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RELATIVISTIC HEAVY ION COLLISIONS AND THE NUCLEAR EQUATION OF STATE

J. CUGNON
Université de Ligge, Institut de Physique B5,
Sart Tilman, 4000 Ligdge 1, Belgique.

ABSTRACT : The general properties of the nucleus-nucleus collisions in the GeV/A
range are reviewed. It is shown that, despite of the very transient nature of the
process, some observable quantities are linked with the formation of a dense,
very excited state of the matter. It is not, however, quite clear whether these
quantities are relevant for the bulk properties of the matter. The guestions of
the pion multiplicity and fhe deuteron to proton ratic are analyzed. The squation

of state is tentatively derived for some values of the thermodynamical variables.

1. INTRODUCTION

The admitted objective of the relativistic nucleus-nucleus collisions is to
determine the properties of nuclear matter under extreme conditions of temperature
and density. The simplest of these properties are carried by the phase diagram and
the equation of state (E0S). Very little is known for sure about the phase diagram,
although a lot of speculations have been made. Strong theoretical conjectures are
in support of the possibility of a phase transition between nuclear matter
(sometimes called the hadronic gas or fluid to account for excitations of mesonic
degrees of freedom) and the guark-gluon plasma 1). On the same status, we place
the liquid~gas phase transition at low temperatures and densities 2). Other
features of the phase diagram are much more speculative. We will not discuss these
phase transitions, which are under intensive study and we will concentrate on the
equation of state of the hadronic fluid. The latter is very important for testing
the field theoretical approaches of nuclear matter 3’4) {(and even the more conven-
tional views), for the understanding of the presupernovae matter 5), of the
collapse of a supernovae 5) and of the structure of neutron stars 6). It is also
important for the nature of the phase transition towards guark-gluon plasma at
low temperature 7).

For the nucleus-nucleus collision, a dynamical process, to be relevant to the
study of the E0S, a purely static property, two conditiens have to be met

(1) there should exist at some time during the collision, a part of the
system, or better the whole system itself, which can be considered as in thermal
(and possibly) in chemical equilibrium 3

(2) one has to single out observables which have been determined by the
occurrence of such a state and which have been conserved by the subsequent evolu-
tion of the system.

It has now become clsarer and clearer that in the GeV/A range, the matter is
first strongly compressed at the beginning of the collision and then expands in a
rather short time, even for strong interaction standards.The detail of the scenario
is however not unique and can change from theory to theory. Therefore, only
uncertain answers can be provided to the above questions. The total pion multipli-
city, the strange particle yields 8), the cluster yield and global variables 9,10)

have been proposed as possible testing guantities. The first and the third ones
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have even been used to tentatively extract information about the EO0S. We will
present the recent developments in these directions.

In Section 2, we recall some basic thermodynamics. In Section 3, we briefly
discuss the essential features of the collision process. In Sections 4 and 5, we
analyze the pion yield and the cluster yield successively. For the latter, we
investigate the connection with the entropy. Finally, Section 6 contains our

conclusion.

2. THERMODYNAMICS

The EDS (in the general sense) embodies the simplest static properties of an
extended system, and appears as the relationship between the internal energy
density and two thermodynamical variables. In nuclear physics, one usually uses

physical guantities per nucleon. One may thus consider the following relationship
U/A = flp, T s (2.1)
or using the natural variables (5 denotes the entropy)
u/h = g3, o) - (2.2)

The nuclear matter E0S refers to Eq. (2.1) for an extended system of equal number
of protons and neutrons, for which the Coulomb interaction has been artificially
switched off. One may generalize the relation for other variables as the neutron

exXcess X = —(—N”E'z')— H

U S
5 = f(p, Xy i) = g(—,}?,v Dy %) B (2.3

The internal energy per baryon is often divided into a thermal part and a com-

pression part

£ £
U [
Yo D o, 1 £ 0, 0, (2.4)
with
£,
22 (o, x, T20) =0 . (2.5)

let us stress that the division (2.4), although gquite appealing, has a very limited
meaning, except at T = 0. The thermal and compression energies, if respectively
identified to the heat quantity and the work necessary to reach a state (p,7), are
not uniquely defined by the values of the parameters {(p,T). It is an old thermo-
dynamical fact that they depend upon the path used to go from (QD,TO) to (p, 7).
Equation (2.4) corresponds te a transformation following an isoentrope at

