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PACS. 2 1 . 1 0 . -  General  and average  proper t ies  of nucle i ;  proper t ies  of nuclear  
energy levels.  

Summary. - The  ground-s ta te  dens i ty  of a sys tem of non in te rae t ing  fermions in a 
harmonic-osc i l la tor  po ten t i a l  wel l  can be g iven  in t e rms  of the  w a v e  funct ions  of a few 
single-par t ic le  s tates  a round the  F e r m i  level .  

W e  are going to demons t ra t e  t ha t  the  de r iva t ive  of the  dens i ty  of a system of fermions  
occupying the  lowest  levels  in a th ree-d imens iona l  harmonic-osc i l la tor  wel l  can be wri t -  
ten  in t e rms  of a few rad ia l  w a v e  functions.  I f  N ma jo r  osci l la tor  shells are occupied,  
the  de r iva t ive  impl ies  only the  last  occupied shell  and the  first nonoceupied  one. 

I n  the  one-dimensional  case, the  re la t ion is v e r y  simple.  I f  _F is the  q u a n t u m  n u m b e r  
of the  last  occupied shell  (Fe rmi  level),  and if the  qi 's  are the  normal ized  w a v e  func- 
t ions,  one has 

(1) a o 
de(z) 

dz 
- -  % / 2 ( F  + 1)%,~vF+ 1 . 

In  th is  re la t ion ,  ~ is the  dens i ty  and a o is the  harmonic-osc i l la tor  length  

(2) V T 
a o ~  ~ ' 

~o being the  osci l lator  f requency.  The  proof  of re la t ion  (1) is g iven  in ref. (1) and is based 
on recurrence relat ions fulfilled by  the  harmonic-osc i l la tor  w a v e  functions.  The  me thod  
cannot  be ex tended  to the  th ree-d imens iona l  case easily. W e  therefore  prefer  to s ta r t  

Q) J. CUGNON and O. ttAROUNA" Z. Phys. A, 301, 59 (1981). 
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with the following sum rule (~): 

(3) ~. ( E . - -  Eo)<01e(r)In> <n]z[0> = <0[�89 [e(r), [H, z]] 10>. 

In  this  relat ion,  10> is the  ground s tate  for the many-fermion Hamil tonian H, and Q(r) 
is the densi ty  operator  

A 

(4) Q(r) = ~ 3 ( r - - r i ) .  
i = 1  

Relation (3) is easily verified by  expanding the double commutator .  For  the harmonic- 
oscil lator Hamil tonian 

(5) i p  ~ 1 22'~ 
H = ~ \2m -? 

the r.h.s, is readi ly  evaluated.  One has 

h 2 d~ h 2 dQ 1 
(6) Z ( E . - -  Eo)<01(r)I~> <~lzl0> --  --  

2m dz 2m dr cos0 

In  the last  relat ion,  the spherical symmet ry  of the  ground-state  densi ty has been used. 
The dependence upon the polar  angle 0 is el iminated by  mult iplying by  cos 0 and integ- 
ra t ing over the  solid angles. One has 

4~ ~2 dr f d  
(7) 3 2m dr ---- ~ ( E n -  E~ Q cos O<Ol~ln ) <n[zlO ) . 

n 

Both ~ and z are one-body operators. Hence, they can connect the zero-par t ic le-  
zero-hole state ]0> with the one-particle-one-hole states In> = ]ph-l~ only, as is well- 
known (3). The indice p denotes the  unoccupied states,  whereas h labels the  single- 
part icle levels below the Fermi  level. The t ransformation of the A-body  mat r ix  elements 
under consideration into one-body matr ix  elements is quite s tandard  (8). Equat ion  (7) 
writes 

4~ ~2 d~ 2 ~ (E.--Eo)~'~cosOv,~(,')~(r)<plzl~>,l a 
(8) 3 2m dr ~=va-, j 

where [h) is the  t ime-reversed of the  single-particle state ]h>, and where ~ is the  to ta l  
single-particle wave function, The factor 2 accounts for the  spin { of the fermions. 

