the

time of maximum compression. This figure refers to the reaction plane of the Nb+ Nb system at the

impact parameter b=2.71fm. The arrows give the direction and the intensity (proportional to their

length) of the mass-flux density vector at the points they are attached. The full curves are isodensity

curves. The numbers give the ratio of the baryon density to the normal nuclear matter density. The nuclei

are originally running towards each other along the z-direction. The small cross is the locaticn of the
c.m. of the system.
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words, the contribution of the viscous forces to Q.. can be written as

QY= j‘ de [ drltermin n]. (6.36)

Therefore Q' is expected to behave like
&~ Rr, (6.37)

where 7 is the typical collision time, or in the limit of small n (see the discussion
about similarity)

W~ R%. (6.38)

Actually, in our calculation, we observe an almost perfect proportionality between
R and 7. Now, the mass dependence of Q.. is expected to be simply as R’ because
e.g. in the thermal limit Q.. =~§Aug, where A is the mass of the system and where
u, is the initial c.m. velocity. The flow angle which increases with the ratio Q../ Q..
will be reduced by the viscosity force by an amount proportional to R™'. In other
words, the flow angle should increase with the mass of the system.

In conclusion, the mass and energy dependence of the flow, qualitatively the
same in the cascade and in nature, can be qualitatively understood as arising from
the contradictory effects of the pressure and the viscosity forces.

In the cascade, however, there is no doubt, due to the very presence of the
spectators, that off-local-equilibrium effects are important. It is impossible to dis-
criminate between viscosity effects and general off-equilibrium effects on the basis
of the mass and energy dependence. For the latter, eq. (6.33) is relevant. As the
mass increases, off-equilibrium effects are reduced. As the energy increases, the
thermalisation mean free path increases mainly because in the 250-800 MeV range
the differential nucleon-nucleon cross section is more and more forward-peaked.
In order to really separate viscosity and more general off-equilibrium effects, one
has to look carefuily at the structure of the stress tensor. We are currently pursuing
this analysis within the INC model.

7. Discussion: conclusion

We have shown that there is definitely an intrinsic collective flow in our INC
model. This raises several questions in view of other works along the same lines. It
has been stated that the Yariv and Fraenkel cascade cannot generate a flow. However,
the question of the intrinsic flow (disregarding the filtering procedure) has not been
studied vet, as far as we know. Therefore, it is hard to compare the two cascades
from this point of view. The same remark applies to the Kitazoe cascade, since in
ref. **) only filtered results are shown.

The comparison on the filtered results is very hard to make, because of the reasons
we mentioned in sect. 5, namely that the §lter applied to plastic ball events is not
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directly applicable to cascade events, because of clusterization. It is very hard to
know exactly the detail of the filter applied in ref. ') to the Yariv-Fraenkel cascade
events, but the filter is undoubtedly more refined than our standard filter. As for
the Kitazoe cascade, we do not know how their filter compares to ours. To quote
ref. %), they state that “the experimental condition of the Plastic Ball and the Wall
was rigorously taken into account for the solid angles and the energies of ejected
protons and pions with the aid of a Fortran program provided by one of the authors
of Ref. ')”. They do not, however, say anything about the clusterization problem.
One can thus see how difficult a comparison between the three codes is. Our
impression however, is, that the flow in our cascade is larger than in the Yariv and
Fraenkel one and smaller than in the Kitazoe one. This brings us to the causes of
the flow. We think that there is more pressure in our cascade than in the Yariv and
Fraenkel one, because in the latter the cascade-cascade interaction is such that a
given cascading particle sees the other cascading particles as a continuous medium.
The momentum content of this medium follows the Fermi gas law and therefore
can be much lower than for the original cascading particles. As a consequence, the
pressure may be smaller. The Kitazoe cascade seems to be very similar to our own
cascade, as far as the central interaction region is concerned, but introduces a new
feature, namely the possibility for a central region particle to push on the spectator
zone as a whole. There are no true spectators in their cascade, in the sense of a
particle keeping its original momentum for ever. To use the conventional jargon,
the flow in their cascade comes from a side-splash and from a bounce-off, whereas
ours strictly contains a side-splash only. However, if one considers nucleons
experiencing a small momentum transfer as a spectator, our cascade contains a
bounce-off as well. We do not pretend that we fully understand the comparison
between the three codes, because this would require a detailed knowledge of the
numerical codes, but we want to present our opinion as an attempt to clarify a
rather confused situation.

It may appear strange to some people that the cascade, basically a single-particle
model, can generate a collective behaviour. We have shown on very general grounds
that the collective flow results from the work done by the pressure forces. Since
there is some pressure built inside the cascade, there is no a priori reason for not
having a collective flow. Yet, it might appear disturbing to have a collectivity
generated by a pressure which, in a sense, embodies the local disorder. However,
the collectivity here does not arise from nothing, but is already present in the ordered
motion in the initial state. As eq. (6.20) suggests, the collective flow comes from the
pressure work on the ordered motion of the spectator “caps”, following our ter-
minology of sect. 6.

Perhaps the analysis through study of the orientation of the sphericity tensor of
the filtered events is not the most appropriate one to exhibit the presence or the
absence of the collective flow. In this perspective, it seems that the transverse
momentum analysis of Danielewicz and Odyniec®’) is much more suited. We did
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not try such an analysis here, but we give in fig. 18 the mean transverse momentum
in the reaction plane as a function of the longitudinal momentum (for unfiltered
events and using the theoretical reaction plane). Clearly, this method reveals a
definite flow in the cascade. Fig. 18 also shows that the transverse momentum content
is practically fixed at the end of the compression stage (see fig. 16).