(% = T = 0) followed by an isochore (p = constant).

it is also misleading te consider Eth as the average kinetic energy and EC as

the interasction energy. Obviously, at T = 0, there is a lot of kinetic energy
inside nuclear matter. At the best, Eth can be tentatively identified as the
excess of kinetic energy when the temperature is raised from T = Q.

The quaﬁtity EC/A(Q,X) is well-known for o < 0, from theoretical investi--

gations 11)3 Experimentally, only the two following points are known
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Ee Ee 3
i (6,0) =0 5 e (007[]) = BD = -~ 16 MeV s pO =z 0,17 fm . (2.6)
An other experimentally known quantity is the compression modulus 12).
2 37 1
K=z 9 p* ~— (EC/A) = 210 £ 30 MeV . (2.7)
3p2 lo=p,

These two figures are often summarized in the simplest manner as either of the

following two guesses for the functional EC

EC K 2
e (0,0) = ?§~55; (p - Do) + Bo (2.8a3)
E
..C 2
K {(p,0) = K (p -0 ) + B . (2.8b)
2 &} 0
18 po .

Nething very much is known about the function Eth either. In view of this
ignorance, the latter is often considered to be close to the Fermi gss value. In
this case, cone may generalize the formulae by incorporating the possible ereation

of pions and formation of A-resonances, if the latter are considered as particles.

One has then for each species i = Nym,A , (H = ¢ = k = 1)
oo .
- Si .4 M 2¢ 2 Amg Amy o EW g1 !
Een,i = ;;; LRG0 )k [3 Ky G) = == K ()1 (-8) exp(——)}
bt (2.9)
g m z 2 m Lo
_9 3 M2 v g i 2-1 i
p, = 7 A /1 Ky (=) (=8) exp(—5—=)} . (2.10)

i 2

27 01
In these equations, 9 ig the spin-isospin degeneracy, m is the particle mass and
ug is the chemical potential for the species i. The quantity & = -1 for the bosons,
+1 for the fermions. For Boltzmann particles, § = 0 and the summations reduce to

the first term. The chemical potentials obey

ue = 0 , Uy = Uy . (2.11)

For later purposes, we write explicitly the formulae obtained by using the non-

relativistic Boltzmann approximation for the baryons and the relativistic Beltzmann

approximation for the pions

4 3 16 3 3 2 -2 Mo Mo 7
E = N (m, + 2 T) + —— N, (m, + = T) + ~—— N_ m2 T2(3 K (=) + —— K, (=)
th 272 N"N VA 272 ANTA Z 272 i ] 2T T 1T
me—m (2.12)
N m AN
= (EA)B/Z e ! , (2.13)
N N
and
- T
_ 3V e Ty w5 v@n 1y3/2 "/
N = » m2 T K, () = 3 V(g m T) e . (2.14)

In the last equation, V is the containing volume.
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3. THE COLLISION PROCESS

The main features of the collision process between two heavy ions in the GeV/A
range are more or less elucidated nowadays 13)5 owing to the combined developments
of the hydrodynamical theory and of the intranuclear cascade (INC) calculations,
although the two approaches disagree with each other on many details. The process
is characterized by the following points

(1) there is a separation between the spectator nucleons, which experience
very small momentum transfer and the participants, which are strongly interacting.
The separation betwsen the two types roughly follows the so-called clean-cut
gecmetrical picture.