The rest of the proof relies on the following proper ty  of the three-dimensional 
harmonic-oscil lator wave functions. If  n, l, ~n arc the usual quantum numbers of the 

(2) J . V .  NOBLE: Ann. Phys., 67, 98 (1971). 
(s) A. BOHR and B. R. IAC~OTTELSON: Nuclear Structure (New York, N. Y., 1969), Vol. I, Chapt. 3. 
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single-particle states, one has 

{ [ ( ~ / §  1)]~. 
(9) <n' l 'm'lzl~lm ) = a~6~,~,~ ~n~'~'z+l (2l @ 3) 

�9 ( / 0 1 0 [ / +  10) ( /ml01 /~-  l m ) - -  

_ dn',n+l(1_ ~o) dz,,~_x [!~ @ 1)(2/-k 1)]�89 ~ 2 1 ~ i ~  ( /OlOl/  - -  l O ) ( l m l O i l - - l m  ) ~- 

~-6~' (1--d~~ l [ ( n - k l - l - � 8 9  � 8 9  l) 

o o rn(2  + 3)]~,. } 
�9 ( l - - l m l O l l m ) - - ( 1 - - 6 ~ o ) o , , m _ l o , , , ~ + , [ ~  - ~ J  ( t +  10 lOj/O)(l-k l m l O l ~ m  ) . 

This relation may be derived by using the explicit expression of the harmonic- 
oscillator wave functions and the recurrence relations for the Laguerre functions. This 
is a rather combersome method. I t  is preferable to use second quantization techniques 
in the spherical representation. We refer the interested reader to the book by MosmN- 
SKY (4), which is one of the few textbooks to deal with the three-dimensional harmonic 
oscillator. I t  is interesting to note that  the state InIm) in the N-th major shell 
(N = 2n + l) can be connected, through the operator z, with a state in the major 
shells ~V'= N • 1 only. The first two terms in eq. (9) refer to 1V'= N + 1 and the 
last two terms correspond to N r =  N - - 1 .  This is a generalization of the one- 
dimensional case, for which the position operator has nonvanishing matrix elements 
between adjacent states only. 

Because of relation (9), the summation over h in eq. (8) is restricted to the single- 
particle states of the last occupied major shell (N = 17) and the indice p runs only on 
the single-particle states of the first nonoceupied major shell. Consequently E ~ -  E o 
is equal to h~o. After some simple Racah algebra, eq. (8) can be put in the form 

{( ;)' da __ 1 ~ n + 1 4- (1 + 1)Rn~(r)Rn,~+l(r) (10) a~ dr ~ ,,,, 
2n~- l=F 

- -  (1 - -  ~zo)(n • 1)~lRndr)R~+l,~_l(r) I , 

where R~(r) is the radial wave function. 
An expression similar to (10) is also valid, when a subshell is filled, like it is often 

the case in nuclear physics. For instance, the neutrons in the 4sCa nucleus occupy the 
N ~ 0  and 3 / =  1 shells and the 1]~ subshel lof  the N ~  2 major shell. Then it is 
appropriate to consider the ]-rcpresentation. One has 

(Ii) -- hco-- ~ (2 ]  + l) (2/+ 1)(2/+ 3) n ~? l +  
2m dr 4~ [~] 0 0 

�9 ~ (22" + i) ] l ] i 1~n,l+l(r)1~n~(T) __ 
[/] 1 -~ i �89 --�89 0 

(4) !~r 1V~ostnNSKY" The Harmonic Oscillator in Modern Physics: From Atoms to Quarks (New York, 
N.Y., 1969), p. 20. 
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--  ( 1 - -  ~,o)[(n ~- 1)(2/- -1)(2l-~ 1)]~(/0 } 1 l - -  (2j' + 1) j 1 . 
0 0 Er I -  1 1_ 

1 ;) } 
�9 - � 8 9  o R ~ . ~ ) R ~ + ~ , ~ : ~ ( r )  . 

