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Summary. — The ground-state density of a system of noninteracting fermions in a
harmonic-oscillator potential well can be given in terms of the wave functions of a few
single-particle states around the Fermi level.

We are going to demonstrate that the derivative of the density of a system of fermions
occupying the lowest levels in a three-dimensional harmonic-oscillator well can be writ-
ten in terms of a few radial wave functions. If N major oscillator shells are occupied,
the derivative implies only the last occupied shell and the first nonoccupied one.

In the one-dimensional case, the relation is very simple. If F'is the quantum number
of the last occupied shell (Fermi level), and if the ¢;’s are the normalized wave func-
tions, one has
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In this relation, g is the density and a, is the harmonic-oscillator length

T
) ay= V%

o being the oscillator frequency. The proof of relation (1) is given in ref. (1) and is based
on recurrence relations fulfilled by the harmonic-oscillator wave functions. The method
cannot be extended to the three-dimensional case easily. We therefore prefer to start

(*Y J. CuenoN and O. HAROUNA: Z. Phys. 4, 301, 59 (1981).
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with the following sum rule (3):

3 2. (B — Eo){Ole(r)n)<nlz|0> = <0} [e(r), [H, #1]|0) .

In this relation, |0) is the ground state for the many-fermion Hamiltonian H, and o(r)
is the density operator

(4) elr) =2 8(r—r,.

Relation (3) is easily verified by expanding the double commutator. For the harmonic-
oscillator Hamiltonian

2 1
(5) H=2(p1 —{—Emwzrf),

2m

the r.h.s. is readily evaluated. One has

_ __Mde W de 1
(6) % (B, — By)O|{r)|n) (n|z|0)> = om 4z 9m dr cosf

In the last relation, the spherical symmetry of the ground-state density has been used.
The dependence upon the polar angle 6 is eliminated by multiplying by cos 6 and integ-
rating over the solid angles. One has

™ i S Z(En——Eo)fdQ cos 6<0[g[ny <nf2|0> .

Both ¢ and z are one-body operators. Hence, they can connect the zero-particle—
zero-hole state |0> with the one-particle—one-hole states |n) = |ph~*) only, as is well-
known (3). The indice p denotes the unoccupied states, whereas % labels the single-
particle levels below the Fermi level. The transformation of the A-body matrix elements
under consideration into one-body matrix elements is quite standard (3). Equation (7)
writes

8) o =2 % (Hi— Eo)fd!? cos 8y (r)y;(r)i<pleih ,

where |k) is the time-reversed of the single-particle state |h>, and where ¥ is the total
single-partiele wave function. The factor 2 accounts for the spin § of the fermions.

The rest of the proof relies on the following property of the three-dimensional
harmonic-oscillator wave functions. If m, 1, m are the usual quantum numbers of the

(2} J. V. NOBLE: 4Ann. Phys., 67, 98 (1971).
(®) A. Bomr and B, R. MoTTELSON: Nuclear Structure (New York, N. Y., 1969), Vol. I, Chapt. 3,
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single-particle states, one has

(n + 1+ e+ 1>]%;
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This relation may be derived by using the explicit expression of the harmonic-
oscillator wave functions and the recurrence relations for the Laguerre functions. This
is a rather combersome method. It is preferable to use second quantization techniques
in the spherical representation. We refer the interested reader to the book by MosHIN-
SKY (%), which is one of the few textbooks to deal with the three-dimensional harmonic
oscillator. It is interesting to note that the state |nlm) in the N-th major shell
(N = 2n + 1) can be connected, through the operator z, with a state in the major
shells N/ = N 4 1 only. The first two terms in eq. (9) refer to N' = N + 1 and the
last two terms correspond to N’ = N — 1. This is a generalization of the one-
dimensional case, for which the position operator has nonvanishing matrix elements
between adjacent states only.

Because of relation (9), the summation over & in eq. (8) is restricted to the single-
particle states of the last occupied major shell (N = F) and the indice p runs only on
the single-particle states of the first nonoccupied major shell. Consequently E, — E,
is equal to %w. After some simple Racah algebra, eq. (8) can be put in the form

do 1

3\
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— (1 —8)(n + l)ﬂan("')Rnﬂ,zvl(V)} s

where R,;(r) is the radial wave function.

An expression similar to (10) is also valid, when a subshell is filled, like it is often
the case in nuclear physics. For instance, the neutrons in the 48Ca nucleus occupy the
N = 0 and N = 1 shells and the 1f; subshell of the N = 2 major shell. Then it is
appropriate to consider the j-representation. One has
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(*) M. MosHINSKY: The Harmonic Oscillalor in Modern Physics: From Atoms fo Quarks (New York,
N.Y., 1969), p. 20.
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I 1 1—1 " .
— (L= b, )(n + L)(2L— 1)(2 + 1)]%(0 N )2(27.,+ ”{jz s }}
[ — 3

N BB
—1 0 1 JHnitn) Vn+1,lf1('r) .
2 2

The summation over n, [ is restricted as before, to the values for which either the sub-
shell n, 1 + 1 or n + 1,1 —1 is partially or totally empty. The summation over j(j')
is restricted to the occupied (unoccupied) subshells. In the limit of the magic nueclei
(alllowest major shells occupied) the summation over § and ' in eq. (11) can be performed
and the expression (10) is recovered.

Expressions (10) and (11} embody a curious property of the harmonic oscillator,
gince the derivative of the density (and therefore the density itself) is determined by
just a few wave functions around the Fermi level. This property is of no practical
usefulness, but it may have some important connection with nuclear physics.- The
three-dimensional harmonic-oscillator potential have been used extensively for many
years in the development of the nuclear shell model. These days, more realistic potential
wells like the Saxon-Woods potential, are used. However, it is well known that the cor-
responding single-particle wave functions are not very different from those of a
harmonic-oscillator potential, provided the oscillator parameter is suitably chosen (%).
Hence, expressions like (11) can perhaps be extended to realistic potentials, for which
it could be approximately valid. Of course, it has to be modified, since the parameter o
looses its meaning., A possible modification is

do 1 vm . 3\1#/1 1 7141
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where ¢,;; is the single-particle energy and where the radial wave function E,;;(r) now
depends upon the quantum number j because of the spin-orbit interaction. We have
tested the likelihood of such a relation on a specific example. We have chosen a
Saxon-Woods potential with the parameters of ref. (5). Figure 1 shows the results of
the caleulation for the %Ca nucleus. Relation (12) is strikingly fulfilled for r >3 fm,
whereas departures appear for smaller values of ».

These considerations put some enlightment on a well-known observation first made
by Liv and Brown (%). They draw the attention to the fact that in order to provide
a good description of the excitations of nuelei, it is important to use a single-particle
potential which gives a good description of the single-particle states near the Fermi
energy. On the other hand, it is known that the coupling to low-lying excitations is

() K. Bear and P. E. Hobason: J. Phys. ¢, 4, L287 (1978).
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Fig. 1. — Comparison of formula (11) with the exact derivative of the nuclear density in *Ca.
exact, — — — eq. (12).

often proportional to the derivative of the density (*) (multiplied by some power of 7,
according to the angular momentum of the excitation). Our result makes the observa-
tion of ref. (¢) understandable. Having a good description of the single-particle states

in the vicinity of the Fermi level amounts to having a good description of the transi-
tion operator.

() K, F. Liv and G. E. BROWN: Nucl. Phys. 4, 265, 385 (1976).
(") A. Bomr and B. R. MOTTELSON: Nuclear Structure (New York, N, Y., 1969), Vol. II, Chapt. 6.