(2) The system of participants first undergoes a strong compression, at the
end of which it is very much esxcited. Afterwards, it expands quite rapidly and
desintegrates in many pieces : nucleons, pions, and light nuclei essentially. The
spectra of these particles are more or less of the Boltzmann type (although not
isotropie), which indicates that the available energy has been shared by many
nueleons. This leads naturally to the following gquestions : (1) Has a dense
equilibrated piece of matter been formed 7 (2) Are there observables which have
recorded the properties of this state 7

The answer to the first guestion is hard to be provided. Figure 1 shows

La+Ca b=0 0.8 GeViA

H i i
2. s
S ;
<K - o

FIGURE 1.

Time evolution of varicus moments of the one-particle
distribution function 51 The non diagonal moments

<xp > and <zp > have been normallzed by dividing by

(<x ><p2>)2 and (<z? ><p2>)2, respectively. z stands
along the beam axis. The full lines correspond to taking
all the particles, whereas the dotted lines amount to

selecting those that made two collisions at least.

The figure refers to the c.m. frame. Adapted from
Ref. 15.

¢ [fmich

the time evolution of several quantities, as calculated within the INC model of
ref. 14). They are various moments of the one-body distribution function f1(;,3,t),
which gives the probability of finding at time t a baryon at position ;, with
momentum Bs As can be seen, the system can hardly be considered as equilibrated

at any time. One has to remind here that a necessary condition is the vanishing of
?.E correlations. At best, the system composed aof the nucleons having made two
collisions at least can be considered in equilibrium for a small time span around
t = 8 fm/c after the beginning of the cellisions. The relatively large mean free
path of the nucleons is responsible for @& non-equilibrated (non~-relaxed in other
words) component of nucleeons having made no collision or one collision., This
component is reduced in larger systems, which are thus more favourable to study

dense matter.
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As we said in the introduction, several observables have been proposed, in

relation with the answer to the second question. Some of them are contained in

Figures 2 and 3.

Ar+KCl  b=0 800 MeViA

FIGURE 2.
Time evolution of the baryon density (dashed line :
participants only, full line : all baryons included)

normalized to the normal density of nuclear matter

(top), of the number of baryen-baryon collisions
{centre, scale on the left}, of the number of parti-

cipants (centre, scale on the right), and of the

oor entropy of the participant system divided by the
final number of participants (bottom). Taken from
o Ref. 15.
= A
Np oL
0

CasCa  0.80eVA bs2f

FIGURE 3.
Time evolution of several guantities for b = Z fm
Ca + Ca collisions at B00 MeV/A : baryon density
at the c.m (top), pion and A abundances (secend

part), first aspect ratio (third part), flow angle
(bottom). See text for detail. Same conventions

4 as in Figure Z.

sin eﬂuw

b {fmlc)

In Figure 2, it is shown that the entropy gained by the system is essentially fixed

at the time ofvmaximum compression. According to ref. 16)5 the entropy is related

to the deuteron and proton abundances (see Section 5).

Figure 3 displays other quantities of this kind. Thé possibility that the

final pion abundance carries information about the dense state of the systenm has

been first advanced in ref. 17). This featurs has been exploited by Stock's group )

as we explain in Section 4. The two lowest parts of Figure 3 are related to the
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second moments of the final momentum distribution (in the c.m. frame)

Qij = f d®p dir f?(?,g) P; Pj . (3.1)
This tensor represents an ellipsoid which gives a rough idea of the momentum flow.
The more elongated it is, the less isotropic the particle emission is. The orienta-
tion of the ellipsoid gives the preferred emission direction. The elongation is
characterized by the so-called aspect ratio q; = XT/AB, the ratio between the
largest and the smallest eigenvalues, The angle %flow between the largest axis of
the ellipsoid and the beam axis is called the flow angle. These two guantities are
manifestly determined before the end of the collision process, but they seem less

correlated to the maximum density stage than the entropy and the total pion abun-

dance.
Ca=+Ca b=0 0.8 GeV/A
100~ FIGURE 4.
INC calculation of the diagonal elements of
e the stress tensor near the c.m. of the system
in central Ca + Ca collisions. The tensor is
oy 50 constructed by counting all the baryons in a
%E test sphere of radius 1.1 fm in one hundred
;: runs of the calchlation. The second part of
ﬁg . the figure gives the trace of the tensor divi-
0 ded by 3, when all the particles are taken
E% ' into account (full line) or when only those
vy 50~ that have made two collisions at least are
&= retained (dashed line).
Q
T
CD