The summation over n, 1 is restricted as before, to the values for which either the sub- 
shell n, l + 1 or n § 1, l -  1 is partially or totally empty. The summation over j ( j ' )  

is restricted to the occupied {unoccupied) subshells. In  the l imit of the magic nuclei 
(all lowest major shells occupied) the summation over j and j' in eq.~il 1) can be performed 
and the expression (10) is recovered. 

Expressions (10) and (11) embody a curious property of the harmonic oscillator, 
since the derivative of the density (and therefore the density itself) is determined by 
just  a few wave functions around the Fermi level. This property is of no practical 
usefulness, but  it may have some important  connection with nuclear physics. The 
three-dimensional harmonic-oscillator potential  have been used extensively for many 
years in the development of the nuclear shell model. These days, more realistic potential  
wells like the Saxon-Woods potential, are used. However, it is well known that  the cor- 
responding single-particle wave functions are not very different from those of a 
harmonic-oscillator potential, provided the oscillator parameter is suitably chosen (a). 
Hence, expressions like (11) can perhaps be extended to realistic potentials, for which 
it could be approximately valid. Of course, it has to be modified, since the parameter 09 
looses its meaning. A possible modification is 

(12) 
{[ ( 1 z l) 

d~ _ 1 % / ~  ~ ( 2 j  + 1) (2/ + 1)(21+ 3) n +  ~ + ~  0 0 0 " 
dr 2z h Entr 

�9 • (2j' + 1) j 1 j 1 i' 
cj'l I + 1 �89 --�89 0 �89 (e.t+~,--e.tj)~" 

�9 R , u + l ; ( r ) R ~ j ( r )  - -  (1 - -  ~o)[(2/+ 1 ) ( 2 / -  1)(n + 1)]~- 

Ej'J t l - -  1 �89 --�89 0 �89 

where e~zj is the single-particle energy and where the radial wave f u n c t i o n / ~ j ( r )  now 
depends upon the quantum number  j because of the spin-orbit interaction. We have 
tested the likelihood of such a relation on a specific example. We have chosen a 
Saxon-Woods potential  with the parameters of ref. (5). Figure 1 shows the results of 
the calculation for the r176 nucleus. Relation (12) is strikingly fulfilled for r ) 3 f m ,  
whereas departures appear for smaller values of r. 

These considerations put some enlightment on a well-known observation first made 
b y  LIu and Baow~ (6). They draw the at tent ion to the fact that  in order to provide 
a good description of the excitations of nuclei, it is important  to use a single-particle 
potential  which gives a good description of the single-particle states n e a r  the  E e f m i  

e n e r g y .  On the other hand, it is known that  the coupling to low-lying excitations is 

(5) ]~:. BEAR and P. E. HODGSON: J .  Phys .  G, 4, L287 (1978). 
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Fig .  1. - C o m p a m s o n  
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of f o r m u l a  (11) w i t h  the  e x a c t  d e r i v a t i v e  of the  nuc lea r  dens i t y  in  b~ 

- - - - - -  e q .  ( 1 2 ) .  

often proport ional  to the derivat ive of the densi ty (7) (multiplied by  some power of r, 
according to the angular  momentum of the excitation).  Our result  makes the observa- 
t ion of ref. (6) understandable.  Having a good description of the single-particle states 
in the  vicini ty of the  Fe rmi  level amounts to having a good description of the transi- 
t ion operator.  

(6) K .  F.  LIU a n d  G. E.  BROWN: Nucl .  Phys.  A,  265, 385 (1976). 
(~) A. BOttR a n d  B. l~. •OTTELSON: Nuclear Structure (New Y o r k ,  N.  Y. ,  1969), Vol. I I ,  Chap t .  6. 