When we apply our “standard” filter, we get a flow which is smaller than the
experimental one (see fig. 12). To quantify the lack of flow is a very hard task. It
involves the handling of delicate questions, such as the problem of the double hits
and of the misidentification at very forward angles [see ref. '*)]. But it is certain
that our INC model predicts too small flow angles.

What is missing from the cascade? As we ekplain in sect. 6, the flow results from
the action of the pressure forces and is reduced by viscosity forces and/or by more
important off-equilibrium effects. Therefore, either the cascade pressure is not large
enough or the viscosity forces or the off-equilibrium eflects are too strong. If one
compares with hydrodynamics **), which contains only pressure and viscosity forces,
it seems that the difference from our present calculation can be understood as arising
from smaller viscosity forces in hydrodynamics*®). We have seen that the off-
equilibrium effects, viscosity or more important effects, qualitatively explain the
mass and energy dependence of the flow. This would incline us to believe that the
pressure forces inside the cascade are not strong enough, which is an indication of
a stiffer equation of state *°). Recent works based on the numerical solution of
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Fig. 18. Au+ Au system at 400 MeV/A. Time evolution of the mean transverse momentum projected on

the reaction plane as a function of the c.m. longitudinal momentum. See text for details. Only the forward

hemisphere in the c.m. frame (p.>0) is shown. The error bars give the typical uncertainty of the
calculation.
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Landau-Vlassov equations ****) are in favour of such an explanation. However,

only a detailed analysis of the mass and energy dependence can help us to understand
whether the off-equilibrium effects are correctly described by the usual collision
regime.

We are very grateful to Prof. J.P. Alard and Dr. G. Montarou from the LPC of
Clermont-Ferrand for their valuable help in the computation work. We would like
to thank Drs. H. Stdcker, H.-A. Gustaffson and H.-G. Ritter for helpful discussions.
We are particularly grateful to Drs. M. Gyulassy and K. Frankel for helping us to
clarify the problem of the freezing. One of us (J.C.) is very grateful to the members
of the DPhN-ME of Saclay for their kind hospitality.

Appendix A

ESTIMATE OF THE STATISTICAL ERRORS

Let y, denote the value of a calculated variable (e.g. the aspect ratio) at the nth
run. This quantity can be considered as a stochastic variable of the mean 7 and of
the variance o”. Then, according to the central-limit theorem,

1 N
;) = - Al
Ye= E} y (A1)
can be regarded as a stochastic variable with mean y and with variance o?/ N, where
N is the number of runs, provided there is no correlation between the y,’s. Similarly,
the quantity

1 N [1
2o P me—— | =T 22 A2
o N_lg(yn ¥e) Nﬂ{N%y" ye} (A2)

is a stochastic variable with mean o2 and with variance 20/ N, if the distribution
of y, is sufficiently close to a gaussian distribution. Symbolically, we may write

j=y.to/VN=y.ta /YN, (A3)
o?=al(1+V2/N). (A.4)

Therefore, even with only N =160, the variance is estimated with an accuracy of
~10%. This shows that the fluctuations indicated in figs. 4, 7, 8, 10 are really
meaningful. Note, however, that (A.3) applies for instance to average flow angle
but not to the position of the peak of the dN/d cos 8 distribution, which is not a
simple moment of the # distribution.
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Appendix B

FLOW AND MAXIMUM IN THE dN/dcos § DISTRIBUTION

Let us assume that the distribution (eq. (4.1)) depicted in fig. 7 is gaussian and
has a maximum at some finite 6 and for ¢ =0. What is the condition that this
distribution has to fulfil in order to generate a maximum at finite § inthe d N /d cos 67
To answer this question, we write the distribution (4.1) as

&N &N — XV p?
_&N _Cexp[_W] (B.1)

pdp dzp:dx dy 207 i

Here, x, y are the cartesian coordinates used in fig. 7 and C is a normalisation
constant. We write

X=pcos ¢, y=psing, (B.2)

and we recall that p is refated to the flow angle by

p=sin 6.

Because of (4.2) we have

dN 2+ 23 249 x

PP C cos 6 exp <“p 20_);0) L dg exp (50_2 cos go) , (B.3)
or
dN sin® 6+xé> (xo sin 6)
_..___._“.._:277(; %) — 5 I = , B4
d(cos 8) €08 exp< 267 U Py (B.4)

where I, is the usual modified Bessel function **). The latter increases when sin 6
increases, in contrast to the other factors which decrease. One can thus write down
a condition to have a maximum at finite 6, by looking at the behaviour of expression
(B.4) for small 8. One has

5

> in” 6 5 .
a(i~%siﬁ‘8+~‘)x<1~8i2nz+-vv>x(1+]go4smz€+---). (B.5)
o o

dN
d{cos 0}

Therefore, the maximum will occur at 8 =0, as long as
Xo<20V2(1+ %) . (B.6)

This corroborates what we observed numerically for Ca+Ca, namely that a
maximum at 0° can correspond to an intrinsic flow (x,> 0}, provided the fluctuations
are large enough.
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