For the sake of completeness we have added in Figure 4 the time evolution of
the pressure at the c.m., or more precisely of one third of the trace of the stress
tensor. The upper part of the figure shows that indeed the stress tensor is not
isotropic. The off-diagonal elements (not shown) are very small compared to the
diagonal ones, which means that the viscosity plays no role in the vicinity of the
c.m. The stress tensor for the n. > 2 particles is almost isotropic everywhere,
which gives the dotted curve in Figure 4 the physical meaning of a (partial)

pressure.

4., THE PION MULTIPLICITY

One has first to understand {see Figure 3) why the total pion multiplicity
keeps trace of the properties of the high density stage. This may be done on the
basis of kinetic theory. First, one realizes that the A-producticn is very fast
because of large cross-sections (= 20 mb) and isotropic production. If everything

else remains constant, the A-abundance in an extended system evolves towards its
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equilibrium value as

- T/
qu(1 - e %) , (4.1)

=
4

with

N
Ly v (4.2)

~ ]
To ¥ 7 'Wleq P <ONN+NA
In the last equation, the brackets mean an average over the actual A and N momentum
distributions, and v is the relative NN velocity. Typical values are oy = 3 Py
(NA/NN>eq
density state. Similarly the pions can be considered in chemical equilibrium with

© 0.2 and T = 2 fm/c which is not larger than the duration of the high

the other species, because of the large cross-section for the 7 + N - A process.
Therefore, it is a reasonable picture to consider the species in chemical equili-
brium during the high density stage. However, it is not clear that thermal equi-
librium is reached even in an acceptable approximation. Let us consider, for the
time being, that it is the case. The question which naturally arises is : what
keeps the chemical composition constant 7 The answer lies in the properties of the
expansion. The latter happens on a short time scale (= 3 fm/c), which tends to
freeze the chemical composition. Moreover, the expansion is isoventropic, in all
likelihood (see ref. 19) and Figure 1). As a consequence, the A-population de-
creases, because of the lowering of the internal temperature (see Eq. (2.13)).

On the contrary, the pion population increases because of the expanding volume.
The net result is an almost constant 7 + A asbundance during the expansion.

This observation has been exploited by R. Stock et al. 18) to try to extract
the EGS, more precisely, the function EC(Q) (Eq. (2.6)). We present here their
reasoning in a slightly modified presentation, With the same hypotheses as in
Section 2, and assuming all the nucleons are participating, one can always divide
the available energy EO as

£ =z E., + E (4.3)

o th c 7

Eflow
The guantity Eth refers to the chaotic motion of the particles and Eflow refers
to the overall Flow motion of the hydrodynamical type. At the maximum compression
time, Eflow = 0. Equations (2.13-14) can be recast into

N + N, = f (4.4)

ot Ny = P (Eppoeg) g

where Pg is the baryon dehsity. The function fth’ relevant for the thermal model
cannot be put a simple analytical form, but can be constructed anyhow by elimi-
nating T from the equations (2.12)-(2.14). One expects essentially a similar
relationship in the INC model (as in other kinetic models). Therefore we write

N + N, = f (£ ) 5 (4.5)

INC ‘“th’PB

where fENC is different from fth because of effects discussed below. In the INC
model, and in thermal models as well, there is no compressional energy, and the

first argument in (4.5) is essentially E_, the available kinetic energy :

(NTr + NA)INC = FINC (EG,QB> (4.6)
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Now, if one accepts the INC model as a good model for transforming the available

kinetic energy into pions, we may keep (4.5) and recast it into

obs
N = (Nﬂ + NA>eXp = fINC(Eo - EC(@B), pB) . (a.7)
As expected, formula (4.6) overestimates the pion yield. Comparison between (4.7)
and (4.6) may thus provide the function EC(QB), if pg is taken from the estimate

of the INC model itself. The results are given in Figure 5.

40

120 - o Chemical model
1 & Cascade modsl
.
100 - ¥

FIGURE 5.

Compression energy per nucleon as extracted

%‘e

S 80 b
é% g from the comparison of the data with INC
e 80 =-?w~ ’ prediction (triangles) and with a chemical
f§ %ﬁ model celculation (dots). See text for detail.
uéj “’?“ The investigated system is Ar + KCIl.

40+ ﬁ%‘ Adapted from Ref. 20.

s Ama
20 - n%n
o 7 T
1 2 a 4 . B

plpo

XEE 8512-4838

The same argumentation can be carried out with the help of Eq. (4.4), with
this time the thermal model expression, and the maximum density Pg evaluated
through the Rankine-Hugoniot shock equation 20), Once again, the pion multiplicity
is overestimated and a compression energy must be introduced. With this procedure,
one obtains a quantity ES given by the open dots in Figure 5. It is gratifying to
see that both approaches agree more or less. However, the first one is more
reliable for the following reason : the function FINC embodies, as in the real
situation, off-eguilibrium and finite size effects, which makes Eqg. (2.12) only
an idealisation. The main‘uncertainty, however, comes from the kinetic approach
in general. It neglects the softening of the pion modes (or their modification,

to say it in general) in dense matter.

5. THE ENTROPY

As it has been suggested, first by Siemens and Kapusta 16), and also in
refs, i9’21"22), the entropy per nucleon can be related to the deuteron-like to
proton~like ratio de = "gn/up" . We will assume below, in order to simplify the
presentation, that the one-body proton and neutron distribution functions are

proportional to the proton and neutron numbers, respectively :
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A - A oep
L. = = F A (5.1)

The entropy per nucleon is then esqual to

N N
- - 9 oS 2
= 1 An F,> + An 2 i &n A

Z z
1 -—'EQJH'A‘ 5 (5»2)

=

where the bracket means an average over the Fj—distribution itself

p
j d®r d%p f1<'§,‘§> on f,g(—f,g)
(5.3)

<An f1>
f d¥r d%p F1(§9E)

The number of deuteron-~like structures in the final states is 19)

IR
[Nl
rof ol

2 + —5’ - E) gd(§,5) . (5.4)

Ny =2 [ a%R a®p [ d%r a% PR 4 L, R
L L} .} ‘j L B 2 + 5 -
In this squation, F;p is the two~body distribution function for neutron-proton
pairs in the final state and = is the Wigner representation of the deuteron
density matrix. The factor 3/4 comes from the spins. The quantity N"d" gives the
number of neutron-proton pairs which resemble a deuteron, irrespective of the rest
of the system, no matter the pair is free from the rest, or embedded in a larger
cluster. One refers to these pairs as deuteron-like objects. For clusters up to

the a-particles, one has the following correspondence 19)

3
N = N, + 5 (N, + N, ) + 3 N . (5.5)
g d 2 t 3He LT
Now, the guantity N“d“ can be given a simple form, if the phase space
extension of the system is much larger than the deuteron size, and if one makes

the hypothesis of negligible correlations, £P & fg . Then, Equation (5.4)

2 1
becomes
Ny,
'd” N
de _m- 6-E<f,§> 5 (5.6)
p
where N"p" is the proton-like (or charge) yield
o[ g% 43g £P(Z 3
Nupu - J d°r d P fi(r9p) e (5.7)

Finite size effects can be evaluated anpalytically if both f? and gy are taken as

Gaussian functions

2 2
FFD) = —P  exp [- - B i (5.8)
1 (1 R ?ﬁT)a 2mT
o P
2 2
g (F,B) = -——‘—-—; exp [- &= - B : (5.9)
(TT rO pO) 1‘0 pO

In this case, one has

Ni g 1% r p
N’“' = 6 %i <> X(E2) V(== (5.10)
npn p m .




€.9.10

with
2
X(x) = (1 + %—)“3/2 , (5.11)
Y{x) = (1 + x2)~3/2 (5.12)

In principle, an additional factor should be added to take care of a possible
radial flow. The coefficients r_ and p_ are not independent (ro Py ™ #), since

the extension of in phase space is equal to a natural unit cell. Now, in the

%4
case of a function f1 as (5.7), there is a relation between <&n fj> and <f1>

<gn fo> 0= - 3(1 - &n 2) + &n <> . (5.13)

We draw the attention to the fact that the factor 3 replaces a factor 3/2 in the
usual derivation, because, here, we have assumed a gaussian spatial distribution
instead of a constant cne. Gathering the results, we have the following generali-
zation of the Siemens-Kapusta relation :

r p
Zon N gn X(2) Y(=2=) - &n R ) (5.14)

S
=z 4 + An 3/2 + & = 4
A A z o /T dp

This equation can be used to analyze the data. This calls for some prelimi-
nary remarks. First N, Z and A should refer to the participants which implies
that deuterons in the so-called fragmentation region should be removed. This is
done in the recent data and does not constitute a real problem. Second, since
the equation {(5.14) is a highly non-linear relation, one should apply it in
narrow impact parameter intervals. This is the case for very recent data, which
present the de ratic as a function of the charge multiplicity (the quantity Z

above), as shown in Figure 6.

-93Nb+3Nb
0.7+~ 400 MeVIA
yasesssses® FIGURE 6.
eae®® ® o e e
- LOOMEVIA . . e Experimental "d"/"p" ratio versus

. eqo@eatasieteoe éSO MeVia charged multiplicity for four sysgims.
£§L The full dots are data from ref. Y,
-y the lines represent the data of
= 03 - 24
2 . N . ref. ) and the open dots are calcu-
z 1050 MeVIA o INC

lations from ref. 25), for the latter

Ca+Ca 7
®/ the abscissa represents half the ave-
800 MeViA_ © abse pres
° rage participant number for several
S N SUNUUUS NS VDRSS SO w— impact parameters ranging from zero

10 30 50 70 90
“p” = charged nucleon multiplicity

to 7.15 fm.

A fit of the data can be attempted with the help of Eq. (5.10). But some
assumptions have to be done in order to make the procedure meaningful. We closely
follow here the lines of ref. Zé)c First, the radius of the participants is
assumed to bé proportional to the third power of the participant number, for a

given system. Hence, one may write (remember Z = Nﬂp")
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I R NN AL (5.15)

Afterwards, for the sake of simplicity, <F1> is assumed to be constant, irrespective
of the multiplicity. The relationship obtained in this way between the N”d“/N"p"
ratio and the multiplicity N"D" is tested in Figure 7, where the data of Figure 5

have been replotted after changes of scale, which make the relationship linear.

N”p
90 80 50 40 30
520710 5
i i i
-
A - -
o -~ FIGURE 7.
o4 - —
N P . - Experimental data of Figure 6, presented in
H =
£ - ¢ Nb+Nb 400 MeViA such a way to exhibit the relationship
K - e @ BB0 e« 0
é? 2 - e — CasCa 400 implied by Egs. {5.10) and (5.15).
- ) s S0 e See text for detail.
i i i I
0.2 0.4 0.6 0.8
213
{WN"gJ

The values extracted in this way are given in Table I. The ratio ro/rp comes
directly from the fit. The other quantities are determined after Ty is properly
chosen. We have taken T, = 2 fm (indicated by the stars in Table 1), a reasonable
value. Then <f1> can be extracted, as well as the entropy through Eq. (5.10). In
this analysis, <F1> and the entropy are independent of the multiplicity. All the
variation of the N“d”/N”p" is solely due to the factor X in Egq. (5.11) (Here, Y has
been kept constant, since the observed momentum spectra are in general not very

much dependent upon the multiplicity).

TABLE T.
/ * <G> 5 ¥
System Energy rD/l:i3 rg 4 7
(GeV/A) (fm)

Ca + Ca 8.4 2.34 0.67 0.29 4.53
Ca + Ca 1.05 2.31 0.69 0.7 5.07
Nb + Nb 0.4 2.23 0.68 0.29 4.53
Nb + Nb g.65 2.65 0.57 0.27 4.60

Some uncertainty still remains in this analysis, although it is much more
involved than the previcus ones 16}. First, it is not sure that <f1> should be
constant. There is a strong suspicion for a decrease of <f1> for low multipli-
city 25’27), Such a possibility would alter the extracted entropy for large
(asymptotic) multiplicities,

By taking the asymptotic values, we get rid of the finite size (and possibly

of off-equilibrium) effects, obtaining in this way the bulk or thermodynamic values
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of the entropy. We have still to find out the corresponding values for two other
thermodynamic variasbles. Since we deal with limiting values, we can consider that
the internal energy is the available energy, since for very large multiplicities
the transparency will vanish. As for the density, one might think to determine it
from two-proton correlation measurements. This is not correct, since the two-
proton interferometry reveals the properties of the freeze-gut at low density 28),
whereas the internal energy is egqual to the available energy for the time of
maximum density. One may try to determine the density by the fit of Figure 7 it-
self. Indeed, the parameter rg in Table I can be translated in an average density
by considering uniform distribution equivalent to the gaussian distribution (5.8)

(in the sense of egual second moments). The results are contained in Table II.

JABLE TI.

u s b

System Energy i R o
(GeV/A) (MeV)

Ca + Ca G.4 95 4.53 2.13
Ca + Ca 1.85 233 5.07 2.07
Mo + Nb 0.4 95 4.53 Z2.13
Nb + Nb 0.65 150 4,60 3,60

However, this is not strictly correct, either, since the parameter rg is relevant
to the density at the formation of the deuterons. If one keeps the density as it
is, the internal energy should be diminished from the flow energy gained by the
system between the time of maximum density and the deuteron formation time. Even
if the latter is about 30 %, this does not change very much the results as seen

by Figure 8. An uncertainty on the energy introduces horizontal error bars.

*pulk entropy”

i i [ i i
7~ e NbeNb ]
o Cas«Ca FIGURE 8.
G- . Entropy as determined by the method of Section 5,
NG Ecgigﬂj . from the data of Figure 6 (dots) and compared
< 5 @% ;\ B to the INC estimate of ref. 19) and to the value
v L v % . N corresponding to the EOS of ref. 29),,
3k (D=2%_ -
| I | L
¢ 100 200
uia  MeVl
The conclusion is that the bulk entropy is about 4.5 - 5 units, smaller by

one unit than the previous estimate 16). The INC estimate for central Ca + Ca
collisions is close to the extracted values, but somewhat lower by about ~ 0.4 unit.

Both are however larger than the predictions of a standard E0S, here the one of
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ref. 29). 1t is too early to try to discuss the results of this investigation,

but it now becomes clear that this method is very promising and opens the road

to the determination of the bulk entropy for a wide domain.

6. CONCLUSION

We have shown that the nucleus-nucleus collision process, although a very
transient process, generates for a short time a highly excited and compressed
state, which can be considered as in thermal equilibrium in the limit of central
collisions between large bodies. Moreover, some observables are fixed by this state
and resist to further evolution during the expansion of the system. We have analyzed
two of them, the total pion multipliecity and the entrepy, which is related to the
deuteron to proton ratio. Both of them carry information about the equation of

state.
